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Abstract. The past few years have seen a surge of interest in the field
of probabilistic logic learning or statistical relational learning. In this
endeavor, many probabilistic logics have been developed. ProbLog is a
recent probabilistic extension of Prolog motivated by the mining of large
biological networks. In ProbLog, facts can be labeled with mutually inde-
pendent probabilities that they belong to a randomly sampled program.
Different kinds of queries can be posed to ProbLog programs. We intro-
duce algorithms that allow the efficient execution of these queries, discuss
their implementation on top of the YAP-Prolog system, and evaluate
their performance in the context of large networks of biological entities.

1 Introduction

In the past few years, a multitude of different formalisms combining proba-
bilistic reasoning with logics, databases, or logic programming has been devel-
oped. Prominent examples include PHA [1], PRISM [2], SLPs [3], ProbView [4],
CLP(BN ) [5], CP-logic [6], Trio [7], probabilistic Datalog (pD) [8], and prob-
abilistic databases [9]. Although these logics have been traditionally studied in
the knowledge representation and database communities, the focus is now often
on a machine learning perspective, which imposes new requirements. First, these
logics must be simple enough to be learnable and at the same time sufficiently ex-
pressive to support interesting probabilistic inferences. Second, because learning
is computationally expensive and requires answering long sequences of possibly
complex queries, inference in such logics must be fast, although inference in even
the simplest probabilistic logics is computationally hard.

In this paper, we study these problems in the context of a simple probabilis-
tic logic, ProbLog [10], which has been used for learning in the context of large
biological networks where edges are labeled with probabilities. Large and com-
plex networks of biological concepts (genes, proteins, phenotypes, etc.) can be
extracted from public databases, and probabilistic links between concepts can be
obtained by various prediction techniques [11]. ProbLog is essentially an exten-
sion of Prolog where facts are labeled with the probability that they belong to a



randomly sampled program, and these probabilities are mutually independent.
A ProbLog program thus specifies a probability distribution over all its possible
non-probabilistic subprograms. The success probability of a query is defined as
the probability that it succeeds in such a random subprogram. The semantics of
ProbLog is not new: ProbLog programs define a distribution semantics [12]. This
is a well-known semantics for probabilistic logics that has been (re)defined multi-
ple times in the literature; see for instance the works of [13, 1, 8, 14, 9]. However,
even though relying on the same semantics, in order to allow efficient inference,
systems such as PRISM [12] and PHA [1] additionally require all proofs of a
query to be mutually exclusive. Thus, they cannot easily represent the type of
network analysis tasks that motivated ProbLog.

We contribute exact and approximate inference algorithms for ProbLog. We
present algorithms for computing the success and explanation probabilities of
a query, and show how they can be efficiently implemented combining Prolog
inference with Binary Decision Diagrams (BDDs) [15]. In addition to an iterative
deepening algorithm that computes an approximation along the lines of [16], we
further adapt the Monte Carlo approach suggested by [13] and used also by [11] in
the context of biological network inference. These two approximation algorithms
compute an upper and a lower bound on the success probability. Furthermore,
we also contribute an approximation algorithm that computes a lower bound
only using the k-most likely proofs.

The key contribution of this paper is the tight integration of these algo-
rithms in the state-of-the-art implementation of the YAP-Prolog system. This
integration includes several improvements over the initial implementation used
in [10], which enable the use of ProbLog to effectively query Sevon’s Biomine
network [11] containing about 1,000,000 nodes and 6,000,000 edges, as will be
shown in the experiments.

This paper is organised as follows. After introducing ProbLog and its se-
mantics in Section 2, we present several algorithms for exact and approximate
inference in Section 3. Section 4 then discusses how these algorithms are imple-
mented in YAP-Prolog, and Section 5 reports on experiments that validate the
approach. Finally, Section 6 concludes and touches upon related work.

2 ProbLog

A ProbLog program consists of a set of labeled facts pi :: ci together with a set
of definite clauses. Each ground instance (that is, each instance not containing
variables) of such a fact ci is true with probability pi, where all probabilities
are assumed mutually independent. The definite clauses allow to add arbitrary
background knowledge (BK).

Figure 1(a) shows a small probabilistic graph that we shall use as running
example in the text. It can be encoded in ProbLog as follows:

0.8 :: edge(a, c). 0.7 :: edge(a, b). 0.8 :: edge(c, e).
0.6 :: edge(b, c). 0.9 :: edge(c, d). 0.5 :: edge(e, d).
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Fig. 1. (a) Example of a probabilistic graph: edge labels indicate the probability that
the edge is part of the graph. (b) Binary Decision Diagram encoding the DNF formula
cd ∨ (ce ∧ ed), corresponding to the two proofs of query path(c,d) in the graph. An
internal node labeled xy represents the Boolean variable for the edge between x and y,
solid/dashed edges correspond to values true/false.

Such a probabilistic graph can be used to sample subgraphs by tossing a coin
for each edge. A ProbLog program T = {p1 :: c1, · · · , pn :: cn} ∪ BK defines a
probability distribution over subprograms L ⊆ LT = {c1, · · · , cn}:

P (L|T ) =
∏

ci∈L
pi

∏

ci∈LT \L
(1 − pi).

We extend our example with the following background knowledge:

path(X, Y) : − edge(X, Y).
path(X, Y) : − edge(X, Z), path(Z, Y).

We can then ask for the probability that there exists a path between two nodes,
say c and d, in our probabilistic graph, that is, we query for the probability that
a randomly sampled subgraph contains the edge from c to d, or the path from
c to d via e (or both of these). Formally, the success probability Ps(q|T ) of a
query q in a ProbLog program T is defined as

Ps(q|T ) =
∑

L⊆LT

P (q|L) · P (L|T ) , (1)

where P (q|L) = 1 if there exists a θ such that L ∪ BK |= qθ, and P (q|L) = 0
otherwise. In other words, the success probability of query q is the probability
that the query q is provable in a randomly sampled logic program.

As a consequence, the probability of a specific proof, also called explanation,
is that of sampling a logic program L that contains all the facts needed in
that explanation or proof. The explanation probability Px(q|T ) is defined as the
probability of the most likely explanation or proof of the query q

Px(q|T ) = maxe∈E(q) P (e|T ) = maxe∈E(q)

∏

ci∈e

pi, (2)

where E(q) is the set of all explanations for query q [17].



?- path(c,d).

:- edge(c,d). :- edge(c,A),path(A,d).

cd

:- path(d,d).

cd ce

:- edge(d,d). :- edge(d,B),path(B,d).

:- path(e,d).

:- edge(e,d).

ed

:- edge(e,C),path(C,d).

:- path(d,d).

:- edge(d,d). :- edge(d,D),path(D,d).

ed

Fig. 2. SLD-tree for query path(c, d).

In our example, the set of all explanations for path(c, d) contains the edge from
c to d (with probability 0.9) as well as the path consisting of the edges from c to
e and from e to d (with probability 0.8 ·0.5 = 0.4). Thus, Px(path(c, d)|T ) = 0.9.

The ProbLog semantics is essentially a distribution semantics [12]. Sato has
rigorously shown that this class of programs defines a joint probability distribu-
tion over the set of possible least Herbrand models of the program, that is, of
the background knowledge BK together with a subprogram L ⊆ LT ; for further
details we refer to [12]. The distribution semantics has been used widely in the
literature; see e.g. [13, 1, 8, 14, 9].

3 Inference in ProbLog

This section discusses algorithms for computing exactly and approximately the
success and explanation probabilities of ProbLog queries. It additionaly con-
tributes a new algorithm for Monte Carlo approximation of success probabilities.

3.1 Exact Inference

Calculating the success probability of a query using Equation (1) directly is
infeasible for all but the tiniest programs; [10] presents a method involving two
steps. The first step computes the proofs of the query q in the logical part of the
theory T , that is, in BK ∪ LT . This step is akin to that performed for pD by
[8]. The result will be a DNF formula. The second component employs Binary
Decision Diagrams [15] to compute the probability of this formula.

Following Prolog, we employ SLD-resolution to obtain all different proofs. As
an example, the SLD-tree for the query ?- path(c, d). is depicted in Figure 2. Each
successful proof in the SLD-tree uses a set of facts {pi1 :: ci1 , · · · , pik

:: cik
} ⊆ T .

These facts are necessary for the proof, and the proof is independent of other
probabilistic facts in T .

Let us now introduce a Boolean random variable bi for each clause pi :: ci ∈ T ,
indicating whether ci is in logic program, that is, bi has probability pi of being



true. The probability of a particular proof involving clauses {pi1 :: ci1 , · · · , pik
::

cik
} ⊆ T is then the probability of the conjunctive formula bi1 ∧ · · · ∧ bik

. Since
a goal can have multiple proofs, the success probability of query q equals the
probability that the disjunction of these conjunctions is true. This yields

Ps(q|T ) = P





∨

e∈E(q)

∧

bi∈cl(e)

bi



 (3)

where E(q) denotes the set of proofs or explanations of the goal q and cl(e)
denotes the set of Boolean variables representing ground facts used in the expla-
nation e. Thus, the problem of computing the success probability of a ProbLog
query can be reduced to that of computing the probability of a DNF formula.
The formula corresponding to our example query path(c, d) is cd ∨ (ce ∧ ed),
where we use xy as Boolean variable representing edge(x, y).

Computing the probability of DNF formulae is an NP-hard problem, as the
different conjunctions need not be independent. Indeed, even under the assump-
tion of independent variables used in ProbLog, the different conjunctions are not
mutually exclusive and may overlap. Various algorithms have been developed to
tackle this problem, which is known as the disjoint-sum-problem. The pD-engine
HySpirit [8] uses the inclusion-exclusion principle, which is reported to scale to
about ten proofs. For ICL, which extends PHA by allowing non-disjoint proofs,
[14] proposes a symbolic disjoining algorithm, but does not report scalability
results. Our implementation employs Binary Decision Diagrams (BDDs) [15],
an efficient graphical representation of a Boolean function over a set of variables
which scales to tens of thousands of proofs; see Section 4 for more details.

Calculating the explanation probability Px, however, can easily be realized
using a best-first search, guided by the probability of the current derivation,
through standard logic programming techniques based on the SLD-tree [18].

3.2 Approximative Inference

As the size of the DNF formula grows with the number of proofs, its evaluation
can become quite expensive, and finally infeasible. For instance, when searching
for paths in graphs or networks, even in small networks with a few dozen edges
there are easily O(106) possible paths between two nodes. ProbLog therefore
includes several approximation methods.

Bounded Approximation The first approximation algorithm, similar to the one
proposed in [10], uses DNF formulae to obtain both an upper and a lower bound
on the probability of a query. It is related to work by [16] in the context of
PHA, but adapted towards ProbLog. The algorithm uses an incomplete SLD-
tree, i.e. an SLD-tree where branches are only extended up to a given probability
threshold1, to obtain DNF formulae for the two bounds. The lower bound for-
mula d1 represents all proofs with a probability above the current threshold.

1 Using a probability threshold instead of the depth bound of [10] has been found to
speed up convergence, as upper bounds are tighter on initial levels.



The upper bound formula d2 additionally includes all derivations that have been
stopped due to reaching the threshold, as these still may succeed. The algo-
rithm proceeds in an iterative-deepening manner, starting with a high probabil-
ity threshold and successively multiplying this threshold with a fixed shrinking
factor until the difference between the current bounds becomes sufficiently small.
As d1 |= d |= d2, where d is the formula corresponding to the full SLD-tree of the
query, the success probability is guaranteed to lie in the interval [P (d1), P (d2)].

As an illustration, consider a probability bound of 0.9 for the SLD-tree in
Figure 2. In this case, d1 encodes the left success path while d2 additionally
encodes the path up to path(e, d), i.e. d1 = cd and d2 = cd ∨ ce, whereas the
formula for the full SLD-tree is d = cd ∨ (ce ∧ ed).

K-Best Using a fixed number of proofs to approximate the probability allows bet-
ter control of the overall complexity, which is crucial if large numbers of queries
have to be evaluated e.g. in the context of parameter learning. [19] therefore
introduce the k-probability Pk(q|T ), which approximates the success probability
by using the k best (that is, most likely) explanations instead of all proofs when
building the DNF formula used in Equation (3):

Pk(q|T ) = P





∨

e∈Ek(q)

∧

bi∈cl(e)

bi



 (4)

where Ek(q) = {e ∈ E(q)|Px(e) ≥ Px(ek)} with ek the kth element of E(q)
sorted by non-increasing probability. Setting k = ∞ and k = 1 leads to the
success and the explanation probability respectively. Finding the k best proofs
can be realized using a simple branch-and-bound approach (cf. also [1]).

To illustrate k-probability, we consider again our example graph, but this
time with query path(a, d). This query has four proofs, represented by the con-
junctions ac∧ cd, ab∧ bc∧ cd, ac∧ ce∧ ed and ab∧ bc∧ ce∧ ed, with probabilities
0.72, 0.378, 0.32 and 0.168 respectively. As P1 corresponds to the explanation
probability Px, we obtain P1(path(a, d)) = 0.72. For k = 2, overlap between the
best two proofs has to be taken into account: the second proof only adds infor-
mation if the first one is absent. As they share edge cd, this means that edge ac

has to be missing, leading to P2(path(a, d)) = P ((ac∧cd)∨(¬ac∧ab∧bc∧cd)) =
0.72 + (1 − 0.8) · 0.378 = 0.7956. Similarly, we obtain P3(path(a, d)) = 0.8276
and Pk(path(a, d)) = 0.83096 for k ≥ 4.

Monte Carlo As an alternative approximation technique without BDDs, we
propose a Monte Carlo method. In this algorithm, we repeatedly sample a logic
program from the ProbLog program and check for the existence of some proof
of the query of interest. The fraction of samples where the query is provable is
taken as an estimate of the query probability, and after each m samples the 95%
confidence interval is calculated. Although confidence intervals do not directly
correspond to the exact bounds used in our previous approximation algorithm,
we employ the same stopping criterion, that is, we run the Monte Carlo simula-
tion until the width of the confidence interval is at most δ. Such an algorithm
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Fig. 3. ProbLog Implementation: A ProbLog program (top-left) requires the ProbLog
library which in turn relies on functionality from the tries and array libraries. ProbLog
queries (bottom-left) are sent to the YAP engine, and may require calling the BDD
library CUDD.

(without the use of confidence intervals) was suggested already by Dantsin [13],
although he does not report on an implementation. It was also used in the con-
text of networks (not Prolog programs) by [11].

4 Implementation

This section discusses the main building blocks used to implement ProbLog on
top of the YAP Prolog system. An overview is shown in Figure 3. On the top-
left corner we show a typical ProbLog program, including ProbLog facts and
background knowledge (BK).

The implementation requires ProbLog programs to use the problog mod-
ule. Each program consists of a set of labeled ground facts and of unlabeled
background knowledge, a generic Prolog program. Labeled ground facts are pre-
processed as described below. Notice that the implementation currently only
supports labeled ground facts.

In contrast to standard Prolog queries, where one is interested in answer
substitutions, in ProbLog one is interested in a probability. As discussed before,
two common ProbLog queries are the most likely explanation and its probability,
and the probability of whether a query would have an answer substitution. We
have discussed two very different approaches to the problem:

– In k best and bounded approximation, the engine explicitly reasons about
probabilities of proofs. The challenge is how to compute the probability
of each individual proof, store a large number of proofs, and compute the
probability of sets of proofs.

– In Monte Carlo, the probabilities of facts are used to sample from ProbLog
programs. The challenge is how to compute a sample quickly, in a way that
inference can be as efficient as possible.

ProbLog programs execute from a ProbLog top-level query and proceed as fol-
lows:



– Initialise a new ProbLog query;
– While probabilistic inference did not converge:

• set environment for new query;
• call Prolog goal;
• instrument every ProbLog call in the current proof: for example, a proof

may be pruned immediately if its probability is lower than some bound;
• process success or exit substitution;

– Call external solver, if required;

Notice that the current ProbLog implementation relies on Prolog’s backtracking
to explore the search space. On the other hand, and in contrast to most other
probabilistic logic implementations, in ProbLog there is no clear separation be-
tween logical and probabilistic inference: in a fashion similar to constraint logic
programming, probabilistic inference can drive logical inference.

Implementing ProbLog poses a number of interesting challenges. First, la-
beled facts have to be efficiently compiled to allow mutual calls between the
Prolog BK and the ProbLog engine. Second, for k best and bounded inference,
sets of proofs have to be manipulated and transformed into BDDs. Finally, Monte
Carlo simulation requires representing and manipulating samples. We discuss
these issues next.

Source-to-source transformation We use the term expansion mechanism to al-
low Prolog calls to labeled facts, and for labeled facts to call the ProbLog engine.
As an example, the program:

0.715 :: edge(′PubMed 2196878′,′ MIM 609065′).
0.659 :: edge(′PubMed 8764571′,′ HGNC 5014′).

would be compiled as:

edge(A, B) : − problog edge(C, A, B, D),
add to proof(C, D).

problog edge(0,′ PubMed 2196878′,′ MIM 609065′,−0.3348).
problog edge(1,′ PubMed 8764571′,′ HGNC 5014′,−0.4166).

Thus, the internal representation of each fact contains an identifier, the original
arguments, and the logarithm of the probability. The add to proof procedure
updates the data structure representing the current path through the search
space and its probability. Compared to the original meta-interpreter based im-
plementation of [10], the main benefit of source-to-source transformation is faster
execution time, which in turn improves scalability.

Tries Manipulating proofs is critical in ProbLog. We represent each proof as a
list containing the identifier of each different ground probabilistic fact used in
the proof, ordered by first use. When manipulating proofs, the key operation is
often insertion: we would like to add a proof to an existing set of proofs. Some



algorithms, such as exact inference or Monte Carlo, only manipulate complete
proofs. Others, such as bounded approximation, require adding partial deriva-
tions too. The nature of the SLD-tree means that proofs tend to share both a
prefix and a suffix. Partial proofs tend to share prefixes only. This suggests using
tries to maintain the set of proofs. We use the YAP implementation of tries for
this task, based itself on XSB Prolog’s work on tries of terms.

Binary Decision Diagrams To efficiently compute the probability of a DNF
formula representing a set of proofs, our implementation represents this formula
as a Binary Decision Diagram (BDD) [15]. Given a fixed variable ordering, a
Boolean function f can be represented as a full Boolean decision tree, where each
node on the ith level is labeled with the ith variable and has two children called
low and high. Leaves are labeled by the outcome of f for the variable assignment
corresponding to the path to the leaf, where in each node labeled x, the branch
to the low (high) child is taken if variable x is assigned 0 (1). Starting from
such a tree, one obtains a BDD by merging isomorphic subgraphs and deleting
redundant nodes until no further reduction is possible. A node is redundant if
the subgraphs rooted at its children are isomorphic. Figure 1(b) shows the BDD
for the existence of a path between c and d in our earlier example.

Our implementation uses the C++ interface of the BDD package CUDD2 to
construct and evaluate BDDs. More precisely, the trie representation of the DNF
is translated to C++ code that uses the CUDD primitives for building BDDs.
The program is executed via Prolog’s shell utility, and results are reported via
shared files. We currently work on a tighter integration of BDDs into Prolog.

During the generation of the code, it is crucial to exploit the structure sharing
(prefixes and suffixes) already in the trie representation of a DNF formula, oth-
erwise CUDD computation time becomes extremely long or memory overflows
quickly. Our translation starts by creating the C++ code for each single variable.
Since CUDD builds BDDs by joining smaller BDDs using logical operations, the
trie is traversed bottom-up to successively generate code for all its subtrees. Two
types of operations are used to combine nodes. First, all the children of a node
are combined as a disjunction resulting in a new child node. This child node is
then combined with the parent node as a conjunction. A subtree that occurs
multiple times in the trie is translated only once, and the resulting BDD is used
for all occurrences of that subtree. Because of the optimizations in CUDD, the
resulting BDD can have a very different structure than the trie.

After CUDD has generated the BDD, the probability of a formula is calcu-
lated (also in C++) by traversing the BDD, in each node summing the probabil-
ity of the high and low child, weighted by the probability of the node’s variable
being assigned true and false respectively. Intermediate results are cached, and
the algorithm has a time and space complexity linear in the size of the BDD.

Monte Carlo Monte Carlo execution is quite different from the approaches dis-
cussed before. Instead of combining large numbers of proofs, we now need to be
able to manipulate large numbers of different programs or samples.

2 http://vlsi.colorado.edu/~fabio/CUDD



Generating complete samples and checking for a proof does not scale to large
databases, even if proofs are cached in a trie to skip inference on a new sample
by checking first whether a subsample is in the proof cache. In fact, already
representing and generating the whole sample is a challenge for large databases.
Within YAP, the efficient implementation of arrays offers the most compact way
of representing large numbers of nodes. On the other hand, quite often proofs
are local, i.e. we only need to verify whether facts from a small fragment of the
database are in the sample. We take advantage of independence between facts to
generate the sample lazily: we verify whether a fact is in the sample only when
we need it for a proof. Samples are thus represented as a three-valued array: 0
means sampling was not asked yet, 1 means in sample, 2 means not in sample.

5 Experiments

We experiment our implementation of ProbLog in the context of the biolog-
ical network obtained from the Biomine project [11]. We use two subgraphs
extracted around three genes known to be connected to the Alzheimer disease
(HGNC numbers 983, 620 and 582) as well as the full network. The smaller
graphs are obtained querying Biomine for best paths of length 2 (resulting in
graph Small) or all paths of length 3 (resulting in graph Medium) starting at
one of the three genes. Small contains 79 nodes and 144 edges, Medium 5220
nodes and 11532 edges. We use Small for a first comparison of our algorithms
on a small scale network where success probabilities can be calculated exactly.
Scalability is evaluated using both Medium and the entire Biomine network
with roughly 1,000,000 nodes and 6,000,000 edges. In all experiments, we query
for the probability that two of the gene nodes mentioned above are connected,
that is, we use queries such as path(’HGNC 983’,’HGNC 620’,Path). We use
the following definition of an acyclic path in our background knowledge:

path(X, Y, A) : − path(X, Y, [X], A),
path(X, X, A, A).
path(X, Y, A, R) : − X \ == Y, edge(X, Z),absent(Z, A),path(Z, Y, [Z|A], R).

As list operations to check for the absence of a node get expensive for long paths,
we consider an alternative definition for use in Monte Carlo. It provides cheaper
testing by using the internal database of YAP to store nodes on the current path
under key visited:

memopath(X, Y, A) : − eraseall(visited), memopath(X, Y, [X], A).
memopath(X, X, A, A).
memopath(X, Y, A, R) : − X \ == Y, edge(X, Z),recordzifnot(visited, Z, ),

memopath(Z, Y, [Z|A], R).

All experiments were performed on Core 2 Duo 3 GHz machines running
Linux. All times reported are in msec and do not include the time to load the
graph into Prolog. The latter takes 32, 192 and 66772 msec for Small, Medium



path 983 − 620 983 − 582 620 − 582
k Tp TB P Tp TB P Tp TB P

1 16 - 0.07 4 - 0.03 4 - 0.42
2 0 1613 0.08 0 1686 0.05 4 1511 0.66
4 4 1758 0.10 0 1519 0.06 4 1676 0.86
8 0 1590 0.11 0 1643 0.06 4 1778 0.92
16 4 1744 0.11 4 1536 0.06 4 1719 0.92
32 8 1839 0.11 12 1676 0.07 4 1681 0.96
64 24 1891 0.11 20 1665 0.09 12 1590 0.99
128 52 2054 0.11 32 2130 0.10 48 2286 1.00
256 212 2141 0.11 128 2039 0.10 76 1942 1.00
512 436 13731 0.11 209 2280 0.11 300 2245 1.00
1024 1837 3349 0.11 1372 2195 0.11 581 4080 1.00

exact 641 8343 0.11 5629 2716 0.11 496 2288 1.00
Table 1. k-probability on Small.

and Biomine respectively. We report TP , the time spent by ProbLog to search
for proofs, as well as TB, the time spent to compile and execute BDD programs
(whenever meaningful). We also report the estimated probability P . For approx-
imate inference using bounds, we report exact intervals for P , and also include
the number n of BDDs constructed. We set both the initial threshold and the
shrinking factor to 0.5. We compute k-probability for k = 1, 2, . . . , 1024. Note
that no BDDs are used for k = 1. In the bounding algorithms, we range the er-
ror interval between 10% and 1%. Monte Carlo recalculates confidence intervals
after m = 1000 samples. We also report the number S of samples used.

Small Sized Sample We first compare our algorithms on Small. Table 1 shows
the results for k-probability and exact inference. Note that nodes 620 and 582
are close to each other, whereas node 983 is farther apart. Therefore, connections
involving the latter are less likely. In this graph, we obtain good approximations
using a small fraction of proofs (the queries have 13136, 155695 and 16048 proofs
respectively). Our results also show a significant increase in running times as
ProbLog explores more paths in the graph, both within the Prolog code and
within the BDD code. The BDD running times can vary widely, we may actually
have large running times for smaller BDDs, depending on BDD structure.

Table 2 gives corresponding results for bounded approximation. The algo-
rithm converges quickly, as few proofs are needed and BDDs remain small. Note
however that exact inference is competitive for this problem size. Moreover, we
observe large speedups compared to the implementation with meta-interpreters
used in [10], where total runtimes to reach δ = 0.01 for these queries were
46234, 206400 and 307966 msec respectively. Table 3 shows the performance of
the Monte Carlo estimator. On Small, Monte Carlo is the fastest approach.
Already within the first 1000 samples a good approximation is obtained.

The experiments on Small thus confirm that the implementation on top of
YAP-Prolog enables efficient probabilistic inference on small sized graphs.



path 983 − 620 983 − 582 620 − 582
δ Tp TB n P Tp TB n P Tp TB n P

0.1 0 5051 3 [0.07,0.12] 0 4994 3 [0.06,0.12] 12 1690 1 [0.99,1.00]
0.05 0 6504 4 [0.07,0.12] 40 10907 6 [0.06,0.11] 12 1751 1 [0.99,1.00]
0.01 8 9897 6 [0.10,0.11] 68 12684 7 [0.10,0.11] 12 1968 1 [0.99,1.00]

Table 2. Inference using bounds on Small.

path 983 − 620 983 − 582 620 − 582
δ S Tp P S Tp P S Tp P

0.1 1000 19 0.10 1000 21 0.10 1000 63 1.00
0.05 1000 19 0.10 1000 23 0.11 1000 59 1.00
0.01 16000 898 0.11 16000 1418 0.11 1000 59 1.00

Table 3. Monte Carlo Inference on Small.

Medium Sized Sample For graph Medium with around 11000 edges we impose
a limit of one hour on running times. On this graph, exact inference is no longer
feasible. Table 4 again shows results for the k-probability. Comparing these re-
sults with the corresponding values from Table 1, we observe that the estimated
probability is higher now: this is natural, as the graph has both more nodes and
is more connected, therefore leading to many more possible explanations. This
also explains the increase in running times. Approximate inference using bounds
only reached very loose bounds within the one hour timelimit, e.g. [0.33, 0.90] for
nodes 983 and 620. We found that this is due to the fact that BDDs representing
upper bounds get very complex easily.

The Monte Carlo estimator using the standard definition of path/3 on Medium

did not converge within the time limit. A detailed analysis shows that this is
caused by some queries backtracking too heavily. Table 5 therefore reports re-
sults using the memorising version memopath/3. With this improved definition,
Monte Carlo performs well: it obtains a good approximation in a few seconds.
Requiring tighter bounds however can increase runtimes significantly.

Biomine Database The Biomine Database covers hundreds of thousands of enti-
tities and millions of links. On Biomine, we therefore restrict our experiments to
the approximations given by k-probability and Monte Carlo. Given the results
on Medium, we directly use memopath/3 for Monte Carlo. Tables 6 and 7 show
the results on the large network. We observe that on this large graph, the number
of possible paths is tremendous, which implies success probabilities practically
equal to 1. Still, we observe that ProbLog’s branch-and-bound search to find the
best solutions performs reasonably also on this size of network. However, run-
times for obtaining tight confidence intervals with Monte Carlo explode quickly
even with the improved path definition.

Altogether, the experiments confirm that our implementation provides good
approximations of ProbLog probabilities and is able to deal with large graphs.



path 983 − 620 983 − 582 620 − 582
k Tp TB P Tp TB P Tp TB P

1 208 - 0.07 737 - 0.03 45 - 0.42
2 172 1591 0.11 725 1560 0.03 44 1599 0.47
4 200 1681 0.16 757 1738 0.05 60 1464 0.72
8 217 1691 0.25 744 1538 0.06 80 1778 0.92
16 284 1756 0.33 725 1508 0.10 100 1825 0.99
32 628 1855 0.38 753 1570 0.15 144 1578 1.00
64 717 1653 0.41 809 1684 0.23 200 1801 1.00
128 749 1715 0.42 933 1890 0.30 296 1734 1.00
256 849 1600 0.55 1044 1513 0.49 405 1904 1.00
512 2352 1696 0.64 2880 1598 0.53 576 2496 1.00
1024 6208 1849 0.70 5032 1728 0.56 2549 52250 1.00

Table 4. k-probability on Medium.

memo 983 − 620 983 − 582 620 − 582
δ S Tp P S Tp P S Tp P

0.1 1000 1319 0.77 1000 2364 0.76 1000 1878 1.00
0.05 2000 2682 0.76 2000 4766 0.76 1000 1805 1.00
0.01 29000 39687 0.76 29000 70183 0.77 1000 1970 1.00

Table 5. Monte Carlo Inference using memopath/3 on Medium.

6 Conclusions

ProbLog is an elegant probabilistic logic language that addresses the problem of
representing uncertain knowledge by explicitely encoding uncertainty about the
truth of facts. The language naturally extends Logic Programming languages
such as Prolog. We present an implementation of the ProbLog language on top
of the YAP Prolog system that is designed to scale for large sized problems. We
show that ProbLog can indeed be used to obtain both explanation and (approx-
imations of) success probabilities for queries on a large database. To the best
of our knowledge, this is the first example of a probabilistic logic programming
system that can execute queries on such large databases. Furthermore, compared
to the initial implementation of ProbLog used in [10], the tight integration in
YAP-Prolog leads to speedups in runtime of several orders of magnitude.

Although we focussed on connectivity queries and Biomine in this work,
similar problems are found across many domains; we believe that the techniques
presented so far apply to a variety of queries and databases. This is largely possi-
ble because ProbLog provides a clean separation between background knowledge
and what is specific to the engine. As shown for Monte Carlo inference, such an
interface can be very useful to improve performance as it allows incrementally
refining background knowledge, e.g. graph procedures. Initial experiments with
Dijkstra’s algorithm for finding the explanation probability are very promising.

Compared to alternative formalisms such as PHA [1], PRISM [2], SLPs [3],
CLP(BN ) [5], and CP-logic [6], ProbLog is an extremely simple probabilistic



path 983 − 620 983 − 582 620 − 582
k Tp TB P Tp TB P Tp TB P

1 5,445 - 0.09 1,248 - 0.11 10,189 - 0.59
2 5,472 1,611 0.12 1,313 1,563 0.17 2,288 1,570 0.63
4 5,989 1,735 0.13 13,729 1,986 0.28 600 1,545 0.65
8 7,016 1,656 0.16 19,885 1,878 0.38 929 1,792 0.66
16 10,012 1,980 0.50 30,338 1,816 0.53 1,557 1,644 0.92
32 14,857 1,872 0.57 35,134 1,657 0.56 2,484 1,922 0.95
64 19,770 1,642 0.80 36,995 1,737 0.65 4,425 1,925 0.95
128 23,165 1,892 0.88 163,242 1,835 0.76 8,472 2,117 0.98
256 35,395 2,149 0.95 292,054 1,463 0.85 16,390 4,935 1.00
512 170,438 3,148 0.98 489,254 15,410 0.88 29,525 7,693 1.00
1024 346,742 609,700 0.99 767,968 97,818 0.93 49,952 102,366 1.00

Table 6. k-probability on Biomine.

memo 983 − 620 983 − 582 582 − 620
δ S Tp P S Tp P S Tp P

0.1 1000 2,714,781 1.00 1000 4,887,260 0.97 1000 4,709,921 0.99
0.05 1000 2,807,927 1.00 1000 4,769,216 0.98 1000 4,823,262 0.99
0.01 1000 2,686,881 1.00 4000 19,187,318 0.98 2000 9,406,026 0.99

Table 7. Monte Carlo Inference using memopath/3 on Biomine.

logic. Yet, it has proven to be natural and convenient for modeling biologi-
cal networks and as a vehicle for developing mining and machine learning ap-
proaches [17, 20, 19, 21]. The efficiency of the probabilistic logic implementation
is the most important factor determining the success and the performance of the
learning approaches. Therefore, we expect the efficiency gains to open new possi-
bilities for learning, and to increase the use of probabilistic logics in practical ap-
plications. Another possible use of a simple probabilistic logic, such as ProbLog,
is as a target language in which other, possibly more complex, formalisms can
be compiled. For instance, [22] shows how CP-logic [6] can be compiled into
ProbLog, and SLPs [3] can be compiled in Sato’s PRISM, which is closely re-
lated to ProbLog. Finally, as ProbLog, unlike PRISM and PHA, deals with the
disjoint-sum-problem, it is interesting to study how program transformation and
analysis techniques could be used to optimize ProbLog programs, by detecting
and taking into account situations where some conjunctions are disjoint.
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