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Abstract
Many or-parallel Prolog computational models exploiting implicit
parallelism have been proposed in the past. The Muse and YapOr
systems are arguably two of the most efficient systems exploiting
or-parallelism on shared memory architectures, both based on the
environment copying model. Stack splitting emerged as an alterna-
tive model specially geared to distributed memory architectures as
it basically splits the computation in such a way that no further, or
just minimal, synchronization is required.

With the new multicore architectures, it just makes sense to re-
cover the body of knowledge there is in this area and reengineer
prior computational models to evaluate their performance on newer
architectures. In this paper, we focus on the design and implemen-
tation of stack splitting in the YapOr system. Our aim is to take
advantage of its robustness to efficiently implement stack splitting
support using shared memory, and then be able to directly com-
pare the original YapOr with the YapOr using stack splitting. We
consider two splitting models, vertical splitting and half splitting,
and have adapted data structures, scheduling and incremental copy
procedures in YapOr to cope with the new models. Experimental
results, on a multicore machine with 24 cores, show that YapOr us-
ing stack splitting is, in general, comparable to the original YapOr,
obtaining in some cases better performance than with only environ-
ment copying.

Categories and Subject Descriptors D.1.6 [PROGRAMMING
TECHNIQUES]: Logic Programming

General Terms Design, Languages, Performance

Keywords Logic Programming, Or-Parallelism, Stack Splitting

1. Introduction
Prolog programs, whose semantics is based on First Order Logic,
naturally exhibit implicit parallelism. The advantage of implicit
parallelism is that one can develop specialized run-time systems
to transparently explore the available parallelism in programs, thus
freeing the programmers from the cumbersome task of explicitly
identifying it. One important source of parallelism arises from the
simultaneous evaluation of a Prolog goal against all the predicate
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clauses that match that goal. This form of parallelism is called or-
parallelism.

One basic problem with implementing or-parallelism is how
to represent, efficiently, the multiple bindings for the same vari-
able produced by the parallel execution of the alternative matching
clauses. Two of the most prominent binding models that have been
proposed, binding arrays [4] and environment copying [1, 6], have
been efficiently used in the implementation of or-parallel Prolog
systems on shared memory architectures.

Another main difficulty in the implementation of any parallel
system is to devise an efficient strategy to assign computing tasks
to idle workers waiting for work. A parallel Prolog system is no
exception as the parallelism that Prolog programs exhibit is usu-
ally highly irregular. Achieving the necessary cooperation, syn-
chronization and concurrent access to shared data structures among
several workers during their execution is a difficult task. The stack
splitting model [2, 5, 10] provides a simple, clean and efficient
method to accomplish work sharing among workers. It successfully
splits the computation task of one worker in two fully independent
tasks, and thus was first introduced aiming at distributed memory
architectures [7, 9].

Recent advances in parallel architectures have made our per-
sonal computers parallel with multiple cores sharing the main
memory. The multicores and clusters of multicores are now the
norm, and exploiting implicit parallelism in a transparent way is
a quite relevant research direction to take. Although many paral-
lel Prolog systems have been developed in the past [3], evaluating
their performance or even the implementation of newer computa-
tional models specialized for the multicores is still open to further
research.

In this paper, we focus on the design and implementation of
stack splitting in the YapOr system [6], a Prolog system that ex-
ploits or-parallelism based on the environment copying model. Our
approach is to benefit from prior research on the development of
YapOr and extend it to efficiently support stack splitting on multi-
core architectures. The work developed allowed us to make some
contributions, not only on the implementation of two stack splitting
models, the vertical splitting and half splitting models, but also on
the update and creation of new mechanisms, mainly related with
the incremental copy technique [1]. Experimental results on a mul-
ticore machine with 24 cores, show that YapOr with stack splitting
is, in general, comparable to the original YapOr based on environ-
ment copying, and, in some cases, even surpasses it.

The remainder of the paper is organized as follows. First, we
introduce the general concepts of environment copying and stack
splitting. Next, we describe the vertical and half splitting models
and discuss the major implementation issues in YapOr. We then
present experimental results using a set of benchmark programs



widely used to assess the performance of or-parallel Prolog sys-
tems. Finally, we advance some conclusions and further work.

2. The YapOr System
In or-parallelism, alternative branches of the search tree may be
executed in parallel and thus may result in conflicting bindings
for shared variables. The YapOr system addresses this problem by
implementing the environment copying model so that conflicting
bindings can be easily discerned.

2.1 Environment Copying
In the environment copying model, each worker1 keeps a separate
copy of its own environment, but in an identical address space, thus
enabling it to freely store assignments to shared variables without
conflicts. Every time a worker shares work with another worker,
all the execution stacks are copied to ensure that the requesting
worker has the same environment state down to the search tree
node2 where the sharing occurs. To reduce the overhead of stack
copying, an optimized copy mechanism, called incremental copy,
was devised [1]. It takes advantage of the fact that the requesting
worker may already have traversed a part of the path between
the root node and the youngest common node of both workers.
Therefore, it does not need to copy the stacks referring to the
whole path from root, but only the stacks starting from the youngest
common node of both workers.

As a result of the environment copying, each worker can pro-
ceed with the execution exactly as a sequential engine, with just
minimal synchronization with other workers. Synchronization is
mostly needed at work sharing operations to ensure that each un-
tried alternative is only explored once. Shared nodes are repre-
sented by or-frames, a data structure that workers must access to
obtain the untried alternatives, point in which mutual exclusion is
enforced. All other data structures, such as the environment, the
heap, and the trail do not require synchronization.

2.2 Work Sharing
Similarly to the Muse system [1], YapOr also uses a bottommost
scheduling strategy that has proved quite effective. Work sharing
takes place at deep choice points, and it has the effect of exposing
the whole private region of a worker when it shares work. This
seems to favor increased granularity of tasks, thus avoiding too
frequent requests.

Whenever an idle worker Q makes a request for work to a
busy worker P, the work sharing procedure is activated to share
all private nodes of P with Q. P accepts the work request only if its
private work load is above a given threshold value. Accomplishing
this operation involves the following stages:

Sharing loop. This stage handles the sharing of the private nodes
of P. For each private node, a new or-frame is allocated
and the access to the unexplored alternatives previously done
through the cp alt pointer in the private choice points, is
now done through the new or-frame which acts as an inter-
face for work retrieval. The access to the alternatives is made
through the or-frame field OrFr alt, and the private cp alt
pointers are updated to a getwork pseudo instruction. All
the private nodes have now a corresponding or-frame, which
are sequentially chained through the fields OrFr next and
OrFr nearest livenode. The OrFr nearest livenode field
is used to optimize the search for work in the shared region. The
membership field in each of the chained or-frames is also up-

1 A worker corresponds to a system process executing a Prolog engine.
2 A search tree node corresponds to a choice point in the stack.

dated to indicate that P and Q are sharing the corresponding
choice points.

Updating old or-frames. Next, the old or-frames on P’s branch
are updated to include the requesting worker Q in the member-
ship field in the frames starting from P’s current top or frame
til Q’s top or frame.

Updating top or-frames. Finally, the new top or-frames in each
worker are set, and since all shared work is available to both
workers, both get the same top or frame. As we will see next,
this is not the case for stack splitting, and the top or frame
variable of Q is set accordingly to the splitting model being
implemented.

3. Stack Splitting
Stack splitting is a model that was introduced to target distributed
memory architectures, thus aiming to reduce the mutual exclusion
requirements from both binding arrays and environment copying
models when accessing shared branches of the search tree. It ac-
complishes this, by defining a work sharing strategy in which all
available work is fully divided between the two sharing workers. In
practice, it is a refined version of the environment copying model
in which the synchronization requirement was removed by the pre-
emptive split of all untried alternatives among both workers at the
moment of sharing. The splitting is such that both workers will
proceed, each executing its branch of the computation, without any
need for further synchronization.

The original stack splitting approach [2] proposed two main
models for dividing the work among the sharing workers P and Q:
vertical splitting and horizontal splitting. Vertical splitting divides
the choice points alternately between the two sharing workers P
and Q. Horizontal splitting, on the other hand, alternately divides
the unexplored alternatives in each choice point between the two
workers P and Q.

In this paper, we will focus on the implementation of vertical
splitting in YapOr as well as in the implementation of another split-
ting model [10], which we named half splitting. Both models split
the choice points in two halves. This contrasts with the horizontal
and diagonal [7] models, in which the split is based on the unex-
plored alternatives.

Figure 1 illustrates the effect of the vertical and half splitting
models in a work sharing operation. The sharing starts, Figure 1(a),
with the request for work made by the idle worker Q to a busy
worker P. Figure 1(b) shows the effect of vertical splitting in which
P keeps its current choice point and alternately divides with Q all
remaining choice points up to the root choice point. Figure 1(c)
illustrates the effect of the half splitting model after a sharing
operation.The bottom half is for worker P and the half closest to
the root is for worker Q. After completing the division process, the
stacks are copied to Q and Q is set to begin its own execution.

4. Implementation
The implementation of stack splitting in the YapOr system requires
modifications on some data structures and procedures, namely:

• Work chaining of or-frames. With stack splitting, each worker
has its own work chaining sequence. We make use of the
OrFr nearest livenode field stored in the or-frames to do
this chaining. At work sharing, the sharing worker adjusts the
OrFr nearest livenode fields so that two separate chains
are built corresponding to the intended split of the work.

• Scheduling chaining of or-frames. In order to reuse the YapOr’s
general execution model, namely its scheduler, the or-frames
are still chained through the OrFr next fields.
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Figure 1. Vertical and half stack splitting models.
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• Membership mechanism. YapOr uses a bitmap in every or-
frame to define the set of workers that own or act upon the
corresponding choice point. With stack-splitting, although the
work is split and we could possibly avoid this membership
information, we still keep it as it allows the reuse of YapOr’s
scheduler to best position a worker that is requesting work, and
avoid to implement a new strategy.

Next we detail the implementation of vertical and half splitting
as well as the incremental copy mechanism.

4.1 Vertical Splitting
The vertical splitting strategy follows a pre-determined work split-
ting scheme in which the chain of shared choice points is alternately
divided between the two sharing workers. At the implementation
level, we use the OrFr nearest livenode field in order to gener-
ate two alternated chain sequences in the or-frames, and thus divide
the available work in two independent execution paths. Workers
can share the same or-frames but they have their own independent
path without caring for the or-frames not assigned to them. Figure 2
shows an example of work sharing with vertical splitting and Fig-
ure 3 presents the pseudo-code that implements the sharing stages
described previously.

next_fr = NULL
nearest_fr = NULL
current_cp = P[B] // P’s youngest choice point
while (current_cp != P[top_cp])

// P[top_cp] is P’s youngest shared choice point
current_fr = alloc_or_frame(current_cp)
init_lock_field(OrFr_lock(current_fr))
if (next_fr)

OrFr_next(next_fr) = current_fr
add_to_bitmap(P & Q, OrFr_member(current_fr))

else
add_to_bitmap(P, OrFr_member(current_fr))

if (nearest_fr)
OrFr_nearest_livenode(nearest_fr) = current_fr

nearest_fr = next_fr
next_fr = current_fr
// move to the next choice point on stack
current_cp = cp_b(current_cp)

// connecting with the older or-frames
// P[top_or_frame] is P’s youngest or-frame
if (next_fr)

if (P[top_or_frame] == ROOT_FRAME)
OrFr_nearest_livenode(next_fr) = DEAD_END

else
OrFr_nearest_livenode(next_fr) = P[top_or_frame]

OrFr_next(next_fr) = P[top_or_frame]
if (nearest_fr)

if (P[top_or_frame] == ROOT_FRAME)
OrFr_nearest_livenode(nearest_fr) = DEAD_END

else
OrFr_nearest_livenode(nearest_fr) = P[top_or_frame]

// continuing vertical splitting
if (next_fr = NULL)

current_fr = P[top_or_frame]
nearest_fr = OrFr_nearest_livenode(current_fr)
while (nearest_fr != DEAD_END)

OrFr_nearest_livenode(current_fr) =
OrFr_nearest_livenode(nearest_fr)

current_fr = nearest_fr
nearest_fr = OrFr_nearest_livenode(current_fr)

Figure 3. Work sharing procedure for vertical splitting.

As illustrated in Figure 2, the first noticeable difference from
the previous description is how the OrFr nearest livenode
field is now connected. Instead of sequentially connected, the
OrFr nearest livenode field is now double spaced connected
during the or-frame creation process.

Starting from P’s youngest choice point, the work sharing pro-
cedure starts by traversing all P’s private choice points and cre-
ates a corresponding or-frame by calling the alloc or frame()
procedure. In the pseudo-code, the current fr, next fr and
nearest fr variables represent, respectively, the or-frame al-
located in the current step, the or-frame allocated in the previ-
ous step, which is used to link to the current or-frame by the
OrFr next field, and the or-frame allocated before the next fr,
which is used as a double spaced frame marker in order to ini-
tiate the OrFr nearest livenode fields. To continue the loop,
the nearest fr is updated to the next fr, and the next fr is
updated to the current fr.

The sequentially created or-frames are connected through
the OrFr next fields. Thus, if there is a defined next fr, its
OrFr next field is made to point to the current fr. Moreover, If
nearest fr is defined, then its OrFr nearest livenode is also
assigned to the current fr. For the top choice point, the or-frame
is initialized with just the owning worker P in the membership
bitmap. The other or-frames are initialized with both workers P
and Q.

Next, follows the connection of the last newly allocated or-
frames with the older and already stored or-frame structure. Here,
consideration must be given to the condition of P[top or frame],
which points to P’s current top or-frame, being the root or-
frame or just an ordinary or-frame. If it is a root or-frame, the
OrFr nearest livenode fields of the auxiliary or-frames are as-
signed with the value DEAD END. If not, they are assigned to P’s
top or-frame. The DEAD END assignment marks the ending point
for unexplored work.

Finally, we need to decide where to continue the application
of the vertical splitting algorithm for the old shared nodes. If no
private work was shared, which means that we are only sharing
work from the old shared nodes, the starting or-frame is P’s current
top or-frame. Otherwise, if some new or-frame was created, the
starting or-frame is the last created frame in the sharing loop stage,
which was connected to P’s current top or-frame in the previous
step. Either way, this serves the decision to elect the or-frame
where the continuation of vertical splitting, guided through the
OrFr nearest livenode field, should continue.

The procedure then traverses the old shared frames until reach-
ing a DEAD END. At each frame lies a reconnection process of the
OrFr nearest livenode field. The OrFr nearest livenode of
the starting or-frame (current fr) is first saved to the nearest fr
variable. Then, while the nearest fr variable is not a DEAD END,
the nearest fr’s OrFr nearest livenode is assigned to the
current fr’s OrFr nearest livenode, and the process contin-
ues by moving the current fr to the nearest fr.

Upon completion of the sharing process, follows the stack copy-
ing phase. In some situations of stack splitting, there is no need for
any copy at all, and a backtracking action is enough to place the
requesting worker ready for execution.

4.2 Half Splitting
The half splitting model partitions the shared chain of choice
points in two consecutive and almost equally sized parts, which
are chained through the OrFr nearest livenode field of the cor-
responding or-frames. The choice points are numbered sequentially
and independently per worker to allow the calculation of the rel-
ative depth of the worker’s assigned choice points. In order to
support this numbering of nodes, a new field, named split counter,
was introduced in the choice point structure.

Figure 4 illustrates an example of work sharing with half split-
ting where the sharing worker P has six choice points in its path.
Three of these choice points are then assigned to the requesting
worker Q. P updates the split counter on its half of the choice points
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starting from P’s youngest choice point (P[B]), in decreasing or-
der, until the middle choice point in P’s initial partition, which gets
a split counter value of 1. Figure 5 shows the pseudo-code for this
procedure.

current_cp = P[B] // P’s youngest choice point
// cp_sc is the split counter field
split_number = cp_sc(current_cp) / 2
while (cp_sc(current_cp) != split_number + 1)

cp_sc(current_cp) = cp_sc(current_cp) - split_number
// move to the next choice point on stack
current_cp = cp_b(current_cp)

cp_sc(current_cp) = 1

Figure 5. Updating the split counter.

After updating the split counter, the current cp variable points
to the middle node. Here, we can distinguish two different situa-
tions. In the case where there are more old shared choice points
than private in P’s branch, the middle node is already assigned with
an or-frame. Thus, there is no need for the sharing loop stage, the
middle frame is assigned to a DEAD END, and the requesting worker
Q is excluded from all or-frames from the top frame til the mid-
dle frame. The DEAD END in the middle frame marks the end of
P’s newly assigned work. Figure 6 shows the pseudo-code for this
procedure.

The second situation occurs when the middle node is private in
which the sharing loop stage is performed. Starting from the middle
node, the remaining choice points are then updated to belong to
Q, which includes allocating and initializing the corresponding or-
frames (see Figure 4(b)).

Finally, the top frame of the sharing worker P is assigned to be
the middle frame and, the top frame of the requesting worker Q is
assigned to be the frame pointed by the middle frame’s OrFr next
field.

// current_cp is the middle node
middle_frame = cp_or_fr(current_cp)
if (middle_frame)

OrFr_nearest_livenode(middle_frame) = DEAD_END
// P[top_or_frame] is P’s youngest or-frame
current_frame = P[top_or_frame]
while (current_frame != middle_frame)

remove_from_bitmap(Q, OrFr_member(current_frame))
else

// sharing loop stage

Figure 6. Checking if the middle node is already shared.

4.3 Incremental Copy
We now introduce the practical aspects for implementing stack
splitting with support for the incremental copy technique.

4.3.1 Copy Ranges
In YapOr, the incremental copy process includes copying every-
thing in P’s stack segments that Q doesn’t have. With stack split-
ting, we only need to copy the interval between Q’s top before and
after sharing for the global and local stacks. For the trail stack, the
process is similar to YapOr’s implementation and the same interval
of the trail stack is copied. Figure 7 shows the stack segments to be
copied for our stack splitting implementation with the incremental
copy technique.

In YapOr, the copy ranges can be defined before starting the
work sharing procedure since P’s current state will be fully shared
with Q. For stack splitting, only some of the copy ranges can be
determined before starting the work sharing procedure, such as:

start_global = Q[old_top_cp->cp_h]
end_local = Q[old_top_cp]
start_trail = P[TR]
end_trail = Q[old_top_cp->cp_tr]
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The other two ranges:

end_global = Q[new_top_cp->cp_h]
start_local = Q[new_top_cp]

can only be determined after the new top cp is known.
For vertical splitting, if P has private work, the new top cp

is assigned with the second choice point in P’s choice point set
(P[B->cp b]). If there is no private work, the new top cp is as-
signed with the choice point corresponding to the or-frame pointed
by OrFr nearest livenode(P[old top cp->cp or fr]). For
half splitting, the new top cp is always assigned with the choice
point denoted by P[middle node->cp b].

Note that for the trail, it is mandatory to copy the interval
between P[TR] and P[B->cp tr] in order to implement a new
phase, named the dereference phase, necessary to correctly support
stack splitting with incremental copy, as explained next.

4.3.2 Dereference Phase
Following YapOr’s implementation, after copying the stack seg-
ments between the worker P and the worker Q, P continues its exe-
cution while Q starts the installation phase. Since the stack splitting
work sharing process does not fully copy the stack segments of P,
the installation phase of the variables in the trail may not be enough
to correctly setup Q’s stacks. A new phase, called dereference
phase, must come before the installation phase. This is necessary
in order to avoid the possibility of Q having incorrectly bounded
variables in the copied segments. This may happen when P has in-
stantiated variables belonging to the copied segments, i.e., in the
execution path between Q[new top cp] and Q[old top cp], that
where bound in the execution path not copied to Q, i.e., between
P[B] and Q[new top cp].

The dereference procedure traverses the trail from P[TR] to
Q[new top cp->cp tr] looking for references to variables in the
copied segments of the global and local stacks. If such a variable
is found then the variable is dereferenced and becomes a free

variable with no value assigned. Figure 8 illustrates a situation that
shows why the dereference phase is necessary to correctly setup
Q’s stacks.

Starting from Q’s assigned top choice point, CP4, notice how
some variables in Q’s global stack are not consistent with the com-
putational state corresponding to the CP4 choice point. One of
them is variable D which was a free variable before CP4 creation
and is bound with the value three in Q’s global stack after copy-
ing. This happens because D was instantiated by P only after CP4
creation. The reference to D in the trail after CP4 creation confirms
such behavior. Thus, after the copying phase, the dereferencing pro-
cedure operates in order to reset such incorrectly bound variables
in the copied stack segments.

4.3.3 Unbitmapping
We next discuss the situations where a requesting worker Q does
not need to copy any stack segments from the sharing worker P in
order to get new work. This may happen when the new top or-frame
of Q, assigned after the sharing procedure, is older than its previous
top or-frame (before sharing). In such situations, the requesting
worker Q only needs to move up in the search tree in order to be
consistent with the new assigned top or-frame.

In this movement, we may have to update the membership
information for the or-frames corresponding to the backtracked
path by removing Q from the bitmap field for such or-frames. We
named this procedure as unbitmapping. As we will see next, for
the half splitting model a split counter checking phase may also be
needed for the backtracked frames.

4.3.4 Split Counter Checking Phase
The split counter checking phase is necessary in order to avoid in-
coherent values in the split counter fields for the choice points, in
the requesting worker Q, not copied from P. We can say that such
incoherency can be caused by the independent work sharing oper-
ations with different workers that make the common (not copied)
stack segments of P and Q, namely the local stack’s choice points
split counter fields, to be inconsistent in Q. This checking phase is
only applied within the half splitting model and is performed by
the requesting worker Q after the work sharing and copying proce-
dures.

5. Experimental Results
We evaluated the performance of our two stack splitting models
with a set of well-known benchmarks widely used to evaluate or-
parallel Prolog systems, and we make a comparison between the
vertical splitting, half splitting and YapOr’s original implementa-
tion based on environment copying.

5.1 Environment
The parallel platform for our experiments, was a machine with
four AMD Six-Core Opteron TM 8425 HE (2100 MHz) chips
(24 cores in total) and 64 (4x16) GB of DDR-2 667MHz RAM,
running GNU/Linux (kernel 2.6.31.5-127 64 bits) with the Yap
Prolog 6.2.0. The machine was running in multi-user mode, but no
other users were using the machine. For the benchmarks, we used
the following set of Prolog programs:

• cubes7. A program that consists of stacking 7 colored cubes in
a column in such a way that no color appears twice in the same
column for each given side.

• ham. A program for finding all the Hamiltonian cycles in a
graph with 26 nodes, with each node connected to 3 other
nodes.

• magic. A program to solve the Rubik’s magic cube problem.
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• map. A program for solving the problem of coloring a map of
10 countries with five colors in such a way that all two adjacent
countries have different colors.

• nsortN. A program for ordering a list of N elements using a
naive algorithm and starting with the list inverted.

• puzzle. A program that solves a version of the sudoku problem
where the diagonals must add up to the same amount.

• puzzle4x4. A program that solves a maze problem in a 4x4 grid
by moving an empty square.

• queens13. A program to solve the 13-queens problem that
analyzes the board state at every step.

All the benchmarks find all the solutions for the given problem
by simulating an automatic failure whenever a new solution is
found. Each benchmark was executed twenty times and the results
presented are the average of those twenty executions. To measure
the execution time, we took advantage of YapOr’s timing support
and we used it in all models in the same way.

Next, we show the performance results for our stack splitting
implementations in the YapOr system. We start by measuring the
cost of the parallel model over the sequential system. Then, we
evaluate the behavior of the vertical splitting and the half splitting
implementations and compare with YapOr’s original implementa-
tion. For shaping a fair comparison among all implementations, in-
stead of considering the base execution times with 1 worker for
each model, we considered the base execution times of the sequen-
tial implementation. All models were compiled with the same con-
figuration parameters and using the same compiler.

5.2 Cost of the Parallel Models
Table 1 presents the execution times, in seconds, for the set of
benchmark programs, when using the sequential version of the
Yap system and the respective ratios, compared to Yap’s sequential
execution times, when using the several parallel models with one
worker. In general, for all models, YapOr overheads result from
handling the work load register and from testing operations that (i)
verify whether the youngest node is shared or private, (ii) check for

sharing requests, and (iii) check for backtracking messages due to
cut operations [6].

Table 1. Execution times, in seconds, for Yap’s sequential model
and the respective ratios, compared to Yap’s sequential execution
times, for YapOr’s implementation based on environment copying
(EC), on vertical splitting (VS) and on half splitting (HS), all
running with a single worker.

Programs Yap
YapOr / Yap

EC VS HS

cubes7 0.202 1.044 1.038 1.059
ham 0.321 1.198 1.197 1.098
magic 45.990 0.985 0.986 0.901
map 22.434 1.130 1.130 1.141
nsort10 2.567 1.140 1.149 1.040
nsort11 28.239 1.135 1.133 1.028
nsort12 339.406 1.126 1.129 1.003
puzzle 0.154 1.152 1.151 1.106
puzzle4x4 9.875 1.032 1.030 0.958
queens13 48.220 1.061 1.063 1.001
Average 1.100 1.101 1.033

By observing the results on Table 1, we can say that, for these
set of benchmarks, YapOr’s vertical and half splitting models have
on average, respectively, an overhead of 10.1% and 3.3% over
Yap’s sequential implementation. Notice also that YapOr’s original
implementation based on environment copying has, on average,
an overhead of 10.0%, which is similar to the overheads observed
previously [6, 8].

5.3 Parallel Execution
To assess the performance of the or-parallel models, we ran Ya-
pOr with a varying number of workers and we show the obtained
speedups. For the speedups we used the obtained execution times
and compared them against the execution times for the sequential
implementation, thus reflecting the general improvement starting



from the sequential execution times. By doing that, when an ob-
tained value is considered to be the best speedup value among all
models, it really corresponds to the fastest execution time.

Tables 2 to 4 show the obtained speedups for each model. Each
entry in these tables shows the speedups against the sequential
execution time and for the two stack splitting models (Tables 3
and 4), in parenthesis, it shows the same speedups but without
using the incremental copy technique. The best speedups among
all implementations are marked with a gray background color.

From Table 2 we can see how YapOr’s original implementation
based on environment copying compares with the new stack split-
ting models. Each gray background entry illustrates the cases where
environment copying is not surpassed by any stack splitting model,
while the remaining entries correspond to cases where the results
obtained with stack splitting is better.

In general, we can observe that stack splitting obtains better
results for the cases with a smaller number of workers and that
environment copying seems to perform better, on average, for the
cases with 16 and 24 workers. In any case, for the 10 programs in
analysis, environment copying only obtains better results in 4 and
5 programs for 16 and 24 workers, respectively.

Table 2. Speedups for YapOr’s original implementation based on
environment copying.

Programs
Workers

4 8 16 24

cubes7 3.27 5.66 7.62 7.43
ham 3.10 5.34 7.32 6.49
magic 4.05 8.08 16.08 23.95
map 3.58 7.11 13.92 20.32
nsort10 3.61 7.08 13.44 17.97
nsort11 3.71 7.37 14.63 21.63
nsort12 3.68 7.39 14.89 22.19
puzzle 2.96 4.68 5.94 5.03
puzzle4x4 3.90 7.77 15.32 22.44
queens13 3.76 7.50 14.93 22.22
Average 3.56 6.80 12.41 16.97

From Table 3, we can observe that the overall performance of
vertical splitting is quite close to the performance of the original
YapOr. By analyzing the speedups, it is also clear the improvement
obtained with the incremental copy technique. On terms of average,
the difference is noticeable in all worker cases. For example, for 4,
8, 16 and 24 workers, the speedup gain is 0.24 (from 3.31 without
incremental copy to 3.55 with incremental copy), 0.77 (from 5.97
to 6.74), 1.65 (from 10.49 to 12.14) and 2.18 (from 14.26 to 16.44),
respectively, which shows a clear positive tendency as the number
of workers increases.

The only exception seems to be the nsort12 program. Note that,
for the nsort11 program, the speedup gain already shows a huge re-
duction (from 19.93 without incremental copy to 21.16 with incre-
mental copy for 24 workers), when compared with nsort10, where
the speedup gain is clear (from 10.41 to 17.56 for 24 workers). We
believe that this behavior is related to the balance between the over-
head of copying unneeded stack segments, as happens without in-
cremental copy, against the overhead of executing the dereference
and installation phases, as necessary with incremental copy. In this
particular case, it seems that the percentage of saving for using in-
cremental copy and thus not copy the full set of stacks, starts to
be considerable for the nsort10 program, but then as we increment
the size of the program, this percentage becomes less significant for
the nsort11 program and for the nsort12 it seems to be irrelevant,
making the overhead of executing the dereference and installation
phases a potential cost.

Table 3. Speedups for YapOr’s vertical splitting implementation
with and without (in parenthesis) the incremental copy technique.

Programs
Workers

4 8 16 24

cubes7 3.33 (2.63) 5.52 (3.34) 6.98 (3.00) 6.05 (2.41)
ham 3.11 (2.39) 5.36 (3.21) 7.00 (3.29) 5.00 (2.94)
magic 4.04 (4.04) 8.07 (8.00) 16.04 (15.80) 23.79 (23.11)
map 3.59 (3.58) 7.13 (7.05) 13.96 (13.59) 20.36 (19.52)
nsort10 3.58 (3.52) 7.00 (6.52) 13.17 (9.81) 17.56 (10.41)
nsort11 3.66 (3.71) 7.26 (7.32) 14.33 (14.09) 21.16 (19.93)
nsort12 3.63 (3.69) 7.27 (7.39) 14.60 (14.85) 21.77 (22.05)
puzzle 2.93 (1.96) 4.52 (1.88) 5.23 (1.58) 4.27 (1.21)
puzzle4x4 3.90 (3.88) 7.76 (7.63) 15.32 (14.62) 22.46 (20.42)
queens13 3.75 (3.73) 7.46 (7.36) 14.77 (14.23) 21.93 (20.54)
Average 3.55 (3.31) 6.74 (5.97) 12.14 (10.49) 16.44 (14.26)

Finally, the speedups in Table 4 show that the improvements
obtained with the incremental copy technique in the half splitting
implementation are clear. On terms of average, the difference is
overwhelming in all worker cases. For example, for 4, 8, 16 and 24
workers, the speedup gain is 0.94 (from 2.69 without incremental
copy to 3.63 with incremental copy), 2.14 (from 4.54 to 6.68), 4.13
(from 7.20 to 11.33) and 6.11 (from 8.83 to 14.94), respectively,
which shows again a clear positive tendency as the number of work-
ers increases. We believe that these good results with incremental
copy are also related to the percentage of saving achieved for not
copying the full set of stacks. This advantage is more clear in the
case of halt splitting since, by splitting the search tree in two halves
and by sharing the older half, it reduces the stacks segments to be
shared and thus to be copied, which augments the potential percent-
age of common stack segments that do not need to be copied.

Comparing to vertical splitting, on average, the overall perfor-
mance of half splitting with incremental copy is not so close to the
performance of the original YapOr with environment copying. For
example, the average speedups for environment copying, vertical
and half splitting are, respectively, 12.41, 12.14 and 11.33 for 16
workers and 16.97, 16.44 and 14.94 for 24 workers.

On the other hand, for the 10 programs in analysis, we can
observe that half splitting with incremental copy obtains the best
speedup results in 7, 6, 5 and 4 programs for 4, 8, 16 and 24 work-
ers, respectively. Considering all combinations of programs and
workers, half splitting obtains the highest number of best results
among all implementations and owns the best average for the case
of 2 workers.

Table 4. Speedups for YapOr’s half splitting implementation with
and without (in parenthesis) the incremental copy technique.

Programs
Workers

4 8 16 24

cubes7 3.03 (0.71) 4.67 (0.77) 5.18 (0.59) 3.65 (0.41)
ham 3.22 (1.52) 5.22 (1.85) 5.56 (1.90) 4.05 (1.63)
magic 4.44 (4.15) 8.80 (7.64) 17.44 (13.34) 25.86 (16.45)
map 3.35 (1.72) 5.36 (2.49) 5.89 (2.58) 4.86 (2.29)
nsort10 3.68 (3.27) 7.34 (5.76) 13.49 (8.45) 17.91 (8.95)
nsort11 3.78 (3.69) 7.58 (7.19) 14.90 (13.17) 22.06 (18.54)
nsort12 3.79 (3.76) 7.58 (7.47) 15.36 (14.68) 22.76 (21.18)
puzzle 2.96 (1.62) 4.48 (1.77) 5.01 (1.58) 4.46 (1.27)
puzzle4x4 4.13 (3.83) 8.08 (6.82) 15.60 (11.42) 22.93 (13.59)
queens13 3.91 (2.66) 7.69 (3.68) 14.82 (4.24) 20.90 (3.97)
Average 3.63 (2.69) 6.68 (4.54) 11.33 (7.20) 14.94 (8.83)



6. Conclusions and Further Work
We presented the design and implementation of two work shar-
ing stack splitting models, namely vertical splitting and half split-
ting, in the YapOr system. The implementation of stack splitting
required modifications and extensions to existing data structures,
creation of new mechanisms, particularly in connection to the shar-
ing work procedure and to the incremental copy technique.

Experimental results showed that YapOr with stack splitting is,
in general, comparable to the original YapOr based on environment
copying, obtaining in some cases better performance than with only
environment copying. The overall performance of vertical stack
splitting showed to be quite close to the performance of the original
YapOr and, for the set of benchmarks used, the half splitting model
performed better in 4 of 10 programs. The results attained allow
us to also conclude that both stack splitting models clearly benefit
from incremental copy. Globally, the results are quite encouraging
as well given that in many benchmarks we achieved performances
that are above a speedup of 20 on 24 cores.

Although stack splitting was initially proposed for distributed
memory architectures, the results show that it is equally suitable
for shared memory architectures. This is a clear advantage of stack
splitting since we could use it as the basis for an hybrid execu-
tion model aiming at clusters of multicores. The idea is to combine
workers into teams. A team of workers should run on shared mem-
ory and workers inside a team can distribute work using environ-
ment copying or stack splitting. Different teams should be assigned
to different cluster nodes and share work performing stack splitting.

As further work, other models of stack splitting can be imple-
mented and embedded in the work sharing procedure already im-
plemented. Examples are the horizontal [2] and diagonal [7] stack
splitting models.
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