
TLP: page 1 of 30 C© Cambridge University Press 2011

doi:10.1017/S1471068411000512

1

The YAP Prolog system

VÍTOR SANTOS COSTA and RICARDO ROCHA

DCC & CRACS INESC-Porto LA, Faculty of Sciences, University of Porto

R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

(e-mail: {vsc,ricroc}@dcc.fc.up.pt)

LUÍS DAMAS

LIACC, Faculty of Sciences, University of Porto,

R. do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

(e-mail: luis@ncc.up.pt)

submitted 10 October 2009; revised 5 March 2010; accepted 6 February 2011

Abstract

Yet Another Prolog (YAP) is a Prolog system originally developed in the mid-eighties and

that has been under almost constant development since then. This paper presents the general

structure and design of the YAP system, focusing on three important contributions to the

Logic Programming community. First, it describes the main techniques used in YAP to

achieve an efficient Prolog engine. Second, most Logic Programming systems have a rather

limited indexing algorithm. YAP contributes to this area by providing a dynamic indexing

mechanism, or just-in-time indexer. Third, a important contribution of the YAP system has

been the integration of both or-parallelism and tabling in a single Logic Programming system.

KEYWORDS: Prolog, logic programming system

1 Introduction

Prolog is a widely used Logic Programming language. Applications include the

semantic web (Devitt et al. 2005), natural language analysis (Nugues 2006), bioinfor-

matics (Mungall 2009), machine learning (Page and Srinivasan 2003), and program

analysis (Benton and Fischer 2007), just to mention a few. In this paper, we discuss

the design of the Yet Another Prolog (YAP) system and discuss how this system tries

to address the challenges facing modern Prolog implementations. First, we present

the general structure and organization of the system, and then we focus on three

contributions of the system to the Logic Programming community: engine design, the

just in-time indexer (JITI), and parallel tabling. Regarding the first contribution, one

major concern in YAP has always been to maintain an efficient interpreted Prolog

engine. The first implementation of the YAP engine achieved good performance by

using an emulator coded in assembly language. Unfortunately, supporting a large

base of assembly code raised a number of difficult portability and maintenance

issues. Therefore, more recent versions of YAP use an emulator written in C. A

significant contribution of our work was to propose a number of techniques for

2 V. S. Costa et al.

Prolog emulation and show that these techniques can lead to significant increases in

the performance (Santos Costa 1999). Although our initial concern was execution

speed, memory usage is also a significant issue in several Prolog applications,

namely if the applications manipulate large databases. YAP implements a number

of techniques to reduce the total memory usage in this case (Santos Costa 2007).

Ideally, Logic Programming should be about specifying the logic of the program,

and then provide control. In practice, Logic Programming systems can often be very

vulnerable to seemingly irrelevant details such as argument order. Especially for

larger databases, swapping order of arguments may result in order of magnitude

speed improvements for some programs. As such databases become more common,

these problems become more important. YAP contributes to this area by providing a

dynamic indexing mechanism, or JITI (Santos Costa et al. 2007). The JITI alleviates

the questions of argument order, as it can make Prolog competitive in applications

that would otherwise require a database manager (Davis et al. 2005).

A third contribution of the YAP system has been the integration of both or-

parallelism and tabling in a single Logic Programming system. Inspired by previous

research on the Muse system (Ali and Karlsson 1990) and the XSB engine (Sagonas

and Swift 1998), YAP was the first engine to actually integrate these two very

different, and yet related, mechanisms into a single engine, OPTYAP (Rocha et al.

2005b). In our experience, the YAP tabling mechanisms are the most widely used

extension of YAP, and are a key focus for the future of our system. Parallelism

has been a less widely used feature of YAP, although our work in supporting

parallelism was most beneficial in implementing the YAP threads library. Recent

advances in computer architecture have rekindled interest in implicit parallelism in

YAP (Santos Costa et al. 2010).

The paper is organized as follows. In Section 2, we first give a brief overview

of the system history, adapted from (Santos Costa 2008). Next, in Section 3, we

present the general structure and discuss the main data structures in the YAP engine.

Section 4 presents the main contributions in the engine, and Section 5 discusses the

design of the compiler. The two are tightly integrated (Santos Costa 1999). Section 6

discusses the implementation of the JITI, and Section 7 presents OPTYAP. We

conclude by discussing some of the main issues in our work in Section 8, and

present conclusions in Section 9. Throughout the text, we assume that the reader

will have good familiarity with the general principles of Prolog implementation, and

namely with the Warren Abstract Machine (WAM) (Warren 1983).

2 A little bit of history

The history of Prolog and Logic Programming starts in the early seventies, with

the seminal works by Colmerauer, Roussel and Kowalski (Colmerauer 1993). The

original Marseille Prolog was promptly followed by quick progress in the design

of Logic Programming systems. One of the most exciting developments was David

H. D. Warren’s abstract interpreter, eventually called the WAM (Warren 1983),

which became the foundation of Quintus Prolog (Quintus 1986). The success of

Quintus Prolog motivated the development of several Prolog systems. YAP is one

The YAP prolog system 3

example, and was started by Luı́s Damas and colleagues in 1984 at the University

of Porto. Luı́s Damas had returned from the University of Edinburgh, where he

had completed his PhD on type systems (Damas and Milner 1982). He was also

interested in Logic Programming and, while at Edinburgh, had designed one of

the first Prolog interpreters, written in the IMP programming language for the

EMAS operating system, which would become the basis for the famous C-Prolog

interpreter (Pereira 1987). Together with Miguel Filgueiras, who also had experience

in Prolog implementation (Filgueiras 1984), they started work on the development

of a new WAM-based Prolog. The goal was to design a compact, very fast system

emulator, written in assembly. To do so, Luı́s Damas wrote the compiler in C and

an emulator in 68000 assembly code.

Arguably, one of the strengths of YAP derives from Luı́s Damas’ experience in

Edinburgh: internal object representation was well defined from the start and always

facilitated development. YAP included several improvements over the original WAM

design: it used a depth-first design to visit terms, and was one of the first Prologs

to do indexing on sub-terms (Santos Costa 1988). YAP also provided a very fast

development environment, due to its C-written compiler. The combination of fast

compilation and execution speed attracted a dedicated user community, mainly in

Artificial Intelligence (e.g., Moniz Pereira’s group supported the first YAP port to the

VAX architecture). A major user was the European Union Eurotra project (Arnold

et al. 1986) for which YAP developed sparse functors: one of the first attempts at

using named fields for structures in Prolog.

The second chapter in YAP’s history started on the mid-nineties. At this point in

time, YAP development had slowed down. One problem was that the system had

become very complex, mainly due to the need to support several instruction set

architectures in assembly (at the time: 68000, VAX, MIPS, SPARC, HP-RISC, Intel

x86). Unfortunately, a first attempt at using a C interpreter resulted in a much slower

system. On the other hand, the user community was not only alive but growing,

as Rui Camacho had taken YAP to the Turing Institute Machine Learning Group,

where it was eventually adopted by Inductive Logic Programming (ILP) systems

such as P-Progol, later Aleph (Srinivasan 2001), and IndLog (Camacho 1994).

Second, researchers such as Vı́tor Santos Costa and Fernando Silva had returned

to Porto and were interested in Parallel Logic Programming. While SICStus Prolog

would have been an ideal platform, it was a closed-source system. YAP therefore

became a vehicle of research first in parallelism (Rocha et al. 1999) and later in

tabling (Rocha et al. 2005b). A new, fast, and C-based emulator was written to

support this purpose (Santos Costa 1999) and brought YAP back to the list of the

fastest Prolog systems (Demoen and Nguyen 2000).

The interest in YAP grew during the late nineties, leading to the third chapter in

YAP’s story. As hardware scaled up and users had more data to process, limitations in

the YAP design become clear: Prolog programs perform well for small applications,

but often just crash or perform unbearably slowly as application size grows. Effort

has therefore been invested in rethinking the basics, step by step. The first step

was rewriting the garbage collector (Castro and Santos Costa 2001). But the main

4 V. S. Costa et al.

Engine

OPTYAP

YAPOR

YAPTAB

YAAM
Emulator

Compiler

Assembler

JITI

Clause Compiler

Internal
Database

Libraries

Prolog-Core Libraries

SWI Emulation

Top-Level

C-Core Libraries

C-Foreign Interface

Threads Library
User C

File

YAP Prolog

User Prolog
File

Fig. 1. The organization of the YAP Prolog system. At the heart of the system, we show

the YAAM emulator with the OPTYAP extensions. The engine is supported by a core set

of libraries written in C. These libraries can be user-extended through YAP’s native foreign

language interface and through SWI’s interface. The compiler and JITI mechanisms are

controlled by the engine and generate code to be stored in the internal database.

developments so far have been in indexing: it had become clear that the WAM’s

approach to indexing simply does not work for applications that need to manipulate

complex and large databases. Just-In-Time indexing (Santos Costa et al. 2007) tries

to address this problem.

3 System organization

Figure 1 presents a high-level view of the YAP Prolog system. The system is written

in C and Prolog. Interaction with the system always starts through the top-level

Prolog library. Eventually, the top level refers to the core C libraries. The main

functionality of the core C libraries includes starting the Prolog engine, calling the

Prolog clause compiler, and maintaining the Prolog internal database. The Prolog

sequential engine executes YAP’s YAAM instructions (Santos Costa 1999), and has

been extended to support tabling and or-parallelism (Rocha et al. 2005b). The engine

may also call the JITI (Santos Costa et al. 2007). Both the compiler and the JITI

rely on an assembler to generate the code that is stored in the internal database.

The C-core libraries further include the parser and several built-ins (not shown in

Fig. 1). An SWI-compatible threads library (Wielemaker 2003) provides the support

to thread creation and termination, and access to locking. The Foreign Language

Interface (FLI) library allows external C-code to use the YAP data structures. YAP

also provides an SWI FLI emulator that translates SWI-Prolog’s (Wielemaker 2010)

FLI to YAP FLI calls. SWI-Prolog packages such as chr (Schrijvers 2008), JPL,

SGML (Wielemaker 2010), and even the core SWI-Prolog Input/Output routines

(PLStream) have been adapted to use this layer.

3.1 The key data structures

Throughout, the YAP implementation uses abstract types to refer to objects with

similar properties, say, the type Term refers to all term objects. Each abstract type

The YAP prolog system 5

may have different concrete types (or subtypes), but a concrete type has a single

abstract type by default. For example, the abstract type Term has the concrete type

Appl (compound term), Pair (lists), or Int. In all cases, given a subtype T of some

abstract type A, the following three functions should be available:

• Given a concrete object of concrete type T, the AbsT routine returns an instance

of its abstract type A.

• Given an instance of the abstract type A, the RepT routine returns an object

with concrete type T.

• Given some arguments, the constructor MkTA constructs an object of concrete

type T and returns an instance of A.

For example, given a pointer to the stack, the function AbsAppl returns a Term

object; given an object of type Term, the function RepAppl returns a pointer to the

stack; and lastly, the function MkApplTerm receives a functor, an arity, and an

array of terms and returns an object of type Term. In order to achieve the efficiency,

most of these functions are implemented as inline C-functions.

3.2 The database

YAP includes two main data structures: the Engine Context and the Database.

The Engine Context maintains the abstract machine internal state, such as abstract

registers, stack pointers, and active exceptions. The Database data structure main-

tains the root pointers to the internal database, including the Atom Table and the

Predicate Table. The table is accessible from a root pointer so that the state of the

engine can be saved to and restored from a dump file.

In order to support parallelism and threads, YAP organizes the database as:

• The GLOBAL structure that is available to all workers; locks should protect

access to these data structures.

• An array of per-worker structures, where each one is called LOCAL. We define a

worker to be a scheduling unit that can run an YAAM engine, that is, a thread

or a parallel process. The engine abstract registers are accessible through the

worker’s LOCAL.

The structure of the database is presented in Figure 2. We assume the support

for two workers; hence, we require two LOCAL. Notice that each LOCAL structure

contains a copy of the YAAM registers. The main structure in the YAP database

is the Atom Table, containing objects of abstract type Atom. The abstract type Atom

has a single concrete type, AtomEntry. Thus, the Atom Table is implemented as a

hash table with linked lists of AtomEntry objects. Each AtomEntry contains

(1) NextOfAE: a pointer to the next atom in the linked list for this hash entry;

(2) PropsOfAE: a pointer to a linked list of atom properties; the atom’s string.

The Prop type abstracts the objects that we refer to by the atom’s name.

Example subtypes of Prop include the functors, modules, operators, global variables,

6 V. S. Costa et al.

LOCAL 1

WAM Registers

GLOBAL

Predicate
Table

Atom
Table

hello

port

NextOfAE
+

$live

PropsOfAE

OP
NextOfPE

FUNC

PropsOfAE

PRED

NextOfAE

NextOfAE

NextOfAE

LOCAL 2

WAM Registers

Fig. 2. Organization of the YAP database. Each worker has a local set of variables (including

abstract machine registers). All workers share a GLOBAL data structure that includes a hash-

based atom table. Atoms are stored in a linked list, and most of their properties, including

predicates with the atom as name, are stored in a linked list for each atom. Predicates are

often used, so there is a direct hash table for them.

blackboard entries, and predicates. All of them are available by looking up an atom

and following the linked list of Prop objects.

Figure 2 shows an atom table with four atoms: hello, +, port, and $live. Notice

that only + and $live have associated properties. In practice, most atoms do not

have properties.

Every concrete type of Prop implements two fields:

(1) NextOfPE allows organizing properties for the same atom as a linked list;

(2) KindOfPE gives the type of property.

Each property extends the abstract property in its own way. As an example,

functors add three extra fields: a back pointer to the atom, the functor’s arity, and

a list of properties.

This design is based on LISP implementations, and has been remarkably stable

throughout the history of the system. Main optimizations and extensions include:

(1) Recent versions of YAP support two atom tables: one groups all ISO-Latin-1

atoms, where each character code c is such that 0 < c < 255, and the other

stores atoms that need to be represented as wide strings. YAP implements two

tables in order to avoid an extra field per atom.

The YAP prolog system 7

(2) As discussed above, functors have their own Prop objects, namely, predicates

and internal database keys with that functor. This was implemented to improve

the performance of meta-calls.

(3) The case where we have predicates with the same functor but belonging to

different modules is addressed by a predicate hash table, which allows direct

access to a predicate from a functor module key.

In Figure 2, the atom + has two properties: one of the type op and another of

type functor. The atom $live has a property of type predicate.

Traditionally, YAP allocates memory as a single big chunk and then uses its

own memory allocator. This has two advantages: it avoids the overhead of going

through the standard C library, and simplifies state saving and restoring. The current

allocator is Doug Lea’s global memory allocator (Lea 1996).

YAP can also use the C-library malloc, as a configuration time option. This is

most useful in situations where YAP needs to share the memory with other systems

(e.g, the Java interface).

3.3 Dynamic data structures

Each worker (parallel process or thread) maintains four separate stacks and a set of

registers. The stacks are:

• Global Stack : implemented as an array of CELLs, it stores abstract objects of

type Term.
• Local Stack : implemented as an array of CELLs, it stores choice points and

environments.

• Trail : it stores objects of type TrailEntry.
• Auxiliary Stack (generalizes the WAM PDL Warren 83): a pointer to a reusable

area of memory used to store temporary data, such as the stacks used for

unification or other term matching operations.

Objects of type Term reside in the Global and Local Stacks, and are always

constructed from CELLs. YAP defines six concrete types:

(1) Small integers are constructed from a subset of type Int and occupy a single

cell, with up to 29 bits in 32 machines. Int is an integer-like type defined to take

the same space as CELL.
(2) Atoms occupy a single cell and are constructed from the objects of the abstract

type Atom.
(3) Applications, or compound terms, occupy N + 1 cells, where the first cell is

reserved for an object of abstract type Functor with arity N, and the remaining

N cells for objects of type Term.
(4) Pairs, occupy 2 cells, where the first cell is a Term called the Head, and the

second a Term called the Tail.

(5) References occupy 1 cell, and are pointers to objects of type Term. By default,

YAP represents free variables as self-references, but it can support free variables

as the NULL pointer.

8 V. S. Costa et al.

(6) Extensions occupy N +2 cells: the header, a variable number N of cells, and the

footer. The engine understands three extensions: floating point numbers, large

integers, and blobs, originally introduced to support very large integers.

3.4 Tagging scheme

Each different concrete type should have its own tag. Tag schemes differ significantly

between Prolog systems (Schimpf 1990; Tarau and Neumerkel 1994); we refer the

reader to (Morales et al. 2008) for a recent investigation of this issue. The YAP tag

scheme was designed to be efficient (Santos Costa 1999), and to allow using the

whole available memory in 32 bit machines. This allows at most 2 bits for tags.

Unfortunately, there are six different concrete types: this would require �log26� = 3

bits, but in order to access the full address space, we are constrained to the two

lower bits. The solution was:

• Atoms and small integers share the same tag. YAP allocates each atom as a

separate object, guaranteeing that the object is always allocated at an address

multiple of 8, so that the third lowest bit can be used to distinguish between

the two cases.

• Applications and extensions share the same tag. The header of an extension

is a small number. This number is guaranteed to be an invalid address in

modern systems, as these systems never allocate memory on the first virtual

memory page.

This scheme allows for taking advantage of all the available memory with a 32

bit CELL, but slows down access to compound terms. A second drawback is that

it requires explicit code for efficiency, making it hard to take advantage of 64 bit

machines. Notice that YAP does not need tag bits for garbage collection: instead,

we use a separate memory area to store the garbage collector state (Vandeginste and

Demoen 2007).

Blobs were initially introduced to support very large numbers. They enhance

YAP functionality without requiring extensive changes to the engine, and currently

provide the following functionality:

• BIG INT: very large integers, currently implemented through an interface to

the GMP package (Granlund 2004).

• BIG RATIONAL: rationals.

• STRING: sequences of character codes.

• EMPTY ARENA: a chunk of cells that can be used to construct global variables or

global data structures. This is used to support nb predicates and to implement

findall/3 and the nb library of global queues, global heaps, and global beams.

• ARRAY INT: a multidimensional array of (non-tagged) integer numbers. This

is manipulated by the package matrix .

• ARRAY FLOAT: a multidimensional array of (non-tagged) floating-point num-

bers. This is manipulated by the package matrix.
• CLAUSE LIST: a sequence of pointers to code. This allows for dynamic choice

points, and is used by the user-defined indexers (Vaz et al. 2009).

The YAP prolog system 9

4 The engine

YAP implements a version of David H. D. Warren’s WAM (Warren 1983). Other

Prolog systems using the WAM include SICStus Prolog (Carlsson and Widen 1988),

Ciao Prolog (Hermenegildo et al. 2008), XSB (Sagonas and Swift 1998), GNU

Prolog (Diaz and Codognet 2001), and ECLiPSe (Aggoun et al. 1995). The original

machine consisted of 33 instructions used to implement an environment-based term-

copying strategy. WAM instructions were divided into:

• Argument unification, or get and unify instructions;

• Argument building, or put instructions;

• Control: call, execute, proceed, allocate, and deallocate;
• Choice-point manipulation, or try instructions;

• Indexing, or switch instructions;

• Cut instructions.

The WAM instructions are very well suited to compilation: one compiles a term by

walking depth-first and left to right and associating each symbol with an operation.

Arguably, the WAM performs quite well and is very well understood. On the other

hand, most decisions on the WAM were taken a long time ago, and there has been

recent interest in other abstract machine architectures for Prolog (Zhou 2007).

YAP implements the YAAM emulator as a large C function. The C-code for each

instruction always starts with an Op macro and always terminates with an EndOp

macro. Since YAP-6, a Prolog program, buildops, understands these macros and

uses them to generate a file with all the YAAM opcodes, required by the assembler,

and a file with commands to restore a clause or to be executed when the atom

garbage collector needs to walk over YAAM instructions.

The emulator initializes by copying YAAM registers to local storage. Whether

this datum is in the call stack or in the registers depends on the Instruction Set

Architecture, Operating Systems, Compiler, and functionality being supported (San-

tos Costa 1999). YAP then starts executing YAAM instructions. Next, we discuss

the main differences between the YAAM (Santos Costa 1999) and the WAM.

4.1 Unification instructions

There are several interesting issues regarding unification instructions. A first problem

is whether we should globalise void variables occurring in the body of a clause.

Consider the following code fragment:

a(X) :- b(X,Y), c(X,Z).

The variable Y is a void variable, and can be compiled either as a put x var

instruction, or as a put y var. Compiling it as put x var requires placing the void

variable in the Global Stack: thus, space allocated to this variable can only be

recovered through backtracking, or through garbage collection. Compiling it as

put y var requires placing the variable in the Local Stack, and space can be recov-

ered as soon as we call c/2. We have experimented with both approaches, and rarely

noticed significant differences. YAP traditionally follows the first approach, mostly

10 V. S. Costa et al.

in order to simplify compilation. Notice that systems such as BIM-Prolog (Mariën

1993), Aquarius (Van Roy 1990), or hProlog (Demoen and Nguyen 2000) address

this problem simply by globalizing all free variables..

A second problem is how to support nested unification (Mariën and Demoen

1991). Consider the clause

a([X,f(Y,X),Y]).

The WAM compiles the term breadth-first, obtaining:

a([X|Z]) :- Z = [A121|A122], A121 = f(Y,X), A122 = [Y].

Notice that the WAM approach requires extra temporary variables. SICStus Prolog

optimises the specific case of lists through the unify list instruction that follows

a list depth-first (Carlsson 1990).

YAP implements a more general solution to this problem, first published by

Meier (Meier 1990). Sub-terms are always compiled depth-first to unify instruc-

tions. Thus, YAP will generate the following code in this case:

get_list A1 pop 1

unify_var X1 unify_last_list

unify_last_list unify_val X2

unify_struct f/2 unify_last_atom []

unify_var X2 proceed

unify_last_val X1

The code assumes an unification stack, initialized by the get list and get struct

instructions. Each unify list or unify struct instruction pushes the current state

into the stack. The pop instruction pops this state if necessary.

This algorithm is straightforward to implement; it does not put pressure on

temporary registers; and it allows inheritance of modes. If YAP enters a structure

in write-mode, then all its sub-structures will execute in write-mode.

A corollary of this advantage is that write code performs less tests, and is

therefore simpler. This observation motivated the double-opcode scheme originally

presented in (Santos Costa 1999). In this method, each unify instruction has two

opcodes: one taken in read mode and the other taken in write mode. It can be

easily shown that every write-unify instruction is followed by:

• a write-unify instruction, if we are executing within the same sub-term;

• a pop instruction, if we are moving to the parent sub-term;

• a get or control instruction, if we have exited the term.

A similar argument can be made for most read-unify instructions, with the

exception of unify list and unify struct. Therefore,

• unify list and unify struct instructions either preserve write mode, or

may move from write to read mode;

• all other unify instructions preserve write mode;

• pop instructions restore the read/write mode from the unification stack.

The YAP prolog system 11

In our experience, separating write and read opcodes results in both a faster and

a cleaner engine implementation.

Other interesting design issues for compound terms include:

• In get struct and unify struct instructions, YAP immediately initializes

the arguments of the newly generated compound term as unbound variables.

YAP uses this eager approach because it be can be implemented as a tight loop,

improving locality, and because it allows discarding unify void instructions

at the end of a compound term.

• YAP uses unify last instead of unify for the last instruction of a compound

term. The unify last instructions do not need to update the S register, simpli-

fying code. Moreover, unify last list and unify last struct instructions

do not need to push the current state to the unification stack.

• YAP completes a sub-term when executing unify last atom, unify last var

or unify last val. Next, YAP may need to execute a pop instruction to return

to a sub-term above. The pop instruction will then set the read/write mode by

choosing the read or write opcode of the next instruction.

4.2 Term sharing

Consider the following clause:

a(X,W,[Y,Z]) :- b([Y,Z]), a(W,f([Y,Z])).

The standard WAM would create three copies of [Y,Z]: one for the head-term

and two for the body terms. YAP instead generates the following code:

get_var Y1,A2 allocate

get_list A3 call user:b/1,1

save_pair Y0 put_val Y1,A1

unify_var X0 put_struct f/1,A2

unify_last_list write_val Y0

unify_var X0 deallocate

unify_last_atom [] execute user:a/2

put_val Y0,A1

The save pair instruction stores AbsPair(S), where S refers to the WAM’s S

structure pointer register, in an abstract machine register or environment slot. This

argument is then stored in Y0 in lieu of the term. This has two advantages:

• Increased sharing, while reducing code size and run-time memory overhead;

• Reduce the number of permanent variables. In the example, variables Y and Z

are made void by this optimization. In contrast, the WAM would mark them

as permanent variables.

The compiler maintains a table with all terms compiled so far in order to support

this operation. Every time a copy is found the term is replaced by the argument.

Notice that compilation times may increase on large clauses with many terms. Thus,

12 V. S. Costa et al.

YAP imposes a maximum threshold on the number of terms that can be considered

for reuse.

In a related optimization, recent versions of YAP compile large ground terms

offline. That is, the clause

a("Long String").

is compiled as:

get_dbterm [76,111,110,103,32,83,116,114,105,110,103],A1

proceed

Currently, get dbterm simply unifies its argument with a ground term in the

database. This has two advantages: it reduces code size and makes string construction

constant time. The major drawbacks are the cost of maintaining an extra database

of terms and the need to implement JITI support.

4.3 Non-logical features

Actual Prolog implementations must support non-logical features such as the

cut, disjunctions, and type predicates. YAP always stores a cut pointer in the

environment (Mariën and Demoen 1989). The implementation of disjunction is

more complex. Two basic approaches are (Carlsson 1990; Demoen et al. 2000):

• Offline compilation (Carlsson 1990) generates a new intermediate predicate

and compiles disjuncts as new clauses. It allows for simpler compilation.

• Inline compilation uses special instructions to implement disjunction (Demoen

et al. 2000). It can reduce overheads.

YAP implements inline compilation of disjunctions. Each clause is divided into a

graph where an edge is an alternative to a disjunction, and each edge starts with an

either an or else, or or last instruction. These instructions implement a choice

point with arity 0, as all shared variables are guaranteed to the environment.

As most other Prolog compilers, YAP also inlines a number of built-ins (Nässén

et al. 2001; Zhou 2007):

(1) Type built-ins such as var, nonvar, atom and related. They are implemented as

p var , p nonvar , p nonvar instructions.

(2) Arithmetic operations. Currently, YAP only optimises the integer operations.

Examples include the p plus instructions, which are further optimised according

to whether one of the arguments is a constant or not.

(3) The functor and arg built-ins. YAP implements different functor/3 instruc-

tions, depending on how arguments were instantiated at compile time.

(4) The meta-call: YAP inlines some meta-calls (Tronçon et al. 2007). This is difficult

due to the complexity of the goal expansion and the module mechanism.

The implementation of inline built-ins has overgrown the initial design, and requires

redesign and a cleanup.

The YAP prolog system 13

5 Compilation

The YAP compiler implements the following steps algorithm:

(1) c head: generate a WAM-like representation for the head of the clause.

(2) If the clause is a ground fact, proceed to step (6).

(3) c body: generate WAM-like representation for the body of the clause.

(4) c layout: perform variable classification and allocation.

(5) c optimize: eliminate superfluous instructions.

(6) Assemble the code and copy it to memory.

The c head step simply walks over the clause head and generates a sequence of

WAM instructions. The c body routine visits the body goals and generates code

for each goal in sequence. Special care must be taken with disjunctions and inline

built-ins.

Both c head and c body call c goal to generate code for the head and sub-goals.

The main challenge is to compile variables, performed by c var. Each variable is

made to point to a VarEntry structure, that contains, among other information: (i)

a reference count indicating how many times the variable was used in the clause;

(ii) the first occurrence of the variable in the code; and, (iii) the last occurrence. The

c var routine then works as follows:

• If this is the first occurrence of the variable, bind the variable to a VarEntry,

set to have a reference count to 1, and set the first and last occurrence to the

current position.

• Otherwise, increment reference count and set the last occurrence to the current

position.

c var must also generate a WAM-like instruction for the variable. It generates a

unify instruction for variables in sub-terms; a put instruction for variables in the

body of the clause; a get instruction for variables in the head.

The c layout routine proceeds as follows:

(1) Reverse the chain of instructions.

(2) Going from the end to the beginning, check if a variable must be permanent,

and if so give it the next available environment slot. This guarantees that the

environment variables occurring in the rightmost goals have the lower slots.

This step again reverses the chain.

(3) Going from the beginning to the end, allocate every temporary variable using a

first-come, first-served greedy allocation algorithm. The YAAM has a very large

array of registers, and spilling is considered an overflow.

The c optimize step searches for unnecessary instructions, say, get x val A1,X1

and removes them.

5.1 Compiling disjunctions

A clause with disjunctions can be understood as a directed acyclic graph. Each node

in the graph either delimits the beginning/end of the clause or the beginning/end

14 V. S. Costa et al.

of a disjunction. Edges link nodes that delimit an or-branch. Notice that there is

always an edge that includes the head of the clause; we shall name this edge the

root-edge. Thus, a Horn Clause has two nodes and a single edge, whereas a clause

of the form

a :- (b ; c,d), e

has four nodes and four edges. YAP uses the following principles to compile the

disjunctions:

• Any variable that crosses over two edges has to be initialized in the root-edge.

This prevents dangling variables, say:

g :- (b(X) ; c(Y)), d(Y).

The Y variable may be left dangling if not initialized before the edge.

• As usual, environments are allocated if there is a path in the graph with two

user-defined goals, or a user-defined goal followed by built-ins.

• If a disjunction is of the form G → B1;B2 and G is a conjunction of test

built-ins, the compiler compiles G with a jump to a fail label that points to

B2.

• Otherwise, the compiler generates choice-point manipulation instructions: the

either instruction starts the disjunction; the or else for inner edges; and the

or last prepares the last edge for the disjunction.

There are cases where YAP has to do better. Consider a fast implementation of

fibonacci:

fib(N, NX) :- (N =< 1 ->

NX = 1

;

N1 is N - 1, N2 is N - 2,

fib(N1, X1), fib(N2, X2),

NX is X1 + X2

).

The variables N and NX cross the disjunction; therefore, the above algorithm

initializes them as permanent variables at the root edge. The problem is that the

YAP variable allocator will use the environment slots to access N and NX, and

would fail to take advantage of the fact that an N is available in A1 and NX in

A2. This generates unnecessary accesses and the code may be less efficient than

creating a choice point and executing a separate first clause. The solution is to delay

environment initialization until one is sure one needs it. The rules are:

• Environments are allocated only once: the edge that allocates the environment

is the leftmost–topmost edge E such that

1. no edge E ′ above needs an environment,

2. no edge to the left of E needs the environment,

The YAP prolog system 15

3. E or a descendant of E needs the environment, and

4. at least a descendant of a right sibling of E needs the environment.

• Variables are copied to the environment after allocation.

Applying these rules allows the compiler to delay marking some variables as

permanent variables. This simplifies the task of the variable allocator, and leads to

much faster code in the case above.

5.2 The assembler

The YAP Prolog assembler converts from a high-level representation of YAAM

instructions into YAAM byte code. It executes in two steps:

(1) Compute the addresses for labels and perform peephole optimizations, such as

instruction merging.

(2) Given the addresses of labels, copy instructions to actual location.

Instruction merging (Santos Costa 1999; Demoen and Nguyen 2000; Nässén

et al. 2001; Zhou 2007) is an important technique to improve the performance of

emulators. The assembler implements instruction merging:

(1) where it leads to improvement of the performance in recursive predicates: exam-

ples include get list and unify x val, or put y val followed by put y val;
(2) where it leads to substantial improvements in code size: examples include

sequences of get atom instructions that are typical of database applications

(Santos Costa 2007).

6 The JITI

YAP includes a JITI (Santos Costa et al. 2007; Santos Costa 2009). Next, we give

a brief overview of how the algorithm has been implemented in the YAP system.

First, we observe that in YAP, in contrast to the WAM, by default, predicates have

no indexing code. All indexing is constructed at run time.

Our first step is thus to ensure that calls to non-indexed predicates have the

abstract machine instruction index pred as their first instruction. This instruction

calls the function Yap PredIsIndexable that implements the JITI.

6.1 The indexing algorithm

Indexing has been well-studied in Prolog systems (Carlsson 1987; Demoen et al.

1989; Van Roy 1990; Zhou et al. 1990). The main novelty in the design of the JITI

is that it tries to generate the code that is well-suited to the instantiations of the

goal. To do so, it basically follows a decision tree algorithm, where decisions are

made by inspecting the instantiation of the current call. The actual algorithm is as

follows:

(1) Store the pointers to every clause in the predicate in an array Clauses and

compute the number of clauses.

16 V. S. Costa et al.

(2) Call do index(Clauses,1), where the number 1 refers to the first argument.

(3) Assemble the generated code.

The function do index is the core of the JITI. It is a recursive function that, given

a set of clauses C with size N and an argument i, works as follows:

(1) If N � 1, call do var to handle the base case.

(2) If i > Arity, we have tried every argument in the head: call do var to generate

a try-retry-trust chain.

(3) If Ai is unbound, first call suspend index(Clauses,i), to mark this argument

as currently unindexed, and then call do index(Clauses,i+1).
(4) Extract the constraint that each clause C imposes on Ai, and store the constraint

in Clauses[C]. The YAP JITI understands two types of constraints:

• bindings of the form X = T , where the main functor of T is known;

• type constraints, such as number(X).

(5) Compute the groups, where a group is a contiguous subset of clauses that can be

indexed through a single switch on type (Warren 1983). For example, consider

the following definition of predicate a/1:

a(1). a(1). a(2). a(X). a(1).

This predicate has three groups: the first three clauses form a group, and the

fourth and fifth clauses form each one a different group. The fourth clause forms

a free group, as it imposes no constraint on A1.

(6) In order to generate simpler code, if the number of groups NG is larger than one

and we are not looking at the first argument, that is, NG > 1∧ i > 1, then do not

try indexing the current argument, and instead call do index(Clauses,i+1).
(7) Compile the groups one by one. If the group is free, call do var: this function

generates the leaf code for a sequence of try-retry-trust instructions.

Otherwise, if all constraints in the group are binding constraints:

(a) Generate a switch on type instruction for the current argument i.

(b) The switch on type instruction has four slots in the YAAM (and in the

WAM): constants, compound terms, pairs, and unbound variables. The JITI

generates the code for the first three cases. The fourth case is not compiled;

instead, the JITI fills the last slot with the expand index instruction (discussed

in detail later).

(c) Next, separate clauses in three subgroups according to whether they contain

a constant (atoms or small integers), a pair, or a compound term, including

extensions.

(d) Call do consts, do funcs, and do pair on each subgroup to fill in the

remaining slots.

A clause imposing a type constraint requires specialized processing, for example:

(a) integer(Ai) adds the clause to the list of constants and the list of functors.

(b) var(Ai) requires removing the current clause from the list of constants,

functors and pairs;

(c) nonvar(Ai) cannot select between different cases, and is not used.

The YAP prolog system 17

The do var auxiliary routine is called to handle the cases where we cannot

index further: it either commits to a clause, or creates a chain of try-retry-trust

instructions. The do consts, do funcs, and do pair functions try to construct a

decision list or hash table on the values of the main functor of the current term,

in a fashion very similar to the standard WAM. On the other hand, do funcs,

and do pair may call do compound index to index on sub-terms. Finally, YAP

implements a few optimizations to handle common cases that do not fit well in this

algorithm (e.g., catch-all clauses).

The suspend index(Clauses,i) function generates an expand index Ai instruc-

tion at the current location, and then continues to the next argument. At run time,

if ever the instruction is visited with Ai bound, YAP will expand the index tree, as

discussed next.

6.2 Expanding the index tree

The expand index YAAM instruction verifies whether new calls to the indexing

code have the same instantiation as the original call. Thus, it allows the YAP JITI

to grow the tree whenever we receive calls with different modes. The instruction

executes as follows. First, it recovers the PredEntry for the current predicate, and

then it calls Yap ExpandIndex that proceeds as follows:

(1) Initialize clause and groups information.

(2) Walk the indexing tree from scratch, finding out which instruction caused the

transfer to expand index, and what clauses matched at that point. Store the

matching clauses in the Clauses array.

(3) Call do index(Clauses, i+1) to construct the new tree.

(4) Link the new tree back to the current indexing tree.

The second step is required because when we call expand index, we do not

actually have a pointer to the previous instruction, nor do we know how many

clauses do match at this point (doing so would very much increase the size of the

indexing code). Instead, we have to follow the indexing code again from scratch. As

Yap ExpandIndex executes each instruction in the indexing tree, it also selects the

clauses that can still match. The algorithm is as follows:

(1) Set the alternative program pointer, AP to NULL, the parent program pointer P ′

to NULL, and the program pointer P to point at the initial indexing instruction.

(2) While the YAAM instruction expand index was not found:

(3) Set the current instruction pointer P to be P ′.

(4) If the current opcode is:

• switch on type, then check the type of the current argument i, remove all

clauses that are constrained to a different type from Clauses, and compute

the new P .

• switch on {cons, struct}, then check if the current argument i matches

one of the constants (functors). If so, remove all clauses that are constrained

to a different constant from Clauses, and take the corresponding entry. If

not, jump to AP .

18 V. S. Costa et al.

• try, then mark that we are not the first clause and set AP to the next

instruction.

• retry, then set AP to be the next instruction and jump to the label.

• trust set then AP to NULL and jump to the label.

• jump if nonvar, then check if the current Ai is bound. If not, proceed to the

next instruction. Otherwise, if the jump label is expand index, we are done.

The algorithm returns a set of clauses Clauses and a pointer P ′ giving where the

code was called from. We thus can call do index as if it had been called from the

index pred instruction.

6.3 The JITI: discussion

The main advantages of the JITI are the ability to index multiple arguments and

compound terms, and the ability to index for multiple modes of usage. Several

Prolog systems do support indexing on multiple arguments (Wielemaker 2010; Zhou

2007; Sagonas et al. 1997); on the other hand, we are not aware of other systems

that allow multiple modes. Our experience has shown that this feature is very useful

in applications with large databases. A typical example is where we use the database

to represent a graph and we want to walk edges in both directions; a second typical

application is when mining databases (Fonseca et al. 2009). Arguably, a smart

programmer will be able to address these problems by duplicating the database: the

JITI is about not having to do the effort.

The JITI has a cost. First, the index size can grow significantly, and, in fact, exceed

the size of the original database (Fonseca et al. 2009). In the worst case, we can build

a large index that will serve a single call. Fortunately, our experience has shown

this to be rare. In most cases, if the index grows, it is because it is needed, and the

benefits in running-time outweigh the cost in memory space. A second drawback is

the cost of calling Yap ExpandIndex. Although we have not systematically measured

this overhead, in our experience, it is small.

7 OPTYAP: an overview

One of the major advantages of Logic Programming is that it is well-suited for

parallel execution. The interest in the parallel execution of logic programs mainly

arose from the fact that parallelism can be exploited implicitly, that is, without input

from the programmer to express or manage parallelism, ideally making Parallel

Logic Programming as easy as Logic Programming.

On the other hand, the good results obtained with tabling (Sagonas et al. 1997)

raise the question of whether further efficiency would be achievable through paral-

lelism. Ideally, we would like to exploit maximum parallelism and take maximum

advantage of current technology for tabling and parallel systems. Towards this goal,

we proposed the Or-Parallelism within Tabling (OPT) model. The OPT model

generalizes Warren’s multi-sequential engine framework for the exploitation of

or-parallelism in shared-memory models. It is based on the idea that all open

The YAP prolog system 19

alternatives in the search tree should be amenable to parallel exploitation, be they

from tabled or non-tabled subgoals. Furthermore, the OPT model assumes that

tabling is the base component of the parallel system, that is, each worker is a

full sequential tabling engine, the or-parallel component only being triggered when

workers run out of alternatives to exploit.

OPTYAP implements the OPT model, and we shall use the name OPTYAP

to refer to YAP plus tabling and or-parallelism (Rocha et al. 2005b). OPTYAP

builds on the YAPOR (Rocha et al. 1999) and YAPTAB (Rocha et al. 2000) work.

YAPOR was previous work on supporting or-parallelism over YAP (Rocha et al.

1999). YAPOR is based on the environment copying model for shared-memory

machines, as originally implemented in Muse (Ali and Karlsson 1990). YAPTAB is

a sequential tabling engine that extends YAP’s execution model to support tabled

evaluation for definite programs. YAPTAB’s implementation is largely based on the

seminal design of the XSB system, the SLG-WAM (Sagonas and Swift 1998), but it

was designed for eventual integration with YAPOR. Parallel tabling with OPTYAP

is implicitly triggered when both YAPOR and YAPTAB are enabled.

7.1 The sequential tabling engine

Tabling is about storing intermediate answers for subgoals so that they can be

reused when a variant call1 appears during the resolution process. Whenever a tabled

subgoal is first called, a new entry is allocated in an appropriate data space, the table

space. Table entries are used to collect the answers found for their corresponding

subgoals. Moreover, they are also used to verify whether calls to subgoals are variant.

Variant calls to tabled subgoals are not re-evaluated against the program clauses,

instead they are resolved by consuming the answers already stored in their table

entries. During this process, as further new answers are found, they are stored in

their tables and later returned to all variant calls. Within this model, the nodes in the

search space are classified as either: generator nodes, corresponding to first calls to

tabled subgoals; consumer nodes, corresponding to variant calls to tabled subgoals;

or interior nodes, corresponding to non-tabled subgoals.

To support tabling, YAPTAB introduces a new data area to the YAP engine,

the table space, implemented using tries (Ramakrishnan et al. 1999); a new set of

registers, the freeze registers; an extension of the standard trail, the forward trail ;

and four new operations for tabling. The configuration macro TABLING defines when

tabling support is enabled in YAP. The new tabling operations are:

• The tabled subgoal call operation checks if a subgoal is a variant call. If so,

it allocates a consumer node and starts consuming the available answers. If

not, it allocates a generator node and adds a new entry to the table space.

Generator and consumer nodes are implemented as standard choice points

extended with an extra field, cp dep fr, that is a pointer to a dependency

frame data structure used by the completion procedure. Generator choice

1 Two calls are said to be variants if they are the same up to variable renaming.

20 V. S. Costa et al.

points include another extra field, cp sg fr, that is a pointer to the associated

subgoal frame where tabled answers should be stored. Tabled predicates defined

by several clauses are compiled using the table try me, table retry me, and

table trust me WAM-like instructions in a manner similar to the generic

try me/retry me/trust me WAM sequence. The table try me instruction

extends the WAM’s try me instruction to support the tabled subgoal call

operation. The table retry me and table trust me differ from the generic

WAM instructions in that they restore a generator choice point rather than

a standard WAM choice point. Tabled predicates defined by a single clause

are compiled using the table try single WAM-like instruction, a specialized

version of the table try me instruction for deterministic tabled calls.

• The new answer operation checks whether a newly found answer is already in

the table, and if not, inserts the answer. Otherwise, the operation fails. The

table new answer instruction implements this operation.

• The answer resolution operation checks whether extra answers are available

for a particular consumer node and, if so, consumes the next one. If no

answers are available, it suspends the current computation and schedules

a possible resolution to continue the execution. It is implemented by the

table answer resolution instruction.

• The completion operation determines whether a subgoal is completely eval-

uated and when this is the case, it closes the subgoal’s table entry and

reclaims stack space. Otherwise, control moves to one of the consumers

with unconsumed answers. The table completion instruction implements

it. On completion of a subgoal, the strategy to implement answer retrieval

consists in a top–down traversal of the completed answer tries and in

executing dynamically compiled WAM-like instructions from the answer trie

nodes. These dynamically compiled instructions are called trie instructions

and the answer tries that consist of these instructions are called compiled

tries (Ramakrishnan et al. 1999).

Completion is hard because a number of subgoals may be mutually dependent,

thus forming a Strongly Connected Component (or SCC) (Tarjan 1972). The subgoals

in an SCC are completed together when backtracking to the leader node for the

SCC, i.e., the youngest generator node that does not depend on older generators.

YAPTAB innovates by considering that the control of completion detection and

scheduling of unconsumed answers should be performed through the data structures

corresponding to variant calls to tabled subgoals, and does so by associating a new

data structure, the dependency frame, to consumer nodes. Dependency frames are

used to efficiently check for completion points and to efficiently move across the

consumer nodes with unconsumed answers. Moreover, they allow us to eliminate the

need for a separate completion stack, as used in SLG-WAM’s design, and to reduce

the number of extra fields in tabled choice points. Dependency frames are also the

key data structure to support parallel tabling in OPTYAP.

Another original aspect of the YAPTAB design is its support for the dynamic

mixed-strategy evaluation of tabled logic programs using batched and local

The YAP prolog system 21

scheduling (Rocha et al. 2005a), that is, it allows one to modify at run time the

strategy to be used to resolve the subsequent subgoal calls of a tabled predicate. At

the engine level, this includes minor changes to the tabled subgoal call, new answer

and completion operations, all the other tabling extensions being commonly used

across both strategies.

More recent contributions to YAPTAB’s design include the proposals to efficiently

handle incomplete and complete tables (Rocha 2006). Incomplete tables are a

problem when, as a result of a pruning operation, the computational state of a

tabled subgoal is removed from the execution stacks before being completed. In

such cases, we cannot trust the answers from an incomplete table because we may

loose part of the computation. YAPTAB implements an approach where it keeps

incomplete tables around and whenever a new variant call for an incomplete table

appears, it first consumes the available answers, and only if the table is exhausted, it

will restart the evaluation from the beginning. This approach avoids re-computation

when the already stored answers are enough to evaluate the variant call. On the other

hand, complete tables can also be a problem when we use tabling for applications

that build arbitrarily many large tables, quickly exhausting memory space. In general,

we will have no choice but to throw away some of the tables (ideally, the least likely

to be used next). YAPTAB implements a memory management strategy based on

a least recently used algorithm for the tables. With this approach, the programmer

can rely on the effectiveness of the memory management algorithm to completely

avoid the problem of deciding what potentially useless tables should be deleted.

Performance results for YAPTAB have been very encouraging from the beginning.

Initial results showed that, on average, YAPTAB introduces an overhead of about

5% over standard Yap when executing non-tabled programs (Rocha et al. 2000).

For tabled programs, results indicated that we successfully accomplished our initial

goal of comparing favorably with current state-of-the-art technology since, on

average, YAPTAB showed to be about twice as fast as XSB (Rocha et al. 2000). In

more recent studies, by comparing YAPTAB with other tabling Prolog systems, the

previous results were confirmed and YAPTAB showed to be, on average, twice as

fast as XSB and Mercury (Somogyi and Sagonas 2006) and more than twice faster

than Ciao Prolog and B-Prolog (Chico et al. 2008). Regarding the overhead for

supporting mixed-strategy evaluation, our results showed that, on average, YAPTAB

is about 1% slower when compared with YAPTAB supporting a single scheduling

strategy (Rocha et al. 2005a). Moreover, our results showed that dynamic mixed

strategies, incomplete tabling, and table memory recovery can be extremely important

to improve the performance and increase the size of the problems that can be solved

for ILP-like applications (Rocha 2007). Considering that YAP is one of the fastest

Prolog engines currently available, these results are quite satisfactory and they show

that YAPTAB is a very competitive tabling system.

7.2 The or-parallel tabling engine

In OPTYAP, or-parallelism is implemented through copying of the execution stacks.

More precisely, we optimize copying by using incremental copying, where workers

22 V. S. Costa et al.

only copy the differences between their stacks. All other YAP areas and the table

space are shared between workers. Incremental copying is part of YAPOR’s engine.

A first problem that we had to address in OPTYAP was concurrent access to

the table space. OPTYAP implements four alternative locking schemes to deal with

concurrent accesses to the table space data structures, the Table Lock at Entry Level

(TLEL) scheme, the Table Lock at Node Level (TLNL) scheme, the Table Lock at

Write Level (TLWL) scheme, and the Table Lock at Write Level-Allocate Before

Check (TLWL-ABC) scheme. The TLEL scheme includes a single lock per trie, and

thus, allows a single writer per trie. The TLNL has a lock per node, and thus, allows

a single worker per chain of sibling nodes that represent alternative paths from

a common parent node. The TLWL scheme is similar to TLNL, but the common

parent node is only locked when writing to the table is likely. Lastly, the TLWL-ABC

is an optimization that allocates and initializes nodes that are likely to be inserted in

the table space before any locking is performed. Experimental results (Rocha et al.

2002) showed that TLWL and TLWL-ABC present the best speedup ratios and that

they are the only schemes showing good scalability.

A second problem was public completion. When a worker W reaches a leader

node for an SCC S and the node is public, other workers can still influence S ,

for example, if finding new answers for consumers in S . In such cases, W cannot

complete but, on the other hand, it would like to move elsewhere in the tree to

try other work. Note that this is the only case where or-parallelism and tabling

conflict. One solution would be to disallow movement in this case. Unfortunately,

we would severely restrict the parallelism. As a result, in order to allow W to

continue execution, it becomes necessary to suspend the SCC at hand. Suspending

an SCC consists of saving the SCC’s stacks to a proper space and leave in the

leader node a reference to the suspended SCC. These suspended computations are

reconsidered when the remaining workers perform the completion operation. Thus,

an SCC S is completely evaluated when the following two conditions hold:

• There are no unconsumed answers in any consumer node belonging to S or

in any consumer node within a suspended SCC in a node belonging to S .

• There are no other representations of the leader node L in the computational

environment. In other words, L cannot be found in the execution stacks of a

different worker, and L cannot be found in the suspended stack segments for

another SCC.

Knowing that worker W is at the current leader node L for an SCC S , the

algorithm for public completion is actually quite straightforward:

• Atomically check whether W is the last worker at node L, and remember the

result as a boolean variable LastWorkerAtNode.

• Check if there are unconsumed answers in any consumer node belonging to S

or in any consumer node within a suspended SCC in a node belonging to S .

If so, resume and move to this work.

• If LastWorkerAtNode is false, suspend the current SCC and call the scheduler

to get a new piece of unexploited work.

• Otherwise, if LastWorkerAtNode is true, W has completed.

The YAP prolog system 23

The synchronization corresponds to checking beforehand whether W is the last

worker, and if so, complete. Note that W ’s code must take care to check whether

W is last before it checks for uncompleted answers, as new answers or nodes might

have been generated meanwhile.

A worker W enters in scheduling mode when it runs out of work and only

returns to execution mode when a new piece of unexploited work is assigned to

it by the scheduler. The scheduler must efficiently distribute the available work

for exploitation between workers. OPTYAP has the extra constraint of keeping the

correctness of sequential tabling semantics. The OPTYAP scheduler is essentially the

YAPOR scheduler (Rocha et al. 1999): when a worker runs out of work it searches

for the nearest unexploited alternative in its branch. If there is no such alternative,

it selects a busy worker with excess of work load to share work with. If there is no

such a worker, the idle worker tries to move to a better position in the search tree.

However, some extensions were introduced in order to preserve the correctness of

tabling semantics and ensure that a worker never moves above a leader until it has

fully exploited all alternatives. Thus, OPTYAP introduces the constraint that the

computation cannot flow outside the current SCC, and workers cannot be scheduled to

execute at nodes older than their current leader node.

Parallel execution of tabled programs in OPTYAP showed that the system was

able to achieve the excellent speedups up to 32 workers for applications with

coarse-grained parallelism and quite good speedups for applications with medium

parallelism (Rocha et al. 2005b).

8 Future challenges

Prolog is a well-known language. It is widely used, and is a remarkably powerful

tool. The core of Prolog has been very stable throughout the years, both in terms

of language design and implementation. Yet, there have been several developments,

many within the Logic Programming community, and many more outside. Address-

ing these developments and the needs of a world very different from when Prolog

was created presents both difficulties and opportunities. Next, we discuss some of

these issues from our personal perspective.

Compiler Implementation Technology: Implementation technology in Prolog needs

to be rethought. At the low level, only GNU Prolog currently generates native

code (Diaz and Codognet 2001). Just-In-Time technology is a natural match to

Prolog and it has shown to work well, but we have just scratched the sur-

face (da Silva and Santos Costa 2007). Progress in compilers, such as GCC, may

make compilation to C affordable again. At a higher level, more compile-time

optimization should be done. Determinacy detection is well known (Dawson et al.

1995) and should be available. Simple techniques, such as query reordering, can

change the program performance hugely for database queries. They should be easily

available.

A step further: code expansion for recursive procedures is less of a problem, so

why not rethink old ideas such as Krall’s VAM (Krall 1996), and Beer’s uninitialized

24 V. S. Costa et al.

variables (Beer 1989; Roy and Despain 1992)? Moreover, years of experience with

Ciao Prolog should provide a good basis for rethinking global analysis (Bueno et al.

1999).

Last, but not least, Prolog implementation is not just about pure Horn clauses.

Challenges such as negation (Sagonas et al. 1997) and coinduction (Simon et al.

2006) loom large over the future of Logic Programming.

Language Technology: At this point in time, there is no dominant language nor

framework. But, arguably, some lessons can be taken:

• Libraries and Data Structures: Languages need to provide useful and reusable

code.

• Interfacing: It should be easy to communicate with other languages, and

especially with domain-specific languages, such as SQL for databases and R for

statistics.

• Typing: It is not clear whether static typing is needed, but it is clear that it is

useful, and it is popular in the research community.

Our belief is that progress in this area requires collaboration between different

Prolog systems, namely, so that it will be easy to reuse libraries and code. YAP and

SWI-Prolog are working together in this direction.

Logic Programming Technology: Experience has shown that it is hard to move the

results from Logic Programming research to Prolog systems. One illustrative example

is XSB Prolog (Sagonas et al. 1997): on the one hand, the XSB system has been a

vehicle for progress in Logic Programming, supporting the tabling of definite and

normal programs. On the other hand, progress in XSB has not been widely adopted.

After more than 10 years, even tabling of definite programs is not widely available

in other Prolog systems.

The main reason for that is complexity: it is just very hard to implement some

of the novel ideas proposed in Logic Programming. Old work suggests that Logic

Programming itself may help in this direction (Chen and Warren 1993). Making

it easy to change and control Prolog execution in a flexible way is a fundamental

challenge for Prolog.

The WWW: It has become very important to be able to reason and manipulate

data on the world-wide web. Surprisingly, one can see relatively little contribution

from the Logic Programming community, although it should be clear that Prolog

can have a major role to play, especially related to the semantic web (Wielemaker

et al. 2008). Initial results offer hope that YAPTAB is competitive with specialized

systems in this area (Liang et al. 2009).

Uncertainty: The last few years have seen much interest in what is often called

Statistical Relational Learning (SRL). Several languages designed for this purpose

build directly upon Prolog. PRISM (Sato and Kameya 2001) is one of the most

popular examples: progress in PRISM has stimulated progress in the underlying

Prolog system, B-Prolog (Zhou 2007). Problog is an exciting recent development,

and supporting Problog has already lead to progress in YAP (Kimmig et al. 2008).

The YAP prolog system 25

Note that even SRL languages that do not rely on Prolog offer interesting

challenges to the Prolog community. As an interesting example, Markov Logic

Networks (MLNs) (Richardson and Domingos 2006) are a popular SRL language

that uses bottom-up inference and incremental query evaluation, two techniques that

have been well researched in Logic Programming.

9 Conclusions and future work

We presented the YAP system, gave the main principles of its implementation, and

detailed what we believe are the main contributions in the design of the system,

such as engine design, just-in-time indexing, tabling, and parallelism. Arguably, these

contributions have made YAP a very competitive system in Prolog applications that

require access to large amounts of data, such as learning applications.

Our experience, both as implementers and as users, shows that there are a number

of challenges to Prolog. We would like to make “Prolog” faster, more attractive to

the Computer Science community and, above all, more useful. To do so, much

work has still to be done. Some of the immediate work ahead includes integrating

the just-in-time clause compilation framework in the main design of the system,

improving performance for attributed variables and constraint systems, improving

compatibility with other Prolog systems, and, as always, fixing bugs.

We discussed some of the main challenges that in our opinion face Logic

Programming above. YAP has also shown to be an useful platform for work in

the languages that combine Prolog and probabilistic reasoning, such as CLP(BN)

(Santos Costa et al. 2008), ProbLog (Kimmig et al. 2008), and CPlint (Riguzzi 2007).

As argued above, we believe that this is an important research direction for the Logic

Programming community, and plan to pursue this work further.

Acknowledgements

YAP would not exist without the support of the YAP users. We would like to thank

them first. The work presented in this paper has been partially supported by project

HORUS (PTDC/EIA-EIA/100897/2008), LEAP (PTDC/EIA-CCO/112158/2009),

and funds granted to LIACC and CRACS & INESC-Porto LA through the Programa

de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and Programa

POSI. Last, but not least, we would like to gratefully acknowledge the anonymous

referees and the editors of the special number for the major contributions that they

have given to this paper.

References

Aggoun, A., Chan, D., Dufresne, P., Falvey, E., Grant, H., Herold, A., Macartney, G.,

Meier, M., Miller, D., Mudambi, S., Perez, B., van Rossum, E., Schimpf, J., Tsahageas,

P. A. and de Villeneuve, D. H. 1995. ECLiPSe 3.5 User Manual. ECRC.

Ali, K. and Karlsson, R. 1990. Full prolog and scheduling OR-parallelism in muse.

International Journal of Parallel Programming 19 , 6, 445–475.

26 V. S. Costa et al.

Arnold, D. J., Krauwer, S., Rosner, M., des Tombe, L. and Varile, G. B. 1986. The

< C,A >,T framework in Eurotra: A theoretically committed notation for MT.

In Proceedings of the 11th Conference on Computational linguistics. Association for

Computational Linguistics, Morristown, NJ, 297–303.

Beer, J. 1989. Concepts, Design, and Performance Analysis of a Parallel Prolog Machine.

Lecture Notes in Computer Science, Vol. 404. Springer Verlag, Berlin, DE.

Benton, W. C. and Fischer, C. N. 2007. Interactive, scalable, declarative program analysis:

From prototype to implementation. In Proceedings of the 9th International ACM SIGPLAN

Conference on Principles and Practice of Declarative Programming, Wroclaw, Poland, 14–16

July 2007, M. Leuschel and A. Podelski, Eds. ACM, New York, NY, 13–24.

Bueno, F., Garcı́a de la Banda, M. and Hermenegildo, M. 1999. Effectivness of abstract

interpretation in automatic parallelization: A case study in logic programming. ACM

Transactions on Programming Languages and Systems 21 , 2, 189–239.

Camacho, R. 1994. Learning stage transition rules with Indlog. In Proceedings of the

4th International Workshop on Inductive Logic Programming. GMD-Studien, vol. 237.

Gesellschaft für Mathematik und Datenverarbeitung MBH, 273–290.

Carlsson, M. 1987. Freeze, indexing, and other implementation issues in the wam. In

Proceedings of the 4th International Conference on Logic Programming, J.-L. Lassez, Ed.

MIT Press Series in Logic Programming. University of Melbourne, MIT Press, Cambridge,

MA, USA, 40–58.

Carlsson, M. 1990. Design and Implementation of an OR-Parallel Prolog Engine. PhD Thesis,

The Royal Institute of Technology. SICS Dissertation Series 02.

Carlsson, M. and Widen, J. 1988. SICStus Prolog User’s Manual. Tech. Rep. SICS Research

Report R88007B, Swedish Institute of Computer Science, Kista, Sweden.

Castro, L. F. and Costa, V. S. 2001. Understanding memory management in prolog systems.

In Proceedings of the 17th International Conference on Logic Programming, ICLP 2001.

Lecture Notes in Computer Science, vol. 2237. Paphos, Cyprus, 11–26.

Chen, W. and Warren, D. S. 1993. Query evaluation under the well-founded semantics. In

Proceedings of 12th PODS. 168–179.

Chico, P., Carro, M., Hermenegildo, M. V., Silva, C. and Rocha, R. 2008. An improved

continuation call-based implementation of tabling. In Proceedings of the International

Symposium on Practical Aspects of Declarative Languages. LNCS, vol. 4902. Springer-Verlag,

Berlin, DE, 197–213.

Colmerauer, A. 1993. The birth of prolog. In The Second ACM-SIGPLAN History of

Programming Languages Conference. ACM, New York, NY, USA, 37–52.

Costa, V. S. 1988. Implementação de prolog. Provas de aptidão pedagógica e capacidade

cientı́fica, Universidade do Porto.

Costa, V. S. 1999. Optimising bytecode emulation for prolog. In Proceedings of PPDP 1999.

LNCS, vol. 1702. Springer-Verlag, Berlin, DE, 261–267.

Costa, V. S. 2007. Prolog performance on larger datasets. In Proceedings of the 9th

International Symposium on Practical Aspects of Declarative Languages, PADL 2007, Nice,

France, 14–15 January 2007, M. Hanus, Ed. Lecture Notes in Computer Science, vol. 4354.

Springer, Berlin, DE, 185–199.

Costa, V. S. 2008. The life of a logic programming system. In Proceedings of the 24th

International Conference on Logic Programming, ICLP 2008, Udine, Italy, 9–13 December

2008, M. G. de la Banda and E. Pontelli, Eds. Lecture Notes in Computer Science, vol.

5366. Springer, Berlin, DE, 1–6.

Costa, V. S. 2009. On just in time indexing of dynamic predicates in prolog. In Progress

in Artificial Intelligence, 14th Portuguese Conference on Artificial Intelligence, EPIA 2009,

The YAP prolog system 27

L. S. Lopes, N. Lau, P. Mariano and L. Rocha, Eds. Lecture Notes in Computer Science.

Springer, Berlin, DE, 126–137.

Costa, V. S., de Castro Dutra, I. and Rocha, R. 2010. Threads and or-parallelism unified.

TPLP 10 , 4–6, 417–432.

Costa, V. S., Page, D. and Cussens, J. 2008. Clp(n): Constraint logic programming for

probabilistic knowledge. In Proceedings of Probabilistic Inductive Logic Programming—

Theory and Applications, L. D. Raedt, P. Frasconi, K. Kersting and S. Muggleton, Eds.

Lecture Notes in Computer Science, vol. 4911. Springer, Berlin, DE, 156–188.

Costa, V. S., Sagonas, K. and Lopes, R. 2007. Demand-driven indexing of prolog clauses.

In Proceedings of the 23rd International Conference on Logic Programming, V. Dahl and

I. Niemelä, Eds. Lecture Notes in Computer Science, vol. 4670. Springer, Berlin, DE,

305–409.

da Silva, A. F. and Costa, V. S. 2007. Design, implementation, and evaluation of a

dynamic compilation framework for the yap system. In Proceedings of the 23rd International

Conference on Logic Programming, ICLP 2007, 8–13 September 2007, Lecture Notes in

Computer Science, vol. 4670. Springer, Berlin, DE, 410–424.

Damas, L. and Milner, R. 1982. Principal type-schemes for functional programs. In POPL.

207–212.

Davis, J., Dutra, I., Page, D. and Costa, V. S. 2005. Establishing identity equivalence in

multi-relational domains. In Proceedings of the 2005 International Conference on Intelligence

Analysis.

Dawson, S., Ramakrishnan, C. R., Ramakrishnan, I. V., Sagonas, K. F., Skiena, S., Swift,

T. and Warren, D. S. 1995. Unification factoring for efficient execution of logic programs.

In POPL 1995. ACM Press, New York, 247–258.

Demoen, B., Janssens, G. and Vandecasteele, H. 2000. Compiling large disjunctions. In

Proceedings of the Workshop on Parallelism and Implementation Technology for (Constraint)

Logic Programming Languages, London.

Demoen, B., Mariën, A. and Callebaut, A. 1989. Indexing in prolog. In Proceedings of the

North American Conference on Logic Programming, E. L. Lusk and R. A. Overbeek, Eds.

1001–1012.

Demoen, B. and Nguyen, P.-L. 2000. So many WAM variations, so little time. In

Proceedings of the International Conference on Computational Logic—CL 2000. LNAI, vol.

1861. Springer-Verlag, Berlin, DE, 1240–1254.

Devitt, S., Roo, J. D. and Chen, H. 2005. Desirable features of rule based systems for medical

knowledge. In Proceedings of the W3C Workshop on Rule Languages for Interoperability,

Washington, DC, 27–28 April 2005, W3C.

Diaz, D. and Codognet, P. 2001. Design and implementation of the GNU prolog system.

Journal of Functional and Logic Programming 2001, 2001.

Filgueiras, M. 1984. A prolog interpreter working with infinite terms. In Implementations of

Prolog. Campbell, Halsted Press, Chichester, West Sussex, 250–258.

Fonseca, N. A., Costa, V. S., Rocha, R., Camacho, R. and Silva, F. M. A. 2009. Improving

the efficiency of inductive logic programming systems. Software, Practice and Experience 39,

2, 189–219.

Granlund, T. 2004. GNU multiple precision arithmetic library 4.1.4.

Hermenegildo, M. V., Bueno, F., Carro, M., López, P., Morales, J. F. and Puebla, G. 2008.

An overview of the ciao multiparadigm language and program development environment

and its design philosophy. In Concurrency, Graphs and Models, Essays Dedicated to Ugo

Montanari on the Occasion of His 65th Birthday, P. Degano, R. D. Nicola and J. Meseguer,

Eds. Lecture Notes in Computer Science, vol. 5065. Springer, Berlin, DE, 209–237.

28 V. S. Costa et al.

Kimmig, A., Costa, V. S., Rocha, R., Demoen, B. and Raedt, L. D. 2008. On the efficient

execution of problog programs. In Proceedings of the 24th International Conference on

Logic Programming, ICLP 2008, Udine, Italy, 9–13 December 2008, M. G. de la Banda

and E. Pontelli, Eds. Lecture Notes in Computer Science, vol. 5366. Springer, Berlin, DE,

175–189.

Krall, A. 1996. The vienna abstract machine. Journal of Logic Programming 29, 85–106.

Lea, D. 1996. A Memory Allocator. URL: http://gee.cs.oswego.edu/dl/html/malloc.html

Liang, S., Fodor, P., Wan, H. and Kifer, M. 2009. OpenRuleBench: An analysis of the

performance of rule engines. Proceedings of the 18th International Conference on World

Wide Web. 601–610.

Mariën, A. 1993. Improving the compilation of prolog in the framework of the warren

abstract machine. PhD Thesis, Katholiek Universiteit Leuven, Leuven, BE.

Mariën, A. and Demoen, B. 1989. On the management of choicepoint and environment frames

in the WAM. In Proceedings of the North American Conference on Logic Programming,

Cleveland, OH, E. L. Lusk and R. A. Overbeek, Eds. 1030–1050.

Mariën, A. and Demoen, B. 1991. A new scheme for unification in WAM. In Proceedings

of the 1991 International Symposium on Logic Programming, V. A. Saraswat and K. Ueda,

Eds. MIT Press, San Diego, 257–271.

Meier, M. 1990. Compilation of compound terms in prolog. In Proceedings of the 1990 North

American Conference on Logic Programming, S. K. Debray and M. V. Hermenegildo, Eds.

MIT Press, Austin, TX, 63–79.

Morales, J. F., Carro, M. and Hermenegildo, M. V. 2008. Comparing tag scheme variations

using an abstract machine generator. In Proceedings of the 10th International ACM

SIGPLAN Conference on Principles and Practice of Declarative Programming, Valencia,

Spain, 15–17 July 2008, S. Antoy and E. Albert, Eds. ACM, New York, NY, USA, 32–43.

Mungall, C. 2009. Experiences using logic programming in bioinformatics. In Proceedings of

the 25th International Conference on Logic Programming, ICLP 2009, Pasadena, CA, 14–17

July 2009, P. M. Hill and D. S. Warren, Eds. Lecture Notes in Computer Science, vol. 5649.

Springer, Berlin, DE, 1–21.

Nässén, H., Carlsson, M. and Sagonas, K. F. 2001. Instruction merging and specialization in

the sicstus prolog virtual machine. In Proceedings of the 3rd International ACM SIGPLAN

Conference on Principles and Practice of Declarative Programming, Florence, Italy, 5–7

September 2001, ACM, New York, NY, 49–60.

Nugues, P. M. 2006. An Introduction to Language Processing with Perl and Prolog: An Outline

of Theories, Implementation, and Application with Special Consideration of English, French,

and German (Cognitive Technologies). Springer-Verlag New York, Secaucus, NJ.

Page, D. and Srinivasan, A. 2003. Ilp: A short look back and a longer look forward. Journal

of Machine Learning Research 4, 415–430.

Pereira, F. 1987. C-Prolog 1.5 User Manual. SRI International, Menlo Park, CA.

Quintus 1986. Quintus Prolog User’s Guide and Reference Manual—Version 6.

Ramakrishnan, I. V., Rao, P., Sagonas, K., Swift, T. and Warren, D. S. 1999. Efficient

access mechanisms for tabled logic programs. Journal of Logic Programming 38 , 1, 31–54.

Richardson, M. and Domingos, P. 2006. Markov logic networks. Machine Learning 62,

107–136.

Riguzzi, F. 2007. A top down interpreter for lpad and cp-logic. In Proceedings of the 10th

Congress of the Italian Association for Artificial Intelligence on Artificial Intelligence and

Human-Oriented Computing, AI*IA 2007, Rome, Italy, 10–13 September 2007, R. Basili and

M. T. Pazienza, Eds. Lecture Notes in Computer Science, vol. 4733. Springer, Berlin, DE,

109–120.

The YAP prolog system 29

Rocha, R. 2006. Handling incomplete and complete tables in tabled logic programs.

In Proceedings of the International Conference on Logic Programming. LNCS, vol. 4079.

Springer-Verlag, Berlin, DE, 427–428.

Rocha, R. 2007. On improving the efficiency and robustness of table storage mechanisms

for tabled evaluation. In Proceedings of the International Symposium on Practical Aspects

of Declarative Languages. LNCS, vol. 4354. Springer-Verlag, Berlin, DE, 155–169.

Rocha, R., Silva, F. and Costa, V. S. 1999. YapOr: An Or-parallel prolog system based on

environment copying. In Portuguese Conference on Artificial Intelligence. LNAI, vol. 1695.

Springer-Verlag, Berlin, DE, 178–192.

Rocha, R., Silva, F. and Costa, V. S. 2000. YapTab: A tabling engine designed to support

parallelism. In Conference on Tabulation in Parsing and Deduction. 77–87.

Rocha, R., Silva, F. and Costa, V. S. 2002. Achieving scalability in parallel tabled logic

programs. In Proceedings of the 16th International Parallel and Distributed Processing

Symposium (IPPDPS), Fort Lauderdale, FL, 51.

Rocha, R., Silva, F. and Costa, V. S. 2005a. Dynamic mixed-strategy evaluation of tabled

logic programs. In Proceedings of the International Conference on Logic Programming.

LNCS, vol. 3668. Springer-Verlag, Berlin, DE, 250–264.

Rocha, R., Silva, F. and Costa, V. S. 2005b. On applying Or-parallelism and tabling to logic

programs. Theory and Practice of Logic Programming Systems 5 , 1/2, 161–205.

Roy, P. V. and Despain, A. M. 1992. High-performance logic programming with the aquarius

prolog compiler. IEEE Computer 25 , 1, 54–68.

Sagonas, K. and Swift, T. 1998. An abstract machine for tabled execution of fixed-order

stratified Logic Programs. ACM Transactions on Programming Languages and Systems 20 ,

3, 586–634.

Sagonas, K. F., Swift, T., Warren, D. S., Freire, J. and Rao, P. 1997. The XSB pro-

grammer’s manual. Tech. Rrep., State University of New York at Stony Brook. URL:

http://xsb.sourceforge.net/

Sato, T. and Kameya, Y. 2001. Parameter learning of logic programs for symbolic-statistical

modeling. Journal of Artificial Intelligence Research 15, 391–454.

Schimpf, J. 1990. Garbage collection for prolog based on twin cells. In 2nd NACLP Workshop

on Logic Programming Architectures and Implementations. MIT Press, Cambridge, MA,

USA.

Schrijvers, T. 2008. Constraint handling rules. In Proceedings of the 24th International

Conference on Logic Programming, ICLP 2008, Udine, Italy, 9–13 December 2008, M. G.

de la Banda and E. Pontelli, Eds. Lecture Notes in Computer Science, vol. 5366. Springer,

Berlin, DE, 9–10.

Simon, L., Mallya, A., Bansal, A. and Gupta, G. 2006. Coinductive logic programming.

In Proceedings of the 22nd International Conference on Logic Programming, ICLP 2006,

Seattle, WA, 17–20 August 2006, S. Etalle and M. Truszczynski, Eds. Lecture Notes in

Computer Science, vol. 4079. Springer, Berlin, DE, 330–345.

Somogyi, Z. and Sagonas, K. 2006. Tabling in mercury: Design and implementation. In

Proceedings of the International Symposium on Practical Aspects of Declarative Languages.

LNCS, vol. 3819. Springer-Verlag, Berlin, DE, 150–167.

Srinivasan, A. 2001. The Aleph Manual.

Tarau, P. and Neumerkel, U. 1994. A novel term compression scheme and data

representation in the binwam. In Proceedings of the 6th International Symposium on

Programming Language Implementation and Logic Programming, PLILP 1994, Madrid,

Spain, 14–16 September 1994, M. V. Hermenegildo and J. Penjam, Eds. Lecture Notes

in Computer Science, vol. 844. Springer, Berlin, DE, 73–87.

30 V. S. Costa et al.

Tarjan, R. E. 1972. Depth-first search and linear graph algorithms. SIAM Journal on

Computing 1 , 2, 146–160.

Tronçon, R., Janssens, G., Demoen, B. and Vandecasteele, H. 2007. Fast frequent querying

with lazy control flow compilation. TPLP 7 , 4, 481–498.

Van Roy, P. 1990. Can logic programming execute as fast as imperative programming? PhD

Thesis, University of California, Berkeley, CA.

Vandeginste, R. and Demoen, B. 2007. Incremental copying garbage collection for WAM-

based Prolog systems. TPLP 7 , 5, 505–536.

Vaz, D., Costa, V. S. and Ferreira, M. 2009. User defined indexing. In Proceedings of the

25th International Conference on Logic Programming, ICLP 2009, Pasadena, CA, 14–17 July

2009, P. M. Hill and D. S. Warren, Eds. Lecture Notes in Computer Science, vol. 5649.

Springer, Berlin, DE, 372–386.

Warren, D. H. D. 1983. An abstract prolog instruction set. Technical Note 309, SRI

International, Menlo Park, CA, USA.

Wielemaker, J. 2003. Native preemptive threads in SWI-prolog. In Proceedings of the

19th International Conference on Logic Programming, ICLP 2003, Mumbai, India, 9–13

December 2003, C. Palamidessi, Ed. Lecture Notes in Computer Science, vol. 2916. Springer,

Berlin, DE, 331–345.

Wielemaker, J. 2010. SWI-Prolog 5.9.9: Reference Manual. Department of Computer Science,

VU University Amsterdam, Amsterdam, The Netherlands.

Wielemaker, J., Hildebrand, M., van Ossenbruggen, J. and Schreiber, G. 2008. Thesaurus-

based search in large heterogeneous collections. In Proceedings of the 7th International

Semantic Web Conference on the Semantic Web, ISWC 2008, Karlsruhe, Germany, 26–30

October 2008, LNCS, vol. 5318. Springer, Berlin, DE, 695–708.

Zhou, N.-F. 2007. A register-free abstract prolog machine with jumbo instructions. In

Proceedings of the 23rd International Conference on Logic Programming, ICLP 2007, Porto,

Portugal, 8–13 September 2007, Lecture Notes in Computer Science, vol. 4670. Springer,

Berlin, DE, 455–457.

Zhou, N.-F., Takagi, T. and Kazuo, U. 1990. A matching tree oriented abstract machine for

prolog. In Proceedings of the 7th International Conference on Logic Programming, D. H. D.

Warren and P. Szeredi, Eds. MIT Press, Cambridge, MA, USA, 158–173.

