
An Improved Continuation Call-Based

Implementation of Tabling

Pablo Chico de Guzmán1,2 Manuel Carro1 Manuel V. Hermenegildo1,2

Cláudio Silva3 Ricardo Rocha3

pchico@clip.dia.fi.upm.es {mcarro,herme}@fi.upm.es
herme@cs.unm.edu ccaldas@dcc.online.pt ricroc@dcc.fc.up.pt

1 School of Computer Science, Univ. Politécnica de Madrid, Spain
2 Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New Mexico, USA

3 DCC-FC & LIACC, University of Porto, Portugal,

Abstract. Tabled evaluation has been proved an effective method to
improve several aspects of goal-oriented query evaluation, including ter-
mination and complexity. Several “native” implementations of tabled
evaluation have been developed which offer good performance, but many
of them require significant changes to the underlying Prolog implementa-
tion, including the compiler and the abstract machine. Approaches based
on program transformation, which tend to minimize changes to both the
Prolog compiler and the abstract machine, have also been proposed, but
they often result in lower efficiency. We explore some techniques aimed
at combining the best of these worlds, i.e., developing an extensible im-
plementation which requires minimal modifications to the compiler and
the abstract machine, and with reasonably good performance. Our pre-
liminary experiments indicate promising results.

Keywords: Tabled logic programming, Implementation, Performance,
Program transformation.

1 Introduction

Tabling [20, 4, 19] is a resolution strategy which tries to memoize previous calls
and their answers in order to improve several well-known shortcomings found
in SLD resolution. It brings some of the advantages of bottom-up evaluation to
the top-down, goal-oriented evaluation strategy. In particular, evaluating logic
programs under a tabling scheme may achieve termination in cases where SLD
resolution does not (because of infinite loops —for example, the tabled evalu-
ation of bounded term-size programs is guaranteed to always terminate). Also,
programs which perform repeated computations can be greatly sped up. Pro-
gram declarativeness is also improved since the order of clauses and goals within
a clause is less relevant, if at all. Tabled evaluation has been successfully ap-
plied in many fields, such as deductive databases [13], program analysis [21, 5],
reasoning in the semantic Web [24], model checking [11], and others.

In all cases the advantages of tabled evaluation stem from checking whether
calls to tabled predicates, i.e., predicates which have been marked to be evalu-
ated using tabling, have been made before. Repeated calls to tabled predicates
consume answers from a table, they suspend when all stored answers have been
consumed, and they fail when no more answers can be generated. However, the

advantages are not without drawbacks. The main problem is the complexity
of some (efficient) implementations of tabled resolution, and a secondary issue
is the difficulty in selecting which predicates to table in order not to incur in
undesired slow-downs.

Two main categories of tabling mechanisms can be distinguished: suspension-

based and linear tabling mechanisms. In suspension-based mechanisms the com-
putation state of suspended tabled subgoals has to be preserved to avoid back-
tracking over them. This is done either by freezing the stacks, as in XSB [16], by
copying to another area, as in CAT [7], or by using an intermediate solution as
in CHAT [8]. Linear tabling mechanisms maintain a single execution tree where
tabled subgoals always extend the current computation without requiring sus-
pension and resumption of sub-computations. The computation of the (local)
fixpoint is performed by repeatedly looping subgoals until no more solutions can
be found. Examples of this method are the linear tabling of B-Prolog [23, 22]
and the DRA scheme [9].

Suspension-based mechanism have achieved very good performance results
but, in general, deep changes to the underlying Prolog implementation are re-
quired. Linear mechanisms, on the other hand, can usually be implemented on
top of existing sequential engines without major modifications but their effi-
ciency is affected by subgoal recomputation. One of our theses is that it should
be possible to find a combination of the best of both worlds: a suspension-based
mechanism that is reasonably efficient and does not require complex modifica-
tions to the compiler or underlying Prolog implementation, thus contributing to
its maintainability an making it easier to port it to other Prolog systems. Also,
we would like to avoid introducing any overhead that would reduce the execution
speed for SLD execution.

Our starting point is the Continuation Call Mechanism presented by Ramesh
and Chen in [14]. This approach has the advantage that it indeed does not need
deep changes to the underlying Prolog machinery. On the other hand it has
shown up to now worse efficiency than the more “native” suspension-based im-
plementations. Our aim is to analyze the bottlenecks of this approach, explore
variations thereof, and propose solutions in order to improve its efficiency while
keeping tabling-related changes clearly separated from the basic WAM imple-
mentation. While the approach may not necessarily be significantly simpler than
other (native) approaches, we will argue that it does allow a more modular design
which reduces and isolates in separate modules the changes made to the under-
lying WAM. This hopefully will make it easier to maintain the implementation
of both tabling and the WAM itself, as well as adapting the tabling scheme and
code to other Prolog systems.

In more concrete terms, and in the spirit of [14], the implementation we
will propose tries to be non intrusive and change only minimally the initial
WAM, moving the low-level tabling data structures either to the Prolog level or
to external modules. Other systems, like Mercury [18], also implement tabling
using external modules and program transformation, so as not to change the

compiler and runtime system. Despite these similarities, the big differences in
the base language make the implementation technically very different also.

2 Tabling Basics

We now sketch how tabled evaluation works from a user point of view (more de-
tails can be found in [4, 16]) and briefly describe the continuation call mechanism
implementation technique proposed in [14], on which we base our work.

2.1 Tabling by Example

We use as running example the program in Figure 1, taken from [14], whose
purpose is to determine reachability of nodes in a graph We ignore for now
the :- tabled path/2 declaration (which instructs the compiler to use tabled
execution for the designated predicate), and assume that SLD resolution is to
be used. Then, a query such as ?- path(a, N). may never terminate if, for
example, edge/2 represents a cyclic graph.

Adding the :- tabled declaration forces the compiler and runtime system to
distinguish the first occurrence of a tabled goal (the generator) and subsequent
calls which are identical up to variable renaming (the consumers). The generator
applies resolution using the program clauses to derive answers for the goal. Con-
sumers suspend the current execution path (using implementation-dependent
means) and start execution on a different branch. When such an alternative
branch finally succeeds, the answer generated for the initial query is inserted
in a table associated with the original goal. This makes it possible to reactivate
suspended calls and to continue execution at the point where they were stopped.
Thus, consumers do not use SLD resolution, but obtain instead the answers from
the table where they were inserted previously by the producer. Predicates not
marked as tabled are executed following SLD resolution, hopefully with (minimal
or no) overhead due to the availability of tabling in the system.

2.2 The Continuation Call Technique

The continuation call technique [14] implements tabling by a combination of
program transformation and side effects in the form of insertions into and re-
trievals from a table which relates calls, answers, and the continuation code to be
executed after consumers read answers from the table. We will now sketch how
the mechanism works using the path/2 example (Figure 1). The original code is
transformed into the program in Figure 2 which is the one actually executed.

Roughly speaking, the transformation for tabling is as follows: a bridge pred-
icate for path/2 is introduced so that calls to path/2 made from regular Prolog
execution do not need to be aware of the fact that path/2 is being tabled. The
call to the slg/1 primitive will ensure that its argument is executed to com-
pletion and will return, on backtracking, all the solutions found for the tabled
predicate. To this end, slg/1 starts by inserting the call in the answer table and

:- tabled path/2.

path(X, Z):-
edge(X, Y),
path(Y, Z).

path(X, Z):-
edge(X, Z).

Fig. 1. A sample program.

path(X, Y):- slg (path(X, Y)).

slg path (path(X, Y), Id):-
edge(X, Y),
slgcall (Id , [X], path(Y, Z), path cont).

slg path (path(X, Y), Id):-
edge(X, Y),
answer(Id , path(X, Y)).

path cont(Id , [X], path(Y, Z)):-
answer(Id , path(X, Z)).

Fig. 2. The program in Figure 1 after being trans-
formed for tabled execution.

generating an identifier for it. Control is then passed to a new, distinct predicate:
in this case, slg path/2.4 slg path/2 receives in the first argument the original
call to path/2 and in the second one the identifier generated for the parent call,
which is used to relate operations on the table with this initial call. Each clause
of slg path/2 is derived from a clause of the original path/2 predicate by:

– Adding an answer/2 primitive at the end of each clause resulting from a
transformation and which is not a bridge to call a continuation predicate.
answer/2 is responsible for checking for redundant answers and executing
whatever continuations (see the following item) there may be associated with
that call identified by its first argument.

– Instrumenting recursive calls to path/2 using the slgcall/4 primitive. If
the term passed as an argument (i.e., path(X, Y)) is already in the table,
slgcall/4 creates a new consumer which consumes answers from the ta-
ble. Otherwise, the term is inserted in the table with a new call identifier
and execution follows using the slg path/2 program clauses to derive new
answers. In the first case, path cont/3 is recorded as (one of) the continua-
tion(s) of path(X, Y) and slgcall/4 fails. In the second case path cont/3

is only recorded as a continuation of path(X, Y) if the tabled call cannot
be completed. The path cont/3 continuation will be called from answer/2

after inserting a new answer or erased upon completion of path(X, Y).
– The body of path cont/3 encodes what remains of the clause body of

path/2 after the recursive call. It is constructed in a similar way to slg path/2,
i.e., applying the same transformation as for the initial clauses and calling
slgcall/4 and answer/2 at appropriate times.

The second argument of slgcall/4 and path cont/3 is a list of bindings
needed to recover the environment of the continuation call. Note that, in the
program in Figure 1, an answer to a query such as ?- path(X, Y) may need to
bind variable X. This variable does not appear in the recursive call to path/2, and

4 The distinct name has been created for simplicity by prepending slg to the predicate
name –any safe means of constructing a unique predicate symbol can be used.

answer(callid Id , term Answer) {
insert Answer in answer table
If (Answer /∈ answer table)

for each continuation call C
of tabled call Id {

call (C) consuming Answer;
}

return FALSE;
}

Fig. 3. Pseudo-code for answer/2.

slgcall (callid Parent, term Bindings,
term Call , term CCall) {

Id = insert Call into answer table ;
if (Id . state == READY) {

Id . state = EVALUATING;
call the transformed clause of Call ;
check for completion;

}
consume answers for Id ;
if (Id . state != COMPLETE)

add a new continuation
call (CCall , Bindings) to Id ;

return FALSE;
}

Fig. 4. Pseudo-code for slgcall/4.

hence it does not appear in the path/2 term passed on to slgcall/4 either. In
order for the body of path cont/3 to insert in the table the answer corresponding
to the initial query, variable X (and, in general, any other necessary variable) has
to be passed down to answer/2. This is done with the list [X], which is inserted
in the table as well and completes the environment needed for the continuation
path cont/3 to resume the previously suspended call.

A safe approximation of the variables which should appear in this list is the
set of variables which appear in the clause before the tabled goal and which are
used in the continuation, including the answer/2 primitive if there is one in the
continuation —this is the case in our example. Variables appearing in the tabled
call itself do not need to be included, as they will be passed along anyway.

Recovering a previous execution environment is an important operation in
tabled execution. Other approaches to this end are the use of forward trail and
freeze registers of SLG-WAM [16], which involves using lower-level mechanisms.
The continuation call approach, which performs several tabling operations at the
Prolog level through program transformation and can a priori be expected to be
somewhat slower, has, however, the nice property that the implementation does
not need to change the underlying WAM machinery, which helps its adaptation it
to different Prolog systems. On the other hand, the table management is usually,
and for efficiency reasons, written using some lower-level language and accessed
using a suitable interface.

The pseudo-code for answer/2 and slgcall/4 is shown in Figures 3 and 4,
respectively. The pseudo-code for slg/1 is similar to that of slgcall/4 but, in-
stead of consuming answers, they are returned on backtracking and it finally fails
when all the stored answers have been exhausted. The program transformation
and primitives try to complete subgoals as soon as possible, failing whenever
new answers are found. Thus, they implement the so-called local scheduling [16].

Checking for completion: The completion detection algorithm (see [17] for
more details) is similar to that in the SLG-WAM. We just provide a sketch

here. Completion is checked for in the execution of the slgcall/4 primitive
after exhausting all alternatives for the subgoal call at hand and resuming all
of its consumers. To do that, we use two auxiliary fields in the table entry
corresponding to every subgoal, SgFr dfn and SgFr dep, to quickly determine
whether such a subgoal is a leader node. The SgFr dfn field reflects the or-
der in which the subgoals being evaluated were called. New subgoal frames are
numbered incrementally as they are created, adding one to the SgFr dfn of the
previous (youngest) subgoal, whose frame is always pointed to by the global vari-
able SF TOP. SgFr dep holds the number of the older call on which it depends,
which is initialized with the same number as SgFr dfn, meaning that initially
no dependencies exist. If P1, a tabled subgoal already inserted in the table, is
called from the execution of another tabled subgoal, P2, the SgFr dep field of
the table entry of P2 is updated with the value of SgFr dep field of P1, meaning
P2 depends on P1. When checking for completion, and using this information
from the table entries, a subgoal can quickly determine whether it is a leader
node. If SgFr dfn = SgFr dep, then we know that during its evaluation no de-
pendencies to older subgoals have appeared and thus the Strongly Connected

Component (SCC) including the subgoals starting from the table entry referred
to by SF TOP up to the current subgoal can be completed. On the other hand, if
SgFr dep < SgFr dfn, we cannot perform completion. Instead, we must propa-
gate the current dependency to C, the subgoal call that continues the evaluation.
To do that, the SgFr dep field is copied to SgFr dep field of C, and completion
can be performed only when the computation reaches the subgoal that does not
depend on older subgoals.

Issues in the Continuation Call Mechanism: We have identified two perfor-
mance-related issues when implementing the technique sketched in the previous
section. The first one is rather general and related to the heavy use of the inter-
face between C and Prolog (in both directions) that the implementation makes,
which adds an overhead which cannot be neglected.

The second one is the repeated copying of continuation calls. Continuation
calls (which are, in the end, Prolog predicates with an arbitrarily long list of
variables as an argument) are completely copied from Prolog memory to the ta-
ble for every consumer found. Storing a pointer to these structures in memory is
not enough, since slg/1 and slgcall/4 fail immediately after associating a con-
tinuation call with a tabled call in order to force the program to search for more
solutions and complete the tabled call. Therefore, the data structures created
during forward execution may be removed on backtracking and not be avail-
able when needed. Reconstructing continuations as Prolog terms from the data
stored in the table when they are resumed to consume previously stored answers
is necessary. This can also clearly have a negative impact on performance.

Finally, an issue found with the implementation we started with [15] (which is
a version of [14] in Yap Prolog) is that it did not allow backtracking over Prolog
predicates called from C, which makes it difficult to implement other scheduling

strategies. Since this shortcoming may appear also in other C interfaces, it is a
clear candidate for improvement.

3 An Improvement over the Continuation Call Technique

We now propose some improvements to the different limitations of the original
design and implementation that we discussed in Section 2.2. In order to measure
execution times, we are taking the implementation described in [15] to be close
enough to that described in [14] in order to be used as a basis for our devel-
opments. It is also an implementation of high quality whose basic components
(e.g., tables based on tries, following [12]) are similar to those in use in current
tabling systems. This implementation was ported to Ciao, where the rest of the
development was performed. In what follows this initial port to Ciao will be
termed the “baseline implementation.”

3.1 Using a Lower-Level Interface

Calls from C to Prolog were initially performed using a relatively high-level
interface similar to those commonly found in current state of the art logic pro-
gramming systems: operations to create and traverse Prolog terms appear to the
programmer as regular C functions, and details of the internal data representa-
tion are hidden to the programmer. This interface imposed a noticeable overhead
in our implementation, as the calls to C functions had to allocate environments,
pass arguments, set up Prolog environments to call Prolog from C, etc.

In order to make our implementation as fast as possible, a possibility is to
integrate all the C code into the WAM and try to avoid altogether costly format
conversions, etc. However, as mentioned before, we preferred to make as few
changes as possible in the WAM. Therefore we chose to use directly lower-level
operations and take advantage of facilities (e.g., macros) initially designed to
be internally used by the WAM. While this in principle makes porting more
involved, the fact is that the facilities provided in C interfaces for Prolog and
the internal WAM operations are typically quite related and similar, since they
all provide an interface to an underlying architecture and data representation
which is common to many Prolog implementations.

Additionally, the code which constructs Prolog terms and performs calls from
C is the same regardless of the program being executed and its complexity is
certainly manageable. Therefore, we decided to skip the programmer interface
and call directly macros available in the engine implementation. That was not a
difficult task and it sped the execution up by a factor of 2.5 on average.

3.2 Calling Prolog from C

A relevant issue in the continuation call technique (and, possibly, in other cases)
is the use of a C-to-Prolog interface to call Prolog goals from C — e.g., when
continuations, which have been internally stored, have to be resumed, as done

by slgcall/4 and answer/2. We wanted to design a solution which relied as
little as possible on non-widely available characteristics of C-to-Prolog interfaces
(to simplify porting the code), but which kept the efficiency as high as possible.

The general solution we have adopted is to move calls to continuations from
the C level to the Prolog level by returning them as a term, using an extra
argument in our primitives, to be called from Prolog. This is possible since con-
tinuations are rewritten as separate, unique predicates which therefore have an
entry point accessible from Prolog. If several continuations have to be called, they
can be returned and invoked one at a time on backtracking,5 and fail when there
is no pending continuation call. New continuations generated during program
execution can be destructively inserted at the end of the list of continuations
transparently to Prolog. Additionally, this avoids using up C stack space due to
repeated Prolog → C → Prolog → . . . calls, which may exhaust the C stack.
Moreover, the C code is somewhat simplified (e.g., there is no need to set up a
Prolog environment to be used from C) which makes using a lower-level, faster
interface less of a burden.

3.3 Freezing Continuation Calls

In this section we sketch some proposals to reduce the overhead associated with
the way continuation calls are handled in the original continuation call proposal.

Resuming consumers: Our starting point saves a binding list in the table to
reinstall the environment of consumers when they have to be resumed. This is a
relatively non-intrusive technique, but it requires copying terms back and forth
between Prolog and the table where calls are stored. Restarting a consumer needs
to construct a term whose first argument is the new answer (which is stored in
the heap), the second one is the identifier of the tabled goal (an atomic item),
and the third one a list of bindings (which may be arbitrarily large). If the list
of bindings has N elements, constructing the continuation call requires creating
≈ 2N + 4 heap cells. If a continuation call is resumed often and N is high, the
efficiency of the system can degrade quickly.

The technique we propose constructs continuation calls on the heap as regular
Prolog terms. As these continuations are later recovered through a unique call
identifier, and each continuation is unified with a new, fresh variable (CCall
in resume ccalls/4, Figure 7), full unification or even pattern matching are
unnecessary, and resuming a continuation is a constant time operation.

However, the fragment of code which constructs the continuation call per-
forms backtracking to continue exploring pending branches. This will remove
the constructed call from the heap. Protecting that term is needed to make it
possible to construct it only once and reuse it later. A feasible and simple so-
lution is to freeze continuation calls in a memory area which is not affected by

5 This exploits being able to write non-deterministic predicates in C. Should this
feature not be available, a list of continuations can always be returned instead which
will be traversed on backtracking using member/2.

������
������
������
������
������
������
������

������
������
������
������
������
������
������

G

P

C

P0 1

2

3

4

Continuation space

Choicepoints

Heap

Fig. 5. Initial state.

CONT. CALL

Sid = 1

X

1

2

Ans

������
������
������

������
������
������

1

3

4

2

P0

G Cont.Call list

Pointer
Cont.Call

C

P

Choicepoints

Heap

Subgoal frame

Fig. 6. Frozen continuation call.

backtracking. This will in principle make the aforementioned problem disappear.
Selecting a brand new area will, however, bring additional issues as some WAM
instructions would have to be changed in order to take it into account: for ex-
ample, variable binding direction is commonly determined using the addresses
of variables (in addition to their tags) so that younger variables point to older
variables in order to save trailing. One easy way to reconcile existing WAM ma-
chinery with this continuation call area is to reserve part of the heap for it. This
makes the usual WAM assumptions to hold and exactly the same WAM instruc-
tions can be used to construct and traverse data structures both in the regular
heap and in the continuation call area. Therefore, regarding forward execution
and backtracking, only minimal changes (e.g., the initialization of the H pointer,
and selecting the right read/write heap pointer when dealing with the regular
heap or the continuation call zone) have to be introduced.

Figure 5 shows the state of the choicepoint stack and heap (both assumed to
grow downwards) before freezing a continuation call. Figure 6 shows the contin-
uation call (C, [X,1,2], Ans) frozen at the beginning of the heap, where it is
unaffected by backtracking as the WAM execution started with the H pointer
placed just after the continuation call zone. In order to recover the continuation
calls, a new field is added to the table pointing to a (Prolog) list whose elements,
in turn, point to every continuation found so far for a given tabled goal.

This makes freezing a continuation call require some extra time in order
to copy it on the heap. However, resuming a continuation is a constant time
operation. Other systems, like CHAT or SLG-WAM, spend some extra time
while preparing a consumer to be resumed, as they need to record bindings in a
forward trail in order to later reinstall them. In our case, when the continuation
is to be executed, the list of bindings carried with it is unified with the variables
in its body, implementing essentially the same functionality as the forward trail.

In a previous paper [6] we presented a preliminary version of this technique
where the heap was frozen by manipulating the contents of some choicepoints,
in what can be seen as a variant of CHAT. The work presented herein works
around several drawbacks in that approach.

Memory management for continuation space: As mentioned before, the
area for continuations is taken from the same memory zone where the general
heap is located, thus making it possible to use the same WAM instructions
without any change. In case more memory is needed, reallocating the heap and
the continuation area can be done simultaneously, keeping the same placement
relation between both. As data inside both areas has the same format, adjusting
pointers can be done using memory management routines already existing for
the regular WAM implementation, which only have to be updated to take into
account the existence of a gap of unused memory between the continuation
call and regular heap areas. Additionally, sliding the heap within its zone to
make room for more heap or for more continuations amounts only to readjusting
pointers by a constant amount.

Frozen continuations are, in principle, only reachable from the table struc-
ture, which makes them candidates to be (wrongly) removed in case of garbage
collection. A possible solution which needs almost no change to the garbage col-
lector is to link a Prolog list L from some initial, dummy choice point. Each
element in L points to the continuation list of a generator, which makes all the
continuations reachable by the garbage collector, and therefore protected. When
a generator is completed all of its answers are already stored in the trie, and
its continuations are no longer needed. Removing the pointer from L to this list
of unneeded continuations will make garbage collection reclaim their space. In
order to adjust the pointers from table entries to the continuations when these
are reallocated after a garbage collection, each element of L includes a pointer
back to the corresponding table entry which can be used to quickly locate which
pointers have to be updated in the table entries. A new routine has to be added
to the garbage collector to perform this step.

Avoiding trail management to recover a continuation call state: The
same term T corresponding to a continuation call C can be used several times to
generate multiple answers to a query. This is in general not a problem as answers
are in any case saved in a safe place (e.g., the answer table), and backtracking
would undo the bindings to the free variables in T . There is, however, a particular
case which needs special measures. When a continuation call C1, identical to C,
is resumed within the scope of C, and it is going to read a new answer, the state
of T has to be reset to its frozen initial state. Since C1 is using the same heap
term T as C, we say that C1 is a reusing call.

The solution we present tries to eliminate the need for treating reusing calls
as a special case of a continuation call. Reusing calls appear because our baseline
implementation resumes continuations when new answers are found, just when
we could be in the scope of an identical continuation call. But resumptions can
be delayed until the moment in which we are going to check for completion (in
the generator) and then the continuation calls with unconsumed answers can
be resumed. Following this approach there are no reusing calls because a new
continuation call is never resumed within the scope of another continuation call
and we do not need to do any trail management.

New tabling primitives and translation for path/2: Figure 7 shows the
new program transformation we propose for the path/2 program in order to
take into account the ideas in the previous sections. Variables Pred, CCall, and
F will contain goals built in C but called from Prolog (Section 3.2). The third and
fourth arguments of resume ccalls/4 implement a trick to create a choicepoint
with dummy slots which will be used to store pointers to the next continuation
to execute and to the generator whose continuations we are resuming. Creating
such a slot in this way, at the source level, avoids having to change the structure
of choicepoints and how they are managed in the abstract machine.

In the clause corresponding to path/2, the primitive slg/1 shown in Figure 2
is now split into slgcall/3, execute generator/2, and consume answer/2.
slgcall/3 tests whether we are in a generator position. In that case, it con-
structs a new goal from the term passed as first argument (the term slg path/2

will be constructed in this case). This goal is returned in variable Pred, which
will be called later. Otherwise, the goal true will be returned.

This new goal is always passed to execute generator/2 which executes it. If
it is true it will succeed, and the execution will continue with consume answer/2.
However, slg path/2 is ensured to ultimately fail (because the solutions to the
tabled predicate are generated by storing answers into the table and failing in
answer/2), so that the “else” part of execute generator/2 is taken. There,
consumers are resumed before checking for completion and consume answer/2

returns, on backtracking, each of the answers found for path(X, Y).
slg path/2 is similar to path/2 but it does not have to return all solutions

on backtracking, as consume answer/2 does. Instead, it has to generate all pos-
sible solutions and save them: new ccall/5 inserts a new continuation if the
execution of path(Z,Y) is not complete. Otherwise, it uses path cont 1 as the
main functor of a goal whose arguments are answers consumed from the table.
This goal is returned in F and immediately called. In this particular case the
(recursive) call to path/2 is the last goal in the recursive clause (see Figure 1),
and therefore the continuation directly inserts the answer in the table.

Finally, answer/2 does not resume continuations anymore to avoid reusing
calls, since resume ccalls/4 resumes all the continuations of the tabled call
identified by Sid and its dependent generators before checking for completion.

3.4 Freezing Answers

When resume ccalls/4 is resuming continuation calls, answers found for the
tabled calls so far are used to continue execution. These answers are, in prin-
ciple, stored in the table (i.e., answer/2 inserted them), and they have to be
constructed on the heap so that the continuation call can access them and pro-
ceed with execution.

The ideas in Section 3.3 can be reused to freeze the answers and avoid the
overhead of building them again. As done with the continuation calls, a new
field is added to the table pointing to a (Prolog) list which holds all the answers
found so far for a tabled goal. This list will be traversed for each of the consumers
of the corresponding tabled call. In spite of this freezing operation, answers to

path(X,Y) :-
slgcall (path(X, Y), Sid , Pred),
execute generator (Pred,Sid),
consume answer(path(X, Y), Sid).

slg path (path(X, Y),Sid) :-
edge(X, Z),
slgcall (path(Z, Y), NSid, Pred),
execute generator (Pred,NSid),
new ccall (Sid , NSid, [X],

path cont 1 , F),
call (F).

slg path (path(X, Y), Sid) :-
edge(X, Y),
answer(path(X, Y), Sid).

path cont 1(path(X, Y), Sid , [Z]) :-
answer(path(Z, Y), Sid).

execute generator (Pred,Sid) :−
(

call (Pred) −>
true

;
resume ccalls (Sid,CCall ,0,0),
call (CCall)

).

Fig. 7. New program transformation for right-recursive definition of path/2.

tabled goals are additionally stored in the table. There are two reasons for this:
the first one is that when some tabled goal is completed, all the answers have
to be accessible from outside the derivation tree of the goal. The second one is
that the table makes checking for duplicate answers faster.

3.5 Repeated continuation calls

Continuation calls could be duplicated in a table entry, which forces an unnec-
essary recomputation when new answers are found. This problem can also show
up in other suspension-based tabling implementations and it can degrade the
efficiency of the system. As an example, if the program in Figure 7 is executed
against a graph with duplicate edge/2 facts, duplicate continuation calls will be
created, as edge(X, Z) in the body of slg path/2 can match two identical facts
and return two identical bindings which will make new ccall/4 to insert two
identical continuations. Since we traverse the new continuations to copy them
in the heap, we can check for duplicates before storing them without having to
pay an excessive performance penalty. As done with answers, a trie structure is
used to check for duplicates in an efficient manner.

4 Performance Evaluation

We have implemented the proposed techniques as an extension of the Ciao sys-
tem [1]. Tabled evaluation is provided to the user as a loadable package that pro-
vides the new directives and user-level predicates, performs the program trans-
formations, and links in the low-level support for tabling. We have implemented
and measured three variants: the first one is based on a direct adaptation of
the implementation presented in [15], using the standard, high-level C interface.
We have also implemented a second variant in which the lower-level and sim-
plified C interface is used, as discussed in Sections 3.1 and 3.2. Finally, a third

lchain X Left-recursive path program, unidimensional graph.
lcycle X Left-recursive path program, cyclic graph.
rchain X Right-recursive path program (this generates more continuation

calls), unidimensional graph.
rcycle X Right-recursive path program, cyclic graph.
rcycleR X Right-recursive path program, cyclic graph with repeated edges.
rcycleF X Like rcycle 256, but executing fib(20,) before edge/2 goals.
numbers X Find arithmetic expressions which evaluate to some number N

using all the numbers in a list L.
numbers Xr Same as above, but all the numbers in L are all the same (this

generates a larger search space).
atr2 A parser for Japanese.

Table 1. Terse description of the benchmarks used.

Benchmark Ciao + Ccal (baseline) Lower C interf. Ciao + CC

lchain 1,024 7.12 2.85 1.89

lcycle 1,024 7.32 2.92 1.96

rchain 1,024 2,620.60 1,046.10 557.92

rcycle 1,024 8,613.10 2,772.60 1,097.26

numbers 5 1,691.00 781.40 772.10

numbers 5r 3,974.90 1,425.48 1,059.93

Table 2. Speed comparison of three Ciao implementations.

variant, which we call CC (Callable Continuations), incorporates the proposed
improvements to the model discussed in Sections 3.3 and 3.4.

We evaluated the impact of this series of optimizations by using some of
the benchmarks in Table 1. The results are shown in Table 2, where times are
given in milliseconds. Lowering the level of the C interface and improving the
transformation for tabling and the way calls are performed have a clear impact.
It should also be noted that the latter improvement seems to be specially rele-
vant in non-trivial programs which handle data structures (the larger the data
structures are, the more re-copying we avoid) as opposed to those where lit-
tle data management is done. On average, we consider the version reported in
the rightmost column to be the implementation of choice among those we have
developed, and this is the one we will refer to in the rest of the paper.

Table 3 tries to determine how the proposed implementation of tabling com-
pares with state-of-the-art systems —namely, the latest available versions of
XSB, YapTab, and B-Prolog, at the time of writing. In this table we provide, for
several benchmarks, the raw time (in milliseconds) taken to execute them us-
ing tabling and, when possible, SLD resolution. Measurements have been made
on Ciao-1.13, using the standard, unoptimized bytecode-based compilation, and
with the CC extensions loaded, as well as in XSB 3.0.1, YapTab 5.1.1, and
B-Prolog 7.0. All the executions were performed using local scheduling and dis-
abling garbage collection; in the end this did not impact execution times very
much. We used gcc 4.1.1 to compile all the systems, and we executed them on
a machine with Fedora Core Linux, kernel 2.6.9, and an Intel Xeon processor.

Analyzing the behavior of the rcycle X benchmark, which is an example
of almost pure tabling evaluation, we observe that our asymptotic behavior is

similar to other tabling approaches. If we multiply X by N , the resulting time for
all of the systems (except YapTab) is multiplied by approximately 2N . YapTab
does not follow the same behavior, and, while we could not find out exactly the
reason, we think it is due to YapTab on-the-fly creating an indexing table which
selects the right edge/2 clause in constant time, while other implementations
spend more time performing a search.

B-Prolog, which uses a linear tabling approach, is the fastest SLG resolution
implementation for rcycle X, since there is no recomputation in that bench-
mark. However, efficiency suffers if a costly predicate has to be recomputed: this
is what happens in rcycleF, where we added a call to a predicate calculating
the 20th Fibonacci number before each of the calls to edge/2 in the body of
path/2. This is a (well-known) disadvantage of linear tabling techniques which
does not affect suspension-based approaches. It has to be noted, however, that
current versions of B-Prolog implement an optimized variant of its original lin-
ear tabling mechanism [22] which tries to avoid reevaluation of looping subgoals.
The impact of recomputation is, therefore, not as important as it may initially
seem. Additionally, in our experience B-Prolog is already a very fast SLD sys-
tem, and its speed seems to carry on to SLG execution, which makes it, in our
experiments, the fastest SLG system in absolute terms, except when unneeded
recomputation is performed.

The ideas discussed in Section 3.5 show their effectiveness in the rcycleR 2048

benchmark, where duplicating the clauses of edge/2 produces repeated con-
sumers. While B-Prolog is affected by a factor close to 2, and XSB and YapTab
by a factor of 1.5, the Ciao+CC implementation is affected only by a factor of
a 5% because it does not add repeated consumers to the tabled evaluation.

In order to compare our implementation with XSB, we must take into ac-
count that XSB is somewhat slower than Ciao when executing programs using
SLD resolution —at least in those cases where the program execution is large
enough to be really significant (between 1.8 and 2 times slower for these non-
trivial programs). This is partly due to the fact that XSB is, even in the case
of SLD execution, prepared for tabled resolution, and thus the SLG-WAM has
an additional overhead (reported to be around 10% [16]) not present in other
Prolog systems and also presumably that the priorities of their implementors
were understandably more focused on the implementation of tabling. However,
XSB executes tabling around 1.8 times faster than our current implementation,
confirming, as expected, the advantages of the native implementation, since we
perform some operations at the Prolog level.

Although this lower efficiency is obviously a disadvantage of our implemen-
tation, it is worth noting that, since our approach does not introduce changes
neither in the WAM nor in the associated Prolog compiler, the speed at which
non-tabled Prolog is executed remains unchanged. In addition to this, the mod-
ular design of our approach gives better chances of making it easier to port to
other systems. In our case, executables which do not need tabling have very
little tabling-related code, as the data structures (for tries, etc.) are created as
dynamic libraries, loaded on demand, and only stubs are needed in the regular

Ciao+CC XSB YapTab B-Prolog
Program SLD Tabling SLD Tabling SLD Tabling SLD Tabling

rcycle 256 - 70.57 - 36.44 - 59.95 - 26.02

rcycle 512 - 288.14 - 151.26 - 311.47 - 103.16

rcycle 1,024 - 1,097.26 - 683.18 - 1,229.86 - 407.95

rcycle 2,048 - 4,375.93 - 3,664.02 - 2,451.67 - 1,596.06

rcycleR 2,048 - 4,578.50 - 5,473.91 - 3,576.31 - 2,877.60

rcycleF 256 - 1,641.95 - 2,472.61 - 1,023.77 - 2,023.75

numbers 3r 1.62 1.39 3.61 1.91 1.87 1.08 1.46 1.13

numbers 4r 99.74 36.13 211.08 51.72 108.08 29.16 83.89 22.07

numbers 5r 7,702.03 1,059.93 16,248.01 1,653.82 8,620.33 919.88 6,599.75 708.40

atr2 - 703.19 - 581.31 - 278.41 - 272.55

Table 3. Comparing Ciao+CC with XSB, YapTab, and B-Prolog.

engine. The program transformation is taken care of by a package (a plugin for
the Ciao compiler) [2] which is loaded and active only at compile time.

In non-trivial benchmarks like numbers Xr, which at least in principle should
reflect more accurately what one might expect in larger applications, execution
times are in the end somewhat favorable to Ciao+CC when comparing with
XSB. This is probably due to the faster raw speed of the basic engine in Ciao
but it also implies that the overhead of the approach to tabling used is reasonable
after the proposed optimizations. In this context it should be noted that in these
experiments we have used the baseline, bytecode-based compilation and abstract
machine. Turning on global analysis and using optimizing compilers [10, 3] can
further improve the speed of the SLD part of the computation.

The results are also encouraging to us because they appear to be another
example supporting the “Ciao approach:” start from a fast and robust, but
extensible LP-kernel system and then include additional characteristics by means
of pluggable components whose implementation must, of course, be as efficient
as possible but which in the end benefit from the initial base speed of the system.

We have not analyzed in detail the memory consumption behavior of the
continuation call technique, as we are right now working on improving it. How-
ever, since we copy the same part of the heap CAT does, but using a different
strategy, and we eventually (as generators are completed) get rid of the data
structures corresponding to the frozen continuation calls, we foresee that our
memory consumption should currently be in the same range as that of CAT.

5 Conclusions

We have reported on the design and efficiency of some improvements made to
the continuation call mechanism of Ramesh and Chen. While, as expected, we
cannot achieve using just these techniques the same level of performance dur-
ing tabled evaluation as the natively implemented approaches our experimental
results show that the overhead is essentially a reasonable constant factor, with
good scaling and convergence characteristics. We argue that this is a useful
result since the proposed mechanism is still easier to add to an existing WAM-

based system than implementing other approaches such as the SLG-WAM, as
it requires relatively small changes to the underlying execution engine. In fact,
almost everything is implemented within a fairly reusable C library and using a
Prolog program transformation. Our main conclusion is that using an external
module for implementing tabling is a viable alternative for adding tabled evalu-
ation to Prolog systems, especially if coupled with the proposed optimizations.
It is also an approach that ties in well with the modular approach to extensions
which is an integral part of the design of the Ciao system.

6 Acknowledgments

This work was funded in part by the IST program of the European Commission,
FP6 FET project IST-15905 MOBIUS, by the Spanish Ministry of Education and
Science (MEC) project TIN2005-09207-C03 MERIT-COMVERS and by the
Government of the Madrid Region (CAM) Project S-0505/TIC/0407 PROME-

SAS. Manuel Hermenegildo is also funded in part by the Prince of Asturias
Chair in Information Science and Technology at the U. of New Mexico, USA
and the IMDEA-Software Institute, Madrid, Spain. Cláudio Silva and Ricardo
Rocha were partially funded by project Myddas (POSC/EIA/59154/2004). Ri-
cardo Rocha was also funded by project STAMPA (PTDC/EIA/67738/2006).

References

1. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla
(Eds.). The Ciao System. Ref. Manual (v1.13). Technical report, C. S. School
(UPM), 2006. Available at http://www.ciaohome.org.

2. D. Cabeza and M. Hermenegildo. The Ciao Modular, Standalone Compiler and
Its Generic Program Processing Library. In Special Issue on Parallelism and Im-
plementation of (C)LP Systems, volume 30(3) of Electronic Notes in Theoretical
Computer Science. Elsevier - North Holland, March 2000.

3. M. Carro, J. Morales, H.L. Muller, G. Puebla, and M. Hermenegildo. High-Level
Languages for Small Devices: A Case Study. In Krisztian Flautner and Taewhan
Kim, editors, Compilers, Architecture, and Synthesis for Embedded Systems, pages
271–281. ACM Press / Sheridan, October 2006.

4. Weidong Chen and David S. Warren. Tabled Evaluation with Delaying for General
Logic Programs. Journal of the ACM, 43(1):20–74, January 1996.

5. S. Dawson, C.R. Ramakrishnan, and D.S. Warren. Practical Program Analysis Us-
ing General Purpose Logic Programming Systems – A Case Study. In Proceedings
of PLDI’96, pages 117–126, New York, USA, 1996. ACM Press.

6. P. Chico de Guzmán, M. Carro, M. Hermenegildo, Claudio Silva, and Ricardo
Rocha. Some Improvements over the Continuation Call Tabling Implementation
Technique. In CICLOPS 2007. ACM Press, September 2007.

7. Bart Demoen and Konstantinos Sagonas. CAT: The Copying Approach to Tabling.
In Programming Language Implementation and Logic Programming, volume 1490
of Lecture Notes in Computer Science, pages 21–35. Springer-Verlag, 1998.

8. Bart Demoen and Konstantinos F. Sagonas. Chat: The copy-hybrid approach to
tabling. In Practical Applications of Declarative Languages, pages 106–121, 1999.

9. Hai-Feng Guo and Gopal Gupta. A Simple Scheme for Implementing Tabled Logic
Programming Systems Based on Dynamic Reordering of Alternatives. In Interna-
tional Conference on Logic Programming, pages 181–196, 2001.

10. J. Morales, M. Carro, and M. Hermenegildo. Improving the Compilation of Prolog
to C Using Moded Types and Determinism Information. In Proceedings of the Sixth
International Symposium on Practical Aspects of Declarative Languages, number
3057 in LNCS, pages 86–103, Heidelberg, Germany, June 2004. Springer-Verlag.

11. Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, S.A. Smolka, T. Swift,
and D.S. Warren. Efficient Model Checking Using Tabled Resolution. In Computer
Aided Verification, volume 1254 of Lecture Notes in Computer Science, pages 143–
154. Springer Verlag, 1997.

12. I.V. Ramakrishnan, P. Rao, K.F. Sagonas, T. Swift, and D.S. Warren. Efficient
tabling mechanisms for logic programs. In ICLP, pages 697–711, 1995.

13. Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of research on deductive
database systems. Journal of Logic Programming, 23(2):125–149, 1993.

14. R. Ramesh and Weidong Chen. A Portable Method for Integrating SLG Resolution
into Prolog Systems. In Maurice Bruynooghe, editor, International Symposium on
Logic Programming, pages 618–632. MIT Press, 1994.

15. R. Rocha, C. Silva, and R. Lopes. On Applying Program Transformation to Im-
plement Suspension-Based Tabling in Prolog. In V. Dahl and I. Niemelä, editors,
23rd International Conference on Logic Programming, number 4670 in LNCS, pages
444–445, Porto, Portugal, September 2007. Springer-Verlag.

16. K. Sagonas and T. Swift. An Abstract Machine for Tabled Execution of Fixed-
Order Stratified Logic Programs. ACM Transactions on Programming Languages
and Systems, 20(3):586–634, May 1998.

17. Cáudio Silva. On Applying Program Transformation to Implement Tabled Eval-
uation in Prolog. Master’s thesis, Faculdade de Ciências, Universidade do Porto,
January 2007.

18. Z. Somogyi and K. Sagonas. Tabling in Mercury: Design and Implementation. In
International Symposium on Practical Aspects of Declarative Languages, number
3819 in LNCS, pages 150–167. Springer-Verlag, 2006.

19. H. Tamaki and M. Sato. OLD resolution with tabulation. In Third International
Conference on Logic Programming, pages 84–98, London, 1986. Lecture Notes in
Computer Science, Springer-Verlag.

20. D.S. Warren. Memoing for logic programs. Communications of the ACM, 35(3):93–
111, 1992.

21. R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on
Logic Programming, pages 684–699. MIT Press, August 1988.

22. Neng-Fa Zhou, Taisuke Sato, and Yi-Dong Shen. Linear Tabling Strategies and
Optimizations. Theory and Practice of Logic programming, 2007. Accepted for
publication. Available from http://arxiv.org/abs/0705.3468v1.

23. Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Implementation
of a linear tabling mechanism. Journal of Functional and Logic Programming,
2001(10), October 2001.

24. Youyong Zou, Tim Finin, and Harry Chen. F-OWL: An Inference Engine for
Semantic Web. In Formal Approaches to Agent-Based Systems, volume 3228 of
Lecture Notes in Computer Science, pages 238–248. Springer Verlag, January 2005.

