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Abstract. Tabling is a technique of resolution that overcomes some
limitations of traditional Prolog systems in dealing with recursion and
redundant sub-computations. We can distinguish two main categories
of tabling mechanisms: suspension-based tabling and linear tabling. In
suspension-based tabling, a tabled evaluation can be seen as a sequence of
sub-computations that suspend and later resume. Linear tabling mech-
anisms maintain a single execution tree where tabled subgoals always
extend the current computation without requiring suspension and re-
sumption of sub-computations. In this work, we present a new and ef-
ficient implementation of linear tabling, but for that we have extended
an already existent suspension-based implementation, the YapTab en-
gine. Our design is based on dynamic reordering of alternatives but it
innovates by considering a strategy that schedules the re-evaluation of
tabled calls in a similar manner to the suspension-based strategies of
YapTab. Our implementation also shares the underlying execution envi-
ronment and most of the data structures used to implement tabling in
YapTab. We thus argue that all these common features allows us to make
a first and fair comparison between suspension-based and linear tabling
and, therefore, better understand the advantages and weaknesses of each.
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1 Introduction

Tabling [1] is an implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations and re-
cursion. Tabling consists of storing intermediate answers for subgoals so that they
can be reused when a repeated subgoal appears during the resolution process.
Implementations of tabling are currently available in systems like XSB Prolog,
Yap Prolog, B-Prolog, ALS-Prolog, Mercury and more recently Ciao Prolog. In
these implementations, we can distinguish two main categories of tabling mech-
anisms: suspension-based tabling and linear tabling.

Suspension-based tabling mechanisms need to preserve the computation state
of suspended tabled subgoals in order to ensure that all answers are correctly
computed. A tabled evaluation can be seen as a sequence of sub-computations



that suspend and later resume. The environment of a suspended computation is
preserved either by freezing the execution stacks, as in XSB [2] and Yap [3], by
copying the execution stacks to separate storage, as in Mercury [4] and in the
CAT model [5], or by using a mixed strategy as in the CHAT model [6]. Two
more recent approaches, implemented in Yap [7] and Ciao Prolog [8], feature a
higher-level implementation of suspension-based tabling. They apply source level
transformations to a tabled program and then use external tabling primitives to
provide direct control over the search strategy. In these proposals, suspension is
implemented by leaving a continuation call [9] for the current computation in
the table entry corresponding to the repeated call being suspended.

On the other hand, linear tabling mechanisms use iterative computations
of tabled subgoals to compute fix-points. The main idea of linear tabling is to
maintain a single execution tree where tabled subgoals always extend the current
computation without requiring suspension and resumption of sub-computations.
Two different linear tabling proposals are the SLDT strategy of Zhou et al. [10],
as originally implemented in B-Prolog, and the DRA technique of Guo and
Gupta [11], as originally implemented in ALS-Prolog. The key idea of the SLDT
strategy is to let repeated calls execute from the backtracking point of the former
call. The repeated call is then repeatedly re-executed, until all the available
answers and clauses have been exhausted, that is, until a fix-point is reached.
Current versions of B-Prolog implement an optimized variant of this strategy
which tries to avoid re-evaluation of looping subgoals [12]. The DRA technique
is based on dynamic reordering of alternatives with repeated calls. This technique
tables not only the answers to tabled subgoals, but also the alternatives leading
to repeated calls, the looping alternatives. It then uses the looping alternatives
to repeatedly recompute them until reaching a fix-point.

Arguably, suspension-based mechanisms are considered to be more compli-
cated to implement but, on the other hand, they are considered to obtain better
results in general. A commonly referred weakness of linear tabling is the ne-
cessity of re-computation for computing fix-points. However, to the best of our
knowledge, no rigorous and fair comparison between suspension-based and lin-
ear tabling was yet been done in order to better understand the advantages and
weaknesses of each mechanism. The reason for this is that no single Prolog system
simultaneously supports both mechanisms and thus, the available comparisons
between both mechanisms cannot be fully dissociated from the strengths and
weaknesses of the base Prolog systems on top of which they are implemented.

In this work, we present a new and efficient implementation of linear tabling,
but for that we have extended an already existent suspension-based implementa-
tion, the YapTab engine [3], the tabling engine of Yap Prolog. Our linear tabling
implementation is based on the DRA technique but it innovates by considering
a strategy that schedules the re-evaluation of tabled calls in a similar manner to
the suspension-based strategies of YapTab.

Our new implementation shares the underlying execution environment of the
Yap Prolog system and most of the data structures used to implement tabling
in YapTab. In particular, a critical component in the implementation of an ef-



ficient tabling system is the table space. Here we took advantage of YapTab’s
efficient table space data structures based on tries [13], that in our linear tabling
proposal are used with minimal modifications. Our current design is also based
on a scheduling strategy, local scheduling [14], supported by YapTab. We thus
argue that all these common support features allows us to make a first and fair
comparison between suspension-based and linear tabling and, therefore, better
understand the advantages and weaknesses of each.

The remainder of the paper is organized as follows. First, we briefly describe
the DRA technique and introduce its execution model. Next, we discuss our
design decisions and provide the details for our implementation on top of the
YapTab engine. At last, we present a detailed performance study and we end by
outlining some conclusions.

2 Dynamic Reordering of Alternatives

The DRA linear tabling mechanism as proposed by Guo and Gupta [11] is based
on the dynamic reordering of alternatives with repeated calls for incorporating
tabling into an existing logic programming system. The DRA technique not
only memorizes the answers for the tabled subgoal calls, but also the alterna-
tives leading to repeated calls, the looping alternatives. It then uses the looping
alternatives to repeatedly recompute them until a fix-point is reached. During
evaluation, a tabled call can be in one of three possible states: normal, looping

or complete. Figure 1 shows the state transition graph for DRA evaluation.
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Fig. 1. State transition graph for DRA evaluation

Consider a tabled subgoal call C. Initially, C enters in normal state where it
is allowed to explore the matching clauses as in standard Prolog. In this state,
while exploring the matching clauses, the model checks for looping alternatives.
If a repeated call is found1 then the current clause for the first call to C will be
memorized as a looping alternative. Essentially, the alternative corresponding to
this call will be reordered and placed at the end of the alternative list for the
call. As in a tabled evaluation repeated calls are not re-evaluated against the
program clauses because they can potentially lead to infinite loops, the repeated
call to C is then resolved by consuming the answers already available for the call

1 A call repeats a previous call if they are the same up to variable renaming.



in the table space. In what follows we will refer to first calls to tabled subgoals
as generator calls and to repeated calls to tabled subgoals as consumer calls.

Next, after exploring all the matching clauses, C goes into the looping state.
From this point, it keeps trying the looping alternatives repeatedly until reaching
a fix-point. If no new answers are found during one cycle of trying the looping al-
ternatives, then we have reached a fix-point and we can say that C is completely
evaluated. However, if a number of calls is mutually dependent, thus forming a
Strongly Connected Component (or SCC ), then completion is more complex and
we can only complete the calls in a SCC together. SCCs are usually represented
by the leader call. More precisely, the generator call which does not depends
on older generators is the leader call. A leader call defines the next completion
point, i.e., if no new answers are found during one cycle of trying the looping
alternatives for the leader call, then we have reached a fix-point and we can say
that all calls in the SCC are completely evaluated.

2.1 An Evaluation Example

We next illustrate in Fig. 2 the original principles of DRA tabled evaluation
through an example. At the top, the figure shows the program code (the left
box) and the final state of the table space (the right box). The program specifies
a tabled predicate t/2 defined by five clauses (alternatives c1 to c5). The bottom
sub-figure shows the evaluation sequence for the query goal t(1,X). Generator
calls are depicted by black oval boxes and consumer calls by white oval boxes.

The evaluation starts by inserting a new entry in the table space representing
the generator call t(1,X) (step 1). Then, t(1,X) is resolved against the first
matching clause, alternative c1, calling t(2,X) in the continuation. As this is a
first call to t(2,X), we insert a new entry in the table space representing t(2,X)

and proceed as shown in the middle tree (step 2). t(2,X) is also resolved against
the first matching clause, alternative c3, calling again t(2,X) in the continuation
(step 3). Since t(2,X) is now a consumer call, we mark the clause in evaluation
for the generator call, alternative c3, as a looping alternative for t(2,X). Then,
we try to consume answers but, as no answers are available for t(2,X), the
execution fails (step 4).

Next, we try the second matching clause for t(2,X), alternative c4, thus
calling t(1,X) (step 5). Since t(1,X) is also a consumer call, we mark the
clauses in evaluation up to the generator call for t(1,X) as looping alternatives.
This includes alternative c1 for t(1,X) and alternative c4 for t(2,X). Then, we
try to consume answers but, because no answers are available for t(1,X), we fail
(step 6). The last matching clause for t(2,X), alternative c5, is then tried and
we obtain a first answer for t(2,X). The answer is inserted in the table space
and, as we are following a local scheduling strategy, the execution fails (step 8).

We then backtrack again to the generator call for t(2,X) and because we
have already explored all matching clauses, t(2,X) moves into the looping state.
We have found a new answer for t(2,X), so we must re-execute the looping al-
ternatives c3 and c4 (step 9). In alternative c3, t(2,X) is called again as a
consumer call (step 10). The answer X=a is forward to it but in the continuation
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Fig. 2. A DRA tabled evaluation

the execution fails (step 11). In alternative c4, we repeat the situation in steps 5
to 6 and we fail for the same reasons (steps 12 to 13). The evaluation then back-
tracks to the generator call for t(2,X) and, because we have reached a partial
fix-point (i.e., no answers were found when trying the looping alternatives), we
check whether t(2,X) can complete (step 14). It cannot, because it depends on
t(1,X) and thus it is not a leader call.

Next, as we are following a local scheduling strategy, the answer for t(2,X)
should now be propagated to the context of the previous call. We thus propagate
the answer X=a to the context of subgoal call t(1,X) but the execution fails in
the continuation (step 15). Then, we try the second matching clause for t(1,X),
alternative c2, thus calling t(2,X). Because t(2,X) has already reached the
looping state, we proceed as shown in the bottommost tree with t(2,X) being
resolved again against its looping alternatives (step 16). The evaluation then
repeats the same sequence as in steps 10 to 14 (now steps 17 to 21), but now when
the answer X=a is propagated to the context of t(1,X), it originates a first answer
for t(1,X) (step 22). We then backtrack to the generator call for t(1,X) and
because we have already explored all matching clauses, t(1,X) moves into the
looping state. We have found a new answer for t(1,X), so we must re-execute the



looping alternatives c1 and c2 (step 23). The re-execution of these alternatives
do not finds new answers for t(1,X) or t(2,X). Thus, when backtracking again
to t(1,X) we have reached a partial fix-point and because t(1,X) is a leader
call, we can declare the two subgoal calls to be completed (step 26).

2.2 Re-Computation Issues

One advantage of the original DRA technique is that only the looping alterna-
tives are recomputed. However, repeatedly retrying these alternatives may cause
redundant computations: non-tabled calls are recomputed every time a looping
alternative is tried, and repeated tabled calls re-consume all tabled answers ev-
ery time they are called. Figure 3 shows the choice point stack at different steps
of the DRA tabled evaluation of Fig. 2.

(a) At step 3

Generator
1.t(1,X)

Generator
2.t(2,X)

Consumer
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(f) At step 19

Generator
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Consumer
19.t(1,X)

Fig. 3. DRA’s choice point stack for the tabled evaluation of Fig. 2

Figures 3(c) and 3(d) reflect the decision made at step 9 in the evaluation
of Fig. 2 of re-executing the looping alternatives c3 and c4, and Figures 3(e)
and 3(f) reflect the same decision made at step 16. Remember that the goal
behind these decisions is to reach a partial fix-point in the evaluation of the cor-
responding tabled call. However, reaching a partial fix-point beforehand can be
completely useless for non-leader calls when later the leader call re-executes itself
its looping alternatives (which in turn leads the non-leader calls to re-execute
again their looping alternatives). In fact, in the case of multiple dependent calls,
reaching partial fix-points beforehand can cause a huge number of redundant
computations.

We innovate by considering a strategy that schedules the re-evaluation of
tabled calls in a similar manner to the suspension-based strategies of YapTab.
In YapTab, only first calls to tabled subgoals allocate generator choice points
and the fix-point check for completion is only done by leader calls (please refer
to [3] for full details). Figure 4 illustrates YapTab’s choice point stack for the
same tabled evaluation of Fig. 2. In particular, Fig. 4(c) shows us that the whole
evaluation requires just one generator choice point per call and only one and two
consumer choice points for evaluating t(1,X) and t(2,X), respectively.

Our proposal is thus to schedule the re-evaluation of non-leader tabled calls in
such a way that the number of generator and consumer choice points is the same
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Fig. 4. YapTab’s suspension-based choice point stack for the tabled evaluation of Fig. 2

as in YapTab, i.e., only first calls to tabled subgoals allocate generator choice
points to execute alternatives and the fix-point check for completion is only done
by leader calls (we get ride of the notion of partial fix-points). In particular, for
the tabled evaluation of Fig. 2, this means that we do not re-execute the looping
alternatives for t(2,X) at step 9 (t(2,X) is a non-leader call) and at step 16
(this call to t(2,X) is not the first call, the first one was at step 2). Instead, at
both steps, we must consume the available answers for t(2,X).

To correctly implement this strategy, note also that now the fix-point check
is only done at the level of the leader call. This means that a leader call must
re-execute its looping alternatives not only when new answers were found for it
during the last traversal of the looping alternatives, but when new answers were
found for any tabled call in the current SCC. Moreover, as in a DRA tabled
evaluation the choice points are not frozen as in YapTab, we now consider that
a tabled call is a first call every time we re-start a new round over the looping
alternatives for the leader call. In particular, for the tabled evaluation of Fig. 2,
this means that we re-execute the looping alternatives for t(2,X) only at step
24 (the call to t(2,X) at step 24 is the first call in the round over the looping
alternatives for the leader call t(1,X) started at step 23).

3 Implementation Details

In YapTab, a key data structure in the table space organization is the subgoal

frame. Subgoal frames are used to store information about each tabled call and
to act like entry points to the data structures where answers are stored. We next
enumerate the most relevant subgoal frame fields in our DRA implementation:

SgFr dfn: is the depth-first number of the call. Calls are numbered incrementally
and according to the order in which they appear in the evaluation.

SgFr state: indicates the state of the subgoal. A subgoal can be in one of the
following states: ready, evaluating, loop ready, loop evaluating or complete.



SgFr is leader: indicates if the call is a leader call or not. New calls are by
default leader calls.

SgFr new answers: indicates if new answers were found during the normal state
or during the execution of the last round trying the looping alternatives.

SgFr current alt: marks the alternative being evaluated.
SgFr stop alt: marks the looping alternative where we should stop when in

looping state.
SgFr looping alts: is the pointer to the looping alternatives associated with

the subgoal or NULL if no looping alternatives exist.
SgFr next on scc: is the pointer to the subgoal frame corresponding to the

previous tabled call in evaluation (i.e., with SgFr state as evaluating or
loop evaluating) in the current SCC. It is used by the leader call to traverse
the subgoal frames in order to mark them for re-evaluation or as completed.
A global variable TOP SCC always points to the youngest subgoal frame in
evaluation in the current SCC.

SgFr next on branch: is the pointer to the subgoal frame corresponding to the
previous tabled call in the current branch that is in the normal state (i.e.,
with SgFr state as evaluating) or that is a leader call. It is used to traverse
the subgoal frames in order to detect looping alternatives and to detect non-
leader calls. A global variable TOP BRANCH always points to the youngest
subgoal frame on the current branch.

We next show the pseudo-code for the main tabling operations in our DRA
implementation. We start with Fig. 5 showing the pseudo-code for the new an-

swer operation. The new answer() procedure simply inserts the given answer
AW in the answer structure for the given subgoal frame SF and, if the answer is
new, it updates the SgFr new answers field to TRUE. We then implement a local
scheduling strategy and always fail at the end.

new_answer(answer AW, subgoal frame SF) {
if (answer_check_insert(AW,SF) == TRUE)

SgFr_new_answers(SF) = TRUE // new answer
fail() // local scheduling

}

Fig. 5. Pseudo-code for the new answer operation

Figure 6 shows the pseudo-code for the tabled call operation. New calls to
tabled subgoals are inserted into the table space by allocating the necessary
data structures. This includes allocating and initializing a new subgoal frame
to represent the given subgoal call (this is the case where the state of SF is
ready). In such case, the tabled call operation then updates the state of SF to
evaluating; saves the current alternative in the SgFr current alt field; adds SF
to the current SCC and to the current branch; pushes a new generator choice
point onto the local stack; and proceeds by executing the next instruction.



tabled_call(subgoal call SC) {
SF = call_check_insert(SC) // SF is the subgoal frame for SC
if (SgFr_state(SF) == ready) {

SgFr_state(SF) = evaluating
SgFr_current_alt(SF) = PC // PC is the program counter
SgFr_next_on_scc(SF) = TOP_SCC // add SF to current SCC
SgFr_next_on_branch(SF) = TOP_BRANCH // add SF to current branch
TOP_SCC = TOP_BRANCH = SF
store_generator_choice_point()
goto execute(next_instruction())

} else if (SgFr_state(SF) == loop_ready) {
SgFr_state(SF) = loop_evaluating
SgFr_current_alt(SF) = get_first_looping_alternative(SF)
SgFr_stop_alt(SF) = SgFr_current_alt(SF) // mark stop alternative
SgFr_next_on_scc(SF) = TOP_SCC // add SF to current SCC
TOP_SCC = SF
store_generator_choice_point()
goto execute(SgFr_current_alt(SF))

} else if (SgFr_state(SF) == evaluating ||
SgFr_state(SF) == loop_evaluating) {

mark_current_branch_as_a_looping_branch(SF)
store_consumer_choice_point()
goto consume_answers(SF)

} else if (SgFr_state(SF) == complete)
goto completed_table_optimization(SF)

}

mark_current_branch_as_a_looping_branch(subgoal frame SF) {
subgoal frame aux_sf = TOP_BRANCH
while (aux_sf && SgFr_dfn(aux_sf) > SgFr_dfn(SF)) {

SgFr_is_leader(aux_sf) = FALSE
mark_current_alternative_as_a_looping_alternative(aux_sf)
aux_sf = SgFr_next_on_branch(aux_sf)

}
if (aux_sf)

mark_current_alternative_as_a_looping_alternative(aux_sf)
}

Fig. 6. Pseudo-code for the tabled call operation

On the other hand, if the subgoal call is a repeated call, then the subgoal
frame is already in the table space, and three different situations may occur. If
the call is completed (this is the case where the state of SF is complete), the
operation consumes the available answers by implementing the completed table

optimization which executes compiled code directly from the answer structure
associated with the completed call [13]. If the call is a first call in a new round
over the looping alternatives for the leader call (this is the case where the state
of SF is loop ready), the operation updates the state of SF to loop evaluating;
loads the first looping alternative and marks it as the stopping alternative; adds
SF to the current SCC; pushes a new generator choice point onto the local
stack; and proceeds by executing the first looping alternative. Otherwise, the
call is a consumer call (this is the case where the state of SF is evaluating or



loop evaluating). In such case, the operation marks the current branch as a
looping branch (in order to be able to re-execute that branch if new answers are
found for the current call); pushes a new consumer choice point onto the local
stack; and starts consuming the available answers. To mark the current branch
as a looping branch, we follow the subgoal frames in the TOP BRANCH chain up
to the frame for the call at hand2 and we mark the alternatives being evaluated
in each frame as looping alternatives. Moreover, as the call at hand defines a
new dependency for the current SCC, all intermediate subgoal frames in the
TOP BRANCH chain are also marked as non-leader calls.

Finally, we discuss in more detail how completion is detected in our DRA im-
plementation. It proceeds as follows. After exploring the last program clause for
a tabled call, from then on, every time we backtrack to a generator choice point
for the call, we execute the fix-point check operation as shown next in Fig. 7.
The fix-point check operation starts by checking if there are looping alternatives
for the subgoal frame SF corresponding to the tabled call at hand. If so, it then
checks if this is the first execution of the fix-point check operation for the call
(the call is in normal state) or not (the call is in looping state). For first execu-
tions (this is the case where the state of SF is evaluating), the operation moves
the call to looping state by updating the state of SF to loop evaluating; removes
SF from the current branch if the call is non-leader (this is the optimization that
we mentioned in the previous footnote); loads the first looping alternative and
marks it as the stopping alternative. For repeated executions (this is the case
where the state of SF is loop evaluating) it loads the next looping alternative3.

Next, if we haven’t reached the stop alternative, then the loaded looping
alternative is executed. However, before doing that, we implement the following
optimization. If the call at hand is a leader call with new answers found during
the execution of the last alternative, we start a new round over the looping
alternatives and mark the current alternative as the new stop alternative. Note
that this is done even when the previous stop alternative wasn’t still reached.
The idea is to minimize the number of alternatives that need to be tried by
starting new rounds as soon as possible. For example, consider that we have
three looping alternatives and that the second looping alternative was the last
in which we have found news answers. In such case, there is no point in trying
again the third alternative in a new round over the looping alternatives because
it is safe to only try the first and the second alternatives. When starting a new
round, we need to reset the calls in the current SCC to the loop ready state in
order to allow their re-execution as first calls when called later.

Finally, if there is no more looping alternatives to try, we have reached a par-
tial fix-point. If the call at hand is a leader call, then we can perform completion

2 As an optimization, when a call is a non-leader call and moves to the looping state, it
is removed from the TOP BRANCH chain because there is no point in keeping it there.
Thus, when this happens for the call at hand, we follow the subgoal frames in the
TOP BRANCH chain up to the first frame with a smaller SgFr dfn value.

3 The next alternative after the last one is the first alternative. Thus, in the cases
where there is only one looping alternative, the next alternative is always the first.



fix-point_check(subgoal frame SF){
if (SgFr_looping_alts(SF) != NULL) {

if (SgFr_state(SF) == evaluating) {
SgFr_state(SF) = loop_evaluating // move to looping state
if (SgFr_is_leader(SF) == FALSE)

TOP_BRANCH = SgFr_next_on_branch(SF) // remove SF from branch
SgFr_current_alt(SF) = get_first_looping_alternative(SF)
SgFr_stop_alt(SF) = SgFr_current_alt(SF) // mark stop alternative

} else // SgFr_state(SF) == loop_evaluating
SgFr_current_alt(SF) = get_next_looping_alternative(SF)

if (SgFr_is_leader(SF) && SgFr_new_answers(SF)) { // start new round
SgFr_new_answers(SF) = FALSE
SgFr_stop_alt(SF) = SgFr_current_alt(SF) // mark stop alternative
while (TOP_SCC != SF) { // reset calls in current SCC

SgFr_state(TOP_SCC) = loop_ready
TOP_SCC = SgFr_next_on_scc(TOP_SCC)

}
goto execute(SgFr_current_alt(SF))

}
if (SgFr_current_alt(SF) != SgFr_stop_alt(SF))
goto execute(SgFr_current_alt(SF))

}
if (SF == TOP_BRANCH)

TOP_BRANCH = SgFr_next_on_branch(SF) // remove SF from branch
if (SgFr_is_leader(SF)) {

while (TOP_SCC != SF) { // complete SCC
SgFr_state(TOP_SCC) = complete
TOP_SCC = SgFr_next_on_scc(TOP_SCC)

}
SgFr_state(SF) = complete
TOP_SCC = SgFr_next_on_scc(SF) // remove SF from SCC
goto completed_table_optimization(SF) // local scheduling

} else {
if (SgFr_new_answers(SF)) {
SgFr_new_answers(SF) = FALSE
SgFr_new_answers(TOP_BRANCH) = TRUE // propagate new answers info

}
goto consume_answers(SF) // local scheduling

}
}

Fig. 7. Pseudo-code for the fix-point check operation

and mark all the calls in the current SCC as complete. At the end, as we are
implementing a local scheduling strategy, we need to consume the set of answers
that have been found. As the call is already completed, we can execute the com-
pleted table optimization. On the other hand, if the call at hand is not a leader
call, we avoid re-executing the looping alternatives and, instead, we start acting
like a consumer node. Before start consuming the available answers, we check
if new answers were found during the traversal of the looping alternatives and,
if this is the case, we propagate the new answers info to the previous subgoal
frame on the TOP BRANCH chain. By doing this, we ensure that the new answers
info will be recursively propagated until reaching the leader call.



4 Experimental Results

To the best of our knowledge, YapTab is now the first tabling engine to support
simultaneously suspension-based tabling and linear tabling. We have thus the
conditions to make a first and fair comparison between both mechanisms. In
what follows, we present a set of experiments comparing our DRA implementa-
tion against the original YapTab suspension-based implementation, both sharing
the underlying execution environment of the Yap Prolog 6.0.0. To put the per-
formance of our DRA implementation in perspective, we also compare it against
the two most well-known tabling systems supporting suspension-based tabling
and linear tabling, respectively XSB (version 3.2) and B-Prolog (version 7.3#2).
The environment for our experiments was an Intel Core2 Quad CPU 2.83GHz
with 2 GBytes of main memory and running the Linux kernel 2.6.24-24.

We used six different versions of the well-known path/2 predicate, that com-
putes the transitive closure in a graph, combined with several different configu-
rations of edge/2 facts, for a total number of 54 programs. The six versions of
the path predicate include two right recursive, two left recursive and two double
recursive definitions. Each pair has one definition with the recursive clause first
and another with the recursive clause last. Regarding the edge facts, we used
three configurations: a pyramid, a cycle and a grid configuration (Fig. 8 shows
an example for each configuration). We experimented the pyramid and cycle
configurations with depths 500, 1000 and 1500 and the grid configuration with
depths 20, 30 and 40. We also experimented the left recursive definition of the
path/2 predicate with three different transition relation graphs usually used in
Model Checking (MC) applications: the i-protocol (IP), leader election (LE) and
sieve (SV) specifications4. All experiments find all the solutions for the problem.

Cycle (depth 3) Grid (depth 3)Pyramid (depth 3)

Fig. 8. Edge configurations for path definitions

Next, we show in Table 1 the running times ratios of YapTab, XSB and
B-Prolog over our DRA implementation (YapTab+DRA) for all these configu-
rations. YapTab+DRA, YapTab and XSB running times were all obtained using
a local scheduling strategy. B-Prolog running times were obtained using lazy

scheduling [12] (the local scheduling version of B-Prolog). The running times are
the average of three runs. The experiments marked with r.e. in Table 1 for XSB
mean that we got a run-time error.

4 We didn’t show results for the right and double recursive definitions because they
took more than 5 hours to execute in YapTab and thus we aborted their execution.



Table 1. Running time ratios of YapTab, XSB and B-Prolog over YapTab+DRA

Predicate
Pyramid Cycle Grid MC

500 1000 1500 500 1000 1500 20 30 40 IP LE SV

YapTab / YapTab+DRA
left first 0.67 0.67 0.73 0.61 0.68 0.72 0.60 0.52 0.58 0.55 0.56 0.53
left last 0.59 0.63 0.62 0.60 0.64 0.67 0.64 0.54 0.52 0.56 0.51 0.54
right first 0.99 0.99 1.03 0.70 0.59 0.69 0.25 0.16 0.12 – – –
right last 1.05 1.00 0.99 0.83 0.72 0.74 0.26 0.17 0.13 – – –
double first 0.51 0.49 0.53 0.59 0.58 0.58 0.57 0.56 0.59 – – –
double last 0.52 0.51 0.51 0.57 0.57 0.58 0.57 0.56 0.56 – – –

XSB / YapTab+DRA
left first 0.61 0.56 0.58 0.83 0.78 0.69 0.71 0.66 0.65 1.05 1.52 0.80
left last 0.64 0.58 0.62 0.79 0.68 0.79 0.81 0.66 0.63 1.05 1.50 0.69
right first 1.26 1.32 1.44 1.01 1.05 1.03 0.39 0.29 0.23 – – –
right last 1.23 1.36 1.34 1.06 1.01 0.98 0.41 0.30 0.24 – – –
double first 0.92 0.89 0.90 1.00 0.98 r.e. 1.02 1.01 r.e. – – –
double last 0.92 0.90 0.89 1.00 0.97 r.e. 1.01 0.99 r.e. – – –

B-Prolog / YapTab+DRA
left first 1.53 1.93 2.62 1.64 1.70 2.20 2.81 2.71 3.65 3.61 10.52 9.61
left last 1.56 1.65 2.27 1.56 1.74 1.98 3.47 2.33 3.39 3.61 10.18 9.43
right first 1.43 1.66 1.96 1.79 1.84 2.15 1.53 1.42 1.47 – – –
right last 1.40 1.55 1.76 1.76 1.89 2.12 1.58 1.44 1.44 – – –
double first 2.50 3.20 4.21 2.25 2.93 3.73 2.13 2.81 4.00 – – –
double last 2.49 3.31 4.28 2.22 2.80 3.63 2.10 2.77 3.86 – – –

Globally, the results obtained in Table 1 indicate that YapTab+DRA is com-
parable to the YapTab and XSB suspension-based implementations and that
YapTab+DRA clearly outperforms the B-Prolog linear tabling implementation.

In general, YapTab is around 1.5 to 2 times faster than YapTab+DRA in
most experiments, including the three model checking specifications. The excep-
tion seems to be the right recursive definitions where for the pyramid config-
urations the running times are quite similar (with YapTab+DRA being faster
in some cases) and for the grid experiments where YapTab is around 4 to 8
times faster than YapTab+DRA. The results also indicate that YapTab+DRA
scales well when we increase the complexity of the problem being tested. In gen-
eral, YapTab’s ratio over YapTab+DRA is almost the same when we compare
the pyramid configurations (depths 500, 1000 and 1500), the cycle configura-
tions (depths 500, 1000 and 1500) or the grid configurations (depths 20, 30 and
40) between themselves. Again, the exception are the right recursive definitions
with the grid configurations where YapTab’s ratio over YapTab+DRA decreases
proportionally to the complexity of the problem. Globally, best performance is
achieved by the left recursive definitions. This is an interesting result because
left recursion is the usual and more correct away to define tabled predicates.
Note also that the path definitions that we have used are a kind of worst-case

scenarios because most of the time they are exclusively doing tabled compu-



tations. If we have used more real-world applications, were the percentage of
standard Prolog computation is higher, the ratios presented in Table 1 will be
also proportionally higher.

The results for XSB are not so expressive as for YapTab and, in general,
the difference between XSB running times and YapTab+DRA is clearly smaller.
Globally, XSB achieves best performance for the right recursive definitions with
the grid configurations. For the double recursive definitions and for the right
recursive definitions with the cycle configurations the running times are quite
similar. Surprisingly, YapTab+DRA obtains better results than XSB for the right
recursive definitions with the pyramid configurations and for the left recursive
definitions with the model checking specifications.

Regarding B-Prolog, Table 1 shows that YapTab+DRA is always faster than
B-Prolog in these experiments and that, for almost all configurations, the ratio
over YapTab+DRA shows a generic tendency to increase as the complexity of the
problem also increases. In particular, for two of the model checking specifications,
B-Prolog shows the worst results, being around 10 times slower for the leader
election and the sieve specifications.

5 Conclusions

We have presented a new and very efficient implementation of linear tabling
that shares the underlying execution environment and most of the data struc-
tures used to implement suspension-based tabling in YapTab. To the best of our
knowledge, YapTab is now the first and single tabling engine to support simul-
taneously suspension-based tabling and linear tabling. Our linear tabling design
is based on dynamic reordering of alternatives but it innovates by considering a
strategy that schedules the re-evaluation of tabled calls in a similar manner to
the suspension-based strategies of YapTab.

The results obtained with our approach are very interesting and very promis-
ing. Our experiments confirmed the idea that, in general, suspension-based mech-
anisms obtain better results than linear tabling. However, the commonly referred
weakness of linear tabling of doing a huge number of redundant computations
for computing fix-points was not such a problem in our experiments. We thus
argue that an efficient implementation of linear tabling can be a good and first
alternative to incorporate tabling into a Prolog system without tabling support.

Further work will include exploring the impact of applying our proposal
to more complex problems, seeking real-world experimental results allowing us
to improve and consolidate our current implementation. Moreover, since linear
tabling does not require stack freezing or copying, it has a memory space advan-
tage over suspension-based approaches and thus it would be interesting to study
that memory impact in more detail. We also plan to expand our approach to
support different linear tabling proposals like the SLDT strategy [10], as orig-
inally implemented in B-Prolog, and to support other optimizations, such as,
remembering alternatives of non-tabled predicates at time of consumer calls to
avoid the re-computation of the useless alternatives of non-tabled predicates too.
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