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Abstract. Many or-parallel Prolog models exploiting implicit paral-
lelism have been proposed in the past. Arguably, one of the most success-
ful models is environment copying for shared memory architectures. With
the increasing availability and popularity of multicore architectures, it
makes sense to recover the body of knowledge there is in this area and
re-engineer prior computational models to evaluate their performance
on newer architectures. In this work, we focus on the implementation
of splitting strategies for or-parallel Prolog execution on multicores and,
for that, we develop a framework, on top of the YapOr system, that
integrates and supports five alternative splitting strategies. Our imple-
mentation shares the underlying execution environment and most of the
data structures used to implement or-parallelism in YapOr. In particular,
we took advantage of YapOr’s infrastructure for incremental copying and
scheduling support, which we used with minimal modifications. We thus
argue that all these common support features allow us to make a first
and fair comparison between these five alternative splitting strategies
and, therefore, better understand their advantages and weaknesses.

1 Introduction

Detecting parallelism is far from a simple task, specially in the presence of ir-
regular parallelism, but it is commonly left to programmers. Research effort has
been made towards making specialized run-time systems more capable of trans-
parently exploring available parallelism, thus freeing programmers from such
cumbersome details. Prolog programs naturally exhibit implicit parallelism and
are thus highly amenable for automatic exploitation.

One of the most noticeable sources of parallelism in Prolog programs is
called or-parallelism. Or-parallelism arises from the simultaneous evaluation of
a subgoal call against the clauses that match that call. When implementing or-
parallelism, a main difficulty is how to efficiently represent the multiple bindings
for the same variable produced by the parallel execution of alternative matching
clauses. One of the most successful models is environment copying [1, 2], that
has been efficiently used in the implementation of or-parallel Prolog systems on
shared memory architectures. Recent advances in computer architectures have
made our personal computers parallel with multiple cores sharing the main mem-
ory. Multicores and clusters of multicores are now the norm and, although, many



parallel Prolog systems have been developed in the past, evaluating their perfor-
mance or even the implementation of newer computational models specialized
for the multicores is still open to further research.

Another major difficulty in the implementation of any parallel system is to
design efficient scheduling strategies to assign computing tasks to workers waiting
for work. A parallel Prolog system is no exception as the parallelism that Prolog
programs exhibit is usually highly irregular. Achieving the necessary coopera-
tion, synchronization and concurrent access to shared data structures among
several workers during execution is a difficult task. For environment copying,
scheduling strategies based on bottommost dispatching of work have proved to
be more efficient than topmost strategies [3]. An important mechanism that suits
bottommost strategies best is incremental copying [1], an optimized copy mecha-
nism that avoids copying the whole stacks when sharing work. Stack splitting [4,
5] is an extension to the environment copying model that provides a simple, clean
and efficient method to accomplish work splitting among workers. It successfully
splits the computation task of one worker in two complementary sets, and was
thus first introduced aiming at distributed memory architectures [6, 7].

In this work, we focus on the implementation of splitting strategies for or-
parallel Prolog execution on multicore architectures and, for that, we present a
framework, on top of the YapOr system [2], that integrates and supports five al-
ternative splitting strategies. We used YapOr’s original splitting strategy [2] and
two splitting strategies from previous work [8], named vertical and half splitting,
that split work based on choice points, together with the new implementation
of two alternative stack splitting strategies, named horizontal [4] and diagonal
splitting [7], in which the split is based on the unexplored alternative matching
clauses. All implementations take full advantage of the state-of-the-art fast and
optimized Yap Prolog engine [9] and share the underlying execution environment
and most of the data structures used to implement or-parallelism in YapOr. In
particular, we took advantage of YapOr’s infrastructure for incremental copying
and scheduling support, which we used with minimal modifications. We thus
argue that all these common support features allow us to make a first and fair
comparison between these five alternative splitting strategies and, therefore, bet-
ter understand their advantages and weaknesses.

The remainder of the paper is organized as follows. First, we introduce some
background about environment copying, stack splitting and YapOr’s scheduler.
Next, we describe the five alternative splitting strategies and discuss their major
implementation issues in YapOr. We then present experimental results on a set
of well-known benchmarks and advance some conclusions and further work.

2 Environment Copying

In the environment copying model, each worker keeps a separate copy of its own
environment, thus enabling it to freely store assignments to shared variables
without conflicts. Every time a worker shares work with another worker, all
the execution stacks are copied to ensure that the requesting worker has the



same environment state down to the search tree node1 where the sharing occurs.
To reduce the overhead of stack copying, an optimized copy mechanism called
incremental copy [1] takes advantage of the fact that the requesting worker may
already have traversed one part of the path being shared. Therefore, it does not
need to copy the stacks referring to the whole path from root, but only the stacks
starting from the youngest node common to both workers.

As a result of environment copying, each worker can proceed with the ex-
ecution exactly as a sequential engine, with just minimal synchronization with
other workers. Synchronization is mostly needed when updating scheduling in-
formation and when accessing shared nodes in order to ensure that unexplored
alternatives are only exploited by one worker. Shared nodes are represented by
or-frames, a data structure that workers must access, with mutual exclusion,
to obtain the unexplored alternatives. All other data structures, such as the
environment, the heap, and the trail do not require synchronization.

3 Stack Splitting

Stack splitting was first introduced to target distributed memory architectures,
thus aiming to reduce the mutual exclusion requirements of environment copying
when accessing shared nodes of the search tree. It accomplishes this by defining
simple, clean and efficient work splitting strategies in which all available work
is statically divided in two complementary sets between the sharing workers. In
practice, stack splitting is a refined version of the environment copying model,
in which the synchronization requirement was removed by the preemptive split
of all unexplored alternatives at the moment of sharing. The splitting is such
that both workers will proceed, each executing its branch of the computation,
without any need for further synchronization when accessing shared nodes.

The original stack splitting proposal [4] introduces two strategies for divid-
ing work: vertical splitting, in which the available choice points are alternately
divided between the two sharing workers, and horizontal splitting, which alter-
nately divides the unexplored alternatives in each available choice point. Diago-
nal splitting [7] is a more elaborated strategy that achieves a precise partitioning
of the set of unexplored alternatives. It is a kind of mix between horizontal and
vertical splitting, where the set of all unexplored alternatives in the available
choice points is alternately divided between the two sharing workers. Another
splitting strategy [10], which we named half splitting, splits the available choice
points in two halves. Figure 1 illustrates the effect of these strategies in a work
sharing operation between a busy worker P and an idle worker Q.

Figure 1(a) shows the initial configuration with the idle worker Q requesting
work from a busy worker P with 7 unexplored alternatives in 4 choice points.
Figure 1(b) shows the effect of vertical splitting, in which P keeps its current
choice point and alternately divides with Q the remaining choice points up to
the root choice point. Figure 1(c) illustrates the effect of half splitting, where

1 At the engine level, a search tree node corresponds to a choice point in the stack.



(a) before sharing (b) vertical splitting (c) half splitting

(d) horizontal splitting (e) diagonal splitting
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Fig. 1. Alternative stack splitting strategies

the bottom half is for worker P and the half closest to the root is for worker
Q. Figure 1(d) details the effect of horizontal splitting, in which the unexplored
alternatives in each choice point are alternately split between both workers, with
workers P and Q owning the first unexplored alternative in the even and odd
choice points, respectively. Figure 1(e) describes the diagonal splitting strategy,
where the unexplored alternatives in all choice points are alternately split be-
tween both workers in such a way that, in the worst case, Q may stay with one
more alternative than P . For all strategies, the corresponding execution stacks
are first copied to Q, next both P and Q perform splitting, according to the
splitting strategy at hand, and then P and Q are set to continue execution.
As we will see, in some situations, there is no need for any copy at all, and a
backtracking action is enough to place the requesting worker ready for execution.

4 YapOr’s Scheduler and Original Splitting Strategy

We can divide the execution time of a worker in two modes: scheduling mode
and engine mode. A worker enters in scheduling mode whenever it runs out of



work and calls the scheduler to search for available work. As soon as it gets a
new piece of work, it enters in engine mode and runs like a sequential engine.

4.1 Work Scheduling

In YapOr, when a worker runs out of work, first the scheduler tries to select a
busy worker with excess of work load to share work. The work load is a mea-
sure of the amount of unexplored alternatives in private nodes. There are two
alternatives to search for busy workers in the search tree: search below or search
above the current node where the idle worker is positioned. Idle workers always
start to search below the current node, and only if they do not find any busy
worker there, they search above. The main advantage of selecting a busy worker
below instead of above is that the idle worker can request immediately the shar-
ing operation, because its current node is already common to the busy worker,
which avoids backtracking in the tree and undoing variable bindings.

When the scheduler does not find any busy worker with excess of work load, it
tries to move the idle worker to a better position in the search tree. By default,
the idle worker backtracks until it reaches a node where there is at least one
busy worker below. Another option is to backtrack until reaching the node that
contains all the busy workers below. The goal of these strategies is to distribute
the idle workers in such a way that the probability of finding, as soon as possible,
busy workers with excess of work below is substantially increased.

4.2 Work Sharing

Similarly to the Muse system[3], YapOr also follows a bottommost work sharing
strategy. Whenever an idle worker Q makes a work request to a busy worker P,
the work sharing operation is activated to share all private nodes of P with Q.
P accepts the work request only if its work load is above a given threshold value.
In YapOr, accomplishing this operation involves the following stages:

Sharing loop. This stage handles the sharing of P ’s private nodes. For each
private node, a new or-frame is allocated and the access to the unexplored
alternatives, previously done through the CP alt fields in the private choice
points, is moved to the OrFr alt fields in the new or-frames. All nodes have
now a corresponding or-frame, which are sequentially chained through the
fields OrFr next and OrFr nearest livenode. The OrFr nearest livenode

field is used to optimize the search for shared work. The membership field
OrFr members, which defines the set of workers that own or act upon a node,
is also initialized to indicate that P and Q are sharing the corresponding
choice points.

Membership update. Next, the old or-frames on P ’s branch are updated to
include the requesting worker Q in the membership field (frames starting
from P ’s current top or frame til Q ’s top or frame). In order to delimit
the shared region of the search tree, each worker maintains two important



variables, named top cp and top or frame, that point, respectively, to the
youngest shared choice point and to the youngest or-frame2.

Compute top or-frames. Finally, the new top or-frames in each worker are
set, and since all shared work is available to both workers, both get the same
top or frame. As we will see next, this is not the case for stack splitting, and
the top or frame variable of Q is set accordingly to the splitting strategy
being considered.

5 Supporting Alternative Splitting Strategies in YapOr

Extending YapOr to support different stack splitting strategies required some
modifications to the way unexplored alternatives are accessed. In more detail:

– With stack splitting, each worker has its own work chaining sequence. Hence,
the control and access to the unexplored alternatives returned to the CP alt

choice point fields and the OrFr alt and OrFr nearest livenode or-frame
fields were simply ignored.

– For the vertical and half splitting strategies, the OrFr nearest livenode

field was recovered as a way to implement the chaining sequence of choice
points. At work sharing, each worker adjusts its OrFr nearest livenode

fields so that two separate chains are built corresponding to the intended
split of the work.

– In order to reuse YapOr’s infrastructure for incremental copying and schedul-
ing support, the or-frames are still chained through the OrFr next fields and
still use the OrFr member fields for work scheduling.

Next, we detail the implementation of the vertical, half, horizontal and diag-
onal splitting strategies as well as the incremental copy technique.

5.1 Vertical Splitting

The vertical splitting strategy follows a pre-determined work splitting scheme in
which the chain of available choice points is alternately divided between the two
sharing workers. At the implementation level, we use the OrFr nearest livenode

field in order to generate two alternated chain sequences in the or-frames, and
thus divide the available work in two independent execution paths. Workers can
share the same or-frames but they have their own independent path without
caring for the or-frames not assigned to them. Figure 2 presents the pseudo-code
that implements the work sharing procedure for vertical splitting.

The work sharing procedure starts from P ’s youngest choice point (register
B) and traverses all P ’s private choice points to create a corresponding or-frame

2 Please note that the use of the naming top in these two variables can be confusing
since, due to historical reasons, it refers to the top of the choice-point stack (where
the root node is at the bottom) and not to the top of the search tree (where the root
node is at the top). Despite this naming, our discussion keeps following a search tree
approach with the root node always at the top.



next_fr = NULL
nearest_fr = NULL
current_cp = B // B points to the youngest choice point
while (current_cp != top_cp) // loop until the youngest shared choice point
current_fr = alloc_or_frame(current_cp)
add_member(P, OrFr_member(current_fr))
if (next_fr)
OrFr_next(next_fr) = current_fr
add_member(Q, OrFr_member(current_fr))

if (nearest_fr)
OrFr_nearest_livenode(nearest_fr) = current_fr

nearest_fr = next_fr
next_fr = current_fr
current_cp = CP_b(current_cp) // next choice point on stack

// connecting with the older or-frames
if (next_fr)
if (top_or_frame == root_frame)
OrFr_nearest_livenode(next_fr) = DEAD_END

else
OrFr_nearest_livenode(next_fr) = top_or_frame

OrFr_next(next_fr) = top_or_frame
if (nearest_fr)
if (top_or_frame == root_frame)
OrFr_nearest_livenode(nearest_fr) = DEAD_END

else
OrFr_nearest_livenode(nearest_fr) = top_or_frame

// continuing vertical splitting
if (next_fr = NULL)
current_fr = top_or_frame

nearest_fr = OrFr_nearest_livenode(current_fr)
while (nearest_fr != DEAD_END)
OrFr_nearest_livenode(current_fr) = OrFr_nearest_livenode(nearest_fr)
current_fr = nearest_fr
nearest_fr = OrFr_nearest_livenode(current_fr)

Fig. 2. Work sharing with vertical splitting

by calling the alloc or frame() procedure. In Fig. 2, the current fr, next fr

and nearest fr variables represent, respectively, the or-frame allocated in the
current step, the or-frame allocated in the previous step, which is used to link to
the current or-frame by the OrFr next field, and the or-frame allocated before
the next fr, which is used as a double spaced frame marker in order to initiate
the OrFr nearest livenode fields. For the youngest choice point, the or-frame
is initialized with just the owning worker P in the membership field. The other
or-frames are initialized with both workers P and Q.

Next, follows the connection with the older and already stored or-frames.
Here, consideration must be given to the condition of P ’s current top or frame.
If it is the root or-frame, the OrFr nearest livenode fields of the new or-frames
are assigned to a DEAD END value, which marks the ending point for unexplored
work. Otherwise, they are assigned to P ’s current top or frame.



Finally, we need to decide where to continue the vertical splitting algorithm
for the older shared nodes. If no private work was shared, which means that we
are only sharing work from the old shared nodes, the starting or-frame is P ’s
current top or frame. Otherwise, if some new or-frame was created, the starting
or-frame is the last created frame in the sharing loop stage, which was connected
to P ’s current top or frame in the previous step. Either way, this serves the
decision to elect the or-frame where the continuation of vertical splitting, guided
through the OrFr nearest livenode field, should continue. The procedure then
traverses the old shared frames until a DEAD END is reached and, at each frame,
lies a reconnection process of the OrFr nearest livenode field.

5.2 Half Splitting

The half splitting strategy partitions the chain of available choice points in
two consecutive and almost equally sized parts, which are chained through
the OrFr nearest livenode field of the corresponding or-frames. For that, the
choice points are numbered sequentially and independently per worker to allow
the calculation of the relative depth of the worker’s assigned choice points. In or-
der to support this numbering of nodes, a new split counter field, named CP sc,
was introduced in the choice point structure. Figure 3 presents the pseudo-code
that implements work sharing with horizontal splitting.

// updating the split counter
current_cp = B // B points to the youngest choice point
split_number = CP_sc(current_cp) / 2
while (CP_sc(current_cp) != split_number + 1)
CP_sc(current_cp) = CP_sc(current_cp) - split_number
current_cp = CP_b(current_cp) // next choice point on stack

CP_sc(current_cp) = 1 // middle choice point

// assign the remaining choice points to the requesting worker
middle_fr = CP_or_fr(current_cp)
if (middle_fr)
OrFr_nearest_livenode(middle_fr) = DEAD_END
current_fr = top_or_frame // top_or_frame points to the youngest or-frame
while (current_fr != middle_fr)
remove_member(Q, OrFr_member(current_fr))
current_fr = OrFr_next(current_fr)

else
// sharing loop stage

Fig. 3. Work sharing with half splitting

The work sharing procedure starts from P ’s youngest choice point and up-
dates the split counter on half of the choice points, in decreasing order, un-
til reaching the middle choice point in P ’s initial partition, which gets a split
counter value of 1. These are the half choice points that, after sharing, will be
still owned by P. The other half will be assigned to the requesting worker Q.



After updating the split counter, we can distinguish two different situations.
The first situation occurs when there are more old shared choice points than
private in P ’s branch, in which case the middle choice point is already assigned
with an or-frame. Thus, there is no need for the sharing loop stage, the middle
frame is assigned to a DEAD END, to mark the end of P ’s newly assigned work,
and the requesting worker Q is excluded from all or-frames from the top frame
til the middle frame. The second situation occurs when the middle choice point
is private, in which case the remaining choice points are updated to belong to
Q, which includes allocating and initializing the corresponding or-frames.

5.3 Horizontal Splitting

In the horizontal splitting strategy, the unexplored alternatives are alternately
divided in each choice point. For that, the choice points include an extra field,
named CP offset, that marks the offset of the next unexplored alternative be-
longing to the choice point. When allocating a private choice point, CP offset

is initialized with a value of 1, meaning that the next alternative to be taken has
a displacement of 1 in the list of unexplored alternatives. This is the usual and
expected behavior for private choice points.

When sharing work, we follow YapOr’s default splitting strategy where a new
or-frame is allocated for each private choice point in P and then all or-frames
are updated to include the requesting worker Q in the membership field. Next,
to implement the splitting process, we double the value of the CP offset field in
each shared choice point, meaning that the next alternative to be taken in the
choice point is displaced two positions relatively to the previous value. Finally,
we adjust the first alternative at each choice point for the workers P and Q.
Recall from Fig. 1 that P must own the first unexplored alternative in the even
choice points and Q the first unexplored alternative in the odd choice points.
Figure 4 shows the pseudo-code for this procedure.

// the sharing worker P starts the adjustment
if (sharing worker) adjust = TRUE else adjust = FALSE
current_cp = top_cp
while(current_cp != root_cp) // loop until the root choice point
alt = CP_alt(current_cp)
if (alt != NULL)
offset = CP_offset(current_cp)
CP_offset(current_cp) = offset * 2
if (adjust)
CP_alt(current_cp) = get_next_alternative(alt, offset)

current_cp = CP_b(current_cp) // next choice point on stack
adjust = !adjust

Fig. 4. Work sharing with horizontal splitting



5.4 Diagonal Splitting

Diagonal splitting is an alternative strategy that implements a better overall
distribution of unexplored alternatives between workers. Diagonal splitting is
based on the alternated division of all alternatives, regardless of the choice points
they belong to. This strategy also follows YapOr’s default splitting strategy and
uses the same offset multiplication approach as presented for horizontal splitting,
but takes into account the number of unexplored alternatives in a choice point
to decide how the partitioning will be done in the next choice point.

When a first choice point with an odd number of alternatives (say 2n + 1)
appears, the worker that must own the first alternative (say Q) is given n + 1
alternatives and the other (say P ) is given n. The workers then alternate and,
in the next choice point, P starts the partitioning. When more choice points
with an odd number of alternatives appear, the split process is repeated. At the
end, Q and P may have the same number of unexplored alternatives or, in the
worst case, Q may have one more alternative than P . The pseudo-code for this
procedure is shown next in Fig. 5.

// the sharing worker P starts the adjustment
if (sharing worker) adjust = TRUE else adjust = FALSE
current_cp = top_cp
while(current_cp != root_cp) // loop until the root choice point
alt = CP_alt(current_cp)
if (alt != NULL)
offset = CP_offset(current_cp)
CP_offset(current_cp) = offset * 2
if (adjust)
CP_alt(current_cp) = get_next_alternative(alt, offset)

n_alts = number_of_unexplored_alternatives(alt) / offset
if (n_alts mod 2 != 0) // workers alternate
adjust = !adjust

current_cp = CP_b(current_cp) // next choice point on stack

Fig. 5. Work sharing with diagonal splitting

5.5 Incremental Copy

In YapOr’s original implementation, the incremental copy process copies every-
thing in P ’s stacks that is missing in Q. With stack splitting, it only copies the
segments between Q ’s top cp before and after sharing for the global and local
stacks. For the trail stack, the copy is the same since this is necessary to correctly
implement the installation phase [2], where Q installs from P the bindings made
to variables belonging to the common segments not copied from P .

Figure 6 illustrates the stack segments to be copied with incremental copy.
For vertical splitting, if P has private work, Q’s new top cp is assigned with the
second choice point in P ’s choice point set (P[CP b(B)]). If there is no private



work, the new top cp is assigned with the choice point corresponding to the
or-frame pointed by P[OrFr nearest livenode(CP or fr(old top cp))]. For
half splitting, the new top cp is always assigned with the choice point denoted
by P[CP b(middle cp)]. For the horizontal and diagonal splitting, the assigning
ranges are similar to YapOr’s original implementation.

Q[CP_h(old_top_cp)]

P[CP_h(B)]

P[B]

Q[old_top_cp] = Q[B]

P[TR]
P[CP_tr(B)]

Q[CP_tr(old_top_cp)]

Q[CP_h(new_top_cp)]

Q[new_top_cp]

Q[CP_tr(new_top_cp)]

Global
stack

Local
stack

Trail
stack

P’s stacks

Fig. 6. Segments to copy with incremental copy

We next discuss the
situations where Q ’s new
top or frame, assigned
during sharing, is older
than Q ’s top or frame

before sharing. In such
case, Q does not copy
any segment from P
and only needs to move
up in the search tree
in order to be consis-
tent with the new as-
signed top or frame. In
this movement, we may
have to update the or-
frames corresponding to
the backtracked path by
removing Q from the
membership fields and
by executing a checking
phase. The checking phase is necessary to avoid incoherent values in the CP alt

fields in Q ’s choice points not copied from P. For half splitting, it also avoids
incoherent values in the split counter fields for Q ’s choice points not copied from
P. We can say that such incoherency can be caused by the independent work
sharing operations with different workers that make the common (not copied)
stack segments of P and Q, to be inconsistent in Q.

6 Experimental Results

In this section, we evaluate and compare the performance of the five splitting
strategies on a set of well-known benchmarks. The environment for our exper-
iments was a multicore machine with 4 AMD Six-Core Opteron TM 8425 HE
(2100 MHz) chips (24 cores in total) and 64 GB of DDR-2 667MHz RAM, run-
ning Linux (kernel 2.6.31.5-127 64 bits) with Yap Prolog 6.3.2. The machine was
running in multi-user mode, but no other users were using it. For the bench-
marks, we used the following set of programs:

cubes(N) a program that consists of stacking N colored cubes in a column in
such a way that no color appears twice in the same column for each side.

ham(N) a program for finding all the Hamiltonian cycles in a graph with N
nodes, with each node connected to 3 other nodes.



magic(N) a program to solve the Rubik’s magic cube problem in N steps.
maze(N) a program that solves a maze problem in N steps by moving an empty

square in a 4x4 grid.
nsort(N) a program for ordering a list of N elements using a naive algorithm

and starting with the list inverted.
queens(N) a program to solve the N-queens problem that analyzes the board

state at every step.
puzzle a program that solves a puzzle problem where the diagonals must add

up to the same amount.

All benchmarks find all the solutions for the given problem by simulating
an automatic failure whenever a new solution is found. Each benchmark was
executed 10 consecutive times and the results are the average of those executions.

We start by measuring the cost of the parallel strategies over the sequential
system. Table 1 presents the execution times, in seconds, for the set of benchmark
programs, when using the sequential version of Yap and the respective ratios
when using the several parallel models with one worker. In general, for all models,
YapOr overheads result from handling the work load register and from operations
that (i) verify whether the youngest node is shared or private, (ii) check for
sharing requests, and (iii) check for backtracking messages due to cut operations.

Table 1. Execution times, in seconds, for Yap’s sequential model and the respective
overhead ratios for YapOr running 1 worker with YapOr’s original splitting strategy
(OS), vertical splitting (VS), half splitting (1/2S), horizontal splitting (HS) and diagonal
splitting (DS).

Programs Yap
YapOr / Yap

OS VS 1/2S HS DS

cubes(7) 0.200 1.050 1.080 1.070 1.110 1.135

ham(26) 0.350 1.169 1.180 1.177 1.094 1.100

magic(6) 5.102 1.045 1.036 1.005 1.245 1.252

magic(7) 45.865 1.051 1.021 1.007 1.251 1.261

maze(10) 0.623 1.064 1.050 1.050 1.273 1.207

maze(12) 10.558 1.057 1.041 1.035 1.268 1.214

nsort(10) 2.775 1.124 1.155 1.096 1.074 1.072

nsort(12) 368.862 1.128 1.074 1.057 1.081 1.082

queens(11) 1.216 1.039 1.234 1.051 1.036 1.107

queens(13) 47.187 1.025 1.165 1.053 1.043 1.039

puzzle 0.153 1.157 1.235 1.144 1.176 1.157

Average 1.083 1.116 1.068 1.150 1.148

Results in Table 1 show that for these set of benchmarks, YapOr’s overhead
with each of the splitting strategies is small, between 6.8% and 15%. This is in-



Table 2. Speedups for YapOr running 16 and 24 workers with YapOr’s original splitting
strategy (OS), vertical splitting (VS), half splitting (1/2S), horizontal splitting (HS) and
diagonal splitting (DS) without the incremental copy technique.

Programs
16 Workers 24 Workers

OS VS 1/2S HS DS OS VS 1/2S HS DS

cubes(7) 6.45 4.65 0.61 5.26 5.12 6.66 3.92 0.46 4.76 4.54

ham(26) 6.14 4.86 2.34 4.11 5.14 6.36 4.79 2.07 3.97 5.14

magic(6) 14.33 14.25 8.35 11.67 11.70 20.40 19.77 7.76 16.51 16.35

magic(7) 14.97 15.51 12.18 12.29 12.31 22.24 22.96 16.17 18.39 18.43

maze(10) 9.58 10.74 4.82 7.78 7.98 11.32 11.98 4.20 9.16 8.41

maze(12) 14.44 15.06 11.55 12.50 12.56 21.03 21.81 14.89 17.80 17.68

nsort(10) 10.63 11.37 9.91 9.94 10.16 13.73 12.50 12.06 12.50 12.33

nsort(12) 14.37 14.71 14.72 14.43 14.52 21.16 21.47 21.62 20.93 20.78

queens(11) 12.66 7.84 1.68 11.05 11.15 16.21 8.94 1.60 13.07 12.93

queens(13) 15.66 14.05 4.10 15.08 15.16 22.14 20.54 4.12 22.20 22.42

puzzle 3.82 2.21 2.25 3.00 3.12 3.73 1.91 1.45 2.59 2.68

Average 11.19 10.48 6.59 9.74 9.90 15.00 13.69 7.85 12.90 12.88

line with the overheads observed previously for YapOr and some of the splitting
strategies [2, 11, 8].

Next, we assessed the performance of the or-parallel models, by running
YapOr with a varying number of workers, up to 24, although for simplicity here
we only show results for 16 and 24 workers. For fairness in the comparison of
all strategies, we use the sequential execution times as the base execution times,
instead of considering the base execution times with 1 worker for each strategy.
In this way, the speedups do reflect real gains from sequential execution times.
The results are shown in Tables 2 and 3 and the best speedup value among all
strategies, which corresponds to the fastest execution times, for each benchmark,
is marked with a gray background color.

From Table 2 we can observe the overall performance of all strategies without
resorting to incremental copy optimization. The results show reasonably good
speedups with exception for half splitting. With 24 workers, YapOr’s original
splitting shows the best performance, followed by vertical splitting and then
horizontal and diagonal splitting with minimal differences. For some benchmarks,
such as the cubes and queens benchmarks, half splitting does pretty badly.

Table 3 shows the overall performance for all strategies, but now using the
incremental copying optimization. The performance for all strategies improve
significantly for all benchmarks. Again, half splitting is the worst performing
strategy, on average, it performs about 14% less than the best performing strat-
egy with 24 workers. Another observation is that vertical, horizontal and di-
agonal splitting perform slightly close to the original YapOr. The best overall
performance with 16 and 24 workers is achieved with vertical splitting.



Table 3. Speedups for YapOr running 16 and 24 workers with YapOr’s original splitting
strategy (OS), vertical splitting (VS), half splitting (1/2S), horizontal splitting (HS) and
diagonal splitting (DS) with the incremental copy technique.

Programs
16 Workers 24 Workers

OS VS 1/2S HS DS OS VS 1/2S HS DS

cubes(7) 8.00 13.33 6.45 13.33 12.50 13.33 14.28 4.00 16.66 15.38

ham(26) 10.00 10.29 7.95 10.00 11.29 9.45 7.60 4.48 7.14 9.45

magic(6) 14.96 15.46 15.27 12.41 12.47 22.08 22.87 22.77 18.41 18.41

magic(7) 15.15 15.64 15.46 12.52 12.50 22.63 23.40 22.96 18.67 18.78

maze(10) 13.54 15.19 14.83 12.46 12.71 18.32 22.25 21.48 18.32 18.87

maze(12) 15.12 15.59 15.25 13.18 13.46 22.36 23.30 22.75 19.73 19.95

nsort(10) 14.15 14.60 14.60 14.15 14.08 20.25 20.70 21.34 19.96 20.40

nsort(12) 14.18 14.36 14.43 14.04 14.26 21.59 22.28 22.16 21.69 21.85

queens(11) 14.65 13.66 9.57 14.82 14.82 20.26 17.62 6.75 20.26 20.96

queens(13) 15.75 14.51 13.87 15.35 15.32 23.44 21.60 15.90 22.99 22.91

puzzle 9.00 10.20 11.76 11.76 11.76 9.56 10.20 15.30 10.92 12.75

Average 13.13 13.89 12.68 13.09 13.20 18.48 18.74 16.35 17.71 18.16

Instead of using the sequential execution times as the base reference, if one
uses the execution times with 1 worker for each strategy, then the average
speedups with incremental copying and 24 workers for the original, vertical,
horizontal and diagonal splitting were very close and above 20.

7 Conclusions and Further Work

We have presented the integration of five alternative splitting strategies on top
of the YapOr system for or-parallel Prolog execution on multicores. Our imple-
mentation shares the underlying execution environment and most of the data
structures used to implement or-parallelism in YapOr.

Experimental results, on a multicore machine with 24 cores, showed that
clearly incremental copying optimization pays off in improving real performance
in all strategies. The results for all strategies are reasonably good and the av-
erage speedups over all benchmarks is reasonably close, with exception for half
splitting that performs a little worse. However, these are preliminary results and
further detailed statistics are necessary to enable us to explain some apparently
inconsistent results. For example, half splitting performs badly with cubes and
queens benchmarks, both with incremental and without incremental copying,
but, on the other hand, it is the best performing on the nsort(10) and puzzle
benchmarks with incremental copying. To explain these results, we need not only
to gather low level statistics, during the execution, but also understand in which
manner the splitting strategy influences the scheduling of work. A postmortem
visualization of the search tree might also bring some insight in to this analysis.



Although stack splitting was initially proposed for distributed memory archi-
tectures, the results show that it is equally suitable for multicore architectures.
This is an interesting advantage of stack splitting since we could use it as the
basis for a hybrid execution model aiming at clusters of multicores. The idea is
to combine workers into teams. A team of workers might run on shared mem-
ory and use any splitting strategy to distribute work. Different teams might be
assigned to different cluster nodes and can distribute work using stack splitting.
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