
Efficient Evaluation of

Deterministic Tabled Calls

Miguel Areias and Ricardo Rocha

DCC-FC & CRACS
University of Porto, Portugal

c0507028@alunos.dcc.fc.up.pt ricroc@dcc.fc.up.pt

Abstract. The execution model in which most tabling engines are based
allocates a choice point whenever a new tabled subgoal is called. This
happens even when the call is deterministic. However, some of the infor-
mation from the choice point is never used when evaluating deterministic
tabled calls with batched scheduling. Thus, if tabling is applied to a long
deterministic computation, the system may end up consuming a huge
amount of memory inadvertently. In this paper, we propose a solution
that reduces this memory overhead to a minimum. Our results show that,
for deterministic tabled calls with batched scheduling, it is possible not
only to reduce the memory usage overhead, but also the running time of
the evaluation.

Keywords: Tabling, Deterministic Calls, Implementation.

1 Introduction

Tabling [1, 2] is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations and re-
cursion. Implementations of tabling are now widely available in systems like XSB
Prolog [3], Yap Prolog [4], B-Prolog [5], ALS-Prolog [6], Mercury [7] and more re-
cently Ciao Prolog [8]. Actual implementations differ in the execution rule, in the
data structures used to implement tabling, and in the changes to the underlying
Prolog engine. Arguably, the SLG-WAM [9] is the most popular execution rule,
but even here several issues require careful research, such as engine integration,
execution data structures, termination detection, and scheduling support.

The increasing interest in tabling technology led to further developments
and proposals that improve some practical deficiencies of current tabling exe-
cution models in key aspects of tabled evaluation like re-computation [10, 11],
scheduling [12] and memory recovery [13]. The discussion we address in this
work also results from practical deficiencies that we have found in the execution
data structures used to evaluate deterministic tabled calls if applying batched
scheduling [14].

The execution model in which most tabling engines are based allocates a
choice point whenever a new tabled subgoal is called. This happens even when the
call is deterministic, i.e., defined by a single matching clause. This is necessary



since the information from the choice point is crucial to correctly implement
some tabling operations. However, some of this information is never used when
evaluating deterministic tabled calls with batched scheduling. Thus, if tabling is
applied to a long deterministic computation, the system may end up consuming
a huge amount of memory inadvertently. In this paper, we propose a solution
that reduces this memory overhead to a minimum. We will focus our discussion
on a concrete implementation, the YapTab system [4], an efficient suspension-
based tabling engine that extends the state-of-the-art Yap Prolog system [15]
to support tabled evaluation for definite programs, but our proposal can be
generalized and applied to other tabling engines.

The remainder of the paper is organized as follows. First, we briefly intro-
duce the main background concepts about tabled evaluation. Next, we discuss in
more detail how YapTab compiles and dynamically indexes deterministic tabled
calls. We then describe how we have extended YapTab to provide engine sup-
port to efficiently deal with deterministic tabled calls. At last, we present some
preliminary experimental results and we end by outlining some conclusions.

2 Basic Tabling Concepts

Tabling consists of storing intermediate answers for subgoals so that they can
be reused when a repeated subgoal appears1. Whenever a tabled subgoal is first
called, a new entry is allocated in an appropriated data space, the table space. Ta-
ble entries are used to collect the answers found for their corresponding subgoals.
Moreover, they are also used to verify whether calls to subgoals are repeated. Re-
peated calls to tabled subgoals are not re-evaluated against the program clauses,
instead they are resolved by consuming the answers already stored in their table
entries. During this process, as further new answers are found, they are stored
in their tables and later returned to all repeated calls. Within this model, the
nodes in the search space are classified as either: generator nodes, corresponding
to first calls to tabled subgoals; consumer nodes, corresponding to repeated calls
to tabled subgoals; or interior nodes, corresponding to non-tabled subgoals.

The YapTab design follows the seminal SLG-WAM design [9]: it extends
WAM’s execution model [16] with a new data area, the table space; a new set
of registers, the freeze registers; an extension of the standard trail, the forward

trail ; and four new operations for definite programs:

Tabled Subgoal Call: this operation is a call to a tabled subgoal. It checks if
the subgoal is in the table space. If so, it allocates a consumer node and starts
consuming the available answers. If not, it adds a new entry to the table
space, and allocates a new generator node. When the call is deterministic,
the tabled subgoal call operation is implemented by the table try single

WAM-like instruction.

1 We say that a subgoal repeats a previous subgoal if they are the same up to variable
renaming.



New Answer: this operation verifies whether a newly found answer is already
in the table, and if not, inserts the answer. Otherwise, the operation fails.

Answer Resolution: this operation verifies whether extra answers are avail-
able for a particular consumer node and, if so, consumes the next one. If no
answers are available, it suspends the current computation and schedules a
possible resolution to continue the execution.

Completion: this operation determines whether a tabled subgoal is completely
evaluated. A subgoal is said to be complete when no more answers can be
generated, that is, when its set of stored answers represent all the conclusions
that can be inferred from the set of facts and rules in the program. If the
subgoal has been completely evaluated, the operation closes the subgoal’s
table entry and reclaims stack space. Otherwise, control moves to a consumer
with unconsumed answers.

During tabled evaluation, at several points, we can choose between continuing
forward execution, backtracking to interior nodes, returning answers to consumer
nodes, or performing completion. The decision on which operation to perform is
determined by the scheduling strategy. Different strategies may have a significant
impact on performance, and may lead to a different ordering of solutions to the
query goal. Arguably, the two most successful tabling scheduling strategies are
batched scheduling and local scheduling [14]. YabTab supports both batched
scheduling, local scheduling and the dynamic intermixing of batched and local
scheduling at the subgoal level [12]. Local scheduling does not have any relevance
for this work, so we will not consider it.

Batched scheduling schedules the program clauses in a depth-first manner as
does the WAM. It favors forward execution first, backtracking next, and consum-
ing answers or completion last. It thus tries to delay the need to move around
the search tree by batching the return of answers. When new answers are found
for a particular tabled subgoal, they are added to the table space and the evalua-
tion continues. For some situations, this results in creating dependencies to older
subgoals, therefore enlarging the current SCC (Strongly Connected Component)
and delaying the completion point to an older generator node. By default in
YapTab, tabled predicates are evaluated using batched scheduling [12].

3 Deterministic Tabled Calls in YapTab

In this section we discuss how tabled predicates are compiled in YapTab and,
in particular, we show how YapTab uses the Yap compiler to generate compiled
and indexed code for deterministic tabled calls.

3.1 Compilation of Tabled Predicates

Tabled predicates defined by several clauses are compiled using the table try me,
table retry me and table trust me WAM-like instructions in a similar manner
to the generic try me/retry me/trust me WAM sequence. The table try me



instruction extends the WAM’s try me instruction to support the tabled subgoal
call operation. The table retry me and table trust me differ from the generic
WAM instructions in that they restore a generator choice point rather than a
standard WAM choice point. Tabled predicates defined by a single clause are
compiled using the table try single WAM-like instruction. This instruction
optimizes the table try me instruction for the case when the tabled predicate
is defined by a single clause. Figure 1 shows the YapTab’s compiled code for a
tabled predicate t/1 defined by a single clause and for a tabled predicate t/3

defined by several clauses.

% predicate definitions
:- table t/1.
t(X) :- ...

:- table t/3.
t(a1,b1,c1) :- ...
t(a2,b2,c2) :- ...
t(a2,b1,c3) :- ...
t(a2,b3,c1) :- ...
t(a3,b1,c2) :- ...

% compiled code generated by YapTab for predicate t/1
t1_1: table_try_single t1_1a
t1_1a: ‘WAM code for clause t(X) :- ...’

% compiled code generated by YapTab for predicate t/3
t3_1: table_try_me t3_2
t3_1a: ‘WAM code for clause t(a1,b1,c1) :- ...’
t3_2: table_retry_me t3_3
t3_2a: ‘WAM code for clause t(a2,b2,c2) :- ...’
t3_3: table_retry_me t3_4
t3_3a: ‘WAM code for clause t(a2,b1,c3) :- ...’
t3_4: table_retry_me t3_5
t3_4a: ‘WAM code for clause t(a2,b3,c1) :- ...’
t3_5: table_trust_me
t3_5a: ‘WAM code for clause t(a3,b1,c2) :- ...’

Fig. 1. Compilation of tabled predicates in YapTab

As t/1 is a deterministic tabled predicate, the table try single instruc-
tion will be executed for every call to this predicate. On the other hand, t/3 is
a non-deterministic tabled predicate, but some calls to this predicate can be de-
terministic, i.e., defined by a single matching clause. Consider, for example, the
previous definition of t/3 and the calls t(a3,X,Y) and t(X,Y,c3). These two
calls are deterministic as they only match with a single t/3 clause, respectively,
the 5th and 3rd clause. We next show how YapTab uses the demand-driven
indexing mechanism of Yap to dynamically generate table try single instruc-
tions for this kind of deterministic calls.



3.2 Demand-Driven Indexing

Yap implements demand-driven indexing (or just-in-time indexing) [17] since
version 5. The idea behind it is to generate flexible multi-argument indexing of
Prolog clauses during program execution based on actual demand. This feature
is implemented for static code, dynamic code and the internal database. All
indexing code is generated on demand for all and only for the indices required.
This is done by building an indexing tree using similar building blocks to the
WAM but it generates indices based on the instantiation on the current goal,
and expands indices given different instantiations for the same goal.

This powerful optimization provides that YapTab can execute calls to non-
deterministic tabled predicates like deterministic tabled predicates. This happens
when Yap’s indexing scheme finds that for a particular call to a non-deterministic
tabled predicate, there is only a single clause that matches the call. Figure 2
shows an example illustrating the indexed code generated for a non-deterministic
call and two deterministic calls to the previous t/3 tabled predicate.

% indexed code generated by YapTab for call t(a2,X,Y)
table_try t3_2a
table_retry t3_3a
table_trust t3_4a

% indexed code generated by YapTab for call t(a3,X,Y)
table_try_single t3_5a

% indexed code generated by YapTab for call t(X,Y,c3)
table_try_single t3_3a

Fig. 2. Demand-driven indexing of tabled predicates in YapTab

The call t(a2,X,Y) is non-deterministic as it matches the 2nd, 3rd and 4th
clauses of t/3, so a table try/table retry/table trust sequence is gener-
ated. The other two calls, t(a3,X,Y) and t(X,Y,c3), are both deterministic as
they only match a single t/3 clause, so a table try single instruction can be
generated. Note however, that there are situations where a call can be deter-
ministic, but Yap’s indexing scheme cannot detect it as deterministic in order
to generate the appropriate table try single instruction. In such cases, we
cannot benefit directly from our approach, but we can take advantage of the
similarities between the table try single instruction and the last matching

clause of a non-deterministic tabled call to apply our approach later.

3.3 Last Matching Clause

When evaluating a tabled predicate, the last matching clause of a call to the
predicate is implemented either by the table trust me instruction or by the
table trust instruction. The former situation occurs when we have a generic



call to the predicate (all the arguments of the call are unbound variables) and the
latter situation occurs when we have a more specific call (some of the arguments
are at least partially instantiated) optimized by indexing code.

In a WAM-based implementation [16], the last matching clause of a call is
implemented by first restoring all the necessary information from the current
choice point (usually pointed to by the WAM’s B register) and then, by dis-
carding the current choice point by updating B to its predecessor. In a tabled
implementation, the table trust me and table trust instructions also restore
all the necessary information from the current choice point B, but instead of
updating B to its predecessor, they update the next clause field of B to the
completion instruction. By doing that, they force completion detection when
the computation backtracks again to B, i.e., whether the clauses for the subgoal
call at hand are all exploited.

Hence, the computation state that we have when executing a table trust me

or table trust instruction is similar to that one of a table try single instruc-
tion, that is, in both cases the current clause can be seen as deterministic as it
is the last (or single) matching clause for the subgoal call at hand. Thus, we
can view the table trust me and table trust instructions as a special case of
the table try single instruction. This means that the approach used for the
table try single instruction to efficiently deal with deterministic tabled calls
can be applied to the table trust me and table trust instructions. We discuss
the implementation details for these instructions in the next section.

4 Implementation Details

In this section, we describe in detail how we have extended YapTab to provide
engine support to efficiently deal with deterministic tabled calls.

4.1 Generator Nodes

In YapTab, a generator node is implemented as a WAM choice point extended
with some extra fields. The format of a generic generator choice point of YapTab
is depicted in Figure 3. Fields that are not found in standard WAM choice points
are coloured gray. A generator choice point is divided in three sections. The top
section contains the usual WAM fields needed to restore the computation on
backtracking plus two extra fields [12]: cp dep fr is a pointer to the correspond-
ing dependency frame, used by local scheduling for fixpoint check, and cp sg fr

is a pointer to the associated subgoal frame where answers should be stored. The
middle section contains the argument registers of the subgoal and the bottom
section contains the substitution factor, i.e., the set of free variables which exist
in the terms in the argument registers. The substitution factor is an optimiza-
tion that allows the new answer operation to store in the table space only the
substitutions for the free variables in the subgoal call [18].

If we now turn our attention to how generator choice points are handled dur-
ing evaluation, we find that some of this information is never used when eval-
uating deterministic tabled calls with batched scheduling. This happens mainly



cp_dep_fr

cp_sg_fr

Dependency frame

Subgoal frame

cp_ap

cp_tr

cp_h

cp_cp

Next unexploit alternative

Top of trail

Top of global stack

Success continuation PC

cp_env Current Environment

An Argument Register n

A1 Argument Register 1

.
.
.
.

.
.
.
.

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Vm

V1

.
.
.
.

cp_b Failure continuation CP

Fig. 3. Format of a generic generator choice point in YapTab

because, with batched scheduling, the computation is never resumed in a deter-
ministic generator choice point. This allow us to remove the argument registers
and the standard cp cp, cp h and cp env fields. The cp dep fr field can also be
removed because it is only necessary with local scheduling [12], which is never
the case. Figure 4 shows the new format of YapTab’s deterministic generator
choice point with the strictly necessary fields.

The cp b field is needed for failure continuation; the cp ap and cp tr are
required when backtracking to the choice point; the cp sg fr is required by
the new answer and completion operations; and the substitution factor fields
are required by the new answer operation. In order to avoid extra overheads
when manipulating the different kinds of choice points that can coexist in an
evaluation, we have rearranged all kinds of choice points in such a way that the
top three fields are now the same as the ones for a deterministic generator choice
point: the cp b, cp ap and cp tr fields.

The memory reduction obtained with the new representation for determinis-
tic generator choice points increases when the number of argument registers (the
arity of the predicate being called) and the number of substitution variables are,
respectively, bigger and smaller. Considering that A is the number of arguments
registers and that S is the number of substitution variables, the percentage of
memory saved with the new representation can be expressed as follows:



cp_ap

cp_tr

Next unexploit alternative

Top of trail

Subgoal frame

Number of Substitution Vars

Substitution Variable m

Substitution Variable 1

.
.
.
.

m

Vm

V1

.
.
.
.

cp_sg_fr

cp_b Failure continuation CP

Fig. 4. Format of a deterministic generator choice point in YapTab

1 −

4 + 1 + S

8 + A + 1 + S

4.2 Tabling Operations

In order to deal with the new representation for deterministic generator choice
points, this required small changes to the tabled subgoal call, new answer and
completion operations. Figures 5, 6, 7 and 8 show in more detail the changes
(blocks of code marked with comment ‘// new’) made to the table try single,
table trust me2, new answer and completion instructions. Figure 9 shows the
pseudo-code for the auxiliary procedure is deterministic generator cp().
We assume that memory addresses grow downwards and that the choice point
stack grows upwards.

table_try_single(TABLED_CALL tc) {
sg_fr = subgoal_check_insert(tc) // sg_fr is the subgoal frame for tc
if (new_tabled_subgoal_call(sg_fr)) {

if (evaluation_mode(tc) == batched_scheduling) // new
store_deterministic_generator_node(sg_fr)

else // local scheduling
store_generic_generator_node(sg_fr)

...
goto next_instruction()

}
...

}

Fig. 5. Pseudo-code for the table try single instruction

2 The changes made to the table trust instruction are identical to the ones made to
the table trust me instruction.



The table try single instruction now tests whenever the subgoal being
called is to be evaluated using batched or local scheduling. If batched, it allocates
a deterministic generator choice point. If local, it proceeds as before and allocates
a generic generator choice point.

table_trust_me(TABLED_CALL tc) {
// the B register points to the current choice point
restore_generic_generator_node(B, COMPLETION)
if (evaluation_mode(tc) == batched_scheduling &&

not_in_a_frozen_segment(B) { // new
subs_factor = B + sizeof(generic_generator_cp) + arity(tc)
gen_cp = subs_factor - sizeof(deterministic_generator_cp)
gen_cp->cp_sg_fr = B->cp_sg_fr
gen_cp->cp_tr = B->cp_tr
gen_cp->cp_ap = B->cp_ap
gen_cp->cp_b = B->cp_b
B = gen_cp

}
...

}

Fig. 6. Pseudo-code for the table trust me instruction

The table trust me instruction now tests if the current tabled call is being
evaluated using batched scheduling and if the current choice point is not in
a frozen segment3. If these two conditions hold, we can recover some memory
space by transforming the current generator choice point into a deterministic
generator choice point. To do that, we need to copy the cp sg fr, cp tr, cp ap

and cp b fields in the current choice point to their new position, just above the
substitution factor variables.

new_answer(TABLED_CALL tc, ANSWER ans) {
if (is_deterministic_generator_cp(B)) { // new

gen_cp = deterministic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr
subs_factor = gen_cp + sizeof(deterministic_generator_cp)

} else { // generic generator choice point
gen_cp = generic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr
subs_factor = gen_cp + sizeof(generic_generator_cp) + arity(tc)

}
...

}

Fig. 7. Pseudo-code for the new answer instruction

3 The YapTab system uses frozen segments to protect the stacks of suspended com-
putations [4]. Thus, if the current choice point is trapped in a frozen segment it is
worthless to try to recover memory from it using our approach.



completion() {
... // fixpoint check loop
// subgoal completely evaluated
if (is_deterministic_generator_cp(B)) { // new

gen_cp = deterministic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr

} else {
gen_cp = generic_generator_cp(B)
sg_fr = gen_cp->cp_sg_fr

}
complete_subgoal(sg_fr)
...

}

Fig. 8. Pseudo-code for the completion instruction

For the new answer and completion operations, since both generator types
have different sizes, we need a way to correctly identify which is the type of
the generator in order to correctly access the required fields on each structure.
To do that, we use the is deterministic generator cp() auxiliary procedure
to test if a generator choice point is deterministic or not. Figure 9 shows the
pseudo-code for it.

The is deterministic generator cp() procedure assumes that, by default,
we have a generic generator choice point and we check if the cp h field (which
is aligned with the field representing the number of substitution variables in
a deterministic generator choice point) is less than the maximum number of
allowed substitution variables (MAX SUBSTITUTION VARS). If this is case, then we
know that we have a deterministic generator choice point.

is_deterministic_generator_cp(CHOICE_POINT cp) {
gen_cp = generic_generator_cp(cp)
if (gen_cp->cp_h <= MAX_SUBSTITUTION_VARS)

return TRUE
else

return FALSE
}

Fig. 9. Pseudo-code for the is deterministic generator cp() procedure

5 Preliminary Experimental Results

We next present some preliminary experimental results comparing YapTab with
and without support for deterministic tabled calls. The environment for our
experiments was a AMD Athlon(tm) 64 Processor 3200+ processor with 2 GByte
of main memory and running the Linux kernel 2.6.24-19 with YapTab 5.1.3.

To evaluate the impact of our proposal, first we have defined three determin-
istic tabled predicates, respectively with arities 5, 11 and 17, that simply call
themselves recursively:



:- table t/5, t/11, t/17.

t(N,A2,A3,A4,A5) :-
N > 0, N1 is N - 1,
t(N1,A2,A3,A4,A5).

t(N,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11) :-
N > 0, N1 is N - 1,
t(N1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11).

t(N,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17) :-
N > 0, N1 is N - 1,
t(N1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17).

The first argument N controls the number of times the predicate is executed.
It thus defines the number of generator choice points to be allocated (we used a
value of 100,000 in our experiments). In order to have specific combinations of
argument registers and substitution variables, we have ran each predicate with
three different sets of free variables in the arguments:

:- t(100000,A2,A3,A4,A5).
:- t(100000,A2,A3,0,0).
:- t(100000,0,0,0,0).

:- t(100000,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11).
:- t(100000,A2,A3,A4,A5,A6,0,0,0,0,0).
:- t(100000,0,0,0,0,0,0,0,0,0,0).

:- t(100000,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,A13,A14,A15,A16,A17).
:- t(100000,A2,A3,A4,A5,A6,A7,A8,A9,0,0,0,0,0,0,0,0).
:- t(100000,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

These experiments are a kind of best-case scenario as they only allocate gen-
erator choice points and they do not store permanent variables for environment

frames [16]. Table 1 shows the memory usage, in KBytes, for the local stack4 and
the running time, in milliseconds, for YapTab without (column YapTab) and
with (column YapTab+Det) the new support for deterministic tabled calls. A
third column Ratio (1–b/a) shows the memory and running time ratio between
both approaches. For the memory ratio, we show in parentheses the percentage
of memory saved if using the formula presented at the end of section 4.1.

The results in Table 1 indicate that YapTab with support for deterministic
tabled calls can decrease, on average, memory usage by 48% and running time
by 23%. These results also confirm that memory reduction increases when the
number of argument registers is bigger and the number of substitution variables
is smaller. This is coherent with the formula presented in section 4.1. The small
difference between our experiments and the values obtained when using the
formula came from the fact that, in the formula, we are considering a local stack
without environment frames.

4 In YapTab, the local stack contains both choice points and environment frames.
Other systems, like XSB Prolog, have separate choice point and environment stacks.



Args Subs
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time

5 4 9,376 82 5,860 70 0.37 (0.50) 0.15
5 2 8,594 78 5,079 66 0.41 (0.57) 0.15
5 0 7,813 80 4,297 65 0.45 (0.64) 0.19
11 10 14,063 137 8,204 96 0.42 (0.50) 0.30
11 5 12,110 136 6,251 89 0.48 (0.60) 0.35
11 0 10,157 124 4,297 108 0.58 (0.75) 0.13
17 16 18,751 173 10,547 129 0.44 (0.50) 0.25
17 8 15,626 164 7,422 109 0.53 (0.62) 0.34
17 0 12,501 153 4,297 114 0.66 (0.81) 0.25

Average 0.48 (0.61) 0.23

Table 1. Memory usage (in KBytes) and running times (in milliseconds) for YapTab
without and with the new support for deterministic tabled calls

Next, we tested our approach with the sequence comparisons problem [19].
In this problem, we have two sequences A and B, and we want to determine the
minimal number of operations needed to turn A into B. We used the original
tabled program from [19] and a transformed tabled program that forces all calls
to use the table try single instruction. We experimented these two versions
with sequences of length 500, 1000, 1500 and 2000. Table 2 shows the memory
usage, in KBytes, for the local stack and the running time, in milliseconds, for
YapTab without (column YapTab) and with (column YapTab+Det) the new
support for deterministic tabled calls. A third column Ratio (1–b/a) shows
the memory and running time ratio between both approaches.

Version Length
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time

Original

500 51,774 1,548 44,938 1,264 0.13 0.18
1000 207,063 13,548 179,719 11,212 0.13 0.17
1500 465,868 60,475 404,344 50,631 0.13 0.16
2000 828,188 189,647 718,813 157,213 0.13 0.17

Transformed

500 45,915 1,172 39,051 848 0.15 0.28
1000 183,625 10,024 156,227 8,460 0.15 0.16
1500 413,133 45,874 351,528 36,106 0.15 0.21
2000 734,438 140,068 624,953 113,011 0.15 0.19

Average 0.14 0.19

Table 2. Memory usage (in KBytes) and running times (in milliseconds) for YapTab
without and with the new support for deterministic tabled calls

In general, for memory usage, the results in Table 2 are slightly different
from the previous results obtained in Table 1. For both version of the sequence

comparisons program, YapTab with support for deterministic tabled calls can



decrease, on average, memory usage by 14%. This reduction on memory saving,
compared with the results on Table 1, happens mainly because of the existence
of permanent variables in the body of the clauses in the sequence comparisons

program. On the other hand, for the running times, the results in Table 2 confirm
the previous results obtained in Table 1.

The results in Table 2 also show very similar memory and running time ratios
for both versions of the sequence comparisons program. This suggests that we can
take advantage of our approach by using the last matching clause optimization
and not only when a program contains deterministic tabled predicates.

Finally, we tested our approach with a path program that computes the
transitive closure of a NxN grid using a right recursive algorithm:

:- table path/2.

path(X,Z) :- edge(X,Z).
path(X,Z) :- edge(X,Y), path(Y,Z).

Regarding the edge/2 facts, we used four grid configuration with 30x30,
40x40, 50x50 and 60x60 nodes. Table 3 shows the memory usage, in KBytes,
for the local stack and the running time, in milliseconds, for YapTab without
(column YapTab) and with (column YapTab+Det) the new support for deter-
ministic tabled calls. Again, a third column Ratio (1–b/a) shows the memory
and running time ratio between both approaches.

Grid
YapTab (a) YapTab+Det (b) Ratio (1–b/a)

Memory Time Memory Time Memory Time

30x30 119 1,304 98 1,464 0.18 -0.12
40x40 211 4,400 175 4,024 0.17 0.09
50x50 330 11,208 273 10,996 0.17 0.02
60x60 476 28,509 393 28,213 0.17 0.01

Average 0.17 0.00

Table 3. Memory usage (in KBytes) and running times (in milliseconds) for YapTab
without and with the new support for deterministic tabled calls

The path program confirms tendency to memory reduction, this case in 17%,
on average. Running time gets sightly worse, thought comparison between both
approaches remains in positive territory in three cases. Note however, that our
approach was mainly designed to achieve a reduction on memory usage by paying
a small cost on running time due to the extra code needed to deal with the new
data structures and algorithms. Despite of this fact, on average, our approach
showed a very good performance in all experiments.



6 Conclusions and Further Work

We have presented a proposal for the efficient evaluation of deterministic tabled
calls with batched scheduling. A well-known aspect of tabling is the overhead
in terms of memory usage compared with standard Prolog. This raised us the
question of whether it was possible to minimize this overhead when evaluating
deterministic tabled computations. Our preliminary results are quite promising,
they suggest that, for deterministic tabled calls with batched scheduling, it is
possible not only to reduce the memory usage overhead, but also the running
time of the evaluation for certain class of applications.

Further work will include exploring the impact of applying our proposal to
more complex problems, seeking real-world experimental results allowing us to
improve and expand our current implementation.

Acknowledgements

This work has been partially supported by the research projects STAMPA
(PTDC/EIA/67738/2006) and JEDI (PTDC/ EIA/66924/2006) and by Fundação
para a Ciência e Tecnologia.

References

1. Tamaki, H., Sato, T.: OLDT Resolution with Tabulation. In: International Confer-
ence on Logic Programming. Number 225 in LNCS, Springer-Verlag (1986) 84–98

2. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1) (1996) 20–74

3. Rao, P., Sagonas, K., Swift, T., Warren, D.S., Freire, J.: XSB: A System for Effi-
ciently Computing Well-Founded Semantics. In: International Conference on Logic
Programming and Non-Monotonic Reasoning. Number 1265 in LNCS, Springer-
Verlag (1997) 431–441

4. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling
to logic programs. Theory and Practice of Logic Programming 5(1 & 2) (2005)
161–205

5. Zhou, N.F., Sato, T., Shen, Y.D.: Linear Tabling Strategies and Optimizations.
Theory and Practice of Logic Programming 8(1) (2008) 81–109

6. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: International
Conference on Logic Programming. Number 2237 in LNCS, Springer-Verlag (2001)
181–196

7. Somogyi, Z., Sagonas, K.: Tabling in Mercury: Design and Implementation. In:
International Symposium on Practical Aspects of Declarative Languages. Number
3819 in LNCS, Springer-Verlag (2006) 150–167

8. Chico, P., Carro, M., Hermenegildo, M.V., Silva, C., Rocha, R.: An Improved
Continuation Call-Based Implementation of Tabling. In: International Symposium
on Practical Aspects of Declarative Languages. Number 4902 in LNCS, Springer-
Verlag (2008) 197–213



9. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20(3) (1998) 586–634

10. Sagonas, K., Stuckey, P.: Just Enough Tabling. In: ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, ACM Press
(2004) 78–89

11. Saha, D., Ramakrishnan, C.R.: Incremental Evaluation of Tabled Logic Pro-
grams. In: International Conference on Logic Programming. Number 3668 in
LNCS, Springer-Verlag (2005) 235–249

12. Rocha, R., Silva, F., Santos Costa, V.: Dynamic Mixed-Strategy Evaluation of
Tabled Logic Programs. In: International Conference on Logic Programming. Num-
ber 3668 in LNCS, Springer-Verlag (2005) 250–264

13. Rocha, R.: On Improving the Efficiency and Robustness of Table Storage Mech-
anisms for Tabled Evaluation. In: International Symposium on Practical Aspects
of Declarative Languages. Number 4354 in LNCS, Springer-Verlag (2007) 155–169

14. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic
Programs through Alternative Scheduling Strategies. In: International Symposium
on Programming Language Implementation and Logic Programming. Number 1140
in LNCS, Springer-Verlag (1996) 243–258

15. Santos Costa, V., Damas, L., Reis, R., Azevedo, R.: YAP User’s Manual. Available
from http://www.dcc.fc.up.pt/~vsc/Yap.

16. Aı̈t-Kaci, H.: Warren’s Abstract Machine – A Tutorial Reconstruction. The MIT
Press (1991)

17. Santos Costa, V., Sagonas, K., Lopes, R.: Demand-Driven Indexing of Prolog
Clauses. In: International Conference on Logic Programming. Number 4670 in
LNCS, Springer-Verlag (2007) 395–409

18. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1)
(1999) 31–54

19. Warren, D.S.: Programming in Tabled Prolog. Technical report, Depart-
ment of Computer Science, State University of New York (1999) Available from
http://www.cs.sunysb.edu/~warren/xsbbook/book.html


