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Abstract. Tabling is an implementation technique where answers from
subgoals are stored in a table space area in order to be reused later by
similar subgoals. Most tabling engines use call by variance to test subgoal
similarity by means of simple variable renaming. Call by subsumption is
a more sophisticated similarity test where subsumed subgoals can use an-
swers from subsuming subgoals, therefore increasing answer reuse and at-
taining better execution times in general. However, call by subsumption
is highly dependent on the call order of the subgoals. A recent strategy,
called Retroactive Call Subsumption (RCS), supports call by subsump-
tion by allowing full sharing of answers between subsumed/subsuming
subgoals, independently on the order in which they are called. For this
strategy, we propose a new table space design, the Single Time Stamped
Trie (STST), that makes answer sharing across subsumed/subsuming
subgoals simple and efficient. In this paper, we present the STST design
and how it fits within the RCS framework. In experimental results, we
observed some overheads in programs that stress the drawbacks of STST
when RCS is not applied, but its design’s simplicity outweighs these dis-
advantages when programs take advantage of RCS evaluation.
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1 Introduction

Tabling is an evaluation technique for Prolog systems that has several advantages
over traditional SLD resolution: reduction of the search space, elimination of
loops, and better termination properties [1]. In a nutshell, tabling works by
storing found answers in a memory area called the table space and then by reusing
those answers in similar calls that appear during the resolution process. First
calls to tabled subgoals are considered generators because they are evaluated as
usual and their answers are stored in the table space. Similar calls are named
consumers because, instead of executing program code, they are evaluated by
consuming the answers stored in the table space for the similar generator subgoal.
There are two main approaches to determine if two subgoals A and B are similar:

– Variant-based tabling (or tabling by call by variance): A and B are variants if
they are identical up to variable renaming. For example, p(X, 1, Y ) is a vari-
ant of p(W, 1, Z) because both can be made identical to p(V AR0, 1, V AR1);



– Subsumption-based tabling (or tabling by call by subsumption): A is consid-
ered similar to B if A is subsumed by B (or B subsumes A), i.e., if A is more
specific than B (or an instance of). For example, subgoal p(X, 1, f(a, b)) is
subsumed by subgoal p(Y, 1, Z) because there is a substitution {Y = X, Z =
f(a, b)} that makes p(X, 1, f(a, b)) an instance of p(Y, 1, Z). Tabling by call
by subsumption is based on the principle that if A is subsumed by B and SA

and SB are the respective answer sets, therefore SA ⊆ SB . Please notice that
when using some extra-logical features of Prolog, such as the var/1 predi-
cate, this assumption may not hold and thus call by subsumption should not
be used as it can produce wrong results.

Because subsumption-based tabling can detect a larger number of similar
subgoals, variant and subsumed subgoals, it allows greater answer reuse and
thus better space usage, since the answer sets for the subsumed subgoals are
not stored. Moreover, subsumption-based tabling has also the potential to be
more efficient than variant-based tabling because the search space tends to be
reduced as less code is executed [2]. Despite all these advantages, the more strict
semantics of subsumption-based tabling and the challenge of implementing it
efficiently makes variant-based tabling more popular among the available tabling
systems.

XSB Prolog was the first Prolog system providing support for subsumption-
based tabling by introducing a new data structure, the Dynamic Threaded Se-
quential Automata (DTSA) [3], that permits incremental retrieval of answers
for subsumed subgoals. However, the DTSA design had one major drawback,
namely, the need for two data structures for the same information. A more space
efficient design, called Time-Stamped Trie (TST) [2, 4], solved this by using only
one data structure. Despite the advantages of subsumption-based tabling, the
degree of answer reuse might depend heavily on the call order of the subgoals. To
take effective advantage of subsumption-based tabling in XSB, the more general
subgoals should be called before the specific ones. When this does not happen,
answer reuse does not occur and Prolog code is executed for both subgoals.

Recently, a new design called Retroactive Call Subsumption (RCS) [5], ex-
tended the original TST approach by also allowing sharing of answers when a
subsumed subgoal is called before a subsuming subgoal. This extension enables
answer reuse independently of the subgoal call order and therefore increases the
usefulness of subsumption-based tabling. In a nutshell, RCS works by selectively
pruning the evaluation of subsumed subgoals when a more general subgoal is
called and then by restarting the evaluation of the subsumed subgoal by turning
it into a consumer node of the more general subgoal. To implement RCS the
following components are needed: (i) new control mechanisms for retroactive-
based evaluation; (ii) an algorithm to efficiently retrieve subsumed subgoals of
a subgoal from the table space; and (iii) a new table space organization that fa-
cilitates the sharing of answers between subsuming/subsumed subgoals. In this
paper, we present a new table space design, named Single Time-Stamped Trie
(STST), to support the last requirement. We will focus our discussion on the
concrete implementation we have done on the YapTab tabling system [6].



The remainder of the paper is organized as follows. First, we briefly discuss
the background concepts behind tabling and the table space and we describe how
RCS works through an example. Next, we present the STST design and discuss
the main algorithms for answer insertion and retrieval and how the support
data structures are laid out. Then, we analyze the table space using several
benchmarks to stress some properties of the STST design. Finally, we end by
outlining some conclusions.

2 Tabling in YapTab

Tabling is an implementation technique that works by storing answers from first
subgoal calls into the table space so that they can be reused when a similar
subgoal appears. Within this model, the nodes in the search space are classified
as either: generator nodes, if they are being called for the first time; consumer
nodes, if they are similar calls; or interior nodes, if they are non-tabled subgoals.
In YapTab, we associate a data structure called subgoal frame for each generator
node and a data structure named dependency frame for each consumer node.
These two data structures are pushed into two different stacks that are used
during tabled evaluation.

2.1 Tabling Operations

In YapTab, programs using tabling are compiled to include tabling instructions
that enable the tabling engine to properly schedule and extend the SLD reso-
lution process. For both variant-based and subsumption-based tabling, we can
synthesize the tabling instruction set into four main operations:

Tabled Subgoal Call: this operation inspects the table space looking for a
subgoal S similar to the current subgoal C being called. For call by variance,
we check if a variant subgoal exists, and for call by subsumption, we check
for subsuming and variant subgoals. If a similar subgoal S is found, C will be
resolved using answer resolution and for that it allocates a consumer node
and starts consuming the set of available answers from S. If no such S exists,
C will be resolved using program clause resolution and for that it allocates
a generator node and adds a new empty entry to the table space.

New Answer: this operation checks whether a newly found answer A for a
generator node C is already in the table space. If A is a repeated answer,
the operation fails. Otherwise, A is stored as an answer for C.

Answer Resolution: this operation checks whether a consumer node C has
new answers available for consumption. For call by variance, we simply check
if new answers are available in the variant subgoal S, but for call by subsump-
tion, we must determine the new relevant answers for C that were stored
in the subsuming subgoal S. If no unconsumed answers are found, C sus-
pends and execution proceeds according to a specific strategy [7]. Consumers
must suspend because new answers may still be found by the corresponding
variant/subsuming subgoal S that is executing code.



Completion: this operation determines whether a subgoal S is completely eval-
uated. If this is not the case, this means that there are still consumers with
unconsumed answers and execution must then proceed on those nodes. Oth-
erwise, the operation marks S as completed since all answers were found.
Future variant or subsumed subgoal calls to S can then reuse the answers
from the table space without the need to suspend.

2.2 Table Space

Due to the nature of the previously described tabling operations, the table space
is one of the most important components in a tabling engine, since the lookup,
insertion and retrieval of subgoals and answers must be done efficiently. The most
successful data structure used to implement the table space is the trie [8], a tree-
like data structure where common prefixes are represented only once. Figure 1
shows an example of using tries to represent terms. In a tabling setting, tries
are used in two levels: the first level is composed of subgoal tries, where each trie
stores subgoal calls for the corresponding tabled predicate; in the second level,
we have answer tries, where each trie stores the answers for the corresponding
subgoal call.

p/2
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1

root

p(X,1) inserted

p/2

VAR0

1

q/1

a

root

q(a) inserted

1

p/2

VAR0
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a

root
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Fig. 1. Using tries to represent terms

In variant-based tabling, each tabled predicate has a table entry data struc-
ture that contains information about the predicate and a pointer to the subgoal
trie. A trie leaf node in the subgoal trie corresponds to a unique subgoal call and
points to a data structure called the subgoal frame. The subgoal frame contains
information about the subgoal, namely, the state of the subgoal and a pointer
to the corresponding answer trie. In subsumption-based tabling based on the
TST design, we have subsumptive subgoal frames, for subgoals that generate an-
swers, and subsumed subgoal frames, for subgoals that consume answers from
subsumptive subgoals [2].

Subsumptive subgoal frames are similar to variant subgoal frames, but they
point to a time-stamped answer trie instead, which is an answer trie where each



trie node is extended with timestamp information. Consider, for example, the
subgoal call p(VAR0,VAR1) and the time-stamped answer trie in Fig. 2. The trie
stores 2 answers, <f(x),1> inserted with timestamp 1 and <10,[]> inserted with
timestamp 2. The root node contains the predicate timestamp and is incremented
every time a new answer is inserted. Consider now that we insert the answer
<f(y),1> (see Fig. 3). For this, we increment the predicate timestamp to 3 and
then we set the timestamp of each node on the trie path of the new answer also
to 3. Notice that if we look at leaf nodes we are able to discern in which order
the answers were inserted, because each new answer is numbered incrementally.

f/1:1

x:1

1:1

10:2

[]:2

root:2

Fig. 2. A time-stamped answer trie

1:1

f/1:3

y:3

1:3

10:2

[]:2

root:3

x:1

Fig. 3. Inserting the answer <f(y),1>

Subsumed subgoal frames store a pointer to the corresponding subsumptive
subgoal frame (the more general subgoal) instead of pointing to their own answer
tries. The frames have a answer return list, a list of pointers to the relevant
answers in the subsumptive answer trie and a consumer timestamp used for
incremental retrieval of answers from the subsumptive answer trie. To consume
answers, a subsumed subgoal first traverses its answer return list checking for
more answers, and then executes a retrieval algorithm in the subsumptive answer
trie in order to collect the answers with newer timestamps, which are then added
to the answer return list. As an example, consider again the answer trie in Fig. 3
owned by subgoal p(VAR0,VAR1) and that we are interested in the incremental
retrieval of relevant answers for the consumer subgoal p(VAR0,1). For this, we
need to do a depth-first search on the answer trie using the consumer timestamp
as a filter to ignore already retrieved answers, as we are only interested in answers
that were added after the last retrieval operation. Assuming that the consumer
timestamp was 1 (meaning that the answer <f(x),1> was already retrieved in a
previous step), we would retrieve the answer <f(y),1> and add it to the answer
return list to be consumed next.

3 Retroactive Call Subsumption

RCS is an extension to subsumption-based evaluation that enables answer reuse
independently of the call order of the subgoals. While tabling by call by sub-



sumption only allows sharing of answers when a subsumed subgoal is called after
a subsuming subgoal, RCS works around this drawback by selectively pruning
the evaluation of subsumed subgoals and by turning them into consumers [5].

Let’s consider a subgoal R that is subsumed by a subgoal S. To do retroactive
evaluation, we must prune the evaluation of R, first by knowing which parts of
the execution stacks are involved in its computation and then by transforming
the choice point associated with R into a consumer node, in such a way that it
will consume answers from the subsuming subgoal S, instead of continuing the
execution as a generator. A vital part in this process is that we need to know
the set of answers Aold, that were already computed by R, so that, when we
transform R into a consumer we only consume the set of answers Anew, that will
be created by S. In other words, we must ensure that the final set of answers A
for R is A = Anew ∪Aold with Anew ∩Aold = ∅. If we do not obey this principle,
the evaluation will not be wrong, but several execution branches will be executed
more than once, thus eliminating the potential advantage of RCS evaluation.

In RCS, we consider two types of pruning of subgoals. The first type is
external pruning and occurs when S is an external subgoal to the evaluation of
R. The second one is internal pruning and occurs when S is an internal subgoal
to the evaluation of R. Both cases are very similar in terms of the challenges
and problems that arise when doing pruning. Here, we present an example of
external pruning that will be enough to present the challenges in designing a
good table space for RCS. Consider thus the query goal ‘?- r(1,X), r(Y,Z)’
and the following program.

:- use_retrosubsumptive_tabling r/2.
r(1,a).
r(Y,Z) :- ...

Execution starts by calling r(1,X), which creates a new generator to execute
the program code, and a first answer for r(1,X), <1,a>, is found. In the contin-
uation, r(Y,Z) is called, which will be a subsumptive subgoal for r(1,X). Thus,
r(1,X) needs to be pruned and turned into a consumer of r(Y,Z). To prune,
first we turn the node of r(1,X) into a retroactive node. Later, when backtrack-
ing to r(1,X), the retroactive node will be transformed into either a loader1 or
a consumer node according to if, in the meantime, r(Y,Z) has completed or not.
In both cases, we need to consume only the new answers relevant to r(1,X) from
r(Y,Z) in order to satisfy the constraint shown earlier: Anew ∩Aold = ∅, where
in this case Aold = <1,a>.

4 Single Time Stamped Trie

Once a pruned subgoal is reactivated and transformed into a loader or consumer
node, it is important to avoid consuming answers that were found as a generator.
1 A loader node works like a consumer node but without suspending the computation

after consuming the available answers, since the corresponding subgoal is completed.



In order to efficiently identify such answers, we designed the Single Time Stamped
Trie (STST) table space.

In this new organization, each tabled predicate has two tries, the subgoal
trie, as usual, and the STST, a time-stamped answer trie common to all subgoal
calls for the predicate, while each subgoal frame has an answer return list that
references the matching answers from the STST. Figure 4 illustrates an example
of the new table space organization for a tabled predicate p/2 with the sub-
goals p(VAR0,1) and p(VAR0,VAR1) and the answers <f(x),1>, <10,[]> and
<f(y),1>. This new organization reduces memory usage, since an answer is rep-
resented only once, and permits easy sharing of answers between subgoals, as
the same answer can be referenced by multiple subgoal frames.

1:1

f/1:3

y:3

1:3

10:2

[]:2

root:3

x:1

STST for p/2

1

VAR0

VAR1

root

subgoal trie for p/2

subgoal
frame

ts:3

arl:1,2,3

subgoal
frame

ts:1

arl:1

Fig. 4. The new STST table space organization

For the subgoal frames, we have also extended them with a ts field that
stores the timestamp of the last generated or consumed answer. At any time,
the answers in the answer return list (field arl in Fig. 4) are thus the matching
answers from the STST that have a timestamp between 0 and ts. When a
subsumed subgoal is pruned, we know its timestamp and we can easily turn it
into a consumer, since now instead of inserting answers, the new consumer will
now consume them from the STST, like in the TST design, by incrementally
retrieving answers from it. Therefore, the cost of such transformation is very
low given that both generators and consumers use an answer return list and a
timestamp. If we had used the original TST design, the pruned subgoal would
have its own answer trie, call it T1, and we would need to, before consuming
answers, check if the answers on T1 have already appeared on the answer trie of
the subsuming subgoal, call it T2. Such a task is quite complex, since answers in
T1 are instances of the answers in T2.

Notice that in both variant-based and subsumption-based tabling, only the
substitutions for the variables in a subgoal call are stored in the answer tries [8].
For example, for the subgoal p(VAR0,1) and the answers <f(x),1> and <f(y),1>,



only the substitutions <f(x)> and <f(y)> are stored, since during consumption
of answers only the substitutions are used for unification. However, in the STST
design, we cannot do this, since any subgoal of p/2 can use the answers stored
in the answer trie, therefore we need to store all the subterms of each answer.

4.1 Inserting Answers

The insertion of answers in the STST works like the insertion of answers in
standard TSTs, but special care must be taken when updating the ts field on
the subgoal frames. When only one subgoal is adding answers to the STST, the
ts field can be incremented each time an answer is inserted. Repeated answers
are easily recognized by testing if the answer is new or not by using the ts field.
The problem arises when several subgoals are inserting answers, as it may be
difficult to determine when an answer is new or repeated for a certain subgoal.

Let’s consider two subgoals of the same predicate p, S1 and S2, and their
corresponding timestamps, T1 and T2. S1 has found and inserted the first 3
answers (T1 = 3) in the STST and S2 then started evaluating and inserted the
next 3 answers, answers 4, 5 and 6 (T2 = 6). Now, when execution backtracks to
S1, answer 5 is found and, while it is already on the trie, it must be considered
as a new answer for S1. By default, we could consider answer 5 as new, since
T1 is in the past (T1 < 5). But this can also lead to problems if next we update
T1 to either 6 (the predicate timestamp) or 5 (the timestamp for answer 5). For
example, if later, answer 4 is also found for S1, it will be considered as a repeated
answer during its insertion since now T1 > 4. Therefore, we need a more complex
mechanism to detect repeated subgoal answers.

In our approach, we use a pending answer index for each subgoal frame.
This index contains all the answers that are older than the current subgoal
frame timestamp field but that have not yet been found by the subgoal. It is
built whenever the timestamp of the answer being inserted is younger than the
subgoal frame timestamp, by collecting all the relevant answers in the STST with
a timestamp younger than the current subgoal frame timestamp. Later, when
an answer is found but is already on the trie, and therefore will have an older
timestamp than the subgoal frame timestamp, we must lookup on the pending
answer index to check if the answer is there. If so, we consider it a new answer
and remove it from the index; if not, we consider it a repeated answer.

The pending answer index is implemented as a single linked list, but can be
transformed into a hash table if the list reaches a certain threshold. In Fig. 5,
we present the code for the stst insert answer() procedure, which given an
answer and a subgoal frame, inserts the answer into the corresponding STST for
the subgoal frame. The pseudo-code is organized into four cases:

1. Answers are inserted in order by the same subgoal. This is the most common
situation.

2. The answer being inserted is the only answer in the STST that the current
subgoal has still not considered. It is trivially marked as a new answer.



3. The timestamp of the answer being inserted is older than the subgoal frame
timestamp. The pending answer index must be consulted.

4. The timestamp of the answer being inserted is younger than the subgoal
frame timestamp t. We must collect all the relevant answers in the STST
with a timestamp younger than t (calling collect relevant answers())
and add them to the pending answer index, except for the current answer.

stst_insert_answer(answer, sg_fr) {

table_entry = table_entry(sg_fr)

stst = answer_trie(table_entry)

old_ts = predicate_timestamp(stst)

leaf_node = answer_check_insert(answer, stst)

leaf_ts = timestamp(leaf_node)

new_ts = predicate_timestamp(stst)

if (new_ts == old_ts + 1 and ts(sg_fr) == old_ts)

// case 1: incremental answer by the same subgoal

ts(sg_fr) = new_ts

return leaf_node

else if (new_ts == old_ts == leaf_ts and ts(sg_fr) == new_ts - 1)

// case 2: only answer still not considered by the current subgoal

ts(sg_fr) == new_ts

return leaf_node

else if (leaf_ts <= ts(sg_fr))

// case 3: answer with a past timestamp, check pending answer index

if (is_in_pending_answer_index(leaf_node, sg_fr))

remove_from_pending_answer_index(leaf_node, sg_fr)

return leaf_node

else

return NULL

else

// case 4: answers were inserted by someone else

ans_tpl = answer_template(sg_fr)

pending_list = collect_relevant_answers(ts(sg_fr),ans_tpl,stst)

remove_from_list(leaf_node, pending_list)

add_to_pending_answer_index(pending_list, sg_fr)

ts(sg_fr) = new_ts

return leaf_node

}

Fig. 5. Pseudo-code for procedure stst insert answer()

Note that when a generator subgoal frame is transformed into a consumer
subgoal frame, we remove all the answers from the pending answer index and
we safely insert them on the answer return list. With this, all the consumer
mechanisms can be used as usual.



4.2 Reusing Answers

The STST approach also allows reusing answers when a new subgoal is called.
As an example, consider that two unrelated (no subsumption involved) subgoals
S1 and S2 are fully evaluated. If a subgoal S is then called, it is possible that
some of the answers on the STST match S even if S neither subsumes S1 nor
S2. Hence, instead of eagerly running the predicate clauses, we can start by
loading the matching answers already on the STST, which can be enough if,
for example, S is pruned by a cut. This is a similar approach to the incomplete
tabling technique for variant-based tabling [9].

While the reuse of answers has some advantages, it can also lead to redundant
computations. This happens when the evaluation of S generates more general
answers than the ones initially stored on the STST. For an example, consider the
retroactive tabled predicate p/2 with only one fact, p(X,a). If subgoal p(1,Y) is
first called, the answer represented as <1,a> is added to the STST for p/2 and
execution would succeed. If the subgoal p(X,Y) is then called, we would search
the STST for relevant answers and the first answer would be <1,a>. If we ask
for more answers, the system would return a new answer, <VAR0,a>, and add it
to the STST. On the other hand, if we called p(X,Y) with an empty STST, only
the answer <VAR0,a> would be returned.

4.3 Answer Templates

The answer template is a data structure that is built on the choice point stack
when a new subgoal, generator or consumer, is called. The contents of the an-
swer template are the terms from the subgoal call that must be accessed when
inserting a new answer, if a generator, or the terms from the subgoal call that
must be unified when consuming answers, if a consumer.

For variant-based tabling, the answer template is just the set of variables in
the subgoal call, since we only store variable substitutions on the answer trie.
For call by subsumption based on the TST design, where we use an answer trie
per subgoal, the answer template for each consumer subgoal is built according to
its generator subgoal. For example, if the subsumptive subgoal is p(1,f(X),Y)
and the subsumed subgoal is p(1,f([A,B]),a(C)), the answer template for the
subsumed subgoal will be <[A,B],a(C)>. With RCS, we need the full answer
template because the answers stored on the STST contain all the predicate
arguments, hence the unification of matching answers must be seen as unifying
against the most general subgoal. The answer template is thus built by simply
copying the full set of argument registers from the generator or consumer call.

4.4 Compiled Tries

Compiled tries are a well-known implementation mechanism in which we deco-
rate a trie with WAM instructions when a subgoal completes in such a way that,
instead of consuming answers one by one in a bottom-up fashion, we execute



the trie instructions in order to consume answers incrementally in a top-down
fashion, thus taking advantage of the nature of tries [8].

Our approach only compiles the STST when the most general subgoal is
completed. This avoids problems when a subgoal is executing compiled code
and another subgoal is inserting answers, leading to the loss of answers as hash
tables can be dynamically created and expanded. With this optimization, we
can throw away the subgoal trie and the subgoal frames when the most general
subgoal completes and the STST is compiled. Later, when a new subgoal call is
made, we just build the answer template by copying the argument registers and
then we execute the compiled trie, thus bypassing all the mechanisms of locating
the subgoal on the subgoal trie, leading to memory and speedup gains.

5 Experimental Results

As shown in Table 1, in previous experiments using the STST design for compar-
ing RCS with variant-based (V/RCS) and subsumption-based tabling (S/RCS),
we got good speedups when executing programs that take advantage of RCS [10].

Table 1. Average speedups ratios for programs taking advantage of RCS

Program V/RCS S/RCS

double first 1.07 1.09
double last 1.05 1.10
reach first 2.54 1.76
reach last 3.22 1.87

fib 1.95 2.02
flora 3.17 1.17
big 13.26 13.66

In this paper, we will focus in measuring the space and time impact of having
to store the complete answers on the STST, instead of storing only the variable
substitutions, since it is more expensive to insert/load terms to/from the STST.

The environment for our experiments was a PC with a 2.66 GHz Intel
Core(TM) 2 Quad CPU and 8 GBytes of memory running the Linux kernel
2.6.38 with Yap 6.03. For benchmarking, we used six different versions of the
well-known path/2 program, that computes the reachability between nodes in
a graph, with several dataset configurations: chain, cycle, grid, pyramid and
tree. We also consider two versions of the path/2 program: the Original ver-
sion; and the Transformed version, where the subgoals were transformed to
use functor terms in each argument. For example, the transformed version of
the left first (left recursion with the recursive clause first) path/2 program is:

path(f(X),f(Z)) :- path(f(X),f(Y)), edge(f(Y),f(Z)).
path(f(X),f(Z)) :- edge(f(X),f(Z)).



We experimented the six versions of the path/2 program with different graph
sizes for the datasets using two queries: path(X,Y), for the Original version, and
path(f(X),f(Y)), for the Transformed version. Note that in these benchmarks
we do not take advantage of RCS evaluation, i.e., more general subgoals are never
called after specific ones, since we are only interested in measuring the impact
of having a table space organization based on the STST design.

5.1 Execution Times

In Table 2, we present the execution times, in milliseconds, for RCS evalua-
tion (columns RCS) and the respective overheads for variant-based (columns
RCS/V) and subsumption-based tabling (columns RCS/S) for the Original
and Transformed versions. Each execution time is the average of 3 runs.

From these results, we can observe that, on total average for these set of
benchmarks, the Transformed path/2 program has an overhead of 25% and
37% when compared with variant-based and subsumption-based tabling, respec-
tively. The insertion of new answers into the table space and the consumption of
answers from the table space are the primary causes for these overheads, since
the STST stores all the arguments of an answer in the trie and not only the
answer substitutions. For the Original version, the average overhead is much
smaller and is mainly due to the new mechanisms to control RCS evaluation.

For Transformed, the programs with the worst overheads are double first
and double last, with 46% and 67% of overhead against subsumption-based
tabling. These programs also create the higher number of consumers, both vari-
ant consumers and subsumed consumers, than any other benchmark in these
experiments. The right first and right last only create subsumed consumers,
and they have an overhead of 37% and 15%, respectively. In the left first and
left last programs, only one variant consumer is allocated, however their per-
formance is very similar to the right programs.

We thus argue that the number of consumer nodes can greatly reduce the
applicability and performance of the STST design when the operation of loading
answers from the trie is more expensive. While this situation seems disadvanta-
geous, execution time can be reduced if a subsuming subgoal call appears (for
example, path(X,Y) in the Transformed version) where it is possible to reuse
the answers from the table before executing the predicate clauses.

5.2 Memory Usage

We executed the previous benchmarks and measured the number of answer trie
nodes stored for each program using the Transformed version. Table 3 presents
such numbers for RCS evaluation and the relative numbers for variant (column
V/RCS) and subsumption-based tabling (column S/RCS).

From these results we can observe that, on total average for this set of bench-
marks, the variant-based table design requires 1.89 times more memory space



Table 2. Execution times, in milliseconds, for RCS evaluation and the respective over-
heads for variant-based and subsumption-based tabling for the Original and Trans-
formed programs

Program/Dataset
Original Transformed

RCS RCS/V RCS/S RCS RCS/V RCS/S

left first

chain (2048) 1,368 1.13 1.09 1,540 1.04 1.19
cycle (4096) 17,614 1.14 1.10 22,452 1.42 1.43
grid (64) 23,529 1.31 1.19 25,923 1.28 1.01
pyramid (4096) 34,191 1.02 1.14 41,581 1.28 1.15
tree (32768) 204 1.22 1.30 327 1.34 1.20
Average 1.17 1.16 1.27 1.19

left last

chain (4096) 6,506 1.06 1.02 7,965 1.20 1.19
cycle (4096) 17,760 1.15 1.02 22,584 1.42 1.27
grid (64) 23,797 1.37 1.08 30,913 1.53 1.41
pyramid (2048) 6,363 1.20 1.04 7,910 1.38 1.37
tree (32768) 204 1.28 1.02 335 1.67 1.59
Average 1.21 1.04 1.44 1.37

right first

chain (4096) 3,893 0.56 0.95 5,899 0.74 1.43
cycle (4096) 9,686 0.66 1.02 8,467 0.57 1.10
grid (64) 21,495 0.97 1.08 26,734 1.06 1.36
pyramid (4096) 15,706 0.56 0.96 19,592 0.78 1.57
tree (32768) 285 0.99 1.22 355 1.24 1.39
Average 0.75 1.04 0.88 1.37

right last

chain (4096) 3,921 0.49 0.77 4,587 0.58 1.14
cycle (4096) 8,675 0.58 1.17 11,359 0.67 1.20
grid (64) 18,806 0.62 1.08 25,090 0.72 1.40
pyramid (4096) 16,214 0.58 0.98 19,905 0.63 1.19
tree (65536) 1,863 3.19 0.99 1,569 2.41 0.80
Average 1.09 1.00 1.00 1.15

double first

chain (512) 3,116 0.75 0.81 6,342 1.36 1.58
cycle (256) 2,277 0.86 1.09 3,488 0.99 1.74
grid (16) 2,333 0.90 1.08 3,879 1.12 1.17
pyramid (256) 1,667 0.95 1.09 4,309 1.86 1.61
tree (16384) 631 1.57 1.29 624 1.54 1.18
Average 1.01 1.07 1.37 1.46

double last

chain (512) 3,737 1.07 1.31 8,403 1.79 1.75
cycle (256) 2,376 0.83 1.14 3,471 0.98 1.74
grid (16) 2,328 0.90 1.08 5,205 1.53 2.09
pyramid (256) 1,697 0.73 1.13 4,273 1.90 1.60
tree (16384) 505 1.41 0.98 624 1.55 1.19
Average 0.99 1.13 1.55 1.67

Total Average 1.04 1.07 1.25 1.37

than the STST table space organization. In particular, for the double first pro-
gram, these differences are higher because in the variant design there are more
generator subgoal calls and thus more answer tries are created.



Table 3. Number of stored answer trie nodes for RCS evaluation and the relative num-
bers for variant-based and subsumption-based tabling for the Transformed programs

Program/Dataset
Transformed

#RCS V/RCS S/RCS

left first

chain (2048) 2,100,233 0.999 0.999
cycle (2048) 4,200,450 0.999 0.999
grid (64) 16,789,506 0.999 0.999
pyramid (1024) 1,576,457 0.998 0.998
tree (65536) 983,056 0.966 0.966
Average 0.992 0.992

right first

chain (4096) 8,398,847 1.997 0.999
cycle (4096) 16,789,506 1.999 0.999
grid (32) 1,051,650 1.996 0.998
pyramid (2048) 6,302,719 1.996 0.998
tree (32768) 491,520 1.766 0.900
Average 1.951 0.979

double first

chain (256) 26,387 2.483 0.874
cycle (256) 36,844 3.571 0.893
grid (16) 59,028 2.229 0.825
pyramid (256) 56,638 3.475 0.951
tree (16384) 213,008 1.884 0.961
Average 2.728 0.901

Total Average 1.890 0.957

When comparing RCS to the subsumption-based engine, the latter only
stores, on total average for this set of benchmarks, around 4% less trie nodes
than RCS evaluation, even if the f/1 functor terms need to be stored in the
STST. This is easily understandable because the first f/1 functor term is only
represented once, at the top of the STST, and then there is one second f/1 func-
tor for each node in the graph, therefore, the total number of functors stored in
the STST is insignificant when compared to the total number of terms stored
in the trie. Also note that, for the double first benchmarks, the datasets used
are small if compared to the datasets used for the other benchmarks, but the
space overhead is more significant (18% in the worst case). We thus argue that
the cost of the extra space needed to store terms in the STST is less significant
as more terms are stored in the tries.

6 Conclusions

We presented a new table space organization that is particularly well suited to
be used with Retroactive Call Subsumption. Our proposal uses ideas from the
original TST design and innovates by having only a single answer trie per predi-
cate, making it easier to share answers across subgoals for the same predicate. We
presented the challenges when using a single answer trie and how they have been
solved, for example, with the use of pending answer indices. Moreover, we think



that the new design should not be very difficult to port to other tabling engines,
since it uses the trie data structure extended with timestamp information.

Our previous experiments with RCS and the STST showed promising results
when used with programs that take advantages of the new mechanisms. In this
paper, we benchmarked and discussed the overhead in terms of time and space
when storing and loading complete answers, instead of using variable substitu-
tions, for programs that do not take advantage of RCS evaluation. Our results
show that, for some programs, the time overhead can be considerable, however,
in terms of space, the number of extra trie nodes appears to be relatively small.
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