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Abstract. A critical component in the implementation of an efficient
tabling system is the design of the data structures and algorithms to
access and manipulate tabled data. Arguably, the most successful data
structure for tabling is tries. However, when used in applications that
pose many queries and/or have a large number of answers, tabling can
build arbitrarily many and/or very large tables, quickly filling up mem-
ory. In this paper, we propose a new design for the table space orga-
nization where all terms in tabled subgoal calls and tabled answers are
represented only once in a common global trie instead of being spread
over several different trie data structures. Our initial experiments using
the YapTab tabling system show significant reductions on memory usage
without compromising running time.

Key words: Tabling Logic Programming, Table Space, Implementation.

1 Introduction

Tabling is an implementation technique that overcomes some limitations of tradi-
tional Prolog systems in dealing with redundant sub-computations and recursion.
Tabling has become a popular and successful technique thanks to the ground-
breaking work in the XSB Prolog system and in particular in the SLG-WAM
engine [1]. The success of SLG-WAM led to several alternative implementations
that differ in the execution rule, in the data-structures used to implement tabling,
and in the changes to the underlying Prolog engine. Implementations of tabling
are now widely available in systems like Yap Prolog, B-Prolog, ALS-Prolog, Mer-
cury and more recently Ciao Prolog.

A critical component in the implementation of an efficient tabling system
is the design of the data structures and algorithms to access and manipulate
tabled data. Arguably, the most successful data structure for tabling is tries [2].
Tries are trees in which common prefixes are represented only once. The trie
data structure provides complete discrimination for terms and permits look up
and possibly insertion to be performed in a single pass through a term, hence
resulting in a very efficient and compact data structure for term representation.

⋆ This work has been partially supported by the FCT research projects STAMPA
(PTDC/EIA/67738/2006) and JEDI (PTDC/EIA/66924/2006).



Despite the good properties of tries, when used in applications that pose
many queries and/or have a large number of answers, tabling can build arbitrarily
many and/or very large tables, quickly filling up memory [3]. A possible solution
for this problem is to dynamically abolish some of the tables. This can be done
by using explicit tabling primitives or by using a memory management strategy
that automatically recovers space among the least recently used tables when
memory runs out [4]. An alternative approach is to store tables externally in a
relational database system and then reload them back only when necessary [5].

A complementary approach to the previous problem is to study how less re-
dundant and more compact data structures can be used to better represent the
table space. In this paper, we propose a new design for the table space organiza-
tion where all terms in tabled subgoal calls and tabled answers are represented
only once in a common global trie instead of being spread over several different
trie data structures. Our approach resembles the hash-consing technique [6], as
it shares data that is structurally equal, thus saving memory usage by reducing
redundancy in term representation. We will focus our discussion on a concrete
implementation, the YapTab system [7], but our proposals can be easy general-
ized and applied to other tabling systems.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts about tries and the table space. Next, we introduce
YapTab’s new design for the table space organization using the common global
trie and then, we describe how we have extended YapTab to provide engine
support for the new design. At last, we present some experimental results and
we end by outlining some conclusions.

2 Tabling Tries

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Repeated calls to tabled subgoals1 are not re-evaluated against the
program clauses, instead they are resolved by consuming the answers already
stored in their table entries. During this process, as further new answers are
found, they are stored in their tables and later returned to all repeated calls.

Within this model, the table space may be accessed in a number of ways: (i)
to find out if a subgoal is in the table and, if not, insert it; (ii) to verify whether
a newly found answer is already in the table and, if not, insert it; and (iii) to
load answers to repeated subgoals. With these requirements, a correct design of
the table space is critical to achieve an efficient implementation. YapTab uses
tries which is regarded as a very efficient way to implement the table space [2].

A trie is a tree structure where each different path through the trie data
units, the trie nodes, corresponds to a term described by the tokens labelling the
nodes traversed. Two terms with common prefixes will branch off from each other
at the first distinguishing token. For example, the tokenized form of the term

1 A subgoal repeats a previous subgoal if they are the same up to variable renaming.



f(X, g(Y, X), Z) is the sequence of 6 tokens: f/3, V AR0, g/2, V AR1, V AR0 and
V AR2, where each variable is represented as a distinct V ARi constant [8].

To increase performance, YapTab implements tables using two levels of tries:
one for subgoal calls; the other for computed answers. More specifically:

– each tabled predicate has a table entry data structure assigned to it, acting
as the entry point for the predicate’s subgoal trie.

– each different subgoal call is represented as a unique path in the subgoal trie,
starting at the predicate’s table entry and ending in a subgoal frame data
structure, with the argument terms being stored within the path’s nodes.
The subgoal frame data structure acts as an entry point to the answer trie.

– each different subgoal answer is represented as a unique path in the answer
trie. Contrary to subgoal tries, answer trie paths hold just the substitution
terms for the free variables which exist in the argument terms of the corre-
sponding subgoal call [2]. Repeated calls to tabled subgoals load answers by
traversing the answer trie nodes bottom-up.

An example for a tabled predicate t/2 is shown in Fig. 1. Initially, the subgoal
trie is empty. Then, the subgoal t(f(1),Y) is called and three trie nodes are
inserted: one for functor f/1, a second for constant 1 and one last for variable
Y (VAR0). The subgoal frame is inserted as a leaf, waiting for the answers. Next,
the subgoal t(X,Y) is also called. The two calls differ in the first argument, so
tries bring no benefit here. Two new trie nodes, for variables X (VAR0) and Y

(VAR1), and a new subgoal frame are inserted. At the end, the answers for each
subgoal are stored in the corresponding answer trie as their values are computed.
Subgoal t(f(1),Y) has two answers, Y=f(1) and Y=f(2), so we need three trie
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nodes to represent both: a common node for functor f/1 and two nodes for
constants 1 and 2. For subgoal t(X,Y) we have four answers, resulting from the
combination of the answers f(1) and f(2) for variables X and Y, which requires
nine trie nodes to represent them. Note that, for this particular example, the
completed answer trie for t(X,Y) includes in its representation the completed
answer trie for t(f(1),Y).

3 Common Global Trie

In this section, we describe YapTab’s new design for the table space organization.
Our new design can be seen as an extension of a previous approach [9], where
we first introduced the idea of using a common global trie. In what follows, we
will refer to our previous approach as the Global Trie for Calls and Answers

(GT-CA), and to our new design as the Global Trie for Terms (GT-T). Next,
we start by briefly introducing the GT-CA approach and then we discuss in more
detail how we have extended and optimized it to our new GT-T design.

3.1 Global Trie for Calls and Answers

In the GT-CA approach, all tabled subgoal calls and answers are stored in a
common global trie instead of being spread over several different trie data struc-
tures. The GT-CA still is a tree structure where each different path through the
trie nodes corresponds to a subgoal call and/or answer. However, here a path
can end at any internal trie node and not necessarily at a leaf trie node.

The original subgoal trie and answer trie data structures are now represented
by a unique level of nodes that point to the corresponding paths in the GT-CA
(see Fig. 2 for details). For the subgoal tries, each node now represents a different
subgoal call where the node’s token is the pointer to the unique path in the GT-
CA that represents the argument terms for the subgoal call. For the answer tries,
each node now represents a different subgoal answer where the node’s token is the
pointer to the unique path in the GT-CA that represents the substitution terms
for the free variables which exist in the argument terms. With this organization,
answers are now loaded by following the pointer in the node’s token and then
by traversing bottom-up the corresponding GT-CA’s nodes.

Figure 2 uses again the example from Fig. 1 to illustrate how the GT-CA
design works. Initially, the subgoal trie and the GT-CA are empty. Then, the
first subgoal t(f(1),Y) is called and three nodes are inserted in the GT-CA:
one to represent the functor f/1, another for the constant 1 and a last one for
variable Y (VAR0). Next, a node representing the path inserted in the GT-CA
is stored in the subgoal trie (node labeled call1). For the second subgoal call,
t(X,Y), we start again by inserting the call in the GT-CA and then we store
a node in the subgoal trie (node labeled call2) to represent the path inserted
in the GT-CA. Each answer is also inserted first in the GT-CA and then we
store a node in the corresponding answer trie (nodes labeled answer1, answer2,
answer3 and answer4) to represent the path inserted in the GT-CA.
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This example shows us that with the GT-CA we cannot share the representa-
tion of common terms appearing at different argument or substitution positions.
For example, the terms f(1), f(2) and VAR0 appear more than once represented
in the global trie. Moreover, with this example, we can see also that terms in
the GT-CA can end at any internal trie node and not necessarily at a leaf trie
node. This happens because tabled subgoals calls and answers are not always
necessarily pure terms. A subgoal call is, in fact, represented by a sequence of
argument terms and an answer is, in fact, represented by a sequence of substitu-
tion terms. Thus, when the number of argument or substitution terms is greater
than one, then we may have situations where a subgoal call or answer can end at
internal nodes of other subgoal calls and/or answers. This raises a problem when
supporting table abolish operations because the nodes representing an individ-
ual subgoal call or answer may not be removed if they belong to other different
paths. This problem can be solved by introducing an extra field in each trie
node to count the number of paths it belongs to and only allow deletion when it
reaches zero, but this solution is contradictory with our goal of saving memory.

Another problem with the GT-CA design is that, on completion of a subgoal,
a strategy exists that avoids answer recovery using bottom-up unification and
performs instead what is called a completed table optimization [2]. This optimiza-
tion implements answer recovery by top-down traversing the completed answer
trie and by executing specific WAM-like code from the answer trie nodes. With
the GT-CA design, the nodes in the global trie can belong to several different
subgoal/answer tries, and thus this optimization is no longer possible.

We next discuss how we have extended and optimized this table organization
to the new GT-T design in order to solve these problems.



3.2 Global Trie for Terms

The GT-T was designed in order to maximize the sharing of tabled data that
is structurally equal. In the GT-T design, all argument and substitution terms
appearing in tabled subgoal calls and/or answers are represented only once in the
common global trie. The GT-T still is a tree structure where each different path
through the trie nodes represents a unique argument and/or substitution term,
therefore always ending at a leaf trie node. Each path in a subgoal or answer
trie is now composed of a fixed number of trie nodes representing the argument
or substitution terms in the corresponding tabled subgoal call or answer. For
the subgoal tries, each node now represents an argument term where the node’s
token is the pointer to the unique path in the GT-T representing the term. For
the answer tries, each node now represents a substitution term where the node’s
token is the pointer to the unique path in the GT-T representing the term.

Figure 3 uses again the example from Fig. 1 to illustrate how the GT-T
design works. Initially, the subgoal trie and the GT-T are empty. Next, the first
subgoal t(f(1),Y) is called and the two argument terms, f(1) and Y (VAR0),
are first inserted in the GT-T. Then, the argument terms are represented in the
subgoal trie by two nodes (nodes labeled arg1 and arg2), each one pointing to
the leaf node of the corresponding term inserted in the GT-T. For the second
subgoal call, t(X,Y), the argument terms VAR0 and VAR1 are also inserted first
in the GT-T and then we store also two nodes in the subgoal trie, each one
pointing to the corresponding representation in the GT-T.

subgoal trie

answer trie answer trie

f/1 global
trie

VAR1 VAR0

2 1

arg1 arg1

arg2arg2

subs1

subs2 subs2 subs2 subs2

subs1 subs1subs1

subgoal frame for
t(f(1),VAR0)

subgoal frame for
t(VAR0,VAR1)

table entry for t/2

Fig. 3. GT-T table organization



For the answers, each substitution term is also inserted first in the GT-T
and then we store a node in the corresponding answer trie to represent its path
in the GT-T (nodes labeled subs1 and subs2). The substitution terms for the
complete set of answers for the two subgoal calls only include the terms f(1)

and f(2). Thus, as f(1) is already stored in the global trie, we only need to
insert f(2) in order to be able to represent the full set of answers. As we are
maximizing the sharing of common terms appearing at different argument or
substitution positions, for this particular example, this results in a very compact
representation of the global trie.

Regarding space reclamation, as each different path in the GT-T always ends
at a leaf node, we can use the child field (that is always NULL in a leaf node) to
count the number of references to the path it represents and only allow deletion
when it reaches zero. This solves the previous problem of supporting table abolish
operations without introducing extra memory overheads.

Regarding compiled tries, the idea is to keep the global trie only with the
term representation and store the WAM-like instructions in the answer tries,
as in the original design [2]. The difference is that for the GT-T approach, the
WAM-like instructions are more high-level, i.e., instead of working at the level
of atoms/terms/functors/lists as in [2], each instruction works at the level of
the substitution terms. For example, consider again the four answers for the call
t(X,Y). When loading these answers, we have two choices for X and, for each
X, we have two choices for Y. In the GT-T design, the answer trie nodes repre-
senting the choices for X and for Y (nodes labeled respectively subs1 and subs2)
are compiled with a WAM-like sequence such as try subs term (for the first
choices) and trust subs term (for the second/last choices). GT-T’s compiled
tries also include a retry subs term instruction (for intermediate choices) and
a do subs term instruction (for single choices).

4 Implementation Details

We then describe in more detail the data structures and algorithms for YapTab’s
new table design. We start with Fig. 4 showing in more detail the table organi-
zation previously presented in Fig. 3 for the subgoal call t(X,Y).

Internally, tries are represented by a top root node, acting as the entry
point for the corresponding subgoal, answer or global trie data structure. For
the subgoal tries, the root node is stored in the corresponding table entry’s
subgoal trie root node data field. For the answer tries, the root node is stored
in the corresponding subgoal frame’s answer trie root node data field. For the
global trie, the root node is stored in the GT ROOT NODE global variable.

Regarding trie nodes, they are internally implemented as 4-field data struc-
tures. The first field (token) stores the token for the node and the second
(child), third (parent) and fourth (sibling) fields store pointers, respectively,
to the first child node, to the parent node, and to the next sibling node. Re-
member that for the global trie, the leaf node’s child field is used to count
the number of references to the path it represents. For the answer tries, an
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additional field (code) is used to support compiled tries. Traversing a trie to
check/insert for new calls or for new answers is implemented by repeatedly in-
voking a trie node check insert() procedure for each token that represents
the call/answer being checked. Given a trie node parent and a token t, the
trie node check insert() procedure returns the child node of parent that
represents the given token t. Figure 5 shows the pseudo-code for this procedure.

Initially, the procedure checks if the list of sibling nodes is empty. If this is
the case, a new trie node representing the given token t is initialized and inserted
as the first child of the given parent node. To initialize new trie nodes, we use a
new trie node() procedure with four arguments, each one corresponding to the
initial values to be stored respectively in the token, child, parent and sibling

fields of the new trie node. For answer trie nodes, the code field is computed
later when completion takes place.

Otherwise, if the list of sibling nodes is not empty, the procedure checks
if they are being indexed through a hash table. Searching through a list of



trie_node_check_insert(TRIE_NODE parent, TOKEN t) {
child = parent->child
if (child == NULL) { // the list of sibling nodes is empty

child = new_trie_node(t, NULL, parent, NULL)
parent->child = child

} else if (not_a_hash_table(child)) { // sibling nodes without hashing
sibling_nodes = 0 // to count the number of sibling nodes
do { // check if token t is already in the list of siblings
if (child->token == t) return child
sibling_nodes++
child = child->sibling

} while (child)
child = new_trie_node(t, NULL, parent, parent->child)
if (sibling_nodes > MAX_SIBLING_NODES_PER_LEVEL) { // alloc new hash
hash = new_hash_table(child)
parent->child = hash

} else
parent->child = child

} else { // sibling nodes with hashing
hash = child
bucket = hash_function(hash, t) // get the hash bucket for token t
child = bucket
sibling_nodes = 0
while (child) { // check if token t is already in the hash bucket
if (child->token == t) return child
sibling_nodes++
child = child->sibling

}
child = new_trie_node(t, NULL, parent, bucket)
if (sibling_nodes > MAX_SIBLING_NODES_PER_BUCKET) // expand hash
expand_hash_table(hash)

}
return child

}

Fig. 5. Pseudo-code for the trie node check insert() procedure

sibling nodes is initially done sequentially. This could be too expensive if we
have hundreds of siblings. A threshold value (MAX SIBLING NODES PER LEVEL)
controls whether to dynamically index the nodes through a hash table, hence
providing direct node access and optimizing search. Further hash collisions are
reduced by dynamically expanding the hash tables when a second threshold value
(MAX SIBLING NODES PER BUCKET) is reached for a particular hash bucket.

If not using hashing, the procedure then traverses sequentially the list of
sibling nodes and checks for one representing the given token t. If such a node
is found then execution is stopped and the node returned. Otherwise, a new
trie node is initialized and inserted in the beginning of the list. If reaching the
threshold value MAX SIBLING NODES PER LEVEL, a new hash table is initialized
and inserted as the first child of the given parent node.

If using hashing, the procedure first calculates the hash bucket for the given
token t and then, it traverses sequentially the list of sibling nodes in the bucket
checking for one representing t. Again, if such a node is found then execu-



tion is stopped and the node returned. Otherwise, a new trie node is initialized
and inserted in the beginning of the bucket list. If reaching the threshold value
MAX SIBLING NODES PER BUCKET, the current hash table is expanded.

To manipulate tries we use two interface procedures:

trie_load(TRIE_NODE leaf)

trie_check_insert(TRIE_NODE root, TERM t)

The trie load() is used to load a term from a trie back to the Prolog engine,
where leaf is the reference to the leaf node of the term to be loaded.

The trie check insert() is used for traversing a trie to check/insert for
new terms, where root is the root node of the trie to be used and t is the term
to be inserted. It invokes repeatedly the previous trie node check insert()

procedure for each token that represents the given term t and returns the refer-
ence to the leaf node representing its path. Note that inserting a term requires
in the worst case allocating as many nodes as necessary to represent its path. On
the other hand, inserting repeated terms requires traversing the trie structure
until reaching the corresponding leaf node, without allocating any new node.

When inserting terms in the table space we need to distinguish two situations:
(i) inserting tabled calls in a subgoal trie structure; and (ii) inserting answers
in a particular answer trie structure. The former situation is handled by the
subgoal check insert() procedure as shown in Fig. 6 and the latter situation
is handled by the answer check insert() procedure as shown in Fig. 7.

In the original table design, the subgoal check insert() procedure simply
uses the trie check insert() procedure to check/insert the given call in the
subgoal trie corresponding to the given table entry te. In the new GT-T de-
sign, for each argument term t, it first checks/inserts the term t in the GT-T
and, then, it uses the reference to the leaf node representing t in the GT-T
(leaf gt node in Fig. 6) as the token to be checked/inserted in the subgoal trie
corresponding to the given table entry te. Note that this is done by calling the
trie node check insert() procedure, thus if the list of sibling nodes in the

subgoal_check_insert(TABLE_ENTRY te, SUBGOAL_CALL call, ARGS_ARITY a) {
if (GT_ROOT_NODE) { // GT-T table design

st_node = te->subgoal_trie_root_node
for (i = 1; i <= a; i++) {
t = get_argument_term(call, i)
leaf_gt_node = trie_check_insert(GT_ROOT_NODE, t)
leaf_gt_node->child++ // increase number of paths it represents
st_node = trie_node_check_insert(st_node, leaf_gt_node)

}
leaf_st_node = st_node

} else // original table design
leaf_st_node = trie_check_insert(te->subgoal_trie_root_node, call)

return leaf_st_node
}

Fig. 6. Pseudo-code for the subgoal check insert() procedure



answer_check_insert(SUBGOAL_FRAME sf, ANSWER answer, SUBS_ARITY a) {
if (GT_ROOT_NODE) { // GT-T table design

at_node = sf->answer_trie_root_node
for (i = 1; i <= a; i++) {
t = get_substitution_term(answer, i)
leaf_gt_node = trie_check_insert(GT_ROOT_NODE, t)
leaf_gt_node->child++ // increase number of paths it represents
at_node = trie_node_check_insert(at_node, leaf_gt_node)

}
leaf_at_node = at_node

} else // original table design
leaf_at_node = trie_check_insert(sf->answer_trie_root_node, answer)

return leaf_at_node
}

Fig. 7. Pseudo-code for the answer check insert() procedure

subgoal trie exceeds the MAX SIBLING NODES PER LEVEL threshold value, then a
new hash table is initialized as described before.

The answer check insert() procedure works similarly. In the original table
design, it checks/inserts the given answer in the answer trie corresponding to
the given subgoal frame sf. In the new GT-T design, for each substitution term
t, it first checks/inserts the term t in the GT-T and, then, it uses the reference
to the leaf node representing t in the GT-T (leaf gt node in Fig. 7) as the
token to be checked/inserted in the answer trie corresponding to the given sub-
goal frame sf. Again, if the list of sibling nodes in the answer trie exceeds the
MAX SIBLING NODES PER LEVEL threshold value, a new hash table is initialized.

Finally, the answer load() procedure is used to consume answers. Figure 8
shows the pseudo-code for it. In the original table design, it simply uses the
trie load() procedure to load from the answer trie back to the Prolog engine
the answer given by the trie node leaf at node. In the new GT-T design, for
each answer trie node at node, now it uses the trie load() procedure to load
from the GT-T back to the Prolog engine the substitution term given by the
reference (leaf gt node in Fig. 8) stored in the corresponding token field.

5 Experimental Results

We next present some experimental results comparing YapTab with and without
support for the common global trie data structure. The environment for our
experiments was an Intel(R) Core(TM)2 Quad 2.66GHz with 2 GBytes of main
memory and running the Linux kernel 2.6.24.23 with YapTab 5.1.4.

To put the performance results in perspective and have a well-defined starting
point comparing the GT-CA and GT-T approaches, first we have defined a tabled
predicate t/5 that simply stores in the table space terms defined by term/1

facts, and then we used a top query goal test/0 to recursively call t/5 with all
combinations of one and two free variables in the arguments. We experimented
the test/0 predicate with 10 different kinds of 1000 term/1 facts: integers,



answer_load(ANSWER_TRIE_NODE leaf_at_node, SUBS_ARITY a) {
if (GT_ROOT_NODE) { // GT-T table design

at_node = leaf_at_node
for (i = a; i >= 1; i--) {
leaf_gt_node = at_node->token
t = trie_load(leaf_gt_node)
put_substitution_term(t, answer)
at_node = at_node->parent

}
} else // original table design

answer = trie_load(leaf_at_node)
return answer

}

Fig. 8. Pseudo-code for the answer load() procedure

atoms, compound (with arities 1, 2, 4 and 6) and list (with lengths 1, 2, 4 and
6) terms. An example of such code for compound terms of arity 1 is shown next.

:- table t/5.
t(A,B,C,D,E) :- term(A), term(B), term(C), term(D), term(E).

test :- t(A,f(1),f(1),f(1),f(1)), fail. term(f(1)).
... term(f(2)).
test :- t(f(1),f(1),f(1),f(1),A), fail. term(f(3)).
test :- t(A,B,f(1),f(1),f(1)), fail. ...
... term(f(998)).
test :- t(f(1),f(1),f(1),A,B), fail. term(f(999)).
test. term(f(1000)).

Table 1 shows the table memory usage (columns Mem), in MBytes, and
the running times, in milliseconds, to store (columns Str) the tables (first ex-
ecution) and to load from the tables (second execution) the complete set of
subgoals/answers without (columns Load) and with (columns Cmp) compiled
tries for YapTab using the original table organization (column YapTab), using
the previous GT-CA approach (column GT-CA/YapTab) and using the new
GT-T design (column GT-T/YapTab). For the GT-CA and GT-T approaches
we only show the memory and running time ratios over YapTab’s original table
organization.

The results in Table 1 suggest that GT-T support is the best approach to
reduce memory usage and that this reduction increases proportionally to the
length and redundancy of the terms stored in the global trie. In particular,
for compound and list terms, the results show an increasing and very significant
reduction on memory usage, for both GT-CA and GT-T approaches. The results
for integer and atoms terms are also very interesting as they show that the cost
of representing only atomic terms in the global trie (around 8% for GT-CA
and 0% for GT-T in these experiments) can be manageable when we increase
redundancy. Note that integers and atoms terms are represented by a single node
in the original YapTab design, and by an extra node (therefore requiring two
nodes) if using a global trie.



Terms
YapTab GT-CA/YapTab GT-T/YapTab

Mem Str Load Cmp Mem Str Load Cmp Mem Str Load Cmp

1000 ints 191 1009 358 207 1.08 1.56 1.30 n.a. 1.00 1.32 1.18 1.69
1000 atoms 191 1040 337 231 1.08 1.54 1.41 n.a. 1.00 1.26 1.24 1.54
1000 f/1 191 1474 548 239 1.08 1.35 1.33 n.a. 1.00 1.28 1.11 1.88
1000 f/2 382 1840 632 353 0.58 1.25 1.37 n.a. 0.50 1.11 1.18 1.58
1000 f/4 764 2581 786 631 0.33 1.21 1.35 n.a. 0.25 1.07 1.16 1.14
1000 f/6 1146 3379 1032 765 0.25 1.12 1.29 n.a. 0.17 1.01 1.05 1.08
1000 [ ]/1 382 1727 466 365 0.58 1.32 1.44 n.a. 0.50 1.17 1.21 1.29
1000 [ ]/2 764 2663 648 459 0.33 1.06 1.55 n.a. 0.25 0.93 1.20 1.48
1000 [ ]/4 1528 4461 1064 720 0.20 1.10 1.57 n.a. 0.13 0.81 1.01 1.28
1000 [ ]/6 2293 6439 2386 1636 0.16 1.02 1.05 n.a. 0.08 0.71 0.58 0.68

Average 0.57 1.25 1.37 n.a. 0.49 1.07 1.09 1.36

Table 1. Table memory usage (in MBytes) and store/load times (in milliseconds) for
YapTab with and without support for the common global trie data structure

Regarding running time, these results seem to indicate that memory reduc-
tion comes at a price in storing time (around 25% for GT-CA and 7% for GT-T
in these experiments). Note that with GT-CA and GT-T support, we pay the
cost of navigating in two tries when checking/storing/loading a term. Moreover,
in some situations, the cost of storing a new term in an empty/small trie can be
less than the cost of navigating in the global trie, even when the term is already
stored in the global trie. However, our results seem to suggest that this cost
decreases proportionally to the length and redundancy of the terms stored in
the global trie. In particular, for list terms, GT-T support showed to outperform
the original YapTab design and, in particular, the reduction seems to decrease
also proportionally to the length of the list terms stored in the global trie.

The results obtained for loading terms also show a cost on running time
(around 37% for GT-CA and 9% and 36% for GT-T without and with compiled
tries in these experiments). We think that this cost is smaller for GT-T as a result
of a cache behaviour effect. With GT-T, as we need to navigate in the global trie
for each substitution term, we kept accessing the same global trie nodes, thus
reducing eventual cache misses. This seems also to be the reason why for list
terms of length 6, GT-T clearly outperforms the original YapTab design, both
without and with compiled tries. Note that, for this particular case, the GT-T
support only consumes 8% of the memory used in the original YapTab.

Next, we tested our approach with two well-known Inductive Logic Pro-
gramming (ILP) benchmarks: the carcinogenesis (Carc) and the mutagenesis

(Muta) data sets. We used these data sets in a Prolog program that simulates
the test phase of an ILP system. For that, first we ran the April ILP system [10]
for the two data sets, each with two different configurations, in order to collect
the set of clauses generated for each configuration. The simulator program then
uses the corresponding set of generated clauses to run the positive and negative
examples defined for each data set against them. To evaluate clauses, we used
two different strategies: Pred denotes the tabling of individual predicates and



Data Sets
YapTab GT-CA/YapTab GT-T/YapTab

Mem Str Load Cmp Mem Str Load Cmp Mem Str Load Cmp

Pred
Carc P1 1.6 70.72 71.26 72.95 0.82 1.35 1.34 n.a. 0.62 1.07 1.05 1.03
Carc P2 2.1 51.19 50.44 55.97 0.87 1.42 1.44 n.a. 0.51 1.23 1.30 1.22
Muta P1 0.6 98.93 5.57 5.86 0.73 1.20 1.19 n.a. 0.63 0.91 1.00 0.94
Muta P2 0.6 93.01 2.01 2.40 0.73 1.26 1.47 n.a. 0.63 0.96 1.22 1.10

Average 0.79 1.31 1.36 n.a. 0.60 1.04 1.14 1.07

Conj
Carc C1 18.5 0.56 0.51 0.48 0.53 1.57 1.63 n.a. 0.39 1.20 1.22 1.08
Carc C2 2802.8 93.85 70.16 36.44 0.50 1.50 1.50 n.a. 0.14 1.11 1.09 0.82
Muta C1 84.7 97.02 7.36 6.14 0.66 1.30 1.65 n.a. 0.53 0.99 1.22 1.35
Muta C2 675.6 92.76 1.36 1.53 0.16 1.25 1.42 n.a. 0.16 0.98 1.10 0.78

Average 0.46 1.41 1.55 n.a. 0.31 1.07 1.16 1.01

Table 2. Table memory usage (in MBytes) and store/load times (in seconds) for
YapTab with and without support for the common global trie data structure

Conj denotes the tabling of literal conjunctions (as described in [3]). By tabling
conjunctions, we only need to compute them once. The strategy is then recur-
sively applied as the ILP system generates more specific clauses, but this can
increase the table memory usage arbitrarily.

Table 2 shows the table memory usage (columns Mem), in MBytes, and the
running times, in seconds, to store (columns Str) the tables (first execution) and
to load from the tables (second execution) the complete set of subgoals/answers
without (columns Load) and with (columns Cmp) compiled tries for YapTab us-
ing the original table organization (column YapTab), using the previous GT-CA
approach (column GT-CA/YapTab) and using the new GT-T design (column
GT-T/YapTab). Again, for the GT-CA and GT-T approaches we only show
the memory and running time ratios over YapTab’s original table organization.

In general, the results in Table 2 confirm the results obtained in Table 1
for memory usage. GT-T support clearly outperforms the original and GT-CA
designs for memory usage. In particular, for the Conj strategy, memory usage
showed to be significantly less with GT-T support. This happens because after
a certain time, the Conj strategy will not table new terms, but only answers
that are combinations of previous terms, therefore making the GT-T approach
more feasible as it can share the representation of common terms appearing at
different argument or substitution positions.

Regarding running time, the results in Table 2 also confirm and reinforce the
results obtained in Table 1. GT-T support clearly outperforms the GT-CA design
for storing and loading times and, for some configurations, it also outperforms
the original YapTab design. This is the case for configurations either without
or with compiled tries. These results suggest that, at least for some class of
applications, GT-T support has potential to achieve significant reductions in
memory usage without compromising running time.



6 Conclusions and Further Work

We have presented a new design for the table space organization where all argu-
ment and substitution terms appearing in tabled subgoal calls and/or answers
are represented only once in a common global trie instead of being spread over
several different trie data structures. The goal is to reduce redundancy in term
representation by maximizing the sharing of tabled data that is structurally
equal. Our experiments using the YapTab tabling system showed that our ap-
proach has potential to achieve significant reductions on memory usage without
compromising running time.

Further work will include exploring the impact of applying our proposal to
other real-world applications that pose many subgoal queries, possibly with a
large number of redundant answers, seeking real-world experimental results al-
lowing us to improve and expand our current implementation. In particular,
we intend to study how alternative/complementary designs for the table space
organization can further reduce redundancy in term representation.
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