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Preface

This report contains the papers presented at the Kiel Declarative Programming Days 2013, held
in Kiel (Germany) during September 11-13, 2013. The Kiel Declarative Programming Days 2013
unified the following events:

• 20th International Conference on Applications of Declarative Programming and Know-
ledge Management (INAP 2013)

• 22nd International Workshop on Functional and (Constraint) Logic Programming (WFLP
2013)

• 27th Workshop on Logic Programming (WLP 2013)

All these events are centered around declarative programming, an advanced paradigm for the
modeling and solving of complex problems. These specification and implementation methods
attracted increasing attention over the last decades, e.g., in the domains of databases and natural
language processing, for modeling and processing combinatorial problems, and for high-level
programming of complex, in particular, knowledge-based systems.

The INAP conferences provide a communicative forum for intensive discussion of applications
of important technologies around logic programming, constraint problem solving, and close-
ly related computing paradigms. It comprehensively covers the impact of programmable logic
solvers in the internet society, its underlying technologies, and leading edge applications in in-
dustry, commerce, government, and societal services. Previous INAP editions have been held in
Japan, Germany, Portugal, and Austria.

The international workshops on functional and logic programming (WFLP) aim at bringing
together researchers interested in functional programming, logic programming, as well as the
integration of these paradigms. Previous WFLP editions have been held in Germany, France,
Spain, Italy, Estonia, Brazil, Denmark, and Japan.

The workshops on (constraint) logic programming (WLP) serve as the scientific forum of the
annual meeting of the Society of Logic Programming (GLP e.V.) and bring together researchers
interested in logic programming, constraint programming, and related areas like databases, ar-
tificial intelligence, and operations research. Previous WLP editions have been held in Germany,
Austria, Switzerland, and Egypt.

In this year these events were jointly organized under the umbrella of the Kiel Declarative Pro-
gramming Days in order to promote the cross-fertilizing exchange of ideas and experiences
among researchers and students from the different communities interested in the foundations,
applications, and combinations of high-level, declarative programming languages and related
areas. The technical program of the event included presentations of refereed technical papers
and system descriptions.

The program committees collected for each paper at least three reviews. The meetings of the pro-
gram committees were conducted electronically during July 2013 with the help of the conference
management system EasyChair. After careful discussions, the program committees selected 21
technical papers and two system descriptions for presentation. In addition to the selected pa-
pers, the scientific program included an invited lecture by Tom Schrijvers (University of Ghent,
Belgium).



We would like to thank all authors who submitted papers to this event. We are grateful to the
members of the program committees and all the additional reviewers for their careful and effi-
cient work in the review process. Finally, we express our gratitude to all members of the local
organizing committee for their help in organizing a successful event.

September 2013 Michael Hanus
Ricardo Rocha
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Delimited Continuations for Prolog: An Overview

Tom Schrijvers

Ghent University, Belgium
Tom.Schrijvers@UGent.be

Abstract

Delimited continuations are a famous control primitive that originates in the functional
programming world. It allows the programmer to suspend and capture the remaining
part of a computation in order to resume it later.

This invited talk puts a new Prolog-compatible face on this primitive: It specifies the
semantics by means of a meta-interpreter, and illustrates the usefulness of the feature
with many examples, such as DCGs, effect handlers and coroutines. Finally, the talk
also covers how to easily and effectively add delimited continuations support to the
WAM.
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Alexander Šimko
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Abstract. We consider the problem of extending the answer set seman-
tics for logic programs with preferences on rules. Many interesting seman-
tics have been proposed. In this paper we develop a descriptive semantics
that ignores preferences between non-conflicting rules. It is based on the
Gelfond-Lifschitz reduction extended by the condition: a rule cannot be
removed because of a less preferred conflicting rule. It turns out that
the semantics continues in the hierarchy of the approaches by Delgrande
et. al., Wang et. al., and Brewka and Eiter, and guarantees existence
of a preferred answer set for the class of call-consistent head-consistent
extended logic programs. The semantics can be also characterized by a
transformation from logic programs with preferences to logic programs
without preferences such that the preferred answer sets of an original
program correspond to the answer sets of the transformed program. We
have also developed a prototypical solver for preferred answer sets using
the meta-interpretation technique.

Keywords: knowledge representation, logic programming, preferred an-
swer sets

1 Introduction

A knowledge base of a logic program possibly contains conflicting rules – rules
that state mutually exclusive things. Having such rules, we often want to specify
which of the rules to apply if both the rules can be applied.

Many interesting extensions of the answer set semantics for logic programs
with preferences on rules have been proposed, e.g., [2, 4, 10, 13, 17, 18]. Among
the ones that stay in the NP complexity class ([2, 4, 17]), there is none that
guarantees existence of a preferred answer set for the subclass of stratified [1,
3] normal logic programs. This is the result of the fact, that the semantics do
not ignore preferences between non-conflicting rules. Therefore these semantics
are not usable in some situations, e.g., where the rules of a program are divided
into modules, and the preferences on rules are inherited from the preferences
on modules. Usefulness of such inheritance was shown, e.g., in [8, 19]. It is then
important that the preferences between the non-conflicting rules do not cause
side effects, e.g., non existence of preferred answer sets.
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In this paper we propose a semantics, staying in the NP complexity class,
with a very simple and elegant definition that ignores preferences between non-
conflicting rules, and guarantees existence of a preferred answer set for the class
of call-consistent [9, 11] head-consistent [14] extended logic programs. The se-
mantics is defined using a modified version of the Gelfond-Lifschitz reduction.
An additional principle is incorporated: a rule cannot be removed because of a
less preferred conflicting rule. It turns out that the semantics continues in the
hierarchy of the semantics [4, 17, 2] discovered in [12]. It preserves the preferred
answer sets of these semantics and admits additional ones, which were rejected
because of preferences between non-conflicting rules. We also present a simple
and natural transformation from logic programs with preferences to logic pro-
grams without preferences such that the answer sets of the transformed program
(modulo new special-purpose literals) are exactly the preferred answer sets of an
original one.

The rest of the paper is organized as follows. Section 2 recapitulates prelim-
inaries from logic programming and answer set semantics. Section 3 informally
describes the approach. Section 4 develops an alternative definition of the answer
set semantics that is extended to a preferred answer set semantics in Section 5.
Section 6 presents a transformation from logic programs with preferences to logic
programs without preferences. Section 7 analyses the properties of the seman-
tics. In Section 8 we show the connection between the semantics and existing
approaches. Section 9 summarizes the paper.

All the proofs not presented here can be found in the technical report [15].

2 Preliminaries

Let At be a set of all atoms. A literal is an atom or expression ¬a, where a is an
atom. A rule is an expression of the form l0 ← l1, . . . , lm,not lm+1, . . . ,not ln,
where 0 ≤ m ≤ n, and each li (0 ≤ i ≤ n) is a literal. Given a rule r of the above
form we use head(r) = l0 to denote the head of r, body(r) = {l1 . . . ,not ln}
the body of r. Moreover, body+(r) = {l1, . . . , lm} denotes the positive body of
r, and body−(r) = {lm+1, . . . , ln} the negative body of r. For a set of rules R,
head(R) = {head(r) : r ∈ R}. A logic program is a finite set of rules.

A set of literals S is consistent iff a ∈ S and ¬a ∈ S holds for no atom
a. A set of literals S satisfies: (i) the body of a rule r iff body+(r) ⊆ S, and
body−(r)∩S = ∅, (ii) a rule r iff head(r) ∈ S whenever S satisfies body(r), (iii) a
logic program P iff S satisfies each rule of P .

A logic program P is head-consistent [14] iff head(P ) is consistent. A logic
program without not is called positive.

For a positive logic program P , an answer set is defined as the least consistent
set of literals satisfying P , and we denote it by M(P ).

The Gelfond-Lifschitz reduct of a program P w.r.t. a set of literals S, denoted
PS , is the set {head(r)← body+(r) : r ∈ P and body−(r) ∩ S = ∅}.
Definition 1 (Answer sets [7]). A consistent set of literals S is an answer
set of a logic program P iff S is an answer set of PS.
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We will use AS(P ) to denote the set of all the answer sets of a logic program P .
For a set of literals S, we also denote ΓP (S) = {r ∈ P : body+(r) ⊆

S and body−(r) ∩ S 6= ∅}.
We will say that a set of literals S defeats a rule r iff body−(r) ∩ S 6= ∅. A

set of rules R defeats a rule r iff head(R) defeats r.
A dependency graph of a program P is an oriented labeled graph where (i) the

literals are the vertices, (ii) there is an edge labeled +, called positive, from a
vertex a to a vertex b iff there is rule r ∈ P with head(r) = a and b ∈ body+(r),
(iii) there is an edge labeled −, called negative, from a vertex a to a vertex b iff
there is rule r ∈ P with head(r) = a and b ∈ body−(r).

A program P is called call-consistent [9, 11] iff its dependency graph contains
no cycle with an odd number of negative edges.

Definition 2. A logic program with preferences is a pair (P,<) where: (i) P
is a logic program, and (ii) < is a transitive and asymmetric relation on P . If
p < r for p, r ∈ P we say that r is preferred over p.

3 Informal Presentation

The logic programming way of encoding conflicting rules is adding guards to
rules in the form of default negated literals. They prevent a program to have
an answer set with conflicting literals, and cause the program to have multiple
answer sets if both the conflicting rules are “applicable”.

Example 1. Consider the well known penguin-fly program P :

r1: flies ← bird,not ¬flies
r2: ¬flies ← penguin,not flies
r3: bird ←
r4: penguin ←

The rules r1 and r2 have contrary heads, and contain guards not ¬flies and
not flies. Consequently, the program has the answer sets A1 = {bird, penguin,
flies}, and A2 = {bird, penguin,¬flies} generated by the rules R1 = ΓP (A1) =
{r1, r3, r4} and R2 = ΓP (A2) = {r2, r3, r4}, respectively.

An answer set can be associated with a set of rules that generate it. We can
alternatively see the answer set semantics as a guess and test whether a set of
rules is a generating set of rules: (i) we guess a set R of all the generating rules
of an answer set, (ii) we compute the reduct PR – we remove each rule of P that
is defeated by R, (iii) we compute the set Q(PR) of all the rules that have the
positive bodies supported in a non-cyclic way (iv) if our guess R coincides with
Q(PR), then R is a set of all the generating rules of an answer set S = head(R).

The question is how the semantics changes in presence of preferences. In-
formally, our understanding of preferences on rules is as follows. It cannot be
the case that a rule is made “inapplicable” because of a less preferred conflicting
rule. This informal understanding of preferences is realized here as a condition
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that during construction of a reduct a rule cannot be removed because of another
conflicting less preferred rule.

Example 2. Now consider the program from Example 1 with the rule r2 being
preferred over the rule r1. We expect the program to have the unique preferred
answer set A2.

Assume the guess R1 = {r1, r3, r4}. We have that R1 ⊆ PR1 as R1 defeats
no rule from R1. We see that r2 can be potentially removed as r1 ∈ R1 and
head(r1) ∈ body−(r2). However, we keep it as r2 and r1 are conflicting, and r1
is less preferred than r2. Hence PR1 = {r1, r2, r3, r4}. All the positive bodies
of the rules from PR1 are supported in a non-cyclic way, i.e., Q(PR1) = PR1 .
Since Q(PR1) 6= R1, we have that A1 = head(R1) is not a preferred answer set.
Analogously we get that A2 = head(R2) is a preferred answer set.

In the next section we make precise the alternative definition of answer sets,
upon which the definition of preferred answer sets is built.

4 Alternative Definition of Answer Sets

When working with preferences on rules, we need to work on the level of rules
rather than on the level of literals. We need to check which rules are used to
generate an answer set, compare the rules w.r.t. preference relation, make a rule
inapplicable, etc. Therefore in order to keep the definition of preferred answer
sets as simple as possible, we reformulate answer set semantics in the terms of
sets of rules rather than sets of literals.

First, we define when a set of rules positively satisfies the program. It is an
alternative notion to the notion that a set of literals satisfies a positive program.

Definition 3 (Positive satisfaction). Let P be a set of rules. A set of rules
R ⊆ P positively satisfies P iff for each rule r ∈ P we have that: If body+(r) ⊆
head(R), then r ∈ R. We will use Q(P ) to denote the least (w.r.t. ⊆) set of
rules that positively satisfies P .

Informally, Q(P ) is the set of the rules that are applied during the bottom-up
evaluation of a program P .

Example 3. Consider the following program P

r1: a ← b r3: a ←
r2: b ← r4: d ← c

{a, b} and {a, b, d} satisfy the program. Alternatively {r1, r2, r3} and {r1, r2, r3, r4}
positively satisfy the program. We also have that M(P ) = {a, b}. Alternatively
Q(P ) = {r1, r2, r3}. Note that head(Q(P )) =M(P ).

Second, we define an alternative version of Gelfond-Lifschitz reduction.
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Definition 4 (Reduct). Let P be a logic program, and R ⊆ P be a set of rules.
The reduct PR is obtained from P by removing each rule r with head(R) ∩
body−(r) 6= ∅.

Now, we are ready to define answer sets.

Definition 5 (Generating set). Let P be a logic program. A set of rules R ⊆
P is a generating set of P iff R = Q(PR).

Definition 6 (Answer set). Let P be a logic program. A consistent set of
literals S is an answer set of P iff there is a generating set R such that head(R) =
S.

The following example illustrates the alternative definition of answer sets
alongside the original one.

Example 4. Consider the following program P :

r1: a ← not b
r2: c ← d,not b
r3: b ← not a

We will show that S = {a} is an answer set.
Gelfond-Lifschitz definition alternative definition

guess S = {a} R = {r1}
reduct PS = {a←, c← d} PR = {r1, r2}

r3 is removed as
body−(r3) ∩ head(R) 6= ∅

“min model” M(PS) = {a} Q(PR) = {r1}
r2 is not included as

d ∈ body+(r2) cannot be derived
test M(PS) = S Q(PR) = R

conclusion S is an answer set R is a generating set and
head(R) = S is an answer set

The next propositions justify the name “generating set”. It turns out that an
answer set S of a program P is represented by a unique generating set, namely
the set ΓP (S).

Proposition 1. Let P be a logic program. Let R1 and R2 be generating sets
such that head(R1) = head(R2). Then R1 = R2.

Proposition 2. Let P be a logic program. Let R be a generating set, and S be
a consistent set of literals such that S = head(R).

Then ΓP (S) = R.

Theorem 1. Let P be a logic program. A consistent set of literals S is an
answer set of P (according to Definition 6) iff ΓP (S) is a generating set and
head(ΓP (S)) = S.
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The alternative definition of answer sets defines the same answer sets as the
Gelfond-Lifschitz definition does.

Theorem 2. Let P be a logic program. A consistent set of literals S is an answer
set (according to Definition 1) iff S is an answer set (according to Definition 6).

5 Preferred Answer Sets

In this section, we define preferred answer sets by formalizing the intuitions from
Section 3.

In order to develop a definition of preferred answer sets we need to make
clear what exactly a conflict is.

Definition 7 (Conflict). Let r1, r2 be rules. We say that r1 and r2 are con-
flicting iff: (i) head(r1) ∈ body−(r2), and (ii) head(r2) ∈ body−(r1).

We obtain the definition of preferred answer sets by requiring in Definition
4 that less preferred conflicting rules cannot cause a rule to be removed.

Definition 8 (Override). Let P = (P,<) be a logic program with preferences.
Let r1 and r2 be rules. We say that r1 overrides r2 iff (i) r1 and r2 are conflicting,
and (ii) r2 < r1.

Definition 9 (Reduct). Let P = (P,<) be a logic program with preferences,
and R ⊆ P be a set of rules. The reduct PR is obtained from P by removing
each rule r ∈ P such that there is a rule q ∈ R such that:

– head(q) ∈ body−(r), and
– r does not override q.

Note that Definition 4 and Definition 9 differ only in the second condition.
After removing it, the obtained definition is equivalent with Definition 4. More-
over, when a preference relation is empty, the reduct coincides with the reduct
for logic programs without preferences as defined in Definition 4, which in turn
corresponds to Gelfond-Lifschitz reduct.

Proposition 3. Let P = (P,<) be a logic program with preferences. Let R ⊆ P
be a set of rules. If <= ∅, then PR = PR.

Definition 10 (Preferred generating set). Let P = (P,<) be a logic pro-
gram with preferences. A set of rules R ⊆ P is a preferred generating set iff
R = Q(PR).

Proposition 4. Let P = (P,<) be a logic program with preferences, and R ⊆ P
be a set of rules. If R is a preferred generating set, then R is a generating set.

Definition 11 (Preferred answer set). Let P = (P,<) be a logic program
with preferences. A consistent set of literals S is a preferred answer set of P iff
there is a preferred generating set R such that head(R) = S.
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We will use PAS(P) to denote the set of all the preferred answer sets of a
logic program with preferences P.

From Proposition 4 we have that analogous versions of Proposition 1 and
Theorem 1 hold also for preferred answer sets.

Notice that the definition of preferred answer sets is almost identical to the
definition of answer sets. The only difference is the additional simple condition
in the definition of reduct. Consider we would adapt the original definition of
reduct rather than the alternative one. It would be as follows: Given a set of
literals S we remove from a program P each rule r such that there exists a rule
q where ... Since the guess S is a set of literals, it is not straightforward where
to get q from, i.e., we would have to introduce additional conditions that q must
meet. We would then have to justify those conditions. On the other hand, the
use of the alternative definition of reduct has completely freed us from this job
as no such conditions are needed. Exactly this elegance was the main motivation
for the alternative definition of answer sets.

6 Transformation to Logic Programs without Preferences

A logic program with preferences under the preferred answer set semantics as
defined in Definition 11 can be transformed to a logic program without prefer-
ences such that the preferred answer sets of the original program are exactly the
standard answer sets of the transformed program (modulo new special-purpose
literals).

The basic idea of the transformation is to remove a default negated literal
from the body of a rule if it is the head of a less preferred conflicting rule.

Example 5. Consider the program in the first column.

r1: a ← not b a ←
r2: b ← not a 7→ b ← not a

r2 < r1

We have that r1 and r2 are conflicting, and r1 is preferred. Hence r2 cannot
defeat the rule r1. Therefore we remove not b from r1’s body.

However, the situation is complicated if at least two rules have the same
head. In general, we have to distinguish which rule can defeat a rule and which
cannot. In order to do so, for each rule r we introduce a special-purpose literal
nr that denotes that r is applicable, and replace default negated literal not x by
a collection of not nr such that head(r) = x.

Example 6. Consider the program in the first column. First (the second column)
we split a rule into two rules: (i) the first deriving nr whenever r is applicable,
and (ii) the second deriving head(r) of the original rule. We also use nt literals
in the negative bodies. Next (the third column) we remove not nq from the
negative body of r if q is a less preferred conflicting rule.
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r1: a ← not b nr1 ← not nr2 ,not nr3 nr1 ← not nr3
r2: b ← not a a ← nr1 a ← nr1
r3: b ← c 7→ nr2 ← not nr1 7→ nr2 ← not nr1

r2 < r1 b ← nr2 b ← nr2
nr3 ← c nr3 ← c
b ← nr3 b ← nr3

The next definition formalizes the transformation.

Definition 12 (Transformation). Let P = (P,<) be a logic program with
preferences, and r ∈ P be a rule. The names of r’s potential blockers are

BP(r) = {nq : q ∈ P, head(q) ∈ body−(r), and r does not override q}

The transformation tP(r) of a rule r is the set of the rules

head(r)← nr (1)

nr ← body+(r),not BP(r) (2)

The transformation t(P) of a program P is given by
⋃
r∈P tP(r).

It can be easily seen from the definition that the transformation can be com-
puted in polynomial time, and the size of the transformed program is polynomial
in the size of an original one.

The transformation captures semantics of preferred answer sets.

Theorem 3. Let P = (P,<) be a logic program with preferences. Let S be a
consistent set of literals (of the program P). Let T be a consistent set of literals
(of the program t(P)). Let NP(S) = {nr : r ∈ ΓP (S)} and N(P) = {nr : r ∈ P}.

If S is a preferred answer set of P, then S ∪NP(S) is an answer set of t(P).
If T is an answer set of t(P), then T \N(P) is a preferred answer set of P.

Next we show that the transformation does not introduce cycles with odd
number of negative edges.

Proposition 5. Let P = (P,<) be a logic program with preferences. If P is
call-consistent, then t(P) is call-consistent.

Proof. In the following we use the notation: t(l) = l if l is a literal from P , and
t(nr) = head(r) for r ∈ P .

Assume there is an odd cycle in the t(P)’s dependency graph: there is a
sequence l1, s1, . . . , sn−1, ln = l1 such that (li, li+1, si) is a labeled edge for each
i < n, and for some i < n we have si = −. Assume a literal li and an edge
(li, li+1, s).

If li is a literal from P , then the edge came from a rule of the form (1). Hence
li+1 = nr for some r ∈ P , s = +, and head(r) = li.

If li = nr for some r ∈ P , then: (i) If s = + then the edge came from a rule of
the form (2). Hence li+1 is a literal from P , li+1 ∈ body+(r), and (t(li), t(li+1),+)

9



is an edge in P ’s dependency graph. (ii) If s = − then the edge came from a
rule of the form (2). Hence li+1 = np for some p ∈ P , head(p) ∈ body−(r), and
(t(li), t(li+1),−) is an edge in P ’s dependency graph.

Now, we create a new sequence by iterating over the sequence l1, . . . , ln: (i) If
i < n and li is a literal of the program P skip li and si. From the above analysis
we have t(li+1) = li, and si = +, hence the literal will be added in the next
step, and no negative edge is lost, (ii) If i < n and li = nr for some r ∈ P , add
t(li), si to the end of the resulting sequence. (iii) If i = n add t(li) to the end
of the resulting sequence. From the above analysis we have that the sequence
forms a cycle in P ’s dependency graph, and the number of negative edges is
preserved. ut

If P is not call-consistent, then t(P) can be call-consistent for some < and
not call-consistent for other <.

Example 7. Consider the program P = (P,<):

r1: a ← not b,not c
r2: b ← not a,not c
r3: c ← not b

If r3 < r2 < r1, then t(P):

nr1 ← not c nr2 ← not a nr3 ← not b
a ← nr1 b ← nr2 c ← nr3

is not call-consistent.
If r1 < r2 < r3, then t(P):

nr1 ← not b,not c nr2 ← not c nr3 ←
a ← nr1 b ← nr2 c ← nr3

is call-consistent.

7 Properties of Preferred Answer Sets

In this section we show that the semantics enjoys several nice properties. First
of all, the semantics is selective, i.e., each preferred answer set is an answer set.

Theorem 4. Let P = (P,<) be a logic program with preferences. Then PAS(P) ⊆
AS(P ).

Proof. The theorem follows directly from Proposition 4. ut

Second, for the two simple classes of programs: (i) programs with an empty
preference relation, and (ii) stratified programs, the semantics is equivalent to
the answer set semantics.

Theorem 5. Let P = (P, ∅) be a logic program with preferences. Then PAS(P) =
AS(P ).
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Theorem 6. Let P = (P,<) be a logic program with preferences where P is
stratified. Then PAS(P) = AS(P ).

Proof. If P is stratified, then there are no conflicting rules. Hence PR = PR. ut
Next we show that our semantics satisfies both principles for preferential

reasoning proposed in [2] by Brewka and Eiter.
Principle I tries to capture the meaning of preferences. If two answer sets are

generated by the same rules except for two rules, the one generated by a less
preferred rule is not preferred.

Principle I ([2]) Let P = (P,<) be a logic program with preferences, A1, A2

be two answer sets of P . Let ΓP (A1) = R ∪ {d1} and ΓP (A2) = R ∪ {d2} for
R ⊂ P . Let d2 < d1. Then A2 6∈ PAS(P).

Theorem 7 (Principle I is satisfied). Preferred answer sets as defined in
Definition 11 satisfy Principle I.

Proof. Assume that A2 is a preferred answer set. Hence ΓP (A2) is a preferred
generating set, i.e., ΓP (A2) = Q(PΓP (A2)). We have that d2 is the only rule
r ∈ ΓP (A2) with head(r) ∈ body−(d1). We also have that d1, and d2 are con-
flicting, and d2 < d1. Hence d1 ∈ PΓP (A2), and consequently d1 ∈ ΓP (A2). A
contradiction. Therefore ΓP (A2) is not a preferred generating set. ut

Principle II says that a particular type of preferences is irrelevant.

Principle II ([2]) Let P = (P,<) be a logic program with preferences, S ∈
PAS(P) and r be a rule such that body+(r) 6⊆ S. Let P ′ = (P ′, <′) be a logic
program with preferences, where P ′ = P ∪ {r} and <′ ∩(P × P ) =<. Then
S ∈ PAS(P ′).

Theorem 8 (Principle II is satisfied). Preferred answer sets as defined in
Definition 11 satisfy Principle II.

Proof. Let S be a preferred answer set of P, i.e., there is a set of rules R ⊆ P
such that R = Q(PR) and head(R) = S. We show that R = Q(P ′R).

First we show that R positively satisfies P ′R. Assume p ∈ P ′R such that
body+(p) ⊆ head(R). Hence p ∈ P ′ and p 6= r. Hence p ∈ P and p ∈ PR. As R
positively satisfies PR we have that p ∈ R.

Second, we show that no proper subset of R positively satisfies P ′R. Assume
that V ⊂ R positively satisfies P ′R. Since PR ⊆ P ′R, we have that V positively
satisfies PR. A contradiction with R = Q(PR). Hence such V does not exist.

Therefore Q(P ′R) = R. ut
On the other hand, the semantics violates Principle III1. It requires that a

program has a preferred answer set whenever a standard answer set exists. It
follows the view that the addition of preferences should not cause a consistent
program to be inconsistent.

1 It is an idea from Proposition 6.1 from [2]. Brewka and Eiter did not consider it as
a principle. On the other hand [13] did.

11



Principle III Let P = (P,<) be a logic program with preferences. If AS(P ) 6=
∅, then PAS(P) 6= ∅.

Theorem 9 (Principle III is violated). Preferred answer sets as defined in
Definition 11 violate Principle III.

Proof. Consider the following program P = (P,<):

r1: a ← not b r3: inc ← a,not inc
r2: b ← not a r2 < r1

P has the unique answer set {b}. However it is not a preferred one. ut

Even though the semantics does not guarantee existence of a preferred answer
set when a standard answer set exists for the class of all programs (which is
believed to rise computational complexity), it ensures existence of a preferred
answer set for a subclass of programs.

Theorem 10. Let P = (P,<) be a logic program with preferences such that P
is call-consistent and head-consistent. Then PAS(P) 6= ∅.

Proof. Since P is head-consistent, we can assume explicitly negated literals to
be new literals and view t(P) as a normal logic program. From Proposition 5 we
have that t(P ) is call-consistent. Then from Theorem 5.8 from [5] we get that
AS(t(P)) 6= ∅. Finally we get PAS(P) 6= ∅ using Theorem 3. ut

Theorem 11. Deciding whether PAS(P) 6= ∅ for a logic program with prefer-
ences P is NP -complete.

Proof. Membership: t(P) can be computed in polynomial time. Using Theorem 3
the decision problem whether PAS(P) 6= ∅ can be reduced to the decision
whether AS(t(P)) 6= ∅, which is in NP . Hardness: Deciding whether AS(P ) 6= ∅
for a logic program P is NP -complete. Using Theorem 5 we can reduce it to
decision whether PAS((P, ∅)) 6= ∅. ut

8 Comparison with Existing Approaches

In this section we investigate the connection of preferred answer sets as defined
in Definition 11 to existing approaches. We focus our attention to the selective
approaches that stay in the NP complexity class.

In [12] Schaub and Wang have shown that the approaches PASDST [4],
PASWZL [17] and PASBE [2] form a hierarchy. We will use PASDST (P),
PASWZL(P) and PASBE(P) to denote the set of all the preferred answer sets
of a program according to the respective semantics.

Theorem 12 ([12]). Let P = (P,<) be a logic program with preferences. Then
PASDST (P) ⊆ PASWZL(P) ⊆ PASBE(P) ⊆ AS(P ).
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We show that our semantics continues in this hierarchy. We start by an
alternative definition of our semantics.

Definition 13. Let P = (P,<) be a logic program with preferences. An answer
set X of P is called <-satisfying iff for each p ∈ ΓP (X) and r ∈ P \ΓP (X) such
that p < r we have that:

– body+(r) 6⊆ X, or
– body−(r) ∩ {head(t) : t ∈ ΓP (X) and r does not override t} 6= ∅.

Lemma 1. Let P = (P,<) be a logic program with preferences. A consistent set
of literals X is a preferred answer set iff X is a <-satisfying answer set of P .

Proof. (⇒) There is a set of rules R = Q(PR) such that X = head(R).
Assume there are p ∈ ΓP (X) and r ∈ P \ ΓP (X) such that p < r. Since R

is a generating set, we have R = ΓP (X). Hence r 6∈ R = Q(PR). From that
body+(r) 6⊆ X = head(R) or r 6∈ PR. If r 6∈ PR, then there must be a rule t ∈ R
such that head(t) ∈ body−(r) and r does not override t.

(⇐) Let R = ΓP (X) and consider PR. Since R = ΓP (X), we have R ⊆ PR
and R ⊆ Q(PR).

Assume that Q(PR) 6⊆ R, i.e., there is a rule r ∈ Q(PR) such that r 6∈ R.
Since r ∈ Q(PR), we have that body+(r) ⊆ head(Q(PR)), i.e., every literal

in body+(r) is supported by a rule in Q(PR).
As r 6∈ R, we have that body+(r) 6⊆ X = head(R) or body−(r)∩head(R) 6= ∅.
If body−(r) ∩ head(R) 6= ∅, there is a rule p ∈ R with head(p) ∈ body−(r).

Since r ∈ PR, we have that r overrides p. Hence there is p ∈ ΓP (X), r ∈
P \ ΓP (X), and p < r.

Assume there is t ∈ R such that head(t) ∈ body−(r) and r does not override
t. Then r 6∈ PR. A contradiction. Hence no such t exists. Therefore we get
body+(r) 6⊆ X as X is <-satisfying.

We have shown that body+(r) 6⊆ X = head(R). Then there is a literal in
body+(r) that is not supported by a rule from R. Hence there is a literal in
body+(r) that is supported solely by a rule from Q(PR) \ R. Hence each rule
in Q(PR) \R positively depends on a literal that can be derived only by a rule
from Q(PR) \ R. Then from minimality of Q(PR) we get that r 6∈ Q(PR). A
contradiction. Therefore Q(PR) ⊆ R.

Finally Q(PR) = R, and X = head(R) is a preferred answer set of P. ut

Definition 14 (Alternative definition of PASBE [12]). Let P = (P,<) be
a logic program with preferences. An answer set X of P is a BE preferred answer
set of P iff there is an enumeration 〈ri〉 of ΓP (X) such that for each i, j:

– if ri < rj, then j < i, and
– if ri < r and r ∈ P \ ΓP (X), then
• body+(r) 6⊆ X or
• body−(r) ∩ {head(rj) : j < i} 6= ∅ or
• head(r) ∈ X
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The difference between our semantics and PASBE can be seen directly from
Definitions 13 and 14. One of the main differences is that Definition 13 com-
pletely drops the condition for enumeration of the rules, i.e., preferences are not
interpreted as an order, in which the rules are applied. As the result, the second
condition requiring how a preferred rule is defeated changes. A preferred rule
can be defeated only by a rule that is not less preferred and conflicting. Hence
the second difference: an explicit definition of conflict is used, and preferences
between non-conflicting rules are ignored. The condition head(r) ∈ X is also
completely dropped.

Very similar differences hold for PASDST and PASWZL (Definitions of
PASDST and PASWZL, similar to Definition 14, can be found in [12]).

Theorem 13. Let P be a logic program with preferences. Then PASBE(P) ⊆
PAS(P).

Proof. Let P be a logic program with preferences and X ∈ PASBE(P). Then
there is an enumeration 〈ri〉 of ΓP (X) satisfying the conditions from Defini-
tion 14.

Let p ∈ ΓP (X) and r ∈ P\ΓP (X) such that p < r. Assume that (i) body+(r) ⊆
X, and (ii) for each rule t ∈ ΓP (X) such that head(t) ∈ body−(r) it holds that
r overrides t.

Since body+(r) ⊆ X and r 6∈ ΓP (X), we have that body−(r) ∩X 6= ∅. There
is a rule t ∈ ΓP (X) with head(t) ∈ body−(r). Then t and r are conflicting, i.e.,
head(r) ∈ body−(t). Since t ∈ ΓP (X) we have that head(r) 6∈ X.

Since body+(r) ⊆ X and head(r) 6∈ X, we have that there is a rule rk ∈
ΓP (X) with head(rk) ∈ body−(r) for k < i. From the conditions above, we have
that rk and r are conflicting and rk < r. By the same argument as before, there
is a rule rl ∈ ΓP (X) with head(rl) ∈ body−(r) and rl < r for some l < k, and
so on, until we reach the beginning of the enumeration and no such rule can be
found. A contradiction. Hence (i) body+(r) 6⊆ X, or (ii) body−(r) ∩ {head(t) :
t ∈ R and r does not override t} 6= ∅.

Therefore X is <-satisfying, and X ∈ PAS(P). ut

Theorem 14. It does not hold PAS (P) ⊆ PASBE(P) for each logic program
with preferences P.

Proof. Consider the program P from Example 5.5 from [2]

r1: c ← not b
r2: b ← not a r2 < r1

The program is stratified. PASBE(P) = ∅. On the other hand PAS(P) = {{b}}.

Theorem 15. Let P = (P,<) be a logic program with preferences.
Then PASDST (P) ⊆ PASWZL(P) ⊆ PASBE(P) ⊆ PAS(P) ⊆ AS(P ).

Proof. It follows directly from Theorem 4, Theorem 12 and Theorem 13. ut
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Theorem 14 and Theorem 15 can be interpreted as follows. Our semantics
continues in the hierarchy of approaches PASDST , PASWZL and PASBE . It
preserves the preferred answer sets of these semantics and admits additional
ones, which were rejected because of preferences between non-conflicting rules.

Theorem 6 is another distinguishing feature of our semantics. None of the
approaches PASDST , PASWZL and PASBE satisfies it. We consider Theorem 6
to be important as a stratified program contains no conflicting rules and its
meaning is given by a unique answer set. Theorem 6 also allows us to resolve
the problematic program shown in the proof of Theorem 14.

9 Conclusion and Future Work

In this paper we have developed a descriptive semantics for logic programs with
preferences on rules. The main idea is to add an additional condition to the
Gelfond-Lifschitz reduction: a rule cannot be removed because of a conflicting
less preferred rule. As a result, the approach uses an explicit definition of con-
flicting rules and ignores preferences between non-conflicting rules. This feature,
not present in other approaches, is important for scenarios where preferences
between rules are automatically induced from preferences between modules, as
we do not want such preferences to cause any side effects.

The semantics continues in the hierarchy of approaches [4, 17, 2]. It preserves
the preferred answer sets of these semantics and admits additional ones, which
were rejected because of preferences between non-conflicting rules. The semantics
satisfies both principles for preferential reasoning proposed in [2]. In contrast
to [4, 17, 2], it guarantees existence of a preferred answer set for the class of
call-consistent head-consistent extended logic programs. The semantics can be
also characterized by a transformation from logic programs with preferences to
logic programs without preferences such that the preferred answer sets of an
original program correspond to the answer sets of the transformed program.
The transformation is based on a simple idea: we remove a default negated
literal from a rule’s body if it is derived by a conflicting less preferred rule. We
have also developed a prototypical solver for preferred answer sets using meta-
interpretation technique from [6]. A description of the solver can be found in the
technical report [15] and an implementation can be downloaded from [16].

In this paper we have only considered the most common type of conflict – the
heads of two conflicting rules are in each others negative bodies. In the future
work we plan to consider indirect conflicts – literals in negative bodies are not
derived directly by conflicting rules, but via other rules. Preliminary results in
this direction can be found in technical report [15].
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Construction of Explanation Graphs from
Extended Dependency Graphs for Answer Set

Programs

Ella Albrecht, Patrick Krümpelmann, Gabriele Kern-Isberner

Technische Universität Dortmund

Abstract. Extended dependency graphs are an isomorphic represen-
tation form for Answer Set Programs, while explanation graphs give an
explanation for the truth value of a literal contained in an answer set. We
present a method and an algorithm to construct explanation graphs from
a validly colored extended dependency graph. This method exploits the
graph structure of the extended dependency graph for gradually build
up explanation graphs. Moreover, show interesting properties and re-
lations of the graph structures, such as loops and the answer set and
the well-founded semantics. We also present two different approaches for
the determination of assumptions in an extended dependency graph, an
optimal but exponential and a sub-optimal but linear one.

1 Introduction

Graphs are an excellent tool for the illustration and understanding of
non-monotonic reasoning formalisms and the determination and expla-
nation of models and have a long history. For answer set programs two
graph based representations have recently been proposed: extended de-
pendency graphs (EDG) [2] and explanation graphs (EG) [1]. EDGs are
an isomorphic representation of extended logic programs and use a col-
oring of the nodes to determine answer sets. explanation graphs on the
other hand afford an explanation for the appearance of a single literal
in an answer set. In [1] it was conjectured that there is a strong rela-
tion between a colored extended dependency graph and an explanation
graph.
In this work we present a method to construct explanation graphs from
a successfully colored extended dependency graph and prove its correct-
ness. The way of proceeding exploits the structure of the EDG and the
fact that explanation graphs can be built up gradually from smaller
sub-explanation graphs. In [1] assumptions are introduced, which de-
scribe literals whose truth value has to be guessed during the determina-
tion process of answer sets, but there is actually no appropriate method
given to determine assumptions. We present two approaches which ex-
tract assumptions from an EDG. This is the most difficult part of the
construction of EGs, since intra-cyclic as well as inter-cyclic dependen-
cies between nodes have to be considered. The first approach makes use
of basic properties of assumptions and the Graph for reduce the size of
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assumptions in linear runtime. The second approach exploits cycle struc-
tures and their interdependencies to determine the minimal assumptions,
which comes with the cost of exponential runtime.
In Section 2 we give an introduction to answer set programming and
in 3 we present extended dependency graphs and explanation graphs.
Section 4 deals with the construction process of the EGs from a validly
colored EDG. The fifth section deals with the different approaches of
determining assumptions in an EDG.

2 Answer Set Programming

We consider extended logic programs under the answer set semantics [3].
An extended logic program P is a set of rules r of the form r : h ←
a1, ..., an, not b1, ..., not bn. where h, a1, ...am, b1, ..., bn are literals. A lit-
eral may be of the form x or ¬x where x is a propositional symbol called
atom and ¬ is the classical negation. head(r) = {h} denotes the head,
pos(r) = {a1, ..., am} denotes the positive, and neg(r) = {b1, ..., bn} the
negative body literals of a rule. The herbrand basis H(P ) of a logic pro-
gram P is the set of all grounded literals of P . A literal is grounded, if
it does not contain a variable. In this work, we assume that the logic
programs are grounded, i. e. every literal appearing in the program is
grounded.
Let M ⊆ H(P ) be a consistent set of literals, i. e. the M does not con-
tain any complementary literals. M is closed under P if head(r) ∈ M
whenever body(r) ⊆M for every rule r ∈ P . M is an answer set for P if
M is closed and M is minimal w.r.t. set inclusion.
Answer set semantics may yield multiple models resp. answer sets. An-
other semantics for logic programs is the well-founded semantics [6]. Its
basic idea is that there exist literals which have to be true with certainty
and literals which have to be false with certainty. Under the answer set
semantics such information gets lost if no answer set exists.
For a logic program P and a logic program P+ that we get if we remove
all rules with negative body literals, the sequence (Ki, Ui)i≥0 is defined
as

K0 = lfp(TP+,∅), U0 = lfp(TP,K0), Ki = lfp(TP,Ui−1), Ui = lfp(TP,Ki)

where TP,V (S) = {a | ∃r ∈ P : head(r) = a, pos(r) ⊆ S, neg(r) ∩ V =
∅}. The well-founded model is then WFP = 〈W+,W−〉 where W+ = Kj

is the well founded set and W− = H(P ) \ Uj is the unfounded set for
the first index j with 〈Kj , Uj〉 = 〈Kj+1, Uj+1〉. Literals that are neither
contained in W+ nor in W− are called undefined.

3 Graphs for Answer Set Programs

We introduce two types of graphs, the first graph type is the extended
dependency graph [2]. A main feature of these is their representation
of cycles and handles for those. A cycle consists of several literals that
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are dependent in a cyclic way, e. g. given the two rules r1 : a ← b.
and r2 : b ← a. the literals a and b are interdependent in a cyclic way.
Generally, cycles can be connected in two different ways to the rest of
the program:

– OR-handle: Let the rule r1 : a← β. be part of a cycle where β may
be of the form b or not b. If there exists another rule r2 : a ← δ.
where δ may be of the form d or not d, then δ is an OR-handle for
the cycle to which r1 belongs. The OR-handle is called active if δ is
true.

– AND-handle: If a rule r is part of a cycle and has a condition γ
which is not part of the cycle, that means the rule is of the form
r : a ← β, γ where γ may be of the form c or not c, then γ is an
AND-handle. The AND-handle is called active if γ is false.

An extended dependency graph extends a normal dependency graph in
so far, that it distinguishes between AND- and OR-handles.

Definition 1 (Extended Dependency Graph). The extended de-
pendency graph for a logic program P with its Herbrand base H(P ) is
a directed graph EDG(P ) = (V,E) with nodes V ⊆ H(P ) and edges
E ⊆ V × V × {+,−}.

The set of nodes and edges can be obtained by using the following rules:
V1 There exists a node aki for every rule rk ∈ P where head(rk) = ai.
V2 There exists a node a0i for every atom ai ∈ H(P ) which does not

appear as the head of a rule.
E1 There exists an edge (clj , a

k
i ,+) for every node clj ∈ V iff there is a

rule rk ∈ P where cj ∈ pos(rk) and head(rk) = ai.
E2 There exists an edge (clj , a

k
i ,−) for every node clj ∈ V iff there is a

rule rk ∈ P where cj ∈ neg(rk) and head(rk) = ai
For every logic program a unique EDG can be constructed, this means
a logic program is isomorphic to its representation as an EDG in the
sense that the structure of the program is reflected one-to-one by the
structure of the EDG. Properties of a logic program can be obtained
from properties of the corresponding EDG and vice versa. One of these
properties is the coloring. A valid coloring corresponds to an answer set
of a logic program. A green colored node represents a rule where the
head can be deduced and a red colored node represents a rule where the
head cannot be deduced. A literal is contained in the answer set if there
exists a node that represents the literal which is colored green. A literal
is not contained in the answer set if all to nodes that correspond to the
literal are colored red.

Definition 2 (Valid coloring of an EDG). Let a program P be given.
The coloring ν : V → {green, red} of a graph EDG(P ) = (V,E) is valid,
if the following conditions are met:
1. ∀i, k where k ≥ 1 is ν(aki ) = green, if aki has no incoming edge.
2. ∀i, k is ν(aki ) = green, if the following two conditions are met

(a) ∀j,m where (amj , a
k
i ,+) ∈ E is: ∃h, such that ν(ahj ) = green

(b) ∀j,m where (amj , a
k
i ,−) ∈ E is: ν(amj ) = red

3. ∀i, k is ν(aki ) = red, if at least one of the two following conditions is
met
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(a) ∃j,m where (amj , a
k
i ,+) ∈ E and ∀h is ν(ahj ) = red

(b) ∃j,m where (amj , a
k
i ,−) ∈ E and ν(amj ) = green

4. For every positive cycle C the following condition is met: If ∀i, k
where aki ∈ C is ν(aki ) = green, then ∃i and r 6= k where ν(ari ) =
green.

P1 := {a← not b.

b← not a.

c← {not a}.
c← e.

d← c.

e← not d.

f ← [e], not f.}
(a) Logic program P1

a1 b2

c3 c4

d5 e6 f7−

− +

−

+

−

−

+

+

(b) Successfully colored EDG for program
P1

Fig. 1. A logic program and the corresponding EDG

Example 1 Figure 1 shows a logic program (a) and the corresponding
EDG (b). The EDG has a valid coloring which represents the answer set
{b, c, d}. The AND-handle is marked in the program with [ ] and is dotted
in the EDG. The OR-handle is marked in the program with { } and is
dashed in the EDG.

The second graph type is the explanation graph (EG). In contrast to
the EDGs, which visualize the structure of a whole logic program, EGs
provide an explanation why a single literal appears or does not appear
in an answer set and is always constructed with regard to an answer set
and a set of assumptions. Assumptions are literals for which no explana-
tion is needed since their value is assumed. All literals that are qualified
for being used as assumptions are called tentative assumptions and are
formally defined as follows:

Definition 3 (Tentative Assumptions). Let P be a logic program,
M an answer set of P and WF = 〈WF+,WF−〉 the well-founded model
of P . Then the set of tentative assumptions of P w.r.t. M is

T AP (M) = {a | a ∈ NANT (P ) and a /∈M and a /∈WF+ ∪WF−}
where NANT (P ) is the set of all literals appearing in P as a negative
body literal: NANT (P ) = {a | ∃r ∈ P : a ∈ neg(r)}
Given a logic program P and a subset U ⊆ T AP (M) of tentative as-
sumptions, one can obtain the negative reduct NR(P,U) of a program
P w.r.t. U by removing all rules where head(r) ∈ U .
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Definition 4 (Assumption). An assumption of a program P regarding
an answer set M is a set U ⊆ T Ap(M) where the well-founded model of
the negative reduct corresponds to the answer set M , i. e. WFNR(P,U) =
〈M,H(P ) \M〉

This means that setting all literals of the assumption U to false leads to
all literals being defined in the well-founded model.

Explanation graphs base on local consistent explanations (LCE). These
are sets of literals which directly influence the truth value of a literal a.
For a literal a that is contained in the answer set and a rule where a is
the head and all conditions of the rule are fulfilled, i. e. all body literals
are true, the LCE consists of all body literals of the rule. Since there
may exist several fulfilled rules with a as head, a can also have various
LCEs. For a literal a that is not contained in the answer set, an LCE is
a minimal set of literals that together falsify all rules that define a. For
this purpose the LCE has to contain one falsified condition from each
rule.

Definition 5 (Local Consistent Explanation). Let a program P be
given, let a be a literal, let M be an answer set of P , let U be an assump-
tion and let S ⊆ H(P ) ∪ {not a | a ∈ H(P )} ∪ {assume,>,⊥} be a set
of literals.

1. S is an LCE for a+ w.r.t. (M,U), if a ∈M and

– S = {assume} or
– S ∩ H(P ) ⊆ M , {c | not c ∈ S} ⊆ (H(P ) \M) ∪ U and there

exists a rule r ∈ P where head(r) = a and S = body(r). For the
case that body(r) = ∅ one writes S = {>} instead of S = ∅.

2. S is an LCE for a− w.r.t. (M,U), if a ∈ (H(P ) \M) ∪ U and

– S = {assume} or
– S ∩ H(P ) ⊆ (H(P ) \M) ∪ U , {c | not c ∈ S} ⊆ M and S is a

minimal set of literals, such that for every r ∈ P : if head(r) = a
then pos(r) ∩ S 6= ∅ or neg(r) ∩ {c | not c ∈ S} 6= ∅. For the
case S being the empty set one writes S = {⊥}.

In an EDG an edge (aki , a
l
j , s) with s ∈ {+,−} means that the truth

value of literal aj depends on the truth value of literal ai. In an expla-
nation graph the edges are defined the other way round, so that an edge
(ai, aj , s) with s ∈ {+,−} means that aj explains or supports the truth
value of ai. The support of a node ai in an EG is the set of all direct
successors of ai in the EG and is formally defined as follows:

Definition 6 (Support). Let G = (V,E) be a graph with nodes V ⊆
Hp ∪ Hn ∪ {assume,>,⊥} and edges E ⊆ V × V × {+,−}. Then the
support of a node a ∈ V is defined as:

– support(a,G) = {atom(c) | (a, c,+) ∈ E}∪{not atom(c) | (a, c,−) ∈
E},

– support(a,G) = {>} if (a,>,+) ∈ E,

– support(a,G) = {⊥} if (a,⊥,−) ∈ E or

– support(a,G) = {assume} if (a, assume, s) ∈ E where s ∈ {+,−}.
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Definition 7 (Explanation Graph). An explanation graph for a lit-
eral a ∈ Hp ∪ Hn in a program P w.r.t. an answer set M and an as-
sumption U ∈ Assumptions(P,M) is a directed graph G = (V,E) with
nodes V ⊆ Hp ∪ Hn ∪ {assume,>,⊥} and edges E ⊆ V × V × {+,−}
where Hp = {a+ | a ∈ H(P )} and Hn = {a− | a ∈ H(P )}.

The graph for a literal a has to meet the following conditions:
1. The only sinks in the graph are assume, > and ⊥. > is used to

explain facts of the program P , ⊥ is used to explain literals which
do not appear as a head of any rule and assume is used to explain
literals for which no explanations are needed since their value is
assumed to be false.

2. If (c, l, s) ∈ E where l ∈ {assume,>,⊥} and s ∈ {+,−}, then (c, l, s)
is the only outgoing edge for every c ∈ V .

3. Every node c ∈ V is reachable from a.
4. For every node c ∈ V \ {assume,>,⊥} the support support(c,G) is

an LCE for c regarding M and U .
5. There exists no c+ ∈ V , such that (c+, assume, s) ∈ E where s ∈
{+,−}.

6. There exists no c− ∈ V , such that (c−, assume,+) ∈ E.
7. (c−, assume,−) ∈ E iff c ∈ U .

b+ a− assume
− −

(a) EG for b

f− e− d+ c+ a− assume
+ − + − −

(b) EG for f

Fig. 2. EG b and f in P1 w.r.t. M = {b, d, c} and U = {a}

4 Construction of Explanation Graphs

In this section we introduce an approach for the construction of explana-
tion graphs by extracting the required information from a validly colored
extended dependency graph. Suppose we are given an extended depen-
dency graph G = (V,E) with a valid coloring ν : V → {green, red}. In
the first step, we clean up the EDG by removing irrelevant edges and
nodes. Irrelevant edges and nodes are those edges and nodes that do not
have influence on the appearance or non-appearance of a literal in the
answer set. This means they do not provide an explanation for a literal
and hence are not needed for any explanation graph.

Definition 8 (Irrelevant edge, irrelevant node). An edge (aki , a
l
j , s)

is irrelevant if
– ν(aki ) = green, ν(alj) = green and s = −,
– ν(aki ) = green, ν(alj) = red and s = +,
– ν(aki ) = red, ν(alj) = green and s = + or
– ν(aki ) = red, ν(alj) = red and s = −.
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A node aki is irrelevant if ν(aki ) = red and there exists l > 0 where
ν(ali) = green.

If an irrelevant node is removed all its incoming and outgoing edges
are also removed. After removing irrelevant edges and nodes we get an
EDG G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. In the second step,
nodes are gradually marked in the EDG. The marking process starts at
nodes which have no incoming edges, because the explanation graphs for
these nodes do not depend on other nodes. Every time a node is marked,
the explanation graphs for the marked node are built. For this purpose
five types of transformations are defined. The both first transformations
describe the construction of explanation graphs for simple nodes, i. e.
nodes which have no incoming edges in the EDG. The third and fourth
transformation describe the construction of nodes which are dependent
on other nodes, i. e. have incoming edges, distinguished by the color of
the nodes. The last transformation is used for the construction of EGs
for literals that are used as assumptions.

Transformation 1 (Transformation of fact nodes) The EG for a
node aki which has no incoming edges and satifies ν(aki ) = green consists
of a node a+i , a node > and an edge (a+i ,>,+) (Fig. 3a), because such
a node corresponds to a fact of the logic program.

Transformation 2 (Transformation of unfounded nodes) The EG
to a node aki which has no incoming edges and satisfies ν(aki ) = red con-
sists of a node a−i , a node ⊥ and an edge (a−i ,⊥,−)(Fig. 3b).

After marking nodes without incoming edges, we can mark nodes in
positive cycles (cycles that contain only positive edges), that do not have
an active handle since the corresponding literals do not have a supportive
justification and are unfounded in the well-founded model. Since there
exists no active handle for the cycle there is no other explanation for the
nodes of the cycle than the one consisting of the cycle itself (with reversed
edges). Now we continue marking nodes using the following rules until
no more nodes can be marked:
A green node aki can be marked if

– for all alj where (alj , a
k
i ,+) ∈ E′, ν(alj) = green and there exists

n 6= l with anj ∈ V ′, such that anj is marked, and
– for all other nodes alj where (alj , a

k
i , s) ∈ E′ with s ∈ {+,−}, alj is

marked.
That means that a green node can be marked if all its predecessor nodes
are marked. For literals which are represented by multiple green nodes,
it is sufficient if one of these nodes is marked.
A red node aki can be marked if

– ∃(alj , aki ,−) ∈ E′ where ν(alj) = green and alj is marked, or
– ∃(alj , aki ,+) ∈ E′ where ν(alj) = red and all anj ∈ V ′ are marked.

That means that a red node can be marked, if at least one of its prede-
cessor nodes is marked. In case that a predecessor literal is represented
by multiple red nodes, all these nodes have to be marked.
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Lemma 1. The well-founded set W+ corresponds to the set of all marked
green nodes.

Lemma 2. The unfounded set W− corresponds to the set of all marked
red nodes.

Proof sketch. It has to be shown that Ki always contains marked green
nodes and Xi = H(P ) \ Ui always contains marked red nodes. For this
purpose the fixpoint operator TP,V for the generation of Ki and Xi has
to be adjusted to Xi instead of Ui, especially in the adjustment of the
operator for Xi positive cycles have to be considered. Then it can be seen,
that the resulting operators exactly describe the process of marking green
resp. red nodes.

From Lemma 1 and Lemma 2 we directly get the following proposition:

Proposition 1. All unmarked nodes are undefined in the well-founded
model.

Green nodes represent literals that are contained in the answer set. So
the local consistent explanation for such a node consists of all direct
predecessor nodes (resp. the literals they represent).

Transformation 3 (Transformation of dependent green nodes)
Let ie(aki ) be the set of incoming edges of node aki . An EG for a node
aki where ν(aki ) = green and ie(aki ) 6= ∅ consists of a node a+i and edges
EEG = {(a+i , EG(aj), s) | (alj , a

k
i , s) ∈ E′}, where EG(aj) is an expla-

nation graph for aj (Fig. 3d).

Red nodes represent literals that are not contained in the answer set.
In most cases red nodes have only active edges. The only exception is
a predecessor literal aj of a red node aki is represented by multiple red
nodes, formally |{alj | (alj , aki ,−) ∈ E′}| ≥ 2. To get the LCEs for literals
represented by a red node, all nodes representing this literal have to
be considered. Each node represents a rule where the incoming edges
represent the conditions of the rule. An LCE has to contain exactly one
violated condition from each rule. Since we have removed all irrelevant
edges, every edge represents a violated condition. That means that an
LCE contains exactly one incoming edge for every node representing the
literal.

Definition 9 (Local consistent explanation in an EDG). Let ie(aki )
be the set of incoming edges of node aki and {a1i . . . ani } the nodes repre-
senting a literal ai. We set L(ai) = {{b1, ..., bn} | b1 ∈ ie(a1i ), ..., bn ∈
(ani )}. L(ai) is an LCE for ai if L(ai) is minimal w.r.t. set inclusion.

Transformation 4 (Transformation of dependent red nodes)
The explanation graph for a node aki where ν(aki ) = red w.r.t. an LCE
L(ai) consists of a node a−i and edges
EEG = {(a−i , EG(aj), s | aj ∈ L, (alj , aki , s) ∈ E′ for any l, k} (Fig. 3e).
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a+i

>

+

(a)

a−i

⊥

−

(b)

a−i

assume

−

(c)

a+i

EG(aj1) EG(aj2) ... EG(ajn)

s1 s2

sn

(d)

a−i

EG(aj1) EG(aj2) ... EG(ajn)

s1 s2

sn

(e)

Fig. 3. Templates for constructing an explanation graph for a literal ai

As mentioned before, every time a node is marked, the corresponding
explanation graphs for this node are constructed. It should be remarked,
that not all explanation graphs for a literal can be created when a node
is reached the first time. This follows from the fact that there might exist
multiple nodes for one literal and that a red node can be already marked
if one of its predecessors is marked.

P3 := {a← b, c.

a← d.

c← not f.

e← not a.

f ← not c.}
(a) Logic program
P3

a1

b0 c3

e4

a2

d0

f5

−
−

+

+ +

−−

(b) Successfully colored
EDG for program P3

Fig. 4. A logic program and the corresponding EDG

Example 2 In the graph from Figure 4b for the logic program P3 (Fig.
4a) we can see that although both nodes are marked, we cannot construct
all explanation graphs for the literal a and also e, since e depends on
a. The explanation graph for the LCE {c, d} of a is missing, because c
depends on a cycle where an assumption has to be determined. So, if
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the node a1 is reached again by the other edge (c3, a1,+) during mark-
ing process, the set of its explanation graphs has to be updated and the
information propagated to all successor nodes.

The next step is to determine assumptions. Different approaches for
choosing assumptions are proposed in Section 4. After choosing the as-
sumption U , the incoming edges of all nodes representing a literal from U
are removed, because no other explanations for these literals are allowed.
So we get an extended dependency graph G′′ = (V ′, E′′) with E′′ ⊆ E′.
The nodes of these literals are marked and the explanation graph can be
constructed.

Transformation 5 (Transformation of assumption nodes)
The explanation graph for an assumption node aki consists of a node a−i ,
a node assume and an edge (a−i , assume,−) (Fig. 3c).

Then we proceed as before, marking nodes in G′′ and simultaneously
constructing the explanation graphs.

5 Choosing Assumptions

In most cases it is desirable to choose as few literals as possible as as-
sumption. Assumptions where no literal can be removed without the set
being no assumption anymore are called minimal assumptions. Finding
them in an EDG can be very complex since all dependencies between
the unmarked cycles have to be considered. For this purpose two dif-
ferent approaches are presented in this section. The first approach does
not consider dependencies between cycles so that assumptions can be
computed in O(|V | + |E|). The disadvantage of this approach is that
the determined assumptions are not minimal in most cases. The second
approach determines all minimal assumptions of an EDG at the price of
exponential complexity.
For the determination of assumptions we first have to determine all tenta-
tive assumptions. From the definition of tentative assumptions we know
that a tentative assumption has to meet three conditions: a) it must not
be contained in the answer set, b) it has to appear as negative body
literal in a rule and c) it has to be undefined by the well-founded model.
Transferred to a node in G′, the first condition is fulfilled exactly by
red nodes, the second condition is fulfilled exactly by nodes which have
outgoing negative edges in G and the third condition is exactly fulfilled
by unmarked nodes:

T A(G′) = {ai | aki ∈ V ′, ν(aki ) = red, aki not marked, (a
k
i , a

l
j ,−) ∈ E}

The set of tentative assumptions is always an assumption as shown in
[1]. Since the set of tentative assumptions is often large we are looking
for an approach to reduce the set. The aim is that all other nodes can
be marked after defining the assumption.
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Lemma 3. In a graph without any cycles all nodes can be marked with-
out making assumptions.

Proof sketch. Since there exist no cycles the nodes can be ordered into
different levels on the graph. Every level contains all nodes from the
lower level and nodes whose predecessors are contained in a lower level.
Then it can be shown via induction that all nodes can be marked.

When we choose an assumption, the truth value of the literal is set to
false. Since no further explanations than the one that the literal is an
assumption are allowed, all incoming edges of the assumption nodes are
removed. We treat cycles here as sets of nodes. A cycle is then minimal
w.r.t. set inclusion. Choosing one assumption node in each minimal cycle
breaks up the minimal cycles. Since all bigger cycles contain a minimal
cycle they are also broken up; hence there exist no more unmarked cycles.
Since it is better to choose as few literals as possible as assumption we
only choose those possible assumptions that are minimal with regard
to set inclusion. Then a possible assumption consists of one tentative
assumption from each minimal cycle.

Approach 1 Let C1, C2, ..., Cn be all minimal unmarked cycles in G′.

Assumptions(G′) ={{a1, a2, ..., an} | a1 ∈ C1, a2 ∈ C2, ..., an ∈ Cn,

{a1, a2, ...an} is minimal w.r.t. set inclusion}

Of course there still may exist cycles which are marked. But since we
know that they can be marked we can replace a marked cycle Cm =
(Vm, Em) by a dummy node cm with incoming edges ie(cm) =

⋃
v∈Vm

ie(v)
and outgoing edges oe(cm) =

⋃
v∈Vm

oe(v). C
One very simple possibility to determine minimal assumptions is to try
all combinations of tentative assumptions. Such a combination is an as-
sumption, if the whole graph can be marked after choosing the assump-
tion. A minimal assumption is then the combination that is successful
and minimal with regard to set inclusion. But with an increasing number
of tentative assumptions this approach will not be very efficient. For this
reason, we introduce an approach that tries to reduce the number of com-
binations that have to be checked. Its basis is not to check all tentative
assumptions and combinations, but only those literals that are important
to determine the value of a so called critical node. It is obvious that this
approach is only more efficient if the number of such literals is smaller
than the number of tentative assumptions. For the sake of simplicity the
approach is limited to graphs where each literal in a cycle is represented
only by one node, i. e. there are no OR-handles. When OR-handles have
to be considered a similar approach can be used.
Since marked nodes are irrelevant for the determination of assumptions
we remove all marked nodes and their outgoing and incoming edges from
the graph and obtain a sub-graph Gunmarked. In the next step, we are
looking for strongly connected components of Gunmarked. A strongly con-
nected component is a maximal sub-graph where each node is reachable
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from each other node. This means that every node has an influence on
every other node in the same strongly connected component, so that a
strongly connected component behaves like one big cycle. For this reason
we call the strongly connected components linked cycles.
If a linked cycle consists of several smaller cycles, there exist nodes be-
longing to multiple cycles. Such a node is critical if its value depends on
more than one cycle. Since we have removed all irrelevant edges and have
no OR-handles a red node has only active AND-handles. This means that
the truth value of just one predecessor node is sufficient to determine the
truth value of the red node. So a red node does not depend on more than
one cycle, which means that only green nodes can be critical.

Definition 10 (Critical Node). Let LC = (VLC , ELC) be a linked
cycle. A node aki is critical, if ν(aki ) = green and it has at least two
incoming edges (alj , a

k
i ,+) ∈ ELC where s ∈ {+,−}. The set of all

critical nodes of a linked cycle LC will be denoted as CN (LC).

If a linked cycle has no critical nodes a node can be deduced from any
other node. Then a minimal assumption consists of a single literal which
is a tentative assumption and is represented by a node of the linked cycle.
The set of all minimal assumptions of the linked cycle LC(VLC , ELC) in
G′ is: µAssumptions(LC) = {{ai} | aki ∈ VLC , ai ∈ T A(G′)}.
The value of every critical node depends on the value of its predecessor
nodes. We call these nodes pre-conditions.

Definition 11 (Pre-condition). Let LC = (VLC , ELC) be a linked cy-
cle. The pre-conditions for a green critical node aki are:

pre(aki ) = {alj | (alj , a
k
i , s) ∈ ELC , s ∈ {+,−}}

Preconditions(LC) =
⋃

ak
i ∈CN (LC) pre(a

k
i ) is the set of all pre-conditions

in the linked cycle.

Lemma 4. Nodes that are not critical can be deduced from at least one
critical one node.

Proof sketch. It can be shown by induction that the truth value of a node
an on a path c, a1, a2, ..., an−1, an from a critical node c can be deduced,
if a1, ...an are not critical.

If we can deduce all critical nodes with an assumption, we also can deduce
all other literals of the linked cycle with the assumption. lfp(Succ({cn}))
calculates the nodes that can be deduced from a critical node cn ∈
CN (LC) with Succ(S) = {alj | (aki , a

l
j , s) ∈ ELC , s ∈ {+,−}, aki ∈ S}.

Then the set of all nodes that can be deduced from a set of nodes S can
be calculated with lfp(T (S)) with

T (S) = {aki | pre(aki ) ⊆ S} ∪ {aki | aki ∈ Succ(alj), alj ∈ S ∩ CN (LC)}.

Now combinations c of pre-conditions have to be tested for success. A
combination c is successful if all critical nodes can be deduced from them,
i. e. CN (LC) ⊆ lfp(T (c)). We know that:
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1. each combination c has to contain at least one complete pre-condition
set pre(cn) ⊂ c, cn ∈ CN (LC). Otherwise the fix-point operator
could not deduce any critical node.

2. Since we are looking for minimal assumption sets we do not have
to check combinations c1 where we already have found a smaller
successful combination c2, i. e. c2 ⊆ c1 and CN (LC) ⊆ lfp(T (c2)).

The way of proceeding is to first test single pre-condition sets pre(cn) ⊂
c, cn ∈ CN (LC) for success (exploits Fact 1). If a set is successful we add
it to the set of successful combinations C and otherwise put it to NC.
Then we test sets n∪{aki }, where n ∈ NC and aki ∈ Preconditions(LC).
This means we test different combinations of adding one more pre-
condition to all sets that have not been successful in the step before
(exploits fact 2). Again we add successful combinations to C and set
NC to the combination that were not successful. This is repeated till
NC = ∅ or the set to be tested consists of all pre-conditions. Then C
contains all combinations of pre-conditions that suffice to deduce all crit-
ical nodes and therefore to deduce also all other nodes in the linked cycle,
since they are not critical. For the purpose of determining assumptions
we determine all nodes from which a pre-condition p can be deduced.
These nodes lie on paths from critical nodes to the pre-condition.

Definition 12 (Pre-condition paths). The pre-condition path to a
pre-condition p from a linked cycle LC = (VLC , ELC) can be obtained by
path(p) = lfp(Tpath({p})) where

Tpath(S) = {aki | (aki , a
l
j , s) ∈ ELC , s ∈ {+,−}, aki /∈ CN (LC)}

A pre-condition path contains the nodes from which a pre-condition can
be deduced. For deducing all nodes of a linked cycle we have to deduce all
pre-conditions of a successful combination c = {p1, ..., pn}. This means
that we need exactly one node from the path of each pre-condition. Since
we want to determine assumptions the nodes also have to fulfill the other
conditions of an assumption.

Definition 13 (Path assumptions). The set of path assumptions for
a path p in a validly colored EDG G = (V,E) is defined by

PA(p) = {ai | ∃k, aki ∈ p, aki ∈ T A(G′)}

Let C be the set of all successful pre-condition combinations c = {p1, ..., pn}.
Then the set

Assumptions(LC) =
⋃

c∈C
{{a1, ..., an} | a1 ∈ PA(p1), ..., an ∈ PA(pn)}

is the set of possible minimal assumptions.

Proposition 2. Minimal assumptions µAssumptions(LC) of a linked
cycle LC are those sets of Assumptions(LC) that are minimal with re-
gard to set inclusion.
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Proof sketch. It has to be shown that each set S ∈ µAssumptions(LC)
is a minimal assumption for the linked cycle LC, i. e. S is an assumption
and there exists no set S′ ⊂ S such that S′ is an assumption for LC.
To show that S is an assumption it has to be checked if S meets the
conditions of an assumptions. To show that S is minimal one looks at the
successful combinations from which S and S′ are created and differentiate
between all cases. For every case it can be shown by contradiction that
neither S nor S′ can be in µAssumptions(LC).

Approach 2 In the first step all marked nodes are removed so we get a
graph G′′. After that all linked cycles LC1, LC2, ..., LCm without incom-
ing edges are determined since they are independent of other linked cycles
and need to contain an assumption. A linked cycle LC = (VLC , ELC)
has no incoming edges if for all aki ∈ VLC there is no alj ∈ Vunmarked \
VLC , s ∈ {+,−} such that (alj , a

k
i , s) ∈ Eunmarked. In each linked cycle

LCi the minimal assumptions for the cycle have to be determined. For
that purpose the critical nodes of the linked cycle and their pre-conditions
have to be specified and the pre-condition paths have to be calculated. In
the next step it is looked for successful combinations of pre-conditions.
The path assumptions are determined and used to calculate minimal as-
sumptions

µAssumptions(LC1), µAssumptions(LC2), ..., µAssumptions(LCn)

of the linked cycles. To determine dependencies between linked cycles, the
independent linked cycles LC1, LC2, ...LCm are replaced by dummy nodes
(see Page 5). As result we get a new graph G′′′. We continue marking
nodes in G′′′ using the marking rules from Section 4. With the mark-
ing process we can see which nodes or which other linked cycles depend
on the independent linked cycles determined in the second step. Now we
start again with step one and remove all marked nodes so that we can
determine which linked cycles are still independent. The whole process
is repeated untill there are no more unmarked nodes and we got a set
of independent linked cycles LC1, LC2, ..., LCm, ..., LCn and their min-
imal assumptions µAssumptions(LC1), µAssumptions(LC2), ..., µAs-
sumptions(LCm), ..., µAssumptions(LCn).

Proposition 3. We obtain the minimal assumptions of the EDG by tak-
ing one minimal assumption of each independent linked cycle:

µAssumptions(G′) = {a1 ∪ · · · ∪ an |a1 ∈ µAssumptions(LC1), . . .

an ∈ µAssumptions(LCn)}
Proof sketch. For every assumption a ∈ µAssumptions(G′) two things
have to be shown: a) a is an assumption for the EDG and b) a is minimal.
a) can be directly shown by the termination condition of the algorithm.
For the proof of b) a literal is removed from a and it can be shown that
not all nodes in the EDG can be marked, because of the definition of the
minimal assumption in an EDG and the definition of independent linked
cycles.
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6 Conclusion

We presented an approach to construct explanation graphs from validly
colored extended dependency graphs. We exploited that the logic pro-
gram is already present in graph form. In EDGs the nodes may differ in
their number of incoming edges and the coloring. We defined different
types of transformations to build the EGs for a node from an EDG. For
the determination of assumptions it was necessary to determine the well-
founded model. A strong relationship between well-founded models and
the marking process of an EDG was observed; an unmarked node repre-
sents a literal which is undefined in the well-founded model. We presented
two different approaches for the determination of assumptions. While
first approach determines non-minimal assumptions in O(|V |+ |E|), the
determination of minimal assumptions has an exponential complexity.

Acknowledgement: This work has been supported by the German Re-
search Foundation DFG, Collaborative Research Center SFB876, Project
A5. (http://sfb876.tu-dortmund.de)
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Abstract. The Paisley library and embedded domain-specific language
provides light-weight nondeterministic pattern matching on the Java
platform. It fully respects the imperative semantics and data abstraction
of the object-oriented paradigm, while leveraging the declarative styles of
pattern-based querying and searching of complex object models. Previous
papers on Paisley have focused on the functional paradigm and data flow
issues. Here, we illustrate its use under the logic paradigm. We discuss
the expressiveness and evaluate the performance of Paisley in terms of
the well-known combinatorial search problem “send more money” and
its generalizations.

1 Introduction

We describe one link in a chain of efforts to bring the object-oriented program-
ming paradigm closer to the more declarative functional and logic paradigms.
Historically, there have been many attempts to reconstruct or reinvent objects
on top of a logic platform (for instance [4,7]); however, our basic approach is
exactly opposite. Our starting point is a full commitment to mainstream object-
orientation, undoubtedly the dominant paradigm of our times, with unparalleled
tool and library support for real-world programming. We develop “prosthetic”
tools and programming techniques that amend well-known weaknesses in the
expressiveness of plain object-orientation, without sacrificing broadness of scope
or forcing programmers to leave their comfort zone. See the homepage at [8].

The present paper presents first results on the use of our Paisley library and
language, designed for object-oriented pattern matching, as a toolkit for logic
programming on an object-oriented platform.

1.1 Outline

The remainder of this paper is structured as follows: Section 2 summarizes and
discusses the design of Paisley and its practical consequences under the various
paradigms, as far as needed for the understanding of the following case studies.
Technical details, further usage examples and comparison to related work can
be found in [12,13]. Section 3 demonstrates logic programming in the Paisley
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style by means of the problem domain of cryptarithmetic puzzles and their most
famous instance, “send more money”. Section 4 presents comparative performance
measurements. Section 5 summarizes the experiences gained so far, and gives
some outlook into future work.

2 Paisley

2.1 Design Considerations

The Paisley library and programming style [12,13] provide sorely missed pattern
matching capabilities to the Java platform. For both theoretical and practical
reasons, it does so in the form of a light-weight embedded domain-specific
language (DSL). The following paragraphs discuss the conceptual implications
of the approach concerning style and software engineering. The philosophically
unconcerned reader is welcome to skip ahead for more technical matters.

The qualifier “embedded” means that absolutely no extension of the language
or associated tools such as compilers or virtual machines is required. Extending
an evolving language such as Java, although academically attractive, is fraught
with great practical problems, mostly of maintenance and support: History shows
that language extensions either get adopted into the main branch of development
quickly, or die as academic prototypes. Instead, an embedded language shares
the syntax, type system and first-class citizens of its host language, that is in
the Java case, objects. Ideally, it is also “reified”, meaning that elements expose
their DSL-level properties at host-level expressive public interfaces, and can be
constructed, queried and manipulated freely and compositionally by the user.

The qualifier “light-weight” means that there is no technical distinction
between “source” and “executable” forms of the DSL. No global pre-processing
or compilation procedure is required, and no central interpreter engine exists.
The capabilities of the DSL are distributed modularly over the implementation
of DSL elements in the host language.

The two qualifiers together have wide-ranging implications for programming:
They ensure that the embedded language is open and can easily be extended and
customized by the user. They also guarantee tight integration and “impedance
match” of interfaces, with fast and precise transfer of control and without data
marshaling, between domain-specific and host-level computations. The price for
this freedom is that a compositional structure precludes some global optimizations
and refactorings of the DSL implementation.

For illustration purposes, consider parser combinators in a functional language
as a prime example of reified light-weight embedded DSLs. Subparsers are ordinary
(monadic) functions an can be defined and used directly as such, including
definitions of whole multi-level context-free grammars as recursive functional
programs. On the downside, global syntax analysis such as performed routinely
by monolithic parser generators is poorly supported in a combinatorial setting.

By contrast, consider regular expression notations for string matching as
a prime example of DSLs that are neither reified, embedded nor light-weight.
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Typical implementations involve compilation to nondeterministic finite automata
(NFA), and hide their implementation behind terse global interfaces. User control
over control features, most importantly nondeterminism, is indirect and awkward
(in the form of a plethora of analogous combinators with subtly different amounts
of greediness). On the upside, the NFA implementation is well-known to improve
global performance greatly in appropriate cases. The XPath language for XML
document navigation is another prominent example of the same kind.

Non-reified DSLs are typically used in a monolithic fashion: whole DSL
programs are passed textually at the platform interface, and the computational
means for programming the DSL are conceptually and technically separate from
the means for implementing it. Conversely, reified DSLs lend themselves to
compositional programming: In the simplest case a DSL program is a statically
nested constructor expression, that is the abstract syntax analog of a literal non-
reified DSL program. But the real power comes from more complex uses, where
the structure of the program under construction is either abstracted into host-level
functions, or dynamized by host-level control flow. (Contrast the construction
code depicted in Figs. 1–6 with the resulting DSL programs depicted in Fig. 9.)

2.2 Patterns, Object-Orientedly

Several theoretically well-founded paradigms for pattern matching exist: regular
expressions, inverse algebraic semantics (in functional programming), term uni-
fication (in logic programming). However, for a tool to be practically useful in
an object-oriented environment, it is of crucial importance not to impose any of
the axioms of such theories, since they are typically not warranted for realistic
object data models, and pretending otherwise causes impedance mismatch and is
a source of much trouble and subtle bugs.

What, then, is object-oriented pattern matching proper? Starting from the
rough approximation that (mainstream) object-orientation is imperative program-
ming with data abstraction (encapsulation), patterns are a declarative specialist
notation for data queries: They are applicable to object data models solely in
terms of their public interface, which may not safely be assumed to have sound
mathematical properties, such as statelessness, invertibility, completeness or ex-
tensionality. Object-oriented pattern matching organizes actual (getter) method
calls, not meta-level semantic case distinctions.

Four generic aspects of querying can be discerned: data are subjected to tests
for acceptability; matching may proceed to other accessible data by projections;
information may flow back to the user in the form of side-effect variable bindings ;
control flow of matching links different patterns according to the outcome of tests
with logical combinators. The absence of compositional programming constructs
for these aspects in Java leads to awkward idioms, discussed in detail in [13].

In Paisley, a pattern that can process data of some type A is an object of type
Pattern〈A〉. A match is attempted by invoking method boolean match(A target),
with the return value indicating success (determined by the test aspect of the
pattern). Nondeterminism is generally allowed, in the sense that a pattern may
match the same target data in more than one way. These multiple solutions can
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be explored by repeatedly invoking method boolean matchAgain( ) until it fails.
See Fig. 8 for a typical loop-based usage example.

Extracted information (determined by the projection and binding aspects
of the pattern) is not available from the pattern root object, nor reflected in
its type. Instead, references to the variables occurring in the pattern must be
retained by the user. Variables are objects of type Variable〈A〉extends Pattern〈A〉.
They match any target data deterministically and store a reference by side-effect
to represent the binding, which can then be extracted with method A getValue( ).
Again, see Fig. 8 for the extraction of binding values in the loop body. Variables
are imperative, in the sense that they have no discernible unbound state, and
may be reused (sequentially) at no cost.

Elementary patterns performing particular test and projection duties are
predefined in the Paisley library and may be extended freely by the user. They
are combined by two universal control flow combinators for conjunction (all) and
disjunction (some). These are fully aware of nondeterminism (analogous to the
Prolog operators , and ;), and also guarantee strict sequentiality of side-effects
and have very efficient implementations for deterministic operands (analogous to
the C-family operators && and ||). As an immediate consequence, subpatterns
may observe bindings of variables effected in earlier branches of a conjunction.

2.3 Patterns, Functionally

The core concept of functional pattern matching, namely that initial algebra
semantics can be imposed on data and inverted for querying, is valid only for
degenerate cases of object-oriented programming. Real-world interface contracts
are more subtle; while effective query strategies can be devised for particular
problems, automatic “optimizations” such as transparent pattern restructuring
for compilation of pattern-based definitions [2,9] are generally out of the question.
Nevertheless, several functional principles can be used to good effect in the design
of a powerfully abstract pattern object library:

Pattern building blocks effecting projections often correspond directly to a
getter method of the object data model. Getters of class C with result type D
can be conceived as functions from C to D; patterns of type Pattern〈A〉 can
be conceived as functions from A to some complex solution/effect type. Hence
each getter induces a contravariant lifting from Pattern〈D〉 to Pattern〈C〉 by mere
function composition (the Hom-functor for the categorically-minded).

Functions between pattern types, both patterns as ad-hoc functions of a distin-
guished variable, and encapsulated pattern factories, are a very powerful abstrac-
tion, and a prerequisite for higher-order pattern operations. In Paisley they are rep-
resented by the interface Motif〈A, B〉 with a method Pattern〈B〉 apply(Pattern〈A〉 ).

2.4 Patterns, Logically

The main contribution of the logic paradigm to the design of Paisley is ubiquitous
and transparent nondeterminism. It integrates with the operational semantics of
patterns by having a fixed and precise resolution strategy, namely backtracking
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with strictly ordered choices. The other key idea of patterns in logic programming,
namely unification, does not carry over soundly to the object-oriented paradigm,
because of the lack of a stable global notion of equality for objects.

Nondeterminism can be introduced ad-hoc using explicit disjunctive combina-
tors. But a natural kind of more abstract and useful sources of nondeterminism
is the imprecise lifting of parameterized getter functions, abstracting from their
qualifying parameters. For instance, the method A get(int index) of the Java
collection interface List〈A〉 gives rise not only to a deterministic lifting from
(Pattern〈A〉 , int) to Pattern〈List〈A〉 〉, but also to a nondeterministic variant from
Pattern〈A〉 to Pattern〈List〈A〉 〉 that tries each element of the target list in order.
It is implemented in Paisley as the factory method CollectionPatterns.anyElement.

Nondeterminism, once introduced, is operationalized by the logical pattern
combinators. A highly portable backtracking implementation is realized by elimi-
nating the choice stack from the call stack (to which the programmer has limited
access on the Java platform), and storing choice points on the heap, directly in
the objects that instantiate pattern conjunction and disjunction. This has the
notable effect that dynamic backtracking state is reified alongside static pattern
structure, and can be deferred indefinitely, canceled abruptly, cloned and reused,
committed to persistent storage etc., without interfering with normal control
flow. The price for this flexibility is that the call stack needs to be reconstructed
for backtracking (by iterated recursive descent), and that some caveats regarding
pattern sharing and reentrance apply.

In the functional-logic spirit, matches of a pattern p as nondeterministic func-
tion of a distinguished variable x applied to target data t can be exhaustively ex-
plored (encapsulated search) by writing x.eagerBindings(p, t) or x.lazyBindings(p, t),
with immediate or on-demand backtracking, respectively.

Combinatorial search problems can be encoded in the Paisley style as follows:
Nondeterministic generator patterns for the involved variables are combined
conjunctively (spanning the Cartesian product of solution candidates) and com-
bined with constraints. Constraints are represented as patterns that take no
target data, may observe previously bound variables (by earlier branches of a
conjunction) and succeed at most once. They are implemented in Paisley by the
class Constraint extends Pattern〈Object〉 with the method boolean test( ).

There is a strong trade-off between the effort to determine that a constraint
is safe to test because all concerned variables have been bound, and the asso-
ciated gain due to early pruning of the search tree. The following case study
discusses a prominent combinatorial search problem, its generic object-oriented
implementation in the Paisley style, and various strategies spread along the axis
of the trade-off, from brute force to complex scheduling.

3 Case Study

The arithmetical puzzle “send more money” [5] is a well-known combinatorial
problem that has been used ubiquitously to exemplify notations and implemen-
tations of logic programming. It specifies an assignment of decimal digits to
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variables {D,E,M,N,O,R, S, Y }, such that SEND +MORE = MONEY in
usual decimal notation. This equation, together with the implicit assumptions
that the assignment is injective (the variable values are all different) and the
numbers are normal (leading digits are nonzero), has a unique solution, namely
{D = 7, E = 5,M = 1, N = 6, O = 0, R = 8, S = 9, Y = 2}.

This particular problem easily suggests a number of generalizations, and has
indeed not been the first of its kind. As a fairly broad class of similar problems,
we consider the cryptarithmetic puzzles with arbitrary number of digits in each
term, arbitrary number of terms in the sum, and arbitrary choice of base.

The following sections present different solution strategies with increasing
performance and implementation complexity. The meta-level discussion is com-
plemented with corresponding fragments of the actual application code, written
in Java 7 using the Paisley libraries and style. Only basic knowledge of the Java
syntax and collection framework is necessary to fully appreciate the code frag-
ments; no particularly advanced or obscure coding techniques are employed. As a
truly embedded language, Paisley can be interspersed finely with host code, and
consequently hard to spot. For the reader’s convenience, all Paisley-specific types
and operations are underlined. Note that the purpose of most of the Java code
is to construct an embedded Paisley program for combinatorial search; for some
possible results see Fig. 9 below.

3.1 Basic Model

The basic model of cryptarithmetic puzzles is depicted in Fig. 1. It is parameterized
at construction time with the chosen base, and terms encoded as strings. For
instance, the original puzzle can be specified concisely as:

new CryptArith(10, ”SEND”, ”MORE”, ”MONEY”)

Also at construction time, Paisley objects for computations independent of
a particular solution strategy are allocated internally: A variable is assigned
to each character occurring in the terms; computed by a method vars(String...)
not shown. A local non-zero constraint is assigned to each character occurring
in leading position; computed by method noLeadingZeroes(String...). A global
constraint expressing the sum equation in terms of the created variables is formed
from the terms; computed by method sum(String...).

The constraint sum created by the latter adds the values of all terms but the
last, and compares the sum to the value of the last term. For term evaluation it
resorts to the auxiliary method number that computes a number from its b-adic
representation by the currently bound values of the sequence of digit variables.
Hence the constraints sum, as well as the constraints noLeadingZeroes depend on
all or one variable, respectively, and must be tested only after the concerned
variables have been bound successfully.

Any solution strategy for the cryptarithmetic puzzles consists of nondeter-
ministic matches of all variables against valid digit values (ranging from zero,
inclusive, to the given base, exclusive), and constraints equivalent to injective-
ness (pairwise difference of all variables), absence of leading zeroes and the sum
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public class CryptArith {
private final int base;
private final Map〈Character, Variable〈Integer〉 〉 vars;
private final Map〈Variable〈Integer〉 , Constraint〉 noLeadingZeroes;
private final Constraint sum;

public CryptArith(int base, String... args) {
if (base < 2 || args.length < 1)

throw new IllegalArgumentException( );
this.base = base;
this.vars = vars(args);
this.noLeadingZeroes = noLeadingZeroes(args);
this.sum = sum(args);
}
private Constraint sum(String... args) {

final int n = args.length;
final List〈List〈Variable〈Integer〉 〉 〉 rows = new ArrayList〈〉 (n);
for (String s : args) {

// add characterwise list of variables to rows
}
return new Constraint( ) {

public boolean test( ) {
int s = 0;
for (List〈Variable〈Integer〉 〉 r : rows.subList(0, n − 1) )

s += number(r);
return s == number(rows.get(n − 1) ) ;
}
};
}
private Map〈Variable〈Integer〉 , Constraint〉 noLeadingZeroes(String... args) {

final Map〈Variable〈Integer〉 , Constraint〉 result = new HashMap〈〉 ( ) ;
for (String s : args) {

final Variable〈Integer〉 v = vars.get(s.charAt(0) ) ;
result.put(v, Constraints.neq(v, 0) ) ;
}
return result ;
}
private int number(List〈? extends Variable〈Integer〉 〉 vs) {

int n = 0;
for (Variable〈Integer〉 v : vs)

n = n ∗ base + v.getValue( );
return n;
}
}

Fig. 1. Basic model of cryptarithmetic puzzles
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equation. Strategies differ in, and draw their varying efficiency from, the early
use of constraints to prune the search tree.

3.2 Brute-Force Generate and Test

The programmatically simplest, least efficient strategy is to defer all constraints
until after all variables have been bound. This is of course the infamous generate
and test pattern for combinatorial search. The implementation is depicted in
Fig. 2. It uses a generic auxiliary method generate to produce generator pattern
my mapping a nondeterministic Motif pattern function over the collection of
variables, and another generic auxiliary method allDifferent to constraint them.
The latter traverses a triangle matrix of all variables in order to produce pairwise
inequality constraints.

public Pattern〈Iterable〈? extends Integer〉 〉 strategy1( ) {
return Pattern.all (generate(domain( ), vars.values( ) ), // generate

allDifferent(vars.values( ) ), // and test,
Pattern.all (noLeadingZeroes.values( ) ), // test,
sum); // test.

}
private 〈A, B〉 Pattern〈B〉 generate(Motif〈A, B〉 m,

Collection〈Variable〈A〉 〉 vars) {
final List〈Pattern〈B〉 〉 ps = new ArrayList〈〉 ( );
for (Variable〈A〉 v : vars)

ps.add(m.apply(v) );
return Pattern.all (ps);
}
private 〈A〉 Constraint allDifferent(Collection〈Variable〈A〉 〉 vars) {

final List〈Variable〈A〉 〉 done = new ArrayList〈〉 (vars.size( ) );
final List〈Constraint〉 neqs = new ArrayList〈〉 ( );
for (Variable〈A〉 v : vars) {

for (Variable〈A〉 u : done)
neqs.add(neq(u, v) );

done.add(v);
}
return Constraint.all (neqs);
}

Fig. 2. Strategy 1: näıve generate and test

This strategy refers to auxiliary methods, shared by the other strategies,
depicted in Fig. 3. The method domain( ) produces the nondeterministic motif
used to generate candidate values for variables, by simply instantiating a generic
motif for nondeterministic element selection from the Paisley collection framework.
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The method neq(Variable, Variable) produces a single inequality constraint between
the current values of two variables.

private Motif〈Integer, Iterable〈? extends Integer〉 〉 domain( ) {
return CollectionPatterns.anyElement( );
}
private 〈A〉 Constraint neq(final Variable〈A〉 v, final Variable〈A〉 w) {

return new Constraint( ) {
public boolean test( ) {

return !v.getValue( ).equals(w.getValue( ) );
}
};
}

Fig. 3. All strategies: generic utilities

3.3 Early Checking of Simple Constraints

The preceding brute-force strategy 1 has the disadvantage of actually generating
all possible variable assignments, that is bn combinations for n variables over
base b. But most of the constraints that prune the search tree (in fact all of them
except the sum equation proper) concern at most two variables. Hence it is easy
to predict the earliest point in the search plan where they can be checked.

This observation gives rise to an improved strategy 2 depicted in Fig. 4. It
works by splicing together the first three phases of strategy 1, each of which has
a loop over the variables, into a single loop. Only the global constraint of the
sum equation, which concerns all variables and must necessarily come last, is
left behind. This straightforward refactoring reduces the number of generated
assignments greatly, to less than n! ·

(
b
n

)
.

3.4 Exploiting Partial Sums

It is known that early pruning of the search tree can be improved further by
approximations to the sum using modular arithmetics. Each partial sum of the k
least significant digits must be satisfied up to carry, which can be expressed as a
congruence modulo bk. While these partial sum relations are implied by the exact
sum equation (a congruence modulo infinity), and hence logically redundant,
they have the practically advantageous property of concerning fewer variables.
Hence they can be checked earlier in the search plan. Fig. 5 depicts the partial
sum congruences for “send more money” with k = 1, . . . , 5, each together with
the set of variables concerned for that k at the earliest.

The strategic information discussed above is reified in the model extension
depicted in Fig. 7 below. The inner class PartialSum encapsulates both the set of
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public Pattern〈Iterable〈? extends Integer〉 〉 strategy2( ) {
return Pattern.all (generateAndTestEarly(domain( ), vars.values( ) ), sum); // ... test.
}
private 〈A, B〉 Pattern〈B〉 generateAndTestEarly(Motif〈A, B〉 m,

Collection〈Variable〈A〉 〉 vars) {
final List〈Variable〈A〉 〉 done = new ArrayList〈〉 (vars.size( ) );
final List〈Pattern〈? super B〉 〉 pats = new ArrayList〈〉 ( );
for (Variable〈A〉 v : vars) {

pats.add(m.apply(v) ); // generate
if (noLeadingZeroes.containsKey(v) )

pats.add(noLeadingZeroes.get(v) ); // and test,
for (Variable〈A〉 u : done)

pats.add(neq(u, v) ); // test, ...
done.add(v);
}
return Pattern.all (pats);
}

Fig. 4. Strategy 2: generate with early checks

D + E ≡ Y mod 10 {D,E, Y }
ND + RE ≡ EY mod 100 {N,R}

END + ORE ≡ NEY mod 1 000 {O}
SEND +MORE ≡ ONEY mod 10 000 {M,S}
SEND +MORE ≡MONEY mod ∞ {}

Fig. 5. Partial sum modular congruences for “send more money”

concerned variables and the associated congruence as a constraint. It refers to an
extended version of the auxiliary method sum (compare Fig. 1), parameterized
with the number of digits under consideration. The sequence of partial sums
is precomputed at model construction time. The full strategy 3 can then be
generated by a loop over this sequence, issuing generators for newly introduced
variables, inequality and nonzero checks, and partial sum congruences in turn, as
depicted in Fig. 6.

3.5 Dynamic Constraint Scheduling

If precise constraint scheduling, as in the preceding strategy, is deemed unfeasible,
one can still resort to dynamic scheduling techniques. Constraints can be imple-
mented such that their evaluation is suspended if some concerned variable is not
yet bound, and resumed when that condition changes. Then, a trivial strategy
simply places the generators last. However, tracking the state of variables has a
significant run-time overhead, especially in Paisley where all components are as
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public Pattern〈Iterable〈? extends Integer〉 〉 strategy3( ) {
return generatePartialSums(domain( ) );
}
〈B〉 Pattern〈B〉 generatePartialSums(Motif〈Integer, B〉 m) {

final List〈Variable〈Integer〉 〉 done = new ArrayList〈〉 ( );
final List〈Pattern〈? super B〉 〉 pats = new ArrayList〈〉 ( );
for (PartialSum s : partialSums) {

for (Variable〈Integer〉 v : s.getDependencies( ) )
if (!done.contains(v) ) {

pats.add(m.apply(v) ); // generate
if (noLeadingZeroes.containsKey(v) )

pats.add(noLeadingZeroes.get(v) ); // and test,
for (Variable〈Integer〉 u : done)

pats.add(neq(v, u) ); // test,
done.add(v);
}

pats.add(s.getConstraint( ) ); // test.
}
return Pattern.all (pats);
}

Fig. 6. Strategy: generate with partial sums (operation)

light-weight as possible, and nondeterminism is expected to incur no appreciable
cost if not actually used.

We have added a prototype implementation of suspendable constraints to our
case study, implemented using the well-known observer pattern of object-oriented
programming. Strategies 2’ and 3’ are the analogs of 2 and 3, respectively, but
with suspendable constraints preceding the generators they depend on.

4 Evaluation

All experiments have been performed on a single MacBook Air containing a Intel
Core i5-3317U CPU with 4 cores at 1.7 GHz and 8 GiB of RAM running the
OpenJDK 7-21 Java environment on Ubuntu 12.10. Reported times are wall-
clock time intervals, measured with System.nanoTime( ) to the highest available
precision. All experiments have been repeated 10 times, without restarting the
Java machine or interfering with automatic memory management.

Table 1 summarizes the findings for all strategies, obtained by exhaustive
search in a loop, as depicted in Fig. 8. Measurements are fairly consistent, with
little random variation. Memory management appears to have negligible impact,
as expected for a combinatorial computation with tiny data footprint.
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private final List〈PartialSum〉 partialSums = new ArrayList〈〉 ( ) ;

public CryptArith(int base, String... args) {
// ...
this.partialSums = partialSums(args); // analogous to noLeadingZeroes
}
class PartialSum {

private final int length;
private final Set〈Variable〈Integer〉 〉 dependencies ; // cf. Fig. 5 right
private final String[ ] args;

PartialSum(int length,
Set〈? extends Variable〈Integer〉 〉 dependencies,
String... args) {

// initialize fields
}
public Set〈Variable〈Integer〉 〉 getDependencies( ) {

return dependencies ;
}
public Constraint getConstraint( ) {

return sum(length, args);
}
}
private Constraint sum(int length, String... args) {

final int n = args.length;
final List〈List〈Variable〈Integer〉 〉 〉 rows = new ArrayList〈〉 (n);
for (String s : args) {

// add characterwise list of last length variables to rows
}
final int m = power(base, length);
return new Constraint( ) {

public boolean test( ) {
int s = 0;
for (List〈Variable〈Integer〉 〉 r : rows.subList(0, n − 1) )

s += number(r);
return s % m == number(rows.get(n − 1) ) % m ; // congruence
}
};
}

Fig. 7. Strategy 3: generate with partial sums (model extension)
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public void run(final Pattern〈Iterable〈? extends Integer〉 〉 p) {
if (p.match(digits( ) ) ) do {

for (Map.Entry〈Character, Variable〈Integer〉 〉 e : vars.entrySet( ) )
System.out.println(e.getKey( ) + ” = ” + e.getValue( ).getValue( ) );

System.out.println( );
} while (p.matchAgain( ) );
}
private Collection〈Integer〉 digits( ) {

final List〈Integer〉 result = new ArrayList〈Integer〉 (base);
for (int i = 0; i < base; i++)

result.add(i);
return result;
}

Fig. 8. Running a strategy

5 Conclusion

Fig. 9 gives a synopsis of the inner structure of patterns produced by the strate-
gies 1–3 for the “send more money” example. In each case, elementary generator
and constraint patterns are composed associatively into a global conjunction. For
the more advanced strategies, more powerful constraints appear earlier in the
sequence. The patterns can be used immediately as depicted in Fig. 8, or used in
every other conceivable way as ordinary Java objects. As such, our implementa-
tion of the problem domain on top of Paisley acts technically as a domain-specific
compiler to a threaded code back-end, given by the Paisley operations.

The Paisley approach leads to a style that has some of the best of both
worlds: The object-oriented paradigm has excellent support for data abstraction
and encapsulation. Object-oriented models of the problem domain have expres-
sive interfaces close to the programmer’s intentions and intuitions, and high
documentation value.

On the other hand, the declarative style of the logic paradigm allows for
abstraction from the complex control flow of searching by composition of simple
nondeterministic fragments. Note that all explicit control flow in the given code

Table 1. Experimental evaluation: send more money, N = 10

Strategy Time (ms)

min median max

1 5 396.93 5 470.24 5 775.04
2 737.56 770.25 809.48
3 2.34 2.37 3.60
2’ 761.37 771.93 797.53
3’ 850.30 863.21 881.72
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D < b,E < b, S < b,R < b,N < b,O < b,M < b, Y < b,
D 6= E,D 6= S,E 6= S,D 6= R,E 6= R,S 6= R,D 6= N,E 6= N,S 6= N,R 6= N,
D 6= O,E 6= O,S 6= O,R 6= O,N 6= O,D 6= M,E 6= M,S 6= M,R 6= M,N 6= M,
O 6= M,D 6= Y,E 6= Y, S 6= Y,R 6= Y,N 6= Y,O 6= Y,M 6= Y,
M 6= 0, S 6= 0,
SEND +MORE ≡MONEY mod∞
D < b,E < b,D 6= E,S < b, S 6= 0, D 6= S,E 6= S,R < b,D 6= R,E 6= R,S 6= R,
N < b,D 6= N,E 6= N,S 6= N,R 6= N,O < b,D 6= O,E 6= O,S 6= O,R 6= O,N 6= O,
M < b,M 6= 0, D 6= M,E 6= M,S 6= M,R 6= M,N 6= M,O 6= M,
Y < b,D 6= Y,E 6= Y, S 6= Y,R 6= Y,N 6= Y,O 6= Y,M 6= Y,
SEND +MORE ≡MONEY mod∞
Y < b,D < b,D 6= Y,E < b,E 6= Y,E 6= D,D + E ≡ Y mod 10, R < b,R 6= Y,
R 6= D,R 6= E,N < b,N 6= Y,N 6= D,N 6= E,N 6= R,ND +RE ≡ EY mod 100,
O < b,O 6= Y,O 6= D,O 6= E,O 6= R,O 6= N,END +ORE ≡ NEY mod 1 000,
S < b, S 6= 0, S 6= Y, S 6= D,S 6= E,S 6= R,S 6= N,S 6= O,
M < b,M 6= 0,M 6= Y,M 6= D,M 6= E,M 6= R,M 6= N,M 6= O,M 6= S,
SEND +MORE ≡ ONEY mod 10 000, SEND +MORE ≡MONEY mod∞

Fig. 9. Unfolded search plans generated by strategies 1, 2, 3, respectively

samples is exclusively for the construction of a particular instance of the generic
puzzle model. The actual control flow of searching is hidden entirely in the
invocations of pattern combinators, most notably Pattern.all, consequently reified
in a complex Pattern object that both represents and implements the search, and
finally effected using Pattern.match and Pattern.matchAgain, as depicted in Fig. 8.

The influence of the functional paradigm is evidently the weakest in the
examples discussed here: They make a single use of the Motif class. But there is
considerable, unfulfilled potential: Virtually all of the loops in the example code
express comprehensions, and could be rephrased in terms of the higher-order
functions map, reduce and friends. These are conspicuously absent from the
traditional Java collection framework; but there is hope that the rise of anony-
mous functions in Java 8 [6] will improve the situation. The Paisley approach is
expected to profit greatly from equally high expressiveness in all three paradigms.
Alternatively, Paisley could be ported to Scala, in order to reap the benefits of
decent functional programming immediately.

The relative performance of more intelligent strategies within the Paisley
framework is encouraging: A measured speedup of over three orders of magnitude
by means of a moderately complex model extension that captures only well-
understood heuristics about the problem domain is certainly worth the effort.

The absolute performance of Paisley implementations is of course no match
for low-level optimized solver code. For instance, the C program obtainable
from [11] takes approximately 0.17 ms to solve “send more money” on our
test machine (compiled with gcc -O), about an order of magnitude less than
our best effort with strategy 3. On the other hand, we have tested a simple,
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portable implementation [10] in the functional-logic programming language Curry,
contributed by a developer of the KiCS2 compiler [3]. It follows a similar strategy
as our strategy 2 and uses no dedicated solver modules, takes about 7.49 s on the
same machine (compiled with KiCS2 0.2.4 +optimize), an order of magnitude
more than its most direct Paisley competitor, and even more than our brute-force
strategy 1. Note that this result is not representative of the language at large;
more sophisticated Curry implementations of cryptarithmetic puzzles such as the
one described in [1] can be fairly competitive.

Considering the costs of portable backtracking and object-oriented data
abstraction, Paisley appears to be well on the way. The only disappointment so far
is the performance of the dynamically scheduled constraints in strategies 2’ and
3’, although the current implementation is merely a proof-of-concept prototype.
Here the scheduling overhead clearly dominates the actual computation. More
research into efficient implementations is needed.
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On an Approach to Implementing Exact Real
Arithmetic in Curry
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Abstract. While many functions on the real numbers are not exactly com-
putable, the theory of exact real arithmetic investigates the computation of such
functions with respect to any given precision. In this paper, we present an ap-
proach to implementing exact real arithmetic in the functional logic language
Curry. It is demonstrated how the specific features of Curry can be used to ob-
tain a high-level realization that is close to the underlying theoretical concepts.
The new Curry data type Real and its corresponding functions can easily be
used in other function definitions.
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Abstract Orders occur naturally in many areas of computer science
and mathematics. In several cases it is very simple do describe an order
mathematically, but may be cumbersome to implement in some program-
ming language. On the other hand many order relations are defined in
terms of an existential quantification. We provide a simple abstraction
of these definitions using the well-known concept of monoid acts and
furthermore show that in fact every order relation can be obtained from
a specific monoid act.

1 Introduction

In beginners’ courses on mathematics (for computer scientists) several ordering
relations are usually given as examples. Consider for instance the natural order
on the natural numbers ≤N defined in terms of

x ≤N y :⇐⇒ ∃ z ∈ N : x+ z = y

for all x, y ∈ N. It is a basic and straightforward task to verify the three laws
of an order relation for ≤N. A short time after this definition we might find
ourselves confronted with the concept of lists and prefix lists. Now suppose that
“++” denotes the list concatenation and consider the definition of a prefix list:
for any set M and any two lists x, y ∈M∗ we define

x E y :⇐⇒ ∃ z ∈M∗ : x++ z = y

and callE the “is-prefix-of”-relation. Observe how the definition itself is basically
the one of ≤N – we merely exchanged N and + by M∗ and ++ respectively. We
know that (N,+, 0) and (M∗,++, ε) are monoids and this facts seems to be
encoded in the definition of the orders somehow. Let us have a look at a final
example, namely the order on Z, which is defined for all x, y ∈ Z by:

x ≤Z y :⇐⇒ ∃ z ∈ N : x+ z = y.

Again we notice the resemblance to the previous definitions, but in this case the
addition is a “skew” one, since its functionality is + : Z× N→ Z.

We observe that all of these orders are structurally defined as

x v y :⇐⇒ ∃ z ∈M : x⊗ z = y,
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for all x, y ∈ A, where A,M are some sets and ⊗ : A×M → A.
From these observations we can derive a simple concept for defining order

relations and study order properties in terms of this concept. While the basic
“ingredients” (as monoid actions) are well-known and have been studied well, to
the best of our knowledge our approach to orders has not.

In the following we will use “functions”1 called “swap”, “curry” and “fix”.
For sets A,B,C and a function f : A×B → C we have that

swap(f) : B ×A→ C, (b, a) 7→ f(a, b) ,

curry(f) : A→ CB , a 7→
(
b 7→ f(a, b)

)
,

fix : A→ AA, g 7→ {a ∈ A | g(a) = a} .

We use f(a,−) = (x 7→ f(a, x)) and f(−, b) = (x 7→ f(x, b)) to denote partial
applications and f−1 for the preimage of f .

The paper is structured as follows.

– We present the abstraction behind the orders we have just discussed.
– A characterisation of orders in terms of monoid actions is given.
– It is shown how to obtain an action that creates a given order.
– We provide an implementation of functions that can be used to obtain orders

in the functional logic language Curry.

2 Monoid acts

The concept of a structure (e.g. group, algebra) acting on some set (or other
structure) is well-known in mathematics, particularly in algebraic contexts.

Let us begin with a simple abstraction of the observation concerning the
function type of the addition in the last example of the introduction2. Recall
that a monoid is an algebraic structure (M, ·, e) where · is a binary, associative
operation and e is a neutral element with respect to ·.

Definition 1 (Monoid action).
Let (M, ·, e) be a monoid and A a non-empty set. A mapping ϕ : M ×A→ A is
called monoid action of M on A, if and only if the following conditions hold:

(1) ϕ(e,−) = idA, (preservation of unity)
(2) ∀x, y ∈M : ∀ a ∈ A : ϕ(x, ϕ(y, a)) = ϕ(x · y, a) (associativity).

Thus a monoid act gives us an outer operation on A (cf. inner operations).
The terms “action” and “act” are used synonymously. If ϕ : M × A → A is a
monoid action, we will abbreviate ϕ(m, a) =: m ·ϕ a for all m ∈M and a ∈ A.

1 Both can be considered functional classes.
2 Actually we should have written + : N × Z → Z for congruence with the following

definition. The reason we did not is that for the three examples the monoid is better
placed in the second component, whereas from a mathematical point of view it is
more convenient to place it in the first one.
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Considering a monoid act in its curried version curry(ϕ) : M → AA gives us
that curry(ϕ) is a monoid homomorphism. Conversely every monoid homomor-
phism from f : M → AA can be converted into a monoid act3. In fact these two
operations are inverse to each other. These properties are known so well that
they constitute typical exercises for students.

We proceed to provide some examples of monoid acts.

Example (Monoid acts)

1. Let (M, ·, e) be a monoid. Then · is a monoid act of M on M .
2. The mapping + : N× Z→ Z is a monoid act of (N,+, 0) on Z.
3. Let (Q,Σ, δ) be a transition system. Then swap(δ∗) : Σ∗ × Q → Q is a

monoid act of (Σ∗, swap(++), ε) on Q.
4. Let A be a set and ϕ : AA ×A→ A, (f, x) 7→ f(x). Then ϕ is a monoid act

of (AA, ◦, idA) on A.

These properties are easily checked: the first one is trivially true, the second one
can be shown in a large variety of simple ways, the third one relies on the fact
that δ∗ is the homomorphic continuation of δ on Σ∗ and the fourth one merely
rephrases elementary properties of function composition and application. �

It is little surprising that monoid acts have certain permanence properties e.g.
direct products of monoid acts form monoid acts. Categorically speaking these
properties state that the category of monoid acts is closed under certain opera-
tions. We will not deal with these properties since they are mostly well known.
Instead we use the concept of monoid acts to define the (ordering) relations we
have seen in the introduction.

Definition 2 (Act preorder).
Let (M, ·, e) be a monoid, A a set and ϕ : M × A → A a monoid act. We then
define for all a, b ∈ A :

a vϕ b :⇐⇒ ∃m ∈M : m ·ϕ a = b.

The relation vϕ is called act(ion) preorder.

Note that the definition captures the essence of all orders we have presented
in the beginning of the paper. To justify the anticipatory name of the relation
we need to show a simple lemma. The proof is very simple and we include it
only for the purpose of demonstration.

Lemma 1 (Act preorder).
Let (M, ·, e) be a monoid, A a set and ϕ : M × A→ A a monoid act. Then the
following hold:

(1) The act preorder vϕ is in fact a preorder on A.
(2) For all m ∈M the mapping ϕ(m,−) is expanding, i.e. ∀ a ∈ A : a vϕ m ·ϕ a.

3 Simply set ϕ(m,a) := f(m)(a) for all m ∈M and a ∈ A.
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Proof. (1) Let x ∈ A. By the preservation of units we get x = e ·ϕx, thus x vϕ x.
Now let a, b, c ∈ A such that a vϕ b and b vϕ c. Then there are m,n ∈M such
that m ·ϕ a = b and n ·ϕ b = c. The associativity of the action gives us

c = n ·ϕ b = n ·ϕ (m ·ϕ a) = (n ·m) ·ϕ a.

Since n ·m ∈M we get a vϕ c.
(2) Left as an exercise to the reader. �

Let us make two observations concerning this lemma. First – showing the re-
flexivity and transitivity of actual relations (like ≤N or E) will always result in
essentially the very proof of this lemma. Second – the two properties “preserva-
tion of units” and “associativity” of monoid acts supply the sufficient conditions
for “reflexivity” and “transitivity” respectively.

So far we have seen some examples of act preorders (that incidentally were
orders as well). In such a setting two questions suggest themselves:

1. When is an act preorder an order?
2. Is every order an act preorder?

Ideally the answer to the first question should be some kind of characterisation
and the answer to the second should be a Boolean value followed by a construc-
tion in the positive case.

Before we turn to the use of these definitions and properties for implemen-
tation we would like to provide answers to both questions. The applications will
follow in Section 4.

Finally let us note that the relation defined by the act preorder is very
well known in group theory in the context of group actions. In this context the
relation above is always an equivalence relation (again this is known well and
often used as an exercise) and is commonly used to investigate act properties
(cf. the orbit-stabiliser-theorem [1].). To the best of our knowledge little effort
has been invested in the study of this relation in the presence of monoid acts.

3 Act Preorders

First of all let us deal with the question when an act preorder is an order. When
we start to prove the antisymmetry of an ordering relation like ≤N we take
a, b ∈ N s.t. a ≤N b and b ≤N a. Then we find that there are c, d ∈ N satisfying
c+ a = b and d+ b = a. Thus we get

a = d+ b = d+ (c+ a) = (d+ c) + a.

So far we have used the associativity of +, but from the equation above we
need to find that a = b. In case of the naturals we would probably proceed as
follows: since a = (d + c) + a, we find that 0 = d + c and then d = 0 = c. We
used injectivity of adding a number in the first step and some kind of “non-
invertability property” in the second one. Clearly requiring these properties in
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an abstracted fashion immediately results in the proof of antisymmetry. Since
we used a single proof layout for this abstraction it is not surprising that these
two properties turn out to be sufficient, but not necessary conditions for the
antisymmetry of the action preorder. Fortunately they can be abstracted into a
single property that is applicable in the general case.

Proposition 1 (Characterisation of antisymmetry I).
Let (M, ·, e) be a monoid, A a set and ϕ : M × A→ A a monoid act. Then the
following statements are equivalent:

(1) The act preorder vϕ is antisymmetric (i.e. an order).
(2) ∀x, y ∈M : ∀ a ∈ A : (x · y) ·ϕ a = a ⇒ y ·ϕ a = a.

Proof. (1) =⇒ (2): We invite the reader to verify this on his or her own.
(2) =⇒ (1): Assume that (2) holds. Let a, b ∈ A such that a vϕ b and b vϕ a.
Then there are x, y ∈M such that x ·ϕ a = b and y ·ϕ b = a, hence

b = x ·ϕ a = x ·ϕ (y ·ϕ b) = (x · y) ·ϕ b.

By (2) this yields y ·ϕ b = b, but on the other hand a = y ·ϕ b, so a = b. �

Note how the proof of (2) =⇒ (1) resembles our exemplary proof from the
beginning of this section. As we have mentioned before, curry(ϕ) is a monoid
homomorphism and thus its image S := curry(ϕ)(M) is a submonoid of AA.
Observe that if there is a function f ∈ S such that f is invertible in S and
f 6= idA, there are x, y ∈ M such that f = curry(ϕ)(y) and curry(ϕ)(x) ◦ f =
idA. We then find that there is an a ∈ A such that y ·ϕ a = f(a) 6= a, but
(x · y) ·ϕ a = a, so the above proposition states that vϕ is not antisymmetric. In
other words: if S has non-trivial invertible elements, the corresponding preorder
is not an order. In particular, if M is a group with more than one element and
curry(ϕ) is not the trivial homomorphism (i.e. m 7→ idA) then S is a group, too
and thus vϕ is not an order.

The property that is equivalent to the antisymmetry can be viewed as a kind
of fixpoint property: for all x, y ∈M and a ∈ A we have that if a is a fixpoint of
b 7→ (x · y) ·ϕ b it is also a fixpoint of b 7→ y ·ϕ b (which also implies that it is a
fixpoint of b 7→ x ·ϕ b). This fact can be expressed as follows.

Proposition 2 (Characterisation of antisymmetry II).
Let (M, ·, e) be a monoid, A a set and ϕ : M × A→ A a monoid act. Then the
following statements are equivalent:

(1) The act preorder vϕ is antisymmetric (i.e. an order).
(2) fix ◦ curry(ϕ) : (M, ·, e)→ (2A,∩, A) is a monoid homomorphism.

Proof. Let ψ := fix ◦ curry(ϕ). First of all we find that

(fix ◦ curry(ϕ))(e) = fix(curry(ϕ)(e)) = fix(idA) = A .
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Now let x, y ∈M . Then we can reason as follows:

∀ a ∈ A : (x · y) ·ϕ a = a ⇒ y ·ϕ a = a

⇐⇒ { note above this proposition }
∀ a ∈ A : (x · y) ·ϕ a = a ⇒ y ·ϕ a = a ∧ x ·ϕ a = a

⇐⇒ { fixpoint rephrasing }
∀ a ∈ A : a ∈ fix(curry(ϕ)(x · y))⇒ a ∈ fix(curry(ϕ)(x)) ∩ fix(curry(ϕ)(y))

⇐⇒ { definition of ⊆ }
fix(curry(ϕ)(x · y)) ⊆ fix(curry(ϕ)(x)) ∩ fix(curry(ϕ)(y))

⇐⇒ { (∗) }
fix(curry(ϕ)(x · y)) = fix(curry(ϕ)(x)) ∩ fix(curry(ϕ)(y))

⇐⇒ { definition of composition and application }
ψ(x · y) = ψ(x) ∩ ψ(y) .

The equivalence denoted by (∗) is simple, since for any functions f, g : A→ A we
have that if x ∈ fix(f) ∩ fix(g) then f(g(x)) = f(x) = x and thus x ∈ fix(f ◦ g).
Now we get

vϕ is antisymmetric

⇐⇒ { by Lemma 1 }
∀m,n ∈M : ∀ a ∈ A : (m · n) ·ϕ a = a ⇒ n ·ϕ a = a

⇐⇒ { equivalence above }
∀m,n ∈M : ψ(m · n) = ψ(m) ∩ ψ(n)

⇐⇒ { see above }
ψ is a monoid homomorphism.

�

Let us now show how to create a fitting monoid and a monoid act for a
given preorder. The idea is quite simple – we want to define a transition system,
such that its transition function is the act. To do that, we observe that orders
and preorders are quite often drawn as their Hasse diagrams. These diagrams
are designed specifically to omit reflexivity and transitivity since they can be
restored in a trivial fashion as demonstrated in Figure 1. The last image bears
a striking resemblance with a transition system except that there is no alphabet
that can be used to act upon the states. Still, we can introduce an alphabet as
indicated in Figure 2.

The sketched idea behind this alphabet can be formalised as follows. Let A
be a non-empty set and 4 ⊆ A×A a preorder, set S := A, Σ := A and

δ : S ×Σ → S, (s, σ) 7→
{
σ : s 4 σ
s : otherwise .
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Fig. 1. A Hasse diagram, added directions, added reflexivity, added transitivity
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Fig. 2. An order transformed to a transition system

Obviously δ is well-defined. Let A := (S,Σ, δ). Then A is a transition system.
Let x, y ∈ A and consider x a state and y a letter. This consideration yields the
equivalence:

δ(x, y) = y ⇐⇒ x 4 y.

When we rewrite δ as an infix operation (i.e. x δ y instead of δ(x, y)), the above
equivalence is very similar to the following well-known property of sets:

A ∪B = B ⇐⇒ A ⊆ B.

In any lattice (L,t,u) (which generalises the powerset of a set) we have

a t b = b ⇐⇒ a v b

by definition and in every idempotent, commutative semigroup (S,+) we have

a+ b = b ⇐⇒ a ≤ b.

Now let M := Σ∗ and

ϕδ : Σ∗ × S → S, (w, s) 7→





s : w = ε

δ(s, w) : w ∈ Σ
ϕδ (tail(w), δ(s, head(w))) : otherwise .

Note that ϕδ = swap(δ∗). As mentioned in Example 2 the mapping ϕδ is a
monoid action, which yields that vϕδ

as defined in Definition 2 is a preorder on
S = A. It turns out that this new preorder is the same relation as the original
one.
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Proposition 3 (Generation of preorders).
We have vϕδ

=4, where ϕδ is the action and 4 is the preorder introduced above.

Proof. First of all we have:

vϕ=4 ⇐⇒ ∀ a, b ∈ A : a 4 b ⇔
(
∃w ∈ A∗ : ϕ(w, a) = b

)
.

by definition of the equality of relations. We now prove the second statement.
“⇒”: Let a, b ∈ A such that a 4 b and w := b. Then w ∈ Σ ⊆ Σ∗ and we have:

ϕ(w, a) = δ(a,w) = δ(a, b) = b .

“⇐”: To simplify the proof we observe that the following holds:

∀ a, b ∈ A :

(
∃w ∈ A∗ : ϕ(w, a) = b

)
⇒ a 4 b

⇐⇒ ∀ a, b ∈ A : ∀w ∈ A∗ : ϕ(w, a) = b ⇒ a 4 b (∗)
⇐⇒ ∀w ∈ A∗ : ∀ a, b ∈ A : ϕ(w, a) = b ⇒ a 4 b .

The equivalence marked with (∗) holds since the conclusion is independent of w.
The latter statement will be proved by induction on the word length.
Ind. beginning: Let w ∈ A∗ such that |w| = 0. Then we have that w = ε. Now
let a, b ∈ A such that ϕ(w, a) = b. This gives us b = ϕ(w, a) = ϕ(ε, a) = a and
the reflexivity of 4 yields a 4 b.
Ind. hypothesis: Let n ∈ N and assume that the following holds:

∀w ∈ A∗ : |w| = n ⇒
(
∀ a, b ∈ A : ϕ(w, a) = b ⇒ a 4 b

)
.

Ind. step: Let v ∈ A∗ such that |v| = n + 1. Then there are x ∈ A and w ∈ A∗
such that v = xw and |w| = n. Let a, b ∈ A such that ϕ(v, a) = b. Then we have:

b = ϕ(v, a) = ϕ(xw, a) = ϕ(w, δ(a, x)) =

{
ϕ(w, x) : a 4 x
ϕ(w, a) : otherwise .

If a 4 x, then by the induction hypothesis we have x 4 b, which, by the transi-
tivity of 4, results in a 4 b. If on the other hand a 64 x, then b = ϕ(w, a) and
by the induction hypothesis we immediately obtain a 4 b, since |w| = n. This
concludes the induction and the proof as well. �

We now rephrase the result of this section for the purpose of legibility.

Corollary 1 (Preorders are monoidally generated).
Let A be a non-empty set and 4⊆ A×A a preorder.
Then there is a monoid M and a monoid act ϕ : M ×A→ A such that 4=vϕ.

For any non-empty set A the set A∗ is infinite (and countable iff A is count-
able). This monoid is somewhat large, since it is the free monoid generated by
the set A. However we can use the well-known quotient construction (cf. [6]) to
obtain an action in which different monoid elements act differently4(i.e. curry(ϕ)

4 The cited source deals with finite state sets only, but the technique easily carries
over to infinite sets as well.
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is injective; such an action is called faithful). To form a quotient one defines for
all m,n ∈M :

m ∼ n :⇐⇒ curry(ϕ)(m) = curry(ϕ)(n).

Clearly, ∼ is an equivalence relation, moreover it is a monoid congruence such
that M/∼ is a monoid as well. The new action

ϕquotient : M/∼ ×A→ A, ([m]∼, a) 7→ ϕ(m, a)

is then faithful. The quotient monoid is usually far smaller than the free monoid.
Also in many cases the quotient monoid can be described in a less generic (and
more comprehensible) way than as the quotient modulo a congruence.

q r

0

1

0

1

Fig. 3. An act that doesn’t induce an order

Let us revisit the antisymmetry of the action preorder one more time in the
context of transition systems. Consider the system in Figure 3. The preorder
induced by this act is not an order, because we have δ(1, q) = r and δ(1, r) = q,
which gives us q vδ r and r vδ q respectively, but q 6= r. What is the key
ingredient to break antisymmetry in this example? It is the existence of a non-
trivial cycle. With our previous results we can then prove the following lemma.

Proposition 4 (Characterisation of antisymmetry III).
Let A = (S,Σ, δ) be a transition system. Then the following statements are
equivalent:

(1) vswap(δ∗) is antisymmetric.
(2) A contains no non-trivial cycles, i.e. if a word does not change a state, so

does every prefix of this word.

This can be proved with Lemma 1, since the second condition is easily translated
into the second statement of the cited lemma.

There is an interesting analogue of this lemma. Consider a graph G = (V,E),
where V is a set and E ⊆ V × V . The reachability relation  G of G is given by

x  G y :⇐⇒ there is a path from x to y

for all x, y ∈ V . It is easy to see that  G is reflexive and transitive5. Also it
is well-known that if G contains no non-trivial cycles (i.e. loops are allowed),
then  G is an order relation. One can also show that the antisymmetry of  G

results in no non-trivial cycles. These facts demonstrate that antisymmetry and
cycle-freeness are closely related and can be considered in the very same light.

5 In fact  G is the reflexive-transitive closure of E, cf. [7].
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4 Implementation in Curry

In this section we use monoid actions to implement orders in the functional
logical programming language Curry (cf. [5]). We provide a simple prototypical
implementation of monoid acts and resulting preorders and discuss its shortcom-
ings as well. To run our code we use the KiCS2 compiler (see [4]).

The components of a monoidally generated order (a monoid and a monoid
action) can be expressed more generally for simplicity. We can use that to im-
plement a very simple version of the general preorder.6

type MonoidAct µ α = µ→ α→ α

type OrderS α = α→ α→ Success

preOrder :: MonoidAct µ α→ OrderS α
preOrder (⊗) x y = z ⊗ x =..= y

where z free

Let us consider an example. To that end we define the naturals as Peano numbers.

data N = O | S N
(⊕) :: N→ N→ N
O ⊕ y = y
S x ⊕ y = S (x ⊕ y)

This addition yields a notion of comparison7:

(v⊕) :: OrderS N
(v⊕) = preOrder (⊕)

Loading these definitions in KiCS2 we get

kics2> S (S O) v⊕ O
No more values
kics2> S (S O) v⊕ S (S O)
Success
No more values
kics2> x v⊕ S O where x free
{x = (S O)} Success
{x = O} Success
No more values

Note that the very concept of an act preorder uses both concepts integrated
in Curry – a functional component “⊗” and a logical one “z where z free”.

6 Clearly this is a greatly simplified approach, since not every function f ::µ→ α→ α
is a monoid act. A user has to verify that µ is a monoid and f is a monoid act to
ensure that preOrder f is in fact a preorder. Alternatively a proof assistant (e.g. Coq
[3]) can be used to guarantee that preOrder is applicable only once the necessary
conditions have been proved.

7 It is simple (but lengthy) to define the integers based on the naturals and to extend
the definitions of ⊕ and v⊕ to allow the implementation of ≤Z.
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While this implementation is very close to its mathematical basis, the reader
may have noticed that our order type does not have a relational look-and-feel,
since orders are more likely to have the type α → α → Bool . Such a relational
version can be obtained by using negation as failure which can be expressed
elegantly in Curry using set functions [2]. Since our implementation is intended to
be prototypical and the above type is rather natural in light of logic programming
we omit the presentation of such a version.

Let us illustrate these “logical orders” with an example function. In total or-
ders8 each two elements are comparable, which allows the notion of a maximum.

maximumBy :: OrderS α→ α→ α→ α
maximumBy (6) x y | x 6 y = y
maximumBy (6) x y | y 6 x = x

The rules we gave are overlapping – in case of equality both rules are applicable,
resulting in multiple results. Fortunately, when 6 is an order all results are equal,
since the constraints x 6 y and y 6 x imply that x = y .

Clearly the previous example of an order generated by a monoid act was
trivial, since the action was the monoid operation itself. Let us consider a non-
trivial example next – the “has-suffix-order” D on A∗ for some given set A. The
order is defined by

xs D ys :⇐⇒ ∃ zs ∈ A∗ : xs = zs++ ys .

Note that the definition does not hint at a possible monoid act that generates
this order, because such an act needs to apply a function to the first element of
the comparison and not the second one. Still we can calculate the following:

xs D ys ⇐⇒ ∃ zs ∈ A∗ : xs = zs++ ys

⇐⇒ ∃ zs ∈ A∗ : zs++ ys = xs

⇐⇒ ys v(++) xs ,

which can be rephrased as (D) = flip (preOrder (++)). How is this relation more
interesting? We were able to define this order as a flipped version of another
order. Clearly this is interesting in its own right, but Corollary 1 states that
there is a monoid and a monoid act yielding precisely the order we need. Let us
define an auxiliary function.9

dropN :: N→ [α ]→ [α ]
dropN O x@( : ) = x
dropN [ ] = [ ]
dropN (S x ) ( : ys) = dropN x ys

We observe that the following holds for all xs, ys :: [α ]:

xs D ys ⇐⇒ ∃n :: N : dropN n xs = ys .

This does look like an act preorder. But is dropN an action? It is indeed.

8 An order ≤⊆ A×A is called total iff for all x, y ∈ A it is true that x ≤ y or y ≤ x.
9 The pattern matching in the first rule makes the rules non-overlapping.
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Lemma 2 (Properties of dropN).
Let A be a non-empty set and

δ : N×A∗ → A∗, (n, l) 7→





l : n = 0

[ ] : l = [ ]

δ(n′, l′) : ∃n′ ∈ N : n = 1 + n′ ∧ ∃x ∈ A : l = x : l′.

Then δ is (well-defined and) a monoid action of N on A∗ and D=vδ is an order.

Using properties of natural numbers the proof is basically a straightforward
induction. We omit it for two reasons – avoiding unnecessary clutter and the
fact that δ from the above lemma is only a version of dropN that operates on
finite and deterministic arguments, while dropN can be used on infinite or non-
deterministic arguments as well.

We can implement the order D in terms of dropN.

(D) :: OrderS [α ]
(D) = preOrder dropN

For comparison we also define the version discussed above.

(D2) :: OrderS [α ]
(D2) = flip (preOrder (++))

The difference between these implementation is that (D2) searches in an upward
fashion, while (D) does the same in an downward direction. This is to say that for
(D2) we perform the unification z ++ y =..= x with a free variable z . This creates
a list structure omitting unnecessary components, which essentially searches for
a possible number of cons cells that can be ignored in x to obtain y . Using (D)
does precisely that explicitly, because we search for a natural number of elements
to explicitly drop from x to obtain y .

Typically functionally similar parts of programs are abstracted as far as pos-
sible to be applicable in different situations. In functional languages such ab-
stractions usually include higher-order functions, that take necessary operations
as additional arguments. Our implementation of preOrder is such a higher order
function, that allows us to define every order in terms of a specific act.

A drawback of the general abstraction is its possible complexity or even
indecidability. Concerning the complexity consider the comparison of one = S O
to some value (S x ) :: N. Using v⊕ this operation is quadratic in the size of
S x . Clearly an implementation of the same order “by hand” requires precisely
two comparisons – first match the outer S and then compare O to x , which
is automatically true. As for the indecidability we consider integer lists. Now
consider the list ones = 1 : ones. We can then define x = 0 : 1 : ones and
y = 1 : 0 : ones. When equipped with the lexicographical order ≤lex, which we
implement by hand, we can easily determine that x ≤lex y . Now suppose we have
found the monoid act ϕ that generates the order ≤lex. Then there is a value z
such that ϕ z x = y (mathematically!), but this equality is not decidable.

In general the above implementation is applicable to orders on finite terms
without any occurrences of ⊥ (the latter is due to the semantics of =..=, see [5]).
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5 An Alternative Abstraction

The reader may have noticed that until now we have presented orders on count-
able sets only. But what about, say, the order on R? The usual definition states
that for x, y ∈ R we have

x ≤R y :⇐⇒ y − x ∈ R≥0 ⇐⇒ ∃ z ∈ R≥0 : z + x = y.

Structurally the latter definition looks exactly like the order on Z. While it seems
odd that we use R≥0 in the definition, we recall that the order on R requires
the existence of a so-called positive cone that is named R>0 in this example and
R≥0 = R>0 ∪ {0}. A positive cone of a group (G,+, 0) is a P ⊆ G that satisfies

P + P ⊆ P ∧ 0 /∈ P ∧ G = −P ∪ {0} ∪ P ,

where P + P and −P are understood element-wise. Then P0 := P ∪ {0} is a
submonoid of G and +|P0×G is a monoid act. This construction covers the act
that creates the order on Z as well as the action that induces the order on R.

Observe that the notion of a positive cone requires an inversion operation of
the group operation. In case of monoids the operation of the monoid usually can-
not be inverted. Replacing the monoid with a group transforms the monoid act
into a group act (without any additional requirements). Then the action preorder
becomes an equivalence relation and non-trivial orders are never equivalences.
In fact the concept of cycle-freeness requires the monoids in our examples to be
“anti-groups”, which is to say that the image of the monoid under the curried
act does not contain non-trivial invertible elements. What is more is that every
order that is defined in terms of a positive cone is total, which is easily shown
using the above definition. Since not every order is total, we cannot expect to
find a “positive-cone representation” for every order.

As we have mentioned above the use of a positive cone to define an order is a
special case of a monoid act. The latter requires less structure and is thus easily
defined. The former automatically comes with more properties and is generally
more natural in the context of ordering groups or fields.

6 Related Work and Discussion

Monoid acts and corresponding preorders appear in different contexts naturally
e.g. transition systems [6] and algebra [1]. The examples from the introduction
constitute well-known orders that are defined as act preorders, while the “has-
suffix”-order is slightly less common. Orders are also ubiquitous in computer
science and mathematics, but they are mostly treated in as tools, rather than
objects of research.

From our results we know that every order can be defined in terms of a
monoid action and we have given an exemplary implementation in Curry. In our
implementation we merely checked whether there is a variable, that acts on the
first argument in a way that results in the second one. Clearly, we could also ask
for this variable as well and obtain the following function.
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cofactor :: MonoidAct µ α→ α→ α→ µ
cofactor (⊗) a b | z ⊗ a =..= b = z

where z free

The above function bears a striking similarity with the following definition of an
“inverse function”.

inverse :: (a → b)→ b → a
inverse f y | f x =..= y = x

where x free

In fact we can redefine cofactor in terms of inverse, namely:

cofactor (⊗) a b = inverse (⊗a) b

When translated back into mathematical notation the above states that cofactor
yields some z ∈ ϕ(−, a)−1 ({b}), where ϕ is ⊗ uncurried. Searching for preimage
values (at least implicitly) is a common task in logic programming that appears
naturally in a variety of definitions, e.g.:

predecessor :: N→ N
predecessor n | S m =..= n = m

where m free

predecessorAsPreimage = inverse S

As we stated earlier, the action preorder is a well-known relation and we have
used very little of existing knowledge. If ϕ : M ×A→ A is a monoid act, we can
consider the orbit of some element a ∈ A that is defined as

orbitM (a) ..= {m ·ϕ a |m ∈M} = {b ∈ A | ∃m ∈M : m ·ϕ a = b}
= {b ∈ A | a vϕ b}.

The latter set is simply the majorant of a (sometimes denoted {a}↑ or (a)).
This simple connection allows to study the notion of majorants in the context of
monoid actions (and vice versa) thus combining two well-known and well-studied
concepts. An additional similarity occurs when comparing our application of the
free monoid with the construction of a free group of a set [1]. We omit the details
here due to lack of space and immediate applicability.

In Curry every type is already ordered lexicographically w.r.t. the construc-
tors (see definition of compare in [5]). Clearly this gives a total order on every
type, but the actual comparison results depend on the order of constructors,
which requires careful choice of this order. Defining integers as

data Z = Pos N | Neg N

leads to positive numbers being smaller than negative ones. Actions provide a
simple way to define (additional) orders in terms of functions that do not depend
on the order of the constructors. In the above example a library that defines the
data type Z is likely to define an addition on integers add :: Z→ Z→ Z and an
embedding toInteger :: N→ Z. With these two functions one can easily define
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act :: N→ Z→ Z
act n z = add (toInteger n) z

which yields the usual order on Z as preOrder act . An additional gain in using
actions is that one can define orders in a more declarative way – instead of
thinking about bit representations or constructors one simply states what is
necessary for one number to be smaller than another.

The prototypical stencil of the above implementation can be varied in differ-
ent ways. One variation concerns the adjustment of the type to the relational
version α → α → Bool that we have mentioned before. Often an order on a
set A is naturally expressed in terms of another order (B,≤B) and an injective
function f : A→ B such that for all a, a′ ∈ A we have

a ≤A a′ :⇐⇒ f(a) ≤B f(a′).

Additionally if M is a monoid and ϕ : M×B → B is a monoid act that generates
≤B we can incorporate f into the existential quantification:

a ≤A a′ ⇐⇒ ∃ z ∈M : z ·ϕ f(a) = f(a′).

While the codomain of f has at least the cardinality of A (because of the injec-
tivity of f), the comparison of values in B may be less complex.

On a more theoretical note it is interesting to study properties of orders in
terms of properties of actions and vice versa. For instance one can show that a
faithful act of a monoid that has no invertible elements except for its unit always
yields an infinite order, which is not obvious at first glance. We suspect that there
are quite a few connections between these seemingly different concepts.

Hats off to: Fabian Reck for detailed explanation of Curry, Rudolf Berghammer
for encouraging this work and additional examples and Insa Stucke for general
discussions.
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Abstract. Exchanging and integrating data that belong to worlds of
different vocabularies are two prominent problems in the database lit-
erature. These problems have been, so far, solved separately in data
exchange and data coordination settings, respectively, but never been
studied in a unified setting. In this paper, we propose a class of map-
pings – called DSE, for data sharing and exchange – that represents such
a unified setting. We introduce a particular DSE setting with a particular
interpretation of related data where an ordinary data exchange or data
integration solution cannot be applied. We define the class of DSE solu-
tions for such a DSE setting, that allow to store a part of explicit data
and a set of inference rules used to generate the complete set of exchanged
data. We prove that a particular DSE solution with good properties –
namely, one that contains a minimal amount of explicit data – can be
computed in Logspace. Finally, we define the set of certain answers to
conjunctive queries and we show how to compute those efficiently.

1 Introduction

Different problems of integrating and accessing data in independent data sources
have been introduced in the literature, and different settings have been proposed
to solve those problems. Data exchange [10, 5] and data coordination [1, 2, 13, 4]
are two among these introduced settings that have received wide attention. A
data exchange setting considers the problem of moving data residing in indepen-
dent applications and accessing it through a new target schema. This process of
exchange only allows to move data from a source into a target that uses the same
set of vocabularies, and thus, transformation occurs to the structure of the data,
and not to the data itself. On the other hand, a data coordination setting allows
the access of data residing in independent sources without having to exchange
it and while maintaining autonomy.

We show in the following examples that a collaborative process – including
coordination tools for managing different vocabularies of different sources and
exchange tools – would yield interoperability capabilities that are beyond the
ones that can be offered today by any of the two tasks separately.

Recall that a data exchange (DE) setting [10] S consists of a source schema S,
a target schema T, and a set Σst of database dependencies – the so-called source-
to-target dependencies – describing structural changes made to data as we move
it from the source to the target. This exchange solution supports exchanging
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information between two applications that refer to the same object using the
same instance value. We present in Example 1 a DE example.

Example 1. Let S = (S,T, Σst) be a DE setting. Let S be a source schema for
the University of Ottawa and T be a target schema. Suppose S has the relations:
Student(Sname, Sage), Course(Cid,Cname, Pname), and Enroll(Sname, Cid,
Cgrade). Also, let T consist of the relation symbols St(Sname, Sage, Saddress),
Cr(Cid,Cname, Pname) and Take(Sname, Cid, Cgrade).

Relation Student (St) stores students name and age (and address) informa-
tion. Relation Course (Cr) stores courses ids and names information, in addition
to the program name which provides each course. Finally, relation Enroll (Take)
stores the set of courses that each student completed. Further, assume that Σst
consists of the following st dependencies:
(a)∀x∀y

(
Student(x, y) → ∃zSt(x, y, z)

)

(b)∀x∀y∀z
(
Enroll(x, y, z)→ Take(x, y, z)

)
.

Let I = {Student(Alex, 18), Course(CSI1390, Introduction to Computers,
CS), Enroll(Alex, CSI1390, 80)} be a source instance. Then, J = {St(Alex, 18,
⊥1), Take(Alex, CSI1390, 80)}, where ⊥1 is fresh unknown (or null) value, is
a target instance that satisfies Σst when considered with the source instance I.
Following usual DE terminology [10], we say that J is a solution for I under S.
2

In Example 1, source values are referred to in both the source and the target
instances using the same names. However, there exist cases where objects in
the source are named and referred to differently in the target. A motivating
example of such an exchange scenario is exchanging information for students
applying for program transfers from one university to a different one. Indeed,
different universities can offer different courses and a course in one university
can possess one or more equivalent courses in the new university.

Unlike data exchange, data coordination (DC) settings [2, 4, 13] solve the
problem of integrating information of different sources that possess different
yet related domain of constants by using the mapping table construct [13]. A
mapping table specifies for each source value the set of related (or corresponding)
target values. DC settings have been studied mainly in peer-to-peer networks,
where sources – called peers – possess equal capabilities and responsibilities in
terms of propagating changes and retrieving related information. A DC setting
S consists of two schemas S1 and S2, and a set of mapping tables {M}. We give
in the following example a data coordination instance that allows integrating
information from two different universities.

Example 2. Let S be a DC setting. Suppose that S1 in S is a schema for the
University of Ottawa (UOO) and S2 in S is the schema of the University of Car-
leton (UOC). In reference to Example 1, assume that S1 is the same schema as S
and S2 is the same schema as T. Further, assume that S1 and S2 are connected
by a mapping table M where M consists of the following pairs {(CSI1390,
ECOR1606), (CSI1390, COMP1005), (CS, CS), (ENG, ENG)}.
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Let I be an instance of S1 and J = {St(Alex, 18, Ottawa), Cr(ECOR1606,
Problem Solving and Computers, ENG), Cr(COMP1005, Introduction to Com-
puter Science I, CS), Take(Alex, ECOR1606, 80)} be an instance of S2.

According to [4], posing a query q to I that computes the list of students
considered to have finished CS courses in UOO, will re-write q to a query q′ to
retrieve a similar list from UOC following the semantics of M. A query q′ can
be the following: q′: Select Sname From Cr, Take Where Cr.Cid = Take.Cid
And Cr.Pname = ′CS′. In this case, the answer of posing q′ to J is ∅. 2

Assume that UOO accredits a ‘CS’ course to a student doing program transfer
from UOC only if this student finishes an equivalent ‘CS’ course, according to
M, in UOC. In Example 2, Alex is not considered as finished a ‘CS’ course at
UOC. Therefore, if Alex does a transfer to the CS program in UOO, he will not
be credited the Introduction to Computers course with code CSI1390. However,
if the semantics of the mapping table M in this example specifies that course
CSI1390 in UOO is equivalent to the ENG course ECOR1606 in UOC, and
course CSI1390 in UOO is equivalent to the CS course COMP1005 in UOC,
then it can be deduced that courses ECOR1606 and COMP1005 are considered
equivalent with respect to UOO according to M. Therefore, given the fact that
Take(Alex, ECOR1606, 80) ∈ J in Example 2 and according to the semantics
inM, Alex is considered to have finished the equivalent CS course COMP1005
in UOC and he should be credited the ‘CS’ course CSI1390 with a grade 80 if
he did a transfer to UOO.

To solve such a problem, we introduce a new class of settings, called data
sharing and exchange (DSE) settings, where exchanges occur between a source
and a target that use different sets of vocabularies. Despite the importance of
the topic, the fundamentals of this process have not been laid out to date. In
this paper, we embark on the theoretical foundations of such problem, that is,
exchanging data between two independent applications with a different set of
domain of constants. DSE settings extend DE settings with a mapping tableM,
introduced in [13], to allow collaboration at the instance level. In addition, the
set of source to target dependencies Σst in DSE refers to such mapping table
so that coordination of distinct vocabularies between applications takes place
together with the exchange.

From what we have mentioned so far about DSE, one would think that all
DSE instances can be reduced to a usual DE instance where the source schema
is extended with the st-mapping table M. However, we argue in this paper
that there exist DSE settings with particular interpretation of related data in
mapping tables where DSE can not be reduced to a DE setting (like the case
in Example 2). We consider in this paper a particular interpretation of related
data in a mapping table; that is, a source element is mapped to a target element
only if both are considered to be equivalent (i.e denote the same object). In
this DSE scenario, DSE and DE are different because source and target data
can be incomplete with respect to the “implicit” information provided by the
semantics of mapping tables. So, in Example 2, we can say that J is incomplete
with respect to the semantics of M, and Alex is considered by UOO to have
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finished the CS course Introduction to Computers. To formalize this idea we
use techniques developed by Arenas et al. in [8], where authors introduced a
knowledge exchange framework for exchanging knowledge bases. It turns out that
this framework suits our requirements, and, in particular, allows us to define the
exchange of both explicit and implicit data from source to target. Our main
contributions in this work are the following:
(1) Universal DSE solutions We formally define the semantics of a DSE
setting and introduce the class of universal DSE solutions, that can be seen as
a natural generalization of the class of universal data exchange solutions [10]
to the DSE scenario, and thus, as “good” solutions. A universal DSE solution
consists of a subset of explicit data that is necessary to infer the remaining
implicit information using a given set Σt of rules in the target.
(2) Minimal universal DSE solutions We define the class of minimal univer-
sal DSE solutions which are considered as “best” solutions. A minimal universal
DSE solution contains the minimal amount of explicit data required to compute
the complete set of explicit and implicit data using a set of target rules Σt. We
show that there exists an algorithm to generate a canonical minimal universal
DSE solution, with a well-behaved set Σt of target rules, in Logspace.
(3) Query answering We formally define the set of DSE certain answers
for conjunctive queries. We also show how to compute those efficiently using
canonical minimal universal DSE solutions.

2 Preliminaries

A schema R is a finite set {R1, . . . , Rk} of relation symbols, with each Ri hav-
ing a fixed arity ni > 0. Let D be a countably infinite domain. An instance I
of R assigns to each relation symbol Ri of R a finite ni-ary relation RIi ⊆ Dni .
Sometimes we write Ri(t̄) ∈ I instead of t̄ ∈ RIi , and call Ri(t̄) a fact of I. The
domain dom(I) of instance I is the set of all elements that occur in any of the
relations RIi . We often define instances by simply listing the facts that belong
to them. Further, every time that we have two disjoint schemas R and S, an
instance I of R and an instance J of S, we define (I, J) as the instance K of
schema R∪S such that RK = RI , for each R ∈ R, and SK = SJ , for each S ∈ S.

Data exchange settings As is customary in the data exchange literature [10,
5], we consider instances with two types of values: constants and nulls.3 More
precisely, let Const and Var be infinite and disjoint sets of constants and nulls,
respectively, and assume that D = Const ∪ Var. If we refer to a schema S as
a source schema, then we assume that for an instance I of S, it holds that
dom(I) ⊆ Const; that is, source instances are assumed to be “complete”, as they
do not contain missing data in the form of nulls. On the other hand, if we refer
to a schema T as a target schema, then for every instance J of T, it holds that
dom(J) ⊆ Const∪Var; that is, target instances are allowed to contain null values.

3
We usually denote constants by lowercase letters a, b, c, . . . , and nulls by symbols ⊥,⊥′,⊥1, . . .
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A data exchange (DE) setting is a tuple S = (S,T, Σst), where S is a source
schema, T is a target schema, S and T do not have predicate symbols in common,
and Σst consists of a set of source-to-target tuple-generating dependencies (st-
tgds) that establish the relationship between source and target schemas. An
st-tgd is a FO-sentence of the form: ∀x̄∀ȳ (φ(x̄, ȳ)→ ∃z̄ ψ(x̄, z̄)), where φ(x̄, ȳ) is
a conjunction of relational atoms over S and ψ(x̄, z̄) is a conjunction of relational
atoms over T.4 A source (resp. target) instance K for S is an instance of S (resp.
T). We usually denote source instances by I, I ′, I1, . . . , and target instances by
J, J ′, J1, . . . .

An instance J of T is a solution for an instance I under S = (S,T, Σst), if
the instance (I, J) of S ∪ T satisfies every st-tgd in Σst. If S is clear from the
context, we say that J is a solution for I.

The data exchange literature has identified a class of preferred solutions,
called the universal solutions, that in a precise way represents all other solutions.
In order to define these solutions, we need to introduce the notion of homomor-
phism between instances. Let K1 and K2 be instances of the same schema R.
A homomorphism h from K1 to K2 is a function h : dom(K1)→ dom(K2) such
that: (1) h(c) = c for every c ∈ Const ∩ dom(K1), and (2) for every R ∈ R and
tuple ā = (a1, . . . , ak) ∈ RK1 , it holds that h(ā) = (h(a1), . . . , h(ak)) ∈ RK2 .
Let S be a DE setting, I a source instance and J a solution for I under S.
Then J is a universal solution for I under S, if for every solution J ′ for I under
S, there exists a homomorphism from J to J ′. For instance, consider again the
DE setting S shown in Example 1 in the Introduction. It is not hard to prove
that J = {St(Alex, 18,⊥1), Take(Alex, CSI1390, 80)}, where ⊥1 is a fresh null
value, is a universal solution for the source instance I under S.

For the class of data exchange settings that we referred to in this paper, every
source instance has a universal solution [10]. Further, given a DE setting S, there
is a procedure (based on the chase [9]) that computes a universal solution for
each source instance I under S. In the case when S is fixed such procedure works
in Logspace. Assuming S to be fixed is a usual and reasonable assumption in
data exchange [10], as mappings are often much smaller than instances. We stick
to this assumption for the rest of the paper.

Mapping tables Coordination can be incorporated at the data level, through
the use of mapping tables [13]. These mechanisms were introduced in data co-
ordination settings [4] to establish the correspondence of related information in
different domains. In its simplest form, mapping tables are just binary tables con-
taining pairs of corresponding identifiers from two different sources. Formally,
given two domains D1 and D2, not necessarily disjoint, a mapping table over
(D1,D2) is nothing else than a subset of D1×D2. Intuitively, the fact that a pair
(d1, d2) belongs to the mapping table implies that value d1 ∈ D1 corresponds
to value d2 ∈ D2. Notice that the exact meaning of “correspondence” between
values is unspecified and depends on the application.

4
We usually omit universal quantification in front of st-tgds and express them simply as φ(x̄, ȳ)→
∃z̄ ψ(x̄, z̄).
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In this paper we deal with a very particular interpretation of the notion of
correspondence in mapping tables. We assume that the fact that a pair (a, b) is
in a mapping table implies that a and b are equivalent objects. We are aware
of the fact that generally mapping tables do not interpret related data in this
way. However, we argue that this particular case is, at the same time, practically
relevant (e.g. in peer-to-peer settings [13]) and theoretically interesting (as we
will see along the paper).

This particular interpretation of mapping tables implies that they may con-
tain implicit information that is not explicitly listed in their extension. For in-
stance, assume thatM is a mapping table that consists of the pairs {(a, c), (b, c)}.
Since a and c are equivalent, and the same is true about b and c, we can infer
that a and b are equivalent. Such implicit information is, of course, valuable, and
cannot be discarded at the moment of using the mapping table as a coordination
tool. In particular, we will use this view of mapping tables as being incomplete
with respect to its implicit data when defining the semantics of DSE settings.

3 Data Sharing and Exchange Settings

We formally define in this section DSE settings that extend DE settings to allow
collaboration via mapping tables.

Definition 1 (DSE setting). A data sharing and exchange (DSE) setting is a
tuple S = (S,T,M, Σst), where: (1) S and T are a source and a target schema,
respectively; (2) M is a binary relation symbol that appears neither in S nor in
T, and that is called a source-to-target mapping (we call the first attribute ofM
the source attribute and the second one the target attribute); and (3) Σst consists
of a set of mapping st-tgds, which are FO sentences of the form

∀x̄∀ȳ∀z̄ (φ(x̄, ȳ) ∧ µ(x̄, z̄) → ∃w̄ ψ(z̄, w̄)),

where (i) φ(x̄, ȳ) and ψ(z̄, w̄) are conjunctions of relational atoms over S and T,
resp., (ii) µ(x̄, z̄) is a conjunction of atomic formulas that only use the relation
symbol M, (iii) x̄ is the tuple of variables that appear in µ(x̄, z̄) in the positions
of source attributes of M, and (iv) z̄ is the tuple of variables that appear in
µ(x̄, z̄) in the positions of target attributes of M.

We provide some terminology and notations before explaining the intuition
behind the different components of a DSE setting. As before, instances of S
(resp. T) are called source (resp. target) instances, and we denote source in-
stances by I, I ′, I1, . . . and target instances by J, J ′, J1, . . . . Instances of M are
called source-to-target mapping tables (st-mapping tables). By slightly abusing
notation, we denote st-mapping tables also by M.

Let S = (S,T,M, Σst) be a DSE setting. We distinguish between the set of
source constants, denoted by ConstS, and the set of target constants, denoted by
ConstT, since applications that collaborate on data usually have different data
domains. As in the case of usual data exchange, we also assume the existence of a
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countably infinite set Var of labelled nulls (that is disjoint from both ConstS and
ConstT). Also, in a DSE the domain of a source instance I is contained in ConstS,
while the domain of a target instance J belongs to ConstT ∪ Var. On the other
hand, the domain of the st-mapping table M is a subset of ConstS × ConstT.
Thus, coordination between the source and the target at the data level occurs
when M identifies which source and target constants denote the same object.
The intuition behind st-tgds is that they specify how source data has to be
transformed to conform to the target schema (that is, coordination at the schema
level). However, since in the DSE scenario we are interested in transferring data
based on the source instance as well as on the correspondence between source and
target constants given by the st-mapping table that interprets M, the mapping
st-tgds extend usual st-tgds with a conjunction µ that filters the target data
that is related via M with the corresponding source data.

More formally, given a source instance I and an st-mapping table M, the
mapping st-tgd φ(x̄, ȳ) ∧ µ(x̄, z̄) → ∃w̄ψ(z̄, w̄) enforces the following: whenever
I |= φ(ā, b̄), for a tuple (ā, b̄) of constants in ConstS ∩ dom(I), and the tuple c̄ of
constants in ConstT is related to ā via µ (that is,M |= µ(ā, c̄)), then it must be
the case that J |= ψ(c̄, d̄), for some tuple d̄ of elements in dom(J)∩(ConstT∪Var),
where J is the materialized target instance. In usual terms, we should say that J
is a solution for I andM under S, i.e (((I∪{M}), J) � Σst). However, as we see
in the next section, solutions have to be defined differently in DSE. Therefore,
in order to avoid confusions, we say J is a pre-solution for I and M under S.

Example 3. (Example 2 cont.). Let S = (S,T,M, Σst) be a DSE setting. Sup-
pose that S in S is the schema of UOC and T in S is the schema of UOO.

Suppose thatM in S consists of the following pairs {(ECOR1606, CSI1390),
(COMP1005, CSI1390), (COMP1005, CSI1790), (CS,CS), (ENG,ENG)}.
Finally, let Σst consist of the following st-mapping dependencies: (a) St(x, y, z)
∧ Take(x,w, u) ∧ Cr(w, v, ‘CS’) ∧ M(x, x′) ∧ M(y, y′)

→ Student(x′, y′).
(b) St(x, y, z) ∧ Take(x,w, u) ∧ Cr(w, v, ‘CS’) ∧M(x, x′) ∧M(w,w′) ∧M(u, u′)

→ Enroll(x′, w′, u′).
It is clear that this DSE instance is exchanging information of UOC students

that have taken ‘CS’ courses with the list of courses they have finished. Also,
M specifies that the Introduction to Computers course with Cid = CSI1390
in UOO has a French version course Introduction aux Ordinateurs with Cid =
CSI1790 provided at UOO. Let I = {St(Alex, 18, Ottawa), Cr(ECOR1606,
Problem Solving and Computers, ENG), Cr(COMP1005, Introduction to Com-
puter Science I, CS), Take (Alex, ECOR1606, 80)} be an instance of S. Then,
J = ∅ is a pre-solution for I and M under S. 2

We can see in Example 3 that in the pre-solution J , Alex is not considered
as have finished a ‘CS’ course. However, if the st-mapping table M follows
the semantics we adopt in this paper, then Alex should be considered to have
completed the ‘CS’ course Introduction to Computer Science I. Therefore, we
can easily deduce that in a DSE setting S, we cannot identify solutions with
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pre-solutions. One reason is that a source instance I in S can be incomplete with
respect to the semantics ofM as the case in Example 3 above. A second reason is
that data mappings in an st-mapping tableM in S can also be incomplete with
respect to the semantics of M as we shall show in Section 4. Data mappings in
an st-mapping tableM are usually specified by domain specialists. However,M
should record not only the associations suggested by the domain specialists, but
also the ones inferred by its semantics. Therefore, to capture the real semantics
of the DSE problem, we came up with a more sophisticated notion of solution
that we introduce in the following section.

4 DSE and Knowledge Exchange

From now on we use the equivalence relation ∼ as a ∼ b to intuitively denote
that a and b, where {a, b} ⊆ ConstS (or {a, b} ⊆ ConstT) are inferred by the
semantics of an st-mapping table M as equivalent objects. Let us revisit Ex-
ample 3. There are two ways in which the data in S is incomplete: First of all,
since M(ECOR1606, CSI1390) holds in S, then UOC course ECOR1606 is
equivalent to the UOO course CSI1390. Also, since M(COMP1005, CSI1390)
holds, then UOC course COMP1005 is equivalent to the UOO course CSI1390.
Therefore, we can deduce that ECOR1606 ∼ COMP1005 with respect to the
target UOO. This means, according to semantics of ∼, the source instance I
is incomplete, since I should include the tuple Take(Alex, COMP1005, 80) in
order to be complete with respect to M.

Second, since M(COMP1005, CSI1390) holds in S, then the UOC course
COMP1005 is equivalent to the UOO course CSI1390 according to the se-
mantics of M. Also, since M(COMP1005, CSI1790) holds in S, then course
COMP1005 is equivalent to the UOO course CSI1790. Therefore, we can deduce
that CSI1390 ∼ CSI1790, according to the semantics of M. This implies that
M is incomplete, since the fact that {(ECOR1606, CSI1390), (COMP1005,
CSI1390), (COMP1005, CSI1790)} ⊆ M entails from the semantics of ∼ the
fact that (ECOR1606, CSI1790) ∈ M. Therefore, we say I and M are incom-
plete in the sense that they do not contain all the data that is implied by the
semantics of M. Further, it is not hard to see that the completion process we
just sketched can become recursive in more complex DSE instances.

From what we explained so far, we conclude that the real semantics of a
DSE setting is based on the explicit data contained in I and M, in addition to
the implicit data obtained by following a completion process for the source, the
target, and M. We define below a set of FO sentences, of type full tgds 5, over
a schema S∪M (T∪M) extended with a fresh binary relation symbol Equal
that appears neither in S nor in T and that captures the semantics of ∼ in a
recursive scenario, which formally defines this completion process:

Definition 2 (Source and Target completion). Let S = (S, T,M, Σst) be
a DSE setting. The source completion of S, denoted by Σc

s, is the conjunction
of the following FO sentences over the schema S ∪ {M,Equal}:
5

Full tgds are tgds that do not use existential quantication.
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1. For each S ∈ S ∪ {M} of arity n and 1 ≤ i ≤ n:
∀x1 · · · ∀xn(S(x1, . . . , xi, . . . , xn)→ Equal(xi, xi)).

2. ∀x∀y(Equal(y, x)→ Equal(x, y)).
3. ∀x∀y∀z(Equal(x, z) ∧Equal(z, y)→ Equal(x, y)).
4. ∀x∀y∀z(M(x, z) ∧M(y, z)→ Equal(x, y)).
5. ∀x∀y∀z∀w(M(x, z) ∧Equal(x, y) ∧Equal(z, w)→M(y, w)).
6. For each S ∈ S of arity n:
∀x1, y1 · · · ∀xn, yn (S(x1, . . . , xn) ∧∧ni=1 Equal(xi, yi)→ S(y1, . . . , yn)).

The target completion of S, denoted Σc
t , is defined analogously by simply re-

placing the role of S by T in Σc
s, and then adding the rule 7. ∀x∀y∀z(M(z, x)∧

M(z, y)→ Equal(x, y)) that defines the completion of M over the target.

Notice that the first 3 rules of Σc
s make sure that Equal is an equivalence

relation on the domain of the source instance. The fourth rule detects which
source elements have to be declared equal by the implicit knowledge contained
in the st-mapping table. The last two rules allow to complete the interpretation
ofM and the symbols of S, by adding elements declared to be equal in Equal.
The intuition for Σc

t is analogous.
Summing up, data in a DSE scenario always consists of two modules: (1)

The explicit data stored in the source instance I and the st-mapping table M,
and (2) the implicit data formalized in Σc

s and Σc
t . This naturally calls for

a definition in terms of knowledge exchange [8], as defined next. A knowledge
base (KB) over schema R is a pair (K,Σ), where K is an instance of R (the
explicit data) and Σ is a set of logical sentences over R (the implicit data). The
knowledge base representation has been used to represent various types of data
including ontologies in the semantic web, which are expressed using different
types of formalisms including Description Logic (DL) [16].

The set of models of (K,Σ) [8], denoted by Mod(K,Σ), is defined as the set
of instances of R that contain the explicit data in K and satisfy the implicit
data in Σ; that is, Mod(K,Σ) corresponds to the set {K ′ | K ′ is an instance of
R, K ⊆ K ′ and K ′ |= Σ }. In DSE, we consider source KBs of the form ((I ∪
{M}), Σc

s), which intuitively correspond to completions of the source instance
I with respect to the implicit data in M, and, analogously, target KBs of the
form ((J ∪ {M}), Σc

t ).
A good bulk of work has recently tackled the problem of exchange of KBs

that are defined using different DL languages [6, 7]. we formalize the notion of
(universal) DSE solution to extend the KB (universal) solution introduced in [8].
The main difference is that in DSE solutions we need to coordinate the source
and target information provided byM, as opposed to KB solutions that require
no data coordination at all. This is done by establishing precise relationships
in a (universal) DSE solution between the interpretation of M in S and T,
respectively. KB exchange in DL showed that target KB (universal) solutions [8]
present several limitations since these can miss some semantics of the source
KB [6, 7]. Universal DSE solutions, on the other hand, do not possess those
limitations and they reflect the semantics in the source KB and the st-mapping
table accurately.
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From now on, KR′ denotes the restriction of instance K to a subset R′ of
its schema R. Let S = (S,T,M, Σst) be a DSE setting, I a source instance,M
an st-mapping table, J a target instance. Recall that Σc

s , Σ
c
t are the source and

target completions of S, respectively. Then:

1. J is a DSE solution for I and M under S, if for every K ∈ Mod((J ∪
{M}), Σc

t ) there is K ′ ∈ Mod((I ∪ {M}), Σc
s) such that the following hold:

(a) K ′M ⊆ KM, and (b) KT is a pre-solution for K ′S and K ′M under S.
2. In addition, J is a universal DSE solution for I and M under S, if J is a

DSE solution, and for every K ′ ∈ Mod((I∪{M}, Σc
s) there is K ∈ Mod((J ∪

{M}, Σc
t ) such that (a) KM ⊆ K ′M, and (b) KT is a pre-solution for K ′S

and K ′M under S.

In Example 3, J = {Student(Alex, 18), Enroll (Alex, CSI1390, 80), Enroll
(Alex, CSI1790, 80)} is a universal DSE solution for I and M under S. We
define below a simple procedure CompUnivDSESolS that, given a DSE setting
S = (S,T,M, Σst) and a source instance I and an st-mapping table M, it
generates a universal DSE solution J for I and M under S.
CompUnivDSESolS:
Input: A source instance I, an st-mapping table M, and a set Σst of st-tgds.
Output: A Canonical Universal DSE solution J for I and M under S.

1. Apply the source completion process, Σc
s , to I and M, and generate Î and

M̂ respectively.
2. Apply a procedure (based on the chase [9]) to the instance (Î ∪ {M̂}), and

generate a canonical universal pre-solution J for Î and M̂.

The procedure CompUnivDSESolS works as follows: step 1 applies the source
completion process Σc

s , given in Definition 2, to I andM, and returns as outcome
the source instance Î and the st-mapping table M̂ that are complete with respect
to the implicit data in M. Next, step 2 generates a canonical universal pre-
solution J for Î and M̂ such that ((Î ∪ M̂), J) � Σst.

We can combine the fact that universal solutions in fixed data exchange
settings S = (S,T, Σst) can be computed in Logspace with some deep results
in the computation of symmetrical binary relations [14], to show that universal
DSE solutions can be computed in Logspace:

Proposition 1. Let S = (S,T,M, Σst) be a fixed DSE setting. Then computing
a universal DSE solution J for a source instance I and an st-mapping table M
is in Logspace.

5 Minimal Universal DSE Solutions

In the context of ordinary data exchange, “best” solutions – called cores – are
universal solutions with minimal size. In knowledge exchange, on the other hand,
“best” solutions are cores that materialize a minimal amount of explicit data.
Intuitively, a minimal universal DSE (MUDSE) solution is a core universal DSE
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solution J that contains a minimal amount of explicit data in J with respect to
Σc
t , and such that no universal DSE solution with strictly less constants is also

a universal DSE solution with respect to Σc
t .

We define this formally: Let S be a DSE setting, I be a source instance, M
an st-mapping table, and J a universal DSE solution for I and M under S.
Then J is a MUDSE solution for I and M under S, if: (1) There is no proper
subset J ′ of J such that J ′ is a universal DSE solution for I and M under S,
and; (2) There is no universal DSE solution J ′ such that dom(J ′) ∩ ConstT is
properly contained in dom(J) ∩ ConstT .

So, in Example 3, J = {Student(Alex, 18), Enroll (Alex, CSI1390, 80)} is
a MUDSE solution for I and M under S. Note that the DSE solution J ′ =
{Student(Alex, 18), Enroll (Alex, CSI1390, 80), Enroll (Alex, CSI1790, 80)}
is a core universal DSE solution, however it is not the most compact one. Condi-
tion (2) in the definition of MUDSE solutions is not part of the original definition
of minimal solutions in knowledge exchange [8]. However, this condition is nec-
essary as we see below.

Assume that the universal DSE solution in Example 3 includes the follow-
ing two facts {Teach(Anna,CSI1390), T each(Anna,CSI1790)}, where T is ex-
tended with the relation Teach(Tid, Cid) which specifies the teachers and the list
of courses they teach. Then, the DSE solution J = {Student(Alex, 18), Enroll
(Alex, CSI1390, 80), T each(Anna,CSI1790)} does not satisfy condition (2)
and provides us with redundant information with respect to I and M, since we
can conclude that CSI1390 and CSI1790 are equivalent courses. A MUDSE so-
lution however would be J = {Student(Alex, 18), Enroll(Alex, CSI1390, 80),
T each(Anna,CSI1390)}.

We define below a procedure CompMUDSEsolS, that given a DSE setting S, a
source instance I, and an st-mapping table M, it computes a MUDSE solution
J∗ for I and M under S in Logspace. This procedure works as follows:
CompMUDSEsolS:
Input: A source instance I, an st-mapping table M, and a set Σst of st-tgds.
Output: A Minimal Universal DSE solution J∗ for I and M under S.

1. Apply the source completion process, Σc
s , to I and M, and generate Î and

M̂ respectively.
2. Define an equivalence relation ∼ on dom(M̂)∩ConstT as follows: c1 ∼ c2 iff

there exists a source constant a such that M̂(a, c1) and M̂(a, c2) hold.
3. Compute equivalence classes {C1, . . . , Cm} for ∼ over dom(M̂) ∩ ConstT

such that c1 and c2 exist in Ci only if c1 ∼ c2.
4. Choose a set of witnesses {w1, . . . , wm} where wi ∈ Ci, for each 1 ≤ i ≤ m.
5. Compute from M̂ the instanceM1 := replace(M̂, w1, . . . , wm) by replacing

each target constant c ∈ Ci ∩ dom(M̂) (1 ≤ i ≤ m) with wi ∈ Ci.
6. Apply a procedure (based on the chase [9]) to the instance (Î ∪ {M1}), and

generate a canonical universal pre-solution J for Î and M1.
7. Apply a procedure (based on the core [11]) to the target instance J and

generate the target instance J∗ that is the core of J .

We prove the correctness of CompMUDSEsolS in the following Theorem.
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Theorem 1. Let S be a DSE setting, I a source instance, andM an st-mapping
table. Suppose that J∗ is an arbitrary result for CompMUDSEsolS(I,M). Then,
J∗ is a minimal universal DSE solution for I and M under S.

In data exchange, the smallest universal solutions are known as cores and
can be computed in Logspace [11]. With the help of such result we can prove
that MUDSE solutions can be computed in Logspace too. Also, in this context
MUDSE solutions are unique up to isomorphism:

Theorem 2. Let S be a fixed DSE setting. There is a Logspace procedure
that computes, for a source instance I and an st-mapping table M, a MUDSE
solution J for I and M under S. Also, for any two MUDSE solutions J1 and
J2 for I and M under S, it is the case that J1 and J2 are isomorphic.

6 Query Answering

In data exchange, one is typically interested in the certain answers of a query
Q, that is, the answers of Q that hold in each possible solution [10]. For the case
of DSE we need to adapt this definition to solutions that are knowledge bases.
Formally, let S be a DSE setting, I a source instance, M an st-mapping table,
and Q a FO conjunctive query over T. The set of certain answers of Q over I
andM and under S, denoted certainS((I ∪ {M}), Q), corresponds to the set of
tuples that belong to the evaluation of Q over KT, for each DSE solution J for
I and M and K ∈ Mod((J ∪ {M}), Σc

t ).

Example 4. We refer to the DSE setting given in Example 3. Let Q(x, y, z) =
Enroll(x, y, z). Then, certainS((I ∪ {M}), Q) = {Enroll(Alex, CSI1390, 80),
Enroll(Alex, CSI1790, 80)}. 2

In DE, certain answers of unions of CQs can be evaluated in Logspace
by directly posing them over a universal solution [12, 10], and then discarding
tuples with null values. The same complexity bound holds in DSE by applying a
slightly different algorithm. In fact, certain answers cannot be simply obtained
by posing Q on a universal DSE solution J , since J might be incomplete with
respect to the implicit data in Σc

t .

One possible solution would be to apply the target completion program Σc
t

to a universal DSE solution J (denoted as Σc
t (J)) as a first step, then apply

Q to Σc
t (J). A second method is to compute certain answers of Q using a

MUDSE solution. A MUDSE solution J in DSE possesses an interesting prop-
erty, that is, applying Q to J returns a set of certain answers U that mini-
mally represents the set of certain answers U ′ returned when Q is applied to
Σc
t (J). We can compute certainS((I ∪ {M}), Q) directly using J , by first ap-

plying rules in Σc
t , excluding rule 6, to generate the binary table Equal. Then

complete the evaluation of Q on J , Q(x1, . . . , xn), and return Q̂(y1, . . . , yn) =
Q(x1, . . . , xn) ∧∧ni=1 Equal(xi, yi). Thus, we obtain the following result:
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Proposition 2. Let S = (S,T,M, Σst) be a fixed DSE setting, I a source
instance, M an st-mapping table, J a MUDSE solution, and Q a fixed CQ over
T. Then, certainS((I∪{M}), Q) = Q̂(J) where Q̂(y1, . . . , yn) = Q(x1, . . . , xn)∧∧n
i=1 Equal(xi, yi)

In addition, we prove in the following proposition that we can still compute
the set of certain answers of a conjunctive query Q in Logspace.

Proposition 3. Let S = (S,T,M, Σst) be a fixed DSE setting and Q a fixed
union of CQs. There is a Logspace procedure that computes certainS((I ∪
{M}), Q), given a source instance I and an st-mapping table M.

7 Experiments

We implement the knowledge exchange semantics we introduced in this paper in
a DSE prototype system. This system effectively generates universal DSE and
MUDSE solutions that can be used to compute certain answers for CQs using
the two methods introduced in Section 6. We used the DSE scenario of Exam-
ple 3 extended with the st-tgd: Cr(x, y, z) ∧M(x, x′) ∧M(y, y′) ∧M(z, z′) →
Course(x′, y′, z′). Due to the lack of a benchmark that enforces recursion of the
∼ equivalence relation in the st-mapping table M and due to size restrictions,
we synthesized the data in our experiments.

We show in our experiments that as the percentage of recursion increases in
an st-mapping table, the run time to generate a universal DSE solution exceeds
the time to generate a MUDSE solution. We also show that computing certain
answers using a MUDSE solution is more effective than using a universal DSE
solution. The experiments were conducted on a Lenovo workstation with a Dual-
Core Intel(R) 1.80GHz processor running Windows 7, and equipped with 4GB
of memory and a 297 GB hard disk. We used Python (v2.7) to write the code
and PostgreSQL (v9.2) database system.

DSE and MUDSE Solutions Computing Times We used in this experiment
a source instance I of 4,500 tuples, and 500 of those were courses information.
The DSE system leveraged the work done in the state of the art ++Spicy sys-
tem [17] to generate MUDSE solutions. We mapped courses data in the source
to common target courses in M, with different ∼ equivalence percentages (to
enforce a recursive ∼ relation). The remaining set of source data was mapped to
itself inM. Figure 1 shows that as the percentage of recursion in ∼ equivalence
relation overM increases, the run times to generate universal DSE and MUDSE
solutions increase. The reason is, as the ∼ percentage increases, the number of
source values (and target values) inferred to be ∼ increases, and thus the size of
Equal created in Σc

s and Σc
t increases. Also, since target instances are usually

larger thanM, the run time of completing the former to generate DSE solutions
exceeds the time of completing the later when generating MUDSE solutions.
Conjunctive Queries Computing Times We have selected a set of 8 queries
to compare the performance of computing certain answers using a universal
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Fig. 1. MUDSE and Universal
DSE solutions Generation Times

Fig. 2. Queries run times against a Core
of a universal DSE solution and a MUDSE
solution

DSE solution (following the first method in Section 6) versus a MUDSE solution
(following the second method in Section 6). We provide the list of queries in
Table 1.

Table 1. List of Queries

Q1 Fetch all the students names and the name of courses they have taken

Q2 Fetch the list of pairs of students ids and names that took the same course

Q3 Fetch all the students names and the grades they have received

Q4 Fetch the list of pairs of courses names that belong to the same program

Q5 Fetch for each student id the pair of courses that he has finished with the same grade

Q6 Fetch all the courses ids and their names

Q7 Fetch all the students ids and their names

Q8 Fetch the list of pairs of students ids that possess the same address

We applied the list of input queries to a DSE instance where the ∼ percentage
is 40% and a course in the source is mapped to a maximum of two courses in
the target. We chose a universal DSE solution, with a property of being a core
of itself, that had around 18,000 records, and a MUDSE solution that contained
around 4,900 records. Figure 2 shows that computing the sets of certain answers
for the input conjunctive queries using a MUDSE solution take less run times
than when computing these using a DSE solution. In addition, the deterioration
in performance of query execution against the DSE solution appeared more in
queries Q2 and Q5 than the remaining queries, is because both queries apply
join operations to the Enroll table that involves a lot of elements which are
inferred to be equivalent by M.

8 Concluding Remarks

We introduced a Data Sharing and Exchange setting which exchanges data be-
tween two applications that have distinct schemas and distinct yet related sets
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of vocabularies. To capture the semantics of this setting, we defined DSE as a
knowledge exchange system with a set of source and target rules that infer the
implicit data should be in the target. We formally defined DSE solutions and
identified the minimal among those. Also, we studied certain answers for CQs.
Finally, we presented a prototype DSE system that generates universal DSE so-
lutions and minimal ones, and it computes certain answers of CQs from both.
Our implementation did not aim at optimality in performance, but was intended
to be a valuable direction of future work. In future work, we will investigate a
more general DSE setting were mapped elements are not necessarily equal.
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Abstract. Traditional proof calculi are mainly studied for formalising the no-
tion of valid inference, i.e., they axiomatise the valid sentences of a logic. In
contrast, the notion of invalid inference received less attention. Logical calculi
which axiomatise invalid sentences are commonly referred to as complemen-
tary calculi or rejection systems. Such calculi provide a proof-theoretic account
for deriving non-theorems from other non-theorems and are applied, in partic-
ular, for specifying proof systems for nonmonotonic logics. In this paper, we
present a sound and complete sequent-type rejection system which axiomatises
concept non-subsumption for the description logic ALC. Description logics are
well-known knowledge-representation languages formalising ontological reason-
ing and provide the logical underpinning for semantic-web reasoning. We also
discuss the relation of our calculus to a well-known tableau procedure for ALC.
Although usually tableau calculi are syntactic variants of standard sequent-type
systems, for ALC it turns out that tableaux are rather syntactic counterparts of
complementary sequent-type systems. As a consequence, counter models for wit-
nessing concept non-subsumption can easily be obtained from a rejection proof.
Finally, by the well-known relationship between ALC and multi-modal logic K,
we also obtain a complementary sequent-type system for the latter logic, gener-
alising a similar calculus for standard K as introduced by Goranko.

1 Introduction and Overview

Research on proof theory is usually guided by the semantic concept of validity, finding
appropriate (i.e., sound and complete) proof calculi for various types of logics. This is
reasonable insofar as logical methods have been devised since their very beginning for
characterising the valid sentences by virtue of their form rather than their semantic de-
notations. However, the complementary notion of validity, that is, invalidity, has rarely
been studied by syntactic means. From a proof-theoretic point of view, the invalidity of
sentences is largely established by the exhaustive search for counter models.

Proof systems which axiomatise the invalid sentences of a logic are commonly
coined under the terms complementary calculi or rejection systems. Such calculi for-
malise proofs for invalidity, i.e., with the existence of a sound and complete rejection
system of a logic under consideration, one is able to check for the invalidity of a sen-
tence by syntactic deduction. Another way to characterise this notion is that a proof in
such a complementary calculus witnesses the non-existence of a proof in a correspond-
ing (sound and complete) positive proof system.
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To the best of our knowledge, a first systematic theory of rejection was established
by Jan Łukasiewicz in the course of research on the Aristotelian syllogistic [1]. Indeed,
even the forefather of modern logic, Aristotle, recognised that showing the invalidity of
a syllogistic form is not only possible by providing a counterexample, but also by em-
ploying some form of axiomatic reasoning. This notion was put into formal, axiomatic
terms by Łukasiewicz.

Up to now, rejection systems have been studied for different families of logics in-
cluding classical logic [2, 3], intuitionistic logic [4, 5], modal logics [6, 7], and many-
valued logics [8] (for an overview, cf., e.g., Wybraniec-Skardowska [9] and Caferra and
Peltier [10]). Many of them are analytic sequent-type systems, which proved fruitful
in axiomatising invalidity without explicitly referring to validity. In contrast, the fun-
damental rule of rejection in the system of Łukasiewicz makes reference to a positive
proof system too.

Besides a general proof-theoretic interest in such calculi, they received also atten-
tion in research on proof theory for nonmonotonic logics. In particular, Bonatti and
Olivetti [11] employed complementary sequent-type systems when devising proof sys-
tems for default logic [12], autoepistemic logic [13], and propositional circumscrip-
tion [14]. Furthermore, in logics in which the validity of a formula A is tantamount
to checking unsatisfiability of the negation of A, a complementary calculus provides a
proof-theoretic account of satisfiability checking.

In this paper, we deal with in the issue of complementary calculi in the context
of description logics. More specifically, we consider the description logic ALC and
present a sound and complete sequent-type rejection system for axiomatising concept
non-subsumption for this logic. Note that, informally speaking,ALC is the least expres-
sive of the so-called expressive description logics (for more details on the vast topic of
description logics, we refer the reader to the overview article by Baader et al. [15]).

Concerning previous work on sequent-type calculi for description logics, we men-
tion an axiomatisation of concept subsumption for different description logics, includ-
ing ALC, by Rademaker [16] and an earlier calculus for ALC by Borgida et al. [17].

As pointed out above, in our approach, we study an axiomatisation of concept non-
subsumption for ALC. We view this as a starting point for further investigations into
complementary calculi for description logics as the more general case of dealing with
reasoning from knowledge bases, which are usually the principal structures of descrip-
tion logics where reasoning operates on, would be a natural next step. In fact, our calcu-
lus is devised to axiomatise the invalidity of single general concept inclusions (GCIs)
without reference to any knowledge base.

We also discuss the relation of our calculus to a well-known tableau procedure for
ALC [18]. In general, as well known, sequent-type systems and tableau calculi are
closely related—indeed, traditionally, tableau calculi are merely syntactic variants of
standard sequent-type systems. However, popular tableau algorithms for description
logics are formalised in order to axiomatise satisfiability rather than validity (cf. Baader
and Sattler [18] for an overview). Hence, tableaux correspond in the case of descrip-
tion logics to complementary sequent systems. As a consequence, counter models for
witnessing concept non-subsumption can easily be obtained from a rejection proof. We
describe the relation of our calculus to the tableau algorithm for ALC as described by
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Baader and Sattler [18] in detail, and show how to construct a counter model from a
proof in the complementary sequent system.

Finally, as also well-known,ALC can be translated into the multi-modal logic Km,
which extends standard modal logic K by providing countably infinite modal operators
of form [α], where α is a modality. In view of this correspondence, we obtain from our
complementary calculus forALC also a complementary sequent-type calculus for Km.
This calculus generalises a similar one for modal logic K as introduced by Goranko [6].
In fact, Goranko’s calculus served as a starting point for the development of our calculus
for ALC. We briefly discuss the complementary calculus for Km, thereby showing the
relation of our calculus for ALC to Goranko’s one for K.

2 Notation and Basic Concepts

With respect to terminology and notation, we mainly follow Baader et al. [15].
Syntactically, ALC is formulated over countably infinite sets NC , NR, and NO of

concept names, role names, and individual names, respectively. The syntactic artefacts
of ALC are concepts, which are inductively defined using the concept constructors u
(“concept intersection”), t (“concept union”), ¬ (“concept negation”), ∀ (“value re-
striction”), ∃ (“existential restriction”), as well as the concepts > and ⊥ as usual. For
the sake of brevity we agree upon omitting parentheses whenever possible and assign
¬, ∀, and ∃ the highest rank, and u and t the least binding priority. We use C,D, . . .
as metavariables for concepts and p, q, r, . . . as metavariables for role names. When
we consider concrete examples, we assume different metavariables to stand for distinct
syntactic objects.

By an interpretation we understand an ordered pair I = 〈∆I , ·I〉, where ∆I is a
non-empty set called domain and ·I is a function assigning each concept name C ∈ NC
a set CI ⊆ ∆I , each role name r ∈ NR a set rI ⊆ ∆I × ∆I , and each individual
name a ∈ NO an element aI ∈ ∆I . The function ·I is furthermore required to obey
the semantics of the concept constructors in the usual way. For a concept C and an
interpretation I, CI is the extension of C under I. A concept C is satisfiable if there
exists an interpretation I such that CI 6= ∅, and unsatisfiable otherwise.

A general concept inclusion (GCI) is an expression of form C v D, where C and
D are arbitrary concepts. An interpretation I satisfies a GCI iff CI ⊆ DI , and falsifies
it otherwise. In the former case, I is a model of C v D, while in the latter case, I is a
counter model of C v D. The GCI C v D is valid if every interpretation satisfies it.
In this case, we say that D subsumes C.

When considering proof systems, it is convenient and necessary to focus on inter-
pretations of a special form when deciding semantic properties of language constructs.
A tree-shaped interpretation is an interpretation I such that the set δ(I) := {(v, w) |
(v, w) ∈ ⋃

r∈NR
rI} of ordered tuples forms a tree. If the tree is finite, then I is a finite

tree-shaped interpretation. The root of a tree-shaped interpretation I is defined to be the
root of δ(I) and the length of I is the length of the longest path in δ(I). The following
property of ALC is well-known [18].

Proposition 1. A concept C is satisfiable iff there exists a finite tree-shaped interpreta-
tion T such that v0 ∈ CT , where v0 is the root of T .
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When we say that a tree-shaped interpretation I satisfies a concept, then we mean that
the root of I is in the extension of the concept. Let T and T ′ be tree-shaped interpre-
tations with roots v and v′, respectively. Then, T ′ is an r-subtree of T (symbolically,
T ′/rT ) if (v, v′) ∈ rT and δ(T ′) is a subtree of δ(T ) in the usual sense. T ′ is a subtree
of T if there exists an r ∈ NR such that T ′ is an r-subtree of T .

Let T1, . . . , Tn be tree-shaped interpretations such that for i 6= j it holds that δ(Ti)∩
δ(Tj) = ∅ (1 ≤ i, j ≤ n). Then, T = 〈v0; r1, T1; . . . ; rn, Tn〉 expresses the fact that T
is a tree-shaped interpretation with root v0 and, for every i = 1, . . . , n, the interpretation
Ti is an ri-subtree of T . Furthermore, T1, . . . , Tn are the only subtrees of T .

3 A Rejection Calculus forALC

We now proceed defining our rejection calculus, which we denote by SCc
ALC . The

calculus will be devised to refute GCIs of form C v D, where C and D are arbitrary
concepts. Thereby, we define new syntactic artefacts, viz. anti-sequents.

Definition 2. An anti-sequent is an ordered pair of form Γ a ∆, where Γ and ∆ are
finite multi-sets of concepts. Γ is the antecedent and ∆ is the succedent of Γ a ∆. An
anti-sequent Γ a ∆ is propositional if neither a concept of form ∀r.C nor a concept of
form ∃r.C occurs as subconcept in any D ∈ Γ ∪∆.

As usual, given a conceptC or a setΣ of concepts, “Γ,C a ∆” denotes “Γ∪{C} a ∆”,
and “Γ,Σ a ∆” denotes “Γ ∪Σ a ∆”. Moreover, “a ∆” stands for “∅ a ∆” and “Γ a”
means “Γ a ∅”.

A proof in SCc
ALC is defined as usual in sequential systems. Furthermore, we will

use terms which are common in sequent-type systems, like end-sequent, etc., without
defining them explicitly (we refer the reader to Takeuti [19] for respective formal defi-
nitions of such concepts).

Definition 3. An interpretation I refutes an anti-sequent Γ a ∆ if I is a counter model
of the GCI

d
γ∈Γ γ v

⊔
δ∈∆ δ, where the empty concept intersection is defined to be

> and the empty concept union is defined to be ⊥. If there is an interpretation which
refutes Γ a ∆, then we say that Γ a ∆ is refutable. Furthermore, ι(Γ a ∆) stands ford
γ∈Γ γ u ¬(

⊔
δ∈∆ δ).

In the following, we denote finite multi-sets of concepts by capital Greek letters
Γ,∆, . . ., while capital Latin letters C,D, . . . denote concepts.

It is easy to see that the problem of deciding whether an anti-sequent is refutable
can be reduced to the problem of deciding whether a concept is satisfiable.

Theorem 4. The anti-sequent s = Γ a ∆ is refutable iff ι(s) is satisfiable.

An immediate consequence of this observation and Proposition 1 is that an anti-
sequent is refutable iff it is refuted by some finite tree-shaped interpretation. Note also
that a concept C is satisfiable iff the anti-sequent C a is refutable. Furthermore, a
concept D does not subsume a concept C iff the anti-sequent C a D is refutable.
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Now we turn to the postulates of SCc
ALC . Roughly speaking, the axioms and rules

of SCc
ALC are generalisations of a sequential rejection system for modal logic K [6], by

exploiting the well-known property that ALC is a syntactic variant of the multi-modal
version of K [20] and by incorporating multiple modalities into Goranko’s system. We
discuss the relationship to Goranko’s system, in terms of a multi-modal generalisation
of his system, in Section 5. Besides that, the rules for the propositional connectives u,
t, and ¬ correspond directly to those of the rejection system for propositional logic [6,
2, 3]. Note that these rules exhibit non-determinism as opposed to exhaustive search in
standard proof systems.

Let us fix some notation. For a set Σ of concepts and a role name r, we define
¬Σ := {¬C | C ∈ Σ}, ∀r.Σ := {∀r.C | C ∈ Σ}, and ∃r.Σ := {∃r.C | C ∈ Σ}.
Moreover, for any role name r, Γ r and ∆r stand for multi-sets of concepts where every
concept is either of form ∀r.C or ∃r.C.

Definition 5. The axioms of SCc
ALC are anti-sequents of form

Γ0 a ∆0 and (1)
∀r1.Γ1, . . . ,∀rn.Γn a ∃r1.∆1, . . . ,∃rn.∆n, (2)

where Γ0 and ∆0 are disjoint multi-sets of concept names, Γ1, . . . , Γn and ∆1, . . . ,∆n

are multi-sets of concepts, and r1, . . . , rn are role names. Furthermore, the rules of
SCc
ALC are depicted in Figure 1, where r1, . . . , rn are assumed to be distinct role

names.

Note that each axiom of form (1) is a propositional anti-sequent and, accordingly,
we refer to an axiom of such a form as a propositional axiom.

Intuitively, in order to derive an anti-sequent s, our calculus tries to build a model
which satisfies ι(s). When we speak in terms of modal logic, the mix rules guarantee
that the resulting model contains “enough” worlds to satisfy ι(s). For example, a world
which satisfies the anti-sequent ∃r.C a ∃r.(C u D) has to be connected to another
world which is contained in the extension of C, but not in the extension of C uD. This
is exactly what is achieved by the rules (MIX,∀) and (MIX,∃).

Example 6. A proof of ∃r.C u ∃r.D a ∃r.(C u D) in SCc
ALC is depicted by the

following tree (with C and D being distinct concept names):

D a C (u, r)1
D a C uD

C a D (u, r)2
C a C uD a ∃r.(C uD)

(MIX, ∃)∃r.C a ∃r.(C uD)
(MIX,∃)∃r.C,∃r.D a ∃r.(C uD)

(u, l)∃r.C u ∃r.D a ∃r.(C uD) ut

We informally describe how a counter model can be obtained from a rejection
proof. For simplicity, we consider the case where each rule application of (MIX,∀) and
(MIX,∃) has k = l = 1. A tree-shaped counter model can be obtained from a proof
by reading the proof from bottom to top and assigning each anti-sequent a node of the
tree. Thereby, one starts by assigning the end-sequent of the proof the root node of the
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LOGICAL RULES OF SCc
ALC

Γ,C,D a ∆
(u, l)

Γ,C uD a ∆
Γ a C,∆

(u, r)1
Γ a C uD,∆

Γ a D,∆
(u, r)2

Γ a C uD,∆

Γ a C,D,∆
(t, r)

Γ a C tD,∆
Γ,C a ∆

(t, l)1
Γ,C tD a ∆

Γ,D a ∆
(t, l)2

Γ,C tD a ∆

Γ a C,∆
(¬, l)

Γ,¬C a ∆
Γ,C a ∆

(¬, r)
Γ a ¬C,∆

Γ a ∆ (>)
Γ,> a ∆

Γ a ∆ (⊥)
Γ a ⊥,∆

Γ0 a ∆0 Γ r1 , . . . , Γ rn a ∆r1 , . . . ,∆rn

(MIX),
Γ0, Γ

r1 , . . . , Γ rn a ∆0,∆
r1 , . . . ,∆rn

where Γ0 a ∆0 is a propositional axiom.

Σk a Λk, Ck · · · Σl a Λl, Cl Γ r1 , . . . , Γ rn a ∆r1 , . . . ,∆rn

(MIX,∀),
Γ r1 , . . . , Γ rn a ∆r1 , . . . ,∆rn ,∀rk.Ck, . . . , ∀rl.Cl

where, for i = k, . . . , l, Σi = {C | ∀ri.C ∈ Γ ri}, Λi = {C | ∃ri.C ∈ ∆ri}, and
1 ≤ k ≤ l ≤ n.

Λk, Ck a Σk · · · Λl, Cl a Σl Γ r1 , . . . , Γ rn a ∆r1 , . . . ,∆rn

(MIX,∃),
Γ r1 , . . . , Γ rn , ∃rk.Ck, . . . , ∃rl.Cl a ∆r1 , . . . ,∆rn

where, for i = k, . . . , l, Σi = {C | ∃ri.C ∈ ∆ri}, Λi = {C | ∀ri.C ∈ Γ ri}, and
1 ≤ k ≤ l ≤ n.

STRUCTURAL RULES OF SCc
ALC

Γ,C a ∆
(w−1, l)

Γ a ∆
Γ a ∆,C

(w−1, r)
Γ a ∆

Γ,C a ∆
(c−1, l)

Γ,C,C a ∆
Γ a C,∆

(c−1, r)
Γ a C,C,∆

Fig. 1: Rules of SCc
ALC .

model, say v0. In the proceeding steps, in case of an application of a rule (MIX,∀) or
(MIX,∃), a new child is created, where the parent of the new node is the node assigned
to the conclusion of the rule application. The left premiss is then assigned the new node,
while the right premiss is assigned the node of the conclusion of the rule application.
The resulting arc is labelled with the role name r1, as represented in the exposition of
the rules (MIX,∀) and (MIX,∃) (cf. Figure 1), indicating that the arc represents a tuple
in the interpretation of r1. In case of a rule application different from (MIX,∀) and
(MIX,∃), the node assigned to the conclusion is also assigned to the premiss(es). In
order to complete the specification of the counter model, it remains to define the exten-
sions of the atomic concepts. If Γ0 a ∆0 is an axiom in our proof and v′ its assigned
node, then we simply ensure that (i) v′ is in the extension of each C ∈ Γ0 and (ii) v′

does not occur in the extension of any D ∈ ∆0.
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Example 7. A counter model to ∃r.C u ∃r.D v ∃r.(C u D) is given by the inter-
pretation I = 〈∆I , ·I〉 defined by ∆I = {v0, v1, v2}, CI = {v2}, DI = {v1}, and
rI = {(v0, v1), (v0, v2)}. The reader may easily verify that this counter model can be
read off the proof given in Example 6 by the informal method just described. ut

The next statements justify the soundness of particular rules and axioms. The knowl-
edge about tree-shaped interpretations, i.e., the shape of models satisfying a concept,
provide a semantic justification of the mix rules.

Lemma 8. Let T be a tree-shaped interpretation with root v0 which refutes an anti-
sequent of form

Γ r1 , . . . , Γ rn a ∆r1 , . . . ,∆rn . (3)

Then, the anti-sequent (3) is refuted by every tree-shaped interpretation T ′ such that

1. for every role name r ∈ NR, we have rT = rT
′
, and

2. for every concept name C, either CT
′
= CT ∪ {v0}, CT

′
= CT \ {v0}, or

CT
′
= CT holds.

Lemma 9. Let Γ1, . . . , Γn, ∆1, . . . ,∆n be non-empty multi-sets of concepts and C a
concept. Then,

1. every axiom of form

∀r1.Γ1, . . . ,∀rn.Γn a ∃r1.∆1, . . . ,∃rn.∆n

is refuted by some tree-shaped interpretation, and
2. for every i = 1, . . . , n, if Γi a C is refuted by some tree-shaped interpretation T0

and
∀r1.Γ1, . . . ,∀rn.Γn a ∀r1.∆1, . . . ,∀rn.∆n

is refuted by some tree-shaped interpretation T such that there exist disjoint sub-
trees T1, . . . , Tn, where Tj /rj T (j = 1, . . . , n), then the tree-shaped interpretation
T ′ = 〈v′; r1, T1; . . . ; rn, Tn; ri, T0〉 refutes the anti-sequent ∀r1.Γ1, . . . ,∀rn.Γn a
∀r1.∆1, . . . ,∀rn.∆n,∀ri.C, where v′ does not occur in the domain of any Tj
(j = 1, . . . , n).

Theorem 10. SCc
ALC is sound, i.e., only the refutable anti-sequents are provable.

Proof (Sketch). The proof proceeds by induction on proof length. This amounts to
showing the refutability of the axioms and the soundness of each rule separately. For the
induction base, the refutability of a propositional axiom is obvious, while the refutabil-
ity of an axiom of form ∀r1.Γ1, . . . ,∀rn.Γn a ∃r1.∆1, . . . ,∃rn.∆n is exactly the state-
ment of Item 1 of Lemma 9.

For the inductive step, we have to distinguish several cases depending on the last
applied rule. It is a straightforward argument to show the soundness of the rules deal-
ing with the propositional connectives u, t, and ¬. Hence, we just consider the mix
rules briefly. For the rule (MIX), let Γ0 a ∆0 be a propositional axiom of SCc

ALC and
Γ r1 , . . . , Γ rn a ∆r1 , . . . ,∆rn be refuted by a tree-shaped interpretation T with root
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v0. By Lemma 8, we define an interpretation T ′ such that CT
′
= CT ∪ {v0}, for every

C ∈ Γ0, andCT
′
= CT \{v0}, for everyC ∈ ∆0. Since Γ0∩∆0 = ∅, the interpretation

T ′ is well-defined and refutes the anti-sequent Γ0, Γ
r1 , . . . , Γ rn a ∆0, ∆

r1 , . . . ,∆rn .
For multi-sets Γ , ∆, and Π , it is easy to see that an anti-sequent of form Γ a ¬Π,∆
is refutable iff Γ,Π a ∆ is. Considering this fact and that value restriction is dual
to existential restriction (i.e., (∀r.C)I = (¬∃r.¬C)I , for every interpretation I), the
soundness of the rules (MIX,∀) and (MIX,∃) can easily be shown by repeated appli-
cation of Item 2 of Lemma 9. ut

Following Goranko [6], the completeness argument for SCc
ALC is divided into two

steps: first, one proves completeness of the propositional fragment of our calculus. This
approach is also made by Bonatti [2] for the rejection system for classical propositional
logic and is thus left out for the sake of brevity. The second step consists of showing
completeness by induction on the length of the refuting tree-shaped interpretation.

In what follows, the logical complexity, ||C||, of a concept C is defined to be the
number of connectives occurring in C. The logical complexity ||Γ || of a multi-set Γ of
concepts is the sum of the logical complexities of the concept occurring in Γ . For an
anti-sequent Γ a ∆, we define the logical complexity ||Γ a ∆|| to be ||Γ || + ||∆||.
Given an anti-sequent s = Γ a ∆, we denote by con(s) the set of distinct concept
names occurring in s.

Lemma 11. Every refutable propositional anti-sequent is provable in SCc
ALC .

Lemma 12. Let s be a refutable anti-sequent which is refuted by an interpretation I
such that C1, . . . , Cn are exactly those distinct concept names among s whose exten-
sions are non-empty under I andD1, . . . , Dm exactly those whose extensions are empty
under I , respectively. Then, there exists a proof of s in SCc

ALC which has as its only
axiom C1, . . . , Cn a D1, . . . , Dm.

In what follows, an atom of an anti-sequent Γ a ∆ is either a concept name from
Γ ∪ ∆ or some concept of form Qr.C (Q ∈ {∀,∃}) which occurs in a concept from
Γ ∪∆ and is not in the scope of some Q ∈ {∀,∃}.
Theorem 13. SCc

ALC is complete, i.e., every refutable anti-sequent is provable.

Proof. Let Γ a ∆ be an arbitrary refutable anti-sequent and T a tree-shaped interpreta-
tion of length `(T ) with domain ∆T which refutes Γ a ∆. Since Γ a ∆ is refuted by
T , there must be some c ∈ ∆T such that (i) c ∈ CT , for all C ∈ Γ , and (ii) c 6∈ DT ,
for all D ∈ ∆. In the following, we say that a concept C is falsified by T if c 6∈ CT and
satisfied by T otherwise. Now let C1, . . . , Ck,∀r1.D1, . . . ,∀rl.Dl,∃s1.F1, . . . ,∃sλ.Fλ
be the atoms of Γ ∪∆ which are satisfied by T , and E1, . . . , Ek′ ,∀p1.G1, . . . ,∀pµ.Gµ,
∃q1.H1, . . . ,∃qm.Hm those which are falsified by T , where C1, . . . , Ck, E1, . . . , Ek′

are atomic concepts and r1, . . . , rl, s1, . . . , sλ, p1, . . . , pµ, q1, . . . , qm are not necessar-
ily distinct role names. We define the following sets:

Γ0 = {C1, . . . , Ck}, ∆0 = {E1, . . . , Ek′},
Σ∀ = {∀r1.D1, . . . ,∀rl.Dl}, Λ∃ = {∃s1.F1, . . . ,∃sλ.Fλ},
Π∀ = {∀p1.G1, . . . ,∀pµ.Gµ}, Φ∃ = {∃q1.H1, . . . ,∃qm.Hm}.
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It suffices to infer
Γ0, Σ

∀, Λ∃ a ∆0, Π
∀, Φ∃ (4)

since Lemma 11 and Lemma 12 allow us to infer Γ a ∆ from (4). This is accom-
plished by replacing all atoms of (4) by new distinct concept names which then be-
comes a propositional axiom. Then, we can infer a propositional anti-sequent Γ ′ a ∆′
by Lemma 11 and Lemma 12 which is obtained from Γ a ∆ by exactly the same re-
placement as mentioned before. Hence, there exists a proof of Γ ′ a ∆′—substituting
the new concept names back we obtain a proof of Γ a ∆.

Obviously, we have that Γ0 ∩ ∆0 = ∅, hence, Γ0 a ∆0 is a propositional axiom.
Furthermore, the anti-sequent

Σ∀ a Φ∃ (5)

constitutes an axiom of SCc
ALC . We now proceed by induction on `(T ). For the base

case, if `(T ) = 0, (4) must be of form Γ0, Σ
∀ a ∆0, Φ

∃, by the semantics of ALC.
This anti-sequent is inferred by the following application of rules:

Γ0 a ∆0 Σ∀ a Φ∃
(MIX)

Γ0, Σ
∀ a ∆0, Φ

∃

This completes the base case. Now assume that every anti-sequent which is refuted by
some tree T with length `(T ) ≤ n is provable in SCc

ALC . Furthermore, for every role
name r, define Θ(r) = {C | ∀r.C ∈ Σ∀} and Ξ(r) = {C | ∃r.C ∈ Φ∃}. If (4) is
refuted by some tree T with length `(T ) = n+ 1, then the anti-sequents

Θ(pi) a Gi, Ξ(pi), for i = 1, . . . , µ, and (6)
Θ(sj), Fj a Ξ(sj), for j = 1, . . . , λ, (7)

are refuted by immediate subtrees of T with length `(T ) = n and are therefore, by
induction hypothesis, provable in SCc

ALC . We first consider (6) and start for i = 1
applying (MIX,∀) to Axiom (5):

Θ(p1) a G1, Ξ(p1) Σ∀ a Φ∃
(MIX,∀)

Σ∀ a ∀p1.G1, Φ
∃

Now, for every i = 2, . . . , µ, we proceed constructing a proof of the anti-sequent
Σ∀ a ∀p1.G1, . . . ,∀pi.Gi, Φ∃ from Σ∀ a ∀p1.G1, . . . ,∀pi−1.Gi−1, Φ∃ in the fol-
lowing way:

Θ(pi) a Gi, Ξ(pi) Σ∀ a ∀p1.G1, . . . ,∀pi−1.Gi−1, Φ∃
(MIX,∀)

Σ∀ a ∀p1.G1, . . . ,∀pi.Gi, Φ∃

For i = µ, we obtain a proof of the anti-sequent Σ∀ a Π∀, Φ∃. Building upon this
anti-sequent, we proceed in a similar way by constructing the following proof:

Θ(s1), F1 a Ξ(s1) Σ∀ a Π∀, Φ∃
(MIX,∃)

Σ∀,∃s1.F1 a Π∀, Φ∃
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Again, for every i = 2, . . . , λ, we proceed constructing a proof of the anti-sequent
Σ∀,∃s1.F1, . . . ,∃si.Fi a Π∀, Φ∃ from Σ∀,∃s1.F1, . . . ,∃si−1.Fi−1 a Π∀, Φ∃ in the
following manner:

Θ(si), Fi a Ξ(si) Σ∀,∃s1.F1, . . . ,∃si−1.Fi−1 a Π∀, Φ∃
(MIX,∃)

Σ∀,∃s1.F1, . . . ,∃si.Fi a Π∀, Φ∃

For i = λ we obtain a proof of the anti-sequent Σ∀, Λ∃ a Π∀, Φ∃. Finally, we apply
the rule (MIX) in order to obtain a proof of the desired anti-sequent:

Γ0 a ∆0 Σ∀, Λ∃ a Π∀, Φ∃
(MIX)

Γ0, Σ
∀, Λ∃ a ∆0, Π

∀, Φ∃

Hence, (4) is inferred and the induction step is completed. Since every refutable anti-
sequent is refuted by some tree-shaped interpretation, every refutable anti-sequent is
provable and SCc

ALC is complete as desired. ut

4 Comparing SCc
ALC with anALC Tableau Algorithm

The most common reasoning procedures which have been studied for description logics
are tableau algorithms. They are well known for ALC and its extensions and have been
implemented in state-of-the-art reasoners (like, e.g., in the FaCT system [21]). Tableau
algorithms rely on the construction of a canonical model which witnesses the satisfia-
bility of a concept or a knowledge base. We now briefly discuss the relationship of our
calculus and the tableau procedure for concept satisfiability as discussed by Baader and
Sattler [18].

The basic structure the algorithm works on is the so-called completion graph. A
completion graph is an ordered triple 〈V,E,L〉, where V is a set of nodes, E ⊆ V × V
a set of edges, and L a labelling function which assigns a set of concepts to each node
and a role name to each edge. Given a concept C in negation normal form (i.e., where
negation occurs in C only in front of concept names), the initial completion graph of
C is a completion graph 〈V,E,L〉 where V = {v0}, E = ∅, and L(v0) = {C}. A
completion graph G = 〈V,E,L〉 contains a clash if {D,¬D} ⊆ L(v) for some node v
and some concept D. G is complete if no rules are applicable any more. The algorithm
operates at each instant on a set G of completion graphs. The completion rules specify
the rules which may be applied to infer a new set of completion graphs G′ from some
set of completion graphs G. Given a concept C, the algorithm starts with the set G0 =
{G0}, where G0 is the initial completion graph of C, and successively computes a new
set Gi+1 of completion graphs from the set Gi. Thereby, every completion graph which
has a clash is immediately dropped. The algorithm halts if for some j ≥ 0, Gj contains
a complete completion graph or Gj = ∅. In the former case, the algorithm answers
that the concept C is satisfiable, in the latter case it answers that C is unsatisfiable. It
is well-known that a model of the concept under consideration can be extracted from
a complete completion graph and that (in the case of concept satisfiability) a complete
completion graph represents a tree [18].
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[C a]v0

[D a C]v3
(t, l)2

[C tD a C]v3 [a ∃p.C]v1
(MIX,∃)

[∃p.(C tD) a ∃p.C]v1 α
(MIX, ∀)

[∀r.∃p.(C tD) a ∀r.∃p.C, ∀r.D]v0
(MIX)

[∀r.∃p.(C tD), C a ∀r.∃p.C, ∀r.D]v0
(t, r)

[∀r.∃p.(C tD), C a ∀r.∃p.C t ∀r.D]v0
(u, l)

[∀r.∃p.(C tD) u C a ∀r.∃p.C t ∀r.D]v0

where α is the following proof:

[a D]v2

[C a]v4
(t, l)1

[C tD a]v4 [a]v2
(MIX, ∃)

[∃p.(C tD) a]v2
(MIX)

[∃p.(C tD) a D]v2 [∀r.∃p(C tD) a]v0
(MIX,∀)

[∀r.∃p.(C tD) a ∀r.D]v0

v0 L(v0)

v1{∃p.(C �D), ∀p.¬C}

v3{C �D,¬C,D}

p

r

v2 {¬D, ∃p.(C �D)}

v4 {C �D,C}

p

r

where L(v0) = {∀r.∃p.(C tD) u C, ∃r.∀p.¬C u ∃r.¬D} ∪
{∀r.∃p.(C tD), C, ∃r.∀p.¬C, ∃r.¬D}.

Fig. 2: A proof in SCc
ALC and a corresponding completion graph.

We now describe how to obtain a complete completion graph from a proof of
SCc
ALC such that the root of the completion graph is labelled with the end-sequent

of the proof (for the sake of readability, we consider without loss of generality the case
where k = l = 1 in the rules (MIX,∀) and (MIX,∃)). Let nnf (C) denote the negation
normal form of a concept C. For a set of concepts Γ , define nnf (Γ ) = {nnf (C) | C ∈
Γ} and, for an anti-sequent s = Γ a ∆, define nnf (s) = nnf (Γ ∪ ¬∆). Furthermore,
let τ [G] denote the root of a completion graph G. We define a mapping ξ which maps
any proof of SCc

ALC to some complete completion graph. Let χ be a proof of SCc
ALC

and sχ be the end-sequent of χ. The mapping ξ is inductively defined as follows:

– If sχ is a propositional axiom, then ξ(χ) = 〈V,E,L〉, where V = {v0}, E = ∅,
and L(v0) = nnf (sχ).

– If sχ results from an application of some binary rule ρ, and ξ(χ1) = G1 =
〈V1, E1,L1〉 and ξ(χ2) = G2 = 〈V2, E2,L2〉, where χ1 is the proof of the left
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premiss, χ2 is the proof of the right premiss, and G1 and G2 are disjoint, then we
distinguish several cases:
• If ρ = (MIX,∀), then sχ is of form Γ r1 , . . . , Γ rn a ∆r1 , . . . ,∆rn ,∀r.C.

Then, ξ(χ) = G = 〈V,E,L〉, where τ [G] = v′ (v′ 6∈ V1 ∪ V2), V = V1 ∪
V2 ∪ {v′}, E = E1 ∪E2 ∪ {e}, for e = (v′, τ [G1]), and the labelling function
preserves the labels from G1 and G2 but additionally satisfies L(e) = r and
L(v′) = nnf (sχ).

• If ρ = (MIX,∃), then sχ is of form Γ r1 , . . . , Γ rn ,∃r.C a ∆r1 , . . . ,∆rn ,
V = V1 ∪ V2 ∪ {v′}, E = E1 ∪ E2 ∪ {e}, for e = (v′, τ [G1]), and the
labelling function preserves the labels fromG1 andG2 but additionally satisfies
L(e) = r and L(v′) = nnf (sχ).

• If ρ = (MIX), then sχ is of form Γ0, Γ
r1 , . . . , Γ rn a ∆0, ∆

r1 , . . . ,∆rn . Then,
ξ(χ) = G = 〈V,E,L〉, where τ [G] = τ [G2], V = V1 ∪ V2, E = E1 ∪ E2,
and L(τ [G]) = nnf (sχ).

– If sχ results from application of some unary rule, and ξ(χ1) = G1 = 〈V1, E1,L1〉,
where χ1 is proof of the upper sequent, then ξ(χ) = G = 〈V,E,L〉, where
V = V1, E = E1, and the labelling function preserves the labels from G1 but
additionally satisfies L(τ [G]) = L1(τ [G]) ∪ nnf (sχ).

Theorem 14. Let χ be a proof in SCc
ALC and sχ the end-sequent of χ. Then, there

exists a complete completion graph G = 〈V,E,L〉 such that ξ(χ) = G and nnf (sχ) ⊆
L(τ [G]).

Example 15. In Figure 2, we compare a proof of SCc
ALC with its corresponding com-

plete completion graph G = 〈V,E,L〉. For better readability, we labelled each anti-
sequent in the proof with subscripts of form [s]v which means that nnf (s) ⊆ L(v).
Note that the completion graph represents a model of the concept ι(sχ), where sχ is
the end-sequent of the depicted proof. In fact, a model is given by I = 〈∆I , ·I〉, where
∆I = {vi | 0 ≤ i ≤ 4}, DI = {v3}, CI = {v0, v4}, rI = {(v0, v1), (v0, v2)}, and
pI = {(v1, v3), (v2, v4)}. ut

5 A Multi-Modal Rejection Calculus

As mentioned above, the development of our calculus for ALC is based on a rejection
calculus for modal logic K, as introduced by Goranko [6], by taking into account that
ALC can be translated into a multi-modal version of K. In this section, we lay down
the relation of our calculus to Goranko’s system, thereby generalising his calculus to
the multi-modal case.

We start with describing the multi-modal logic Km [20]. In general, the signature of
multi-modal logics usually provide a countably infinite supply of different modalities
which we identify by lower case Greek letters α, β, . . . as well as a countably infinite
supply of propositional variables p, q, . . .. Formulae in the language of a multi-modal
logic are then built up using the propositional connectives ∧, ∨, ¬, >, ⊥ and the modal
operators [α], where α is a modality. For every modality α, we define 〈α〉 := ¬[α]¬.
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LOGICAL RULES

Γ, ϕ, ψ a ∆
(∧, l)

Γ, ϕ ∧ ψ a ∆
Γ a ϕ,∆

(∧, r)1
Γ a ϕ ∧ ψ,∆

Γ a ψ,∆
(∧, r)2

Γ a ϕ ∧ ψ,∆

Γ a ϕ,ψ,∆
(∨, r)

Γ a ϕ ∨ ψ,∆
Γ, ϕ a ∆

(∨, l)1
Γ, ϕ ∨ ψ a ∆

Γ,ψ a ∆
(∨, l)2

Γ, ϕ ∨ ψ a ∆

Γ a ϕ,∆
(¬, l)

Γ,¬ϕ a ∆
Γ,ϕ a ∆

(¬, r)
Γ a ¬ϕ,∆

Γ a ∆ (>)
Γ,> a ∆

Γ a ∆ (⊥)
Γ a ⊥,∆

Γ0 a ∆0 [α1]Γ1, . . . , [αn]Γn a [α1]∆1, . . . , [αn]∆n
(MIX)

Γ0, [α1]Γ1, . . . , [αn]Γn a ∆0, [α1]∆1, . . . , [αn]∆n

where Γ0, ∆0 are disjoint sets of propositional variables.

Γk a ϕk · · · Γl a ϕl [α1]Γ1, . . . , [αn]Γn a [α1]∆1, . . . , [αn]∆n
(MIX2)

[α1]Γ1, . . . , [αn]Γn a [α1]∆1, . . . , [αn]∆n, [αk]ϕk, . . . , [αl]ϕl

where 1 ≤ k ≤ l ≤ n.

STRUCTURAL RULES

Γ, ϕ a ∆
(w−1, l)

Γ a ∆
Γ a ∆,ϕ

(w−1, r)
Γ a ∆

Γ,ϕ a ∆
(c−1, l)

Γ, ϕ, ϕ a ∆
Γ a ϕ,∆

(c−1, r)
Γ a ϕ,ϕ,∆

Fig. 3: Rules of a multi-modal variant of SCc
ALC .

Following Goranko and Otto [22], let τ be the set of all modalities. A Kripke inter-
pretation is a tripleM = 〈W, {Rα}α∈τ , V 〉, where W is a non-empty set of worlds,
Rα ⊆ W × W defines an accessibility relation for each α ∈ τ , and V maps any
propositional variable to a subset of W , i.e., V defines which propositional variables
are true at which worlds. The pair 〈W, {Rα}α∈τ 〉 defines the Kripke frame on which
M is based. Given any Kripke interpretation M = 〈W, {Rα}α∈τ , V 〉, we define the
truth of a formula ϕ at a world w ∈W , denoted byM, w |= ϕ, inductively in the usual
manner. Furthermore, the notions of validity in a frame and validity in a class of frames
is defined as usual (cf. Goranko and Otto [22] for a detailed account). Km is the multi-
modal logic consisting of all formulae which are valid in all Kripke frames.

A concept of ALC can be translated into a formula of Km by viewing concepts
of form ∀r.C as modal formulae of form [α]C ′, where C ′ is the corresponding trans-
lation of the concept C. Each role name corresponds to one and only one modality.
Furthermore, the propositional connectives ofALC can easily seen to be translated into
the usual connectives of classical propositional logic. From a semantic point of view,
interpretations of ALC correspond to Kripke interpretations if we identify the domain
of the interpretation with the corresponding set of worlds of the Kripke interpretation.
Furthermore, the interpretation of each role name corresponds to some accessibility
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relation. The extension of an ALC concept contains then exactly those worlds of the
corresponding Kripke interpretation where the translation of the concept is satisfied.

Let C be a concept, I an interpretation, and let the translations be given by the
formula ϕ and the Kripke interpretationM, respectively. It holds thatM, w |= ϕ iff
w ∈ CI . For a full treatment of the translation, we refer to Schild [20] and Baader et
al. [15].

A rejection system for Km can now be defined as follows. Let a multi-modal anti-
sequent Γ a ∆ be defined as in the case of ALC, but with Γ and ∆ being finite multi-
sets of multi-modal formulae. Γ a ∆ is refutable if there exists a Kripke interpretation
M = 〈W, {Rα}α∈τ , V 〉 and some w ∈ W such thatM, w |= ϕ, for every ϕ ∈ Γ , but
M, w 6|= ψ, for every ψ ∈ ∆. Axioms of this system are given by anti-sequents of form
Γ0 a ∆0 with Γ0, ∆0 being disjoint sets of propositional variables and anti-sequents of
form [α1]Γ1, . . . , [αn]Γn a. The rules of the resulting calculus are depicted in Figure 3
(for any multi-set Γ and modality α, we have [α]Γ := {[α]ϕ | ϕ ∈ Γ}; α1, . . . , αn are
pairwise different modalities).

Note that, e.g., (MIX2) corresponds to our rule (MIX,∀),
Γ a ϕ �Γ a �∆

MIX 2
K,�Γ a �∆,�ϕ

where �Σ := {�ϕ | ϕ ∈ Σ} for any multi-set Σ. We did not explicitly include here a
corresponding rule for 〈α〉 since this can be derived using (MIX2).

The following result can be shown:
Theorem 16. A multi-modal anti-sequent is refutable iff it is provable.

6 Conclusion

We presented a sequent-type calculus for deciding concept non-subsumption in ALC.
Sequent calculi are important means for proof-theoretic investigations. We pointed out
that our calculus is in some sense equivalent to a well-known tableau procedure which
is interesting from a conceptual point of view: as pointed out by Goranko [6], the reason
why complementary calculi have been rarely studied may be found in the fact that often
theories are recursively axiomatisable while being undecidable. Hence, for such logics,
reasonable complementary calculi cannot be devised as the set of invalid propositions
is not recursively enumerable there.

However, most of the description logics studied so far are decidable, hence they
permit an axiomatisation of the satisfiable concepts. Indeed, the well-known tableau
procedures for different description logics focus on checking satisfiability, while unsat-
isfiability is established by exhaustive search. For such logics, the sequent-style coun-
terparts to tableau procedures are complementary calculi, since checking satisfiability
can be reduced to checking invalidity. We note in passing that the tableau procedure for
ALC has also been simulated by hyperresolution by Fermüller et al. [23].

As for future work, a natural extension of our calculus is to take ALC TBox rea-
soning into account. However, this seems not to be straightforward in view of existent
tableau algorithms for it. We conjecture that a feasible approach would need to em-
ploy a more complicated notion of anti-sequent, which is related to the problem of
non-termination of the respective tableau algorithm without blocking rules.
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Abstract. Answer set programming languages have been extended to support
linear constraints and objective functions. However, the variables allowed in the
constraints and functions are restricted to integer and Boolean domains, respec-
tively. In this paper, we generalize the domain of linear constraints to real num-
bers and that of objective functions to integers. Since these extensions are based
on a translation from logic programs to mixed integer programs, we compare the
translation-based answer set programming approach with the native mixed inte-
ger programming approach using a number of benchmark problems.

1 Introduction

Answer set programming (ASP) [14], also known as logic programming understable
modelsemantics [8], is a declarative programming paradigm wherea given problem
is solved by devising a logic program whoseanswer setscapture the solutions of the
problem and then by computing the answer sets usinganswer set solvers. The paradigm
has been exploited in a rich variety of applications [2].

Linear constraints have been introduced to ASP [1, 7, 11, 12]in order to combine the
high-level modeling capabilities of ASP languages with theefficient constraint solving
techniques developed in the area of constraint programming. In particular, a language
ASP(LC) is devised in [11] which allows linear constraints to be used within the original
ASP language structures. The answer set computation for ASP(LC) programs is based
on mixed integer programming (MIP) where an ASP(LC) programis first translated
into a MIP program and then the solutions of the MIP program are computed using a
MIP solver. Finally, answer sets can be recovered from the solutions found (if any).

In this paper, we extend and evaluate the ASP(LC) language inthe following as-
pects. First, we generalize the domain of variables allowedin linear constraints from
integers to reals. Real variables are ubiquitous in applications, e.g., timing variables
in scheduling problems. However, the MIP-based answer set computation confines the
variables in linear constraints to the integer domain. We overcome this limitation by de-
veloping a translation of ASP(LC) programs to MIP programs so that constraints over

⋆ The support from the Finnish Centre of Excellence in Computational Inference Research
(COIN) funded by the Academy of Finland (under grant #251170) is gratefully acknowledged.
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real variables are enabled in the language. Second, we introduce MIP objective func-
tions, i.e., linear functions of integer variables, to the ASP(LC) language. The original
ASP(LC) language allows objective functions of Boolean variables only, but integer
variables are more convenient than Booleans in many applications [11]. To model opti-
mization problems in these areas, we enable MIP objective functions in ASP by giving
semantics for ASP programs with these functions. Third, we compare ASP(LC) to MIP.
This is interesting as ASP(LC) provides a richer language than MIP where ASP lan-
guage structures are extended with linear constraints but the implementation technique
is based on translating an ASP(LC) program to a MIP program tosolve. We choose
some representative problems, study the ASP(LC) and MIP encodings of the problems,
and evaluate their computational performance by experiments.

The rest of the paper is organized as follows. Preliminariesare given in Section 2.
Then we extend ASP(LC) language with real variables in Section 3, introduce MIP
objective functions in Section 4, and compare ASP(LC) and native MIP formulations
in Section 5. The experiments are reported in Section 6 followed by a discussion on the
related work in Section 7. The paper is concluded by Section 8.

2 Preliminaries

In this section, we review the basic concepts of linear constraints, mixed integer pro-
gramming, and the ASP(LC) language. Alinear constraintis an expression of the form

n∑

i=1

uixi ∼ k (1)

where theui’s andk are real numbers and thexi’s are variables ranging over real num-
bers (including integers). We distinguish the variables tobe real andintegervariables
when necessary. The operator∼ is in {<,≤,≥, >}. Constraints involving “<” and “>”
are calledstrict constraints. A valuationν from variables to numbers is asolutionof (or
satisfies) a constraintC of the form (1), denotedν |= C, iff

∑n
i=1 uiν(xi) ∼ k holds.

A valuationν is a solution of a set of constraintsΠ = {C1, ..., Cm}, denotedν |= Π ,
iff ν |= Ci for eachCi ∈ Π . A set of linear constraints issatisfiableiff it has a solution.

A mixed integer program(or aMIP program), takes the form

optimize
∑n

i=1 uixi (2)

subject to C1, ..., Cm. (3)

where the keywordoptimize is minimize or maximize, ui’s are numbers,xi’s
are variables, andCi’s are linear constraints. The operators in the constraintsare in
{≤,=,≥}. The function

∑n
i=1 uixi is called anobjective function. The constraints

C1, ..., Cm may be written as a set{C1, ..., Cm}. A valuationν is a solution of a MIP
program iffν |= {C1, ..., Cm}. A solution isoptimal, iff it minimizes (or maximizes)
the value of the objective function. The objective functioncould be empty (missing
from a MIP program), in which case the function is trivially optimized by any solution.
The keywordsoptimize andsubject to may be omitted if the objective function
is empty. The goal of MIP is to find the optimal solutions of a MIP program.
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An ASP(LC) programis a set of rules of the form

a← b1, . . . , bn, notc1, . . . , notcm, t1, . . . , tl (4)

where eacha, bi, andci is a propositional atom and eachti, called atheory atom,
is a linear constraint of the form (1). Propositional atoms and theory atoms may be
uniformly calledatoms. Atoms and atoms preceded by ”not” are also referred to as
positiveandnegative literals, respectively. Given a programP , the set of propositional
and theory atoms appearing inP are denoted byA(P ) andT (P ), respectively. For
a ruler of the form (4), theheadand thebodyof r are defined byH(r) = {a} and
B(r) = {b1, . . . , bn, not c1, . . . , not cm, t1, . . . , tl}. Furthermore, thepositive, nega-
tive, and theory parts of the body are defined asB+(r) = {b1, . . . , bn}, B−(r) =
{c1, . . . , cm}, andBt(r) = {t1, . . . , tl}, respectively. The body and the head of a rule
could be empty: a rule without body is afact whose head is true unconditionally and a
rule without head is anintegrity constraintenforcing the body to be false.

A set of atomsM satisfies an atoma, denotedM |= a, iff a ∈M , and it satisfies a
negative literal ’nota’, denotedM |= nota, iff a 6∈M . The setM satisfies a set of lit-
eralsL = {l1, . . . , ln}, denotedM |= L, iff M |= li for eachli ∈ L. An interpretation
of an ASP(LC) programP is a pair〈M,T 〉 whereM ⊆ A(P ) andT ⊆ T (P ), such
thatT ∪ T̄ is satisfiable in linear arithmetics wherēT = {¬t | t ∈ T (P ) andt 6∈ T }
and¬t denotes the constraint obtained by changing the operator oft to the comple-
mentary one. Two interpretationsI1 = 〈M1, T1〉 andI2 = 〈M2, T2〉 areequal, denoted
I1 = I2, iff M1 = M2 andT1 = T2. An interpretationI = 〈M,T 〉 satisfies a literall
iff M ∪ T |= l. An interpretationI satisfies a ruler, denotedI |= r, iff I |= H(r) or
I 6|= B(r). An integrity constraint is satisfied byI iff I 6|= B(r). An interpretationI is
a modelof a programP , denotedI |= P , iff I |= r for eachr ∈ P .

Answer sets are defined using the concept of programreductas follows.

Definition 1 (Liu et al. [11]). Let P be an ASP(LC) program and〈M,T 〉 an inter-
pretation ofP . Thereductof P with respect to〈M,T 〉, denotedP 〈M,T 〉, is defined as
P 〈M,T 〉 = {H(r)← B+(r) | r ∈ P,H(r) 6= ∅, B−(r) ∩M = ∅, andBt(r) ⊆ T }.

Definition 2 (Liu et al. [11]). LetP be an ASP(LC) program. An interpretation〈M,T 〉
is ananswer setof P iff 〈M,T 〉 |= P andM is the subset minimal model ofP 〈M,T 〉.
The set of answer sets ofP is denoted byAS(P ).

Example 1.LetP be an ASP(LC) program consisting of the rules

a← x− y ≤ 2. b← x− y ≥ 5. ← x− y ≥ 0.

The interpretationI1 = 〈{a}, {x− y ≤ 2}〉 is an answer set ofP since{(x − y ≤
2),¬(x − y ≥ 5),¬(x − y ≥ 0)} is satisfiable in linear arithmetics,I1 |= P , and{a}
is the minimal model ofP I1 = {a ← .}. The interpretationI2 = 〈{b}, {x− y ≥ 5}〉
is not an answer set since{(x− y ≥ 5),¬(x− y ≤ 2),¬(x− y ≥ 0)} is unsatisfiable.
Finally, I3 = 〈∅, {x− y ≥ 0}〉 is not an answer set, sinceI3 6|= P . ⊓⊔

Syntactically, theory atoms are allowed as heads of rules inthe current implemen-
tation [11] for more intuitive reading and thus such rules are used in this paper. As
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regards their semantics, a rule with a theory atom as the headis equivalent to an in-
tegrity constraint, i.e., a rulet ← a1, . . . , am, not b1, . . . , not bn, t1, . . . , tl wheret is
a theory atom is treated as the rule← a1, . . . , am, not b1, . . . , not bn, t1, . . . , tl,¬t in
answer set computation. Moreover, the semantics of ASP(LC)programs coincides with
that ofnormal logic programs [8, 14] if no theory atoms are present.

Answer set computation for ASP(LC) programs is based on a translation to MIP
programs [11]. We will refer to the translation asMIP-translationand denote the trans-
lation of a programP by τ(P ). Due to space limitations, we skip a thorough review of
τ(P ) and focus on a fragment most relevant for this paper, i.e., the rules of the form

a← t. (5)

wherea is an propositional atom or not present at all andt is a theory atom. Recall that
a rule without head is an integrity constraint.

In the translation, special linear constraints calledindicator constraintsare used.
An indicator constraint is of the formd = v → C whered is abinary variable(integer
variable with the domain{0, 1}), v is either0 or 1, andC is a linear constraint. An in-
dicator constraint isstrict if C is strict andnon-strictotherwise. An indicator constraint
can be written as a constraint (1) using the so-calledbig-M formulation.

For a programP consisting of simple rules (5) only,τ(P ) is formed as follows:

1. For each theory atomt, we include a pair of indicator constraints

d = 1→ t d = 0→ ¬t (6)

whered is a new binary variable introduced fort. The idea is to use the variabled
to represent the constraintt in the sense that, for any solutionν of the constraints
in (6),ν(d) = 1 iff ν |= t. Thusd can be viewed as a kind of anamefor t.

2. Assuming thata← t1, . . . ,a← tk are all rules (5) that havea as head, we include

a− d1 ≥ 0, . . . , a− dk ≥ 0, (7)

d1 + . . .+ dk − a ≥ 0 (8)

whered1, . . . , dk are the binary variables corresponding tot1, . . . , tk in (6). The
constraints in (7) and (8) enforce that the joint heada holds iff some of the bodies
t1, . . . , tk holds which is compatible with Clark’s completion [3]. Ifk = 1, i.e., the
atoma has a unique defining rule, the constraints of (7) and (8) reduce toa− d1 =
0 which makesd1 synonymous witha. Moreover, if the rule (5) is an integrity
constraint, thend1 = 0 is sufficient, as intuitively implied byk = 1 anda = 0.

In the implementation ofτ(P ), more variables and constraints are used to cover the
rules of the general form (4). We refer the reader to [11] for details.

The solutions of the MIP-translation of a program capture its answer sets as follows.
Let P be an ASP(LC) program andν a mapping from variables to numbers. We define
theν-induced interpretationof P , denotedIνP , by settingIνP = 〈M,T 〉 where

M = {a | a ∈ A(P ), ν(a) = 1} and (9)

T = {t | t ∈ T (P ), ν |= t}. (10)
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Theorem 1 (Liu et al. [11]).LetP be an ASP(LC) program.

1. If ν is a solution ofτ(P ), thenIνP ∈ AS(P ).
2. If I ∈ AS(P ), then there is a solutionν of τ(P ) such thatI = IνP .

Example 2.For the programP from Example 1, the translationτ(P ) consists of:

d1 = 1→ x− y ≤ 2, d1 = 0→ x− y > 2, a− d1 = 0,
d2 = 1→ x− y ≥ 5, d2 = 0→ x− y < 5, b− d2 = 0,
d3 = 1→ x− y ≥ 0, d3 = 0→ x− y < 0, d3 = 0.

For any solutionν of τ(P ), we haveν(a) = 1, ν(b) = 0, andν(x) − ν(y) ≤ 2 which
characterize the unique answer set〈{a}, {x− y ≤ 2}〉 of P . ⊓⊔

3 Extension with Real Variables

In this section, we first illustrate how strict constraints involved in the MIP-translation
prevent the introduction of real variables in ASP(LC) programs. Motivated by these
observations, we develop a translation of strict constraints to non-strict ones. Finally,
we apply the translation to remove strict constraints from the MIP-translation so that
real variables can be allowed in ASP(LC) programs.

3.1 Problems Caused by Real Variables

Real variables are widely used in knowledge representationand reasoning. However,
the computation of answer sets based on the MIP-translationbecomes problematic in
their presence. The reason is that typical MIP systems do notfully support strict con-
straints involving real variables, e.g., by treating strict constraints as non-strict ones.
Consequently, the correspondence between solutions and answer sets may be lost.

Example 3.Consider the condition that Tom gets a bonus if he works at least8.25 hours
and the fact that he works for that long. By formalizing theseconstraints we obtain an
ASP(LC) programP consisting of the following rules:

bonus(tom)← h(tom) ≥ 8.25. (11)

← h(tom) < 8.25. (12)

In the above, the ground termh(tom) is treated as a real variable recording the working
hours of Tom andbonus(tom)1 is a ground (propositional) atom meaning that Tom will
be paid a bonus. The MIP-translationτ(P ) of P has the following constraints:

d1 = 1→ h(tom) ≥ 8.25 (13)

d1 = 0→ h(tom) < 8.25 (14)

bonus(tom) − d1 = 0 (15)

d2 = 1→ h(tom) < 8.25 (16)

d2 = 0→ h(tom) ≥ 8.25 (17)

d2 = 0 (18)

1 We use different fonts for function and predicate symbols, such as “h” and “bonus” in this
example, for clarity.
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Givenτ(P ) as input,CPLEX provides a solutionν whereν(bonus(tom)) = ν(d1) =
ν(d2) = 0 andν(h(tom) = 8.25). HoweverIνP = 〈∅, {h(tom) = 8.25}〉 is not an
answer set ofP since it does not satisfy the rule (11). This discrepancy is due to the
fact thatν actually does not satisfy the strict constraint (14), butCPLEX treats this as the
non-strict oned1 = 0→ h(tom) ≤ 8.25 and unexpectedly givesν as a solution. ⊓⊔

The current implementation of the MIP-translation [11] addresses only integer-
valued constraints where the coefficients and variables range over integers. Given this
restriction, strict constraints of the form

∑n
i=1 uixi < k (resp.> k) can be imple-

mented as non-strict ones
∑n

i=1 uixi ≤ k − 1 (resp.≥ k + 1).
It might be tempting to convert the domain of a problem from reals to integers, e.g.,

by multiplying the constraints by100 and by replacing the variablesh(tom) by another
holding a hundredfold value. For the programP in Example 3 this would give rise to:

bonus(tom)← h′(tom) ≥ 825. (19)

← h′(tom) < 825. (20)

Thereafter constraints (13) and (14) could be rewritten as non-strict constraints:

d1 = 1→ h′(tom) ≥ 825. (21)

d1 = 0→ h′(tom) ≤ 824. (22)

This approach, however, does not work in general. First, thetranslated program cannot
cover the domain of the original problem due to the continuity of real numbers. For
example, the rules (21) and (22) do not give any information about the working hours
8.245 which is covered by (13) and (14). Second, determining the required coefficients
is infeasible in general since the real numbers occurring inconstraints can be specified
up to arbitrary precision which could vary from problem instance to another.

BecauseCPLEX treats strict constraints as non-strict ones, the MIP-translation be-
comes inapplicable for answer set computation in the presence of real-valued variables.
To enable such computations, a revised translation which consists of non-strict con-
straints only is needed. Such a translation is devised in sections to come.

3.2 Non-Strict Translation of Strict Constraints

We focus on strict constraints of a restricted formy > 0. This goes without loss of
generality because any constraint

∑n
i=1 uixi > k can be rewritten as a conjunction of a

non-strict constraint
∑n

i=1 uixi − y = k and a strict oney > 0 wherey is fresh. Also,
a constraint of the form

∑n
i=1 uixi < k is equivalent to−∑n

i=1 uixi > −k.

Lemma 1. Let Γ be a set of non-strict constraints,S = {x1 > 0, . . . , xn > 0}, and
δ a new variable. Then, the setΓ ∪ S is satisfiable iff for any boundb > 0, the set
Γ ∪ Sδ ∪ {0 < δ ≤ b} whereSδ = {x1 ≥ δ, . . . , xn ≥ δ} is satisfiable.

Proof. We prove the direction ”⇒” since the other direction is obvious. SinceΓ ∪ S is
satisfiable, there is a valuationν such thatν |= Γ andν(xi) > 0 for each1 ≤ i ≤ n.
Let b > 0 be any number andm = min{ν(x1), . . . , ν(xn)}. Thenν(xi) ≥ m holds
for any1 ≤ i ≤ n andm > 0. Two cases arise and need to be analyzed:
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Case 1: Ifm ≤ b, thenΓ ∪ Sδ ∪ {0 < δ ≤ b} has a solutionν′ which extendsν by the
assignmentν′(δ) = m.

Case 2: Ifm > b, defineν′ as an extension ofν such thatν′(δ) = b. Thusb > 0 implies
ν′ |= 0 < δ ≤ b. Moreover, for any1 ≤ i ≤ n, ν′(xi) = ν(xi) ≥ ν′(δ) = b since
m > b. Thereforeν′ |= xi ≥ δ for any1 ≤ i ≤ n.

It follows thatν′ |= Γ ∪ Sδ ∪ {0 < δ ≤ b}. ⊓⊔

The result of Lemma 1 can be lifted to the case of indicator constraints since indi-
cator constraints are essentially linear constraints.

Lemma 2. LetΓ be a set of non-strict constraints,

S = {di = vi → xi > 0 | 1 ≤ i ≤ n} (23)

a set of strict indicator constraints, andδ a new variable. Then,Γ ∪ S is satisfiable iff
for any boundb > 0, Γ ∪ Sδ ∪ {0 < δ ≤ b} is satisfiable where

Sδ = {di = vi → xi ≥ δ | 1 ≤ i ≤ n}. (24)

Lemma 2 shows that a set of strict indicator constraints can be transformed to a set of
non-strict ones by introducing a new bounded variable0 < δ ≤ b. Below, we relax the
last remaining strict constraintδ > 0 to δ ≥ 0 using a MIP objective function.

Definition 3. Let Π = Γ ∪ S be a set of constraints whereΓ is a set of non-strict
ones andS is the set of strict indicator constraints (23),δ a new variable, andb > 0 a
bound. Thenon-strict translationofΠ with respect toδ andb, denotedΠb

δ , is:

maximize δ
subject to Γ ∪ Sδ ∪ {0 ≤ δ ≤ b} (25)

whereSδ is defined by (24).

Given Lemma 2 and Definition 3, the satisfiability of a set of constraints can be
captured by its non-strict translation as formalized by thefollowing theorem.

Theorem 2. LetΠ , S, andΠb
δ be defined as in Definition 3. Then,Π is satisfiable iff

Πb
δ has a solutionν such thatν(δ) > 0.

Theorem 2 enables the use of current MIP systems for checkingthe satisfiability
of a set of strict constraints, i.e., by computing an optimalsolution for the non-strict
translation of the set and by checking if the objective function has a positive value.

3.3 Non-Strict Translation of Programs

Next, we develop the non-strict translation of ASP(LC) programs using Definition 3.

Definition 4. Let P be an ASP(LC) program,δ a new variable, andb > 0 a bound.
The non-strict translationof P with respect toδ and b, is τ(P )bδ whereτ(P ) is the
MIP-translation ofP .
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We show that the solutions ofτ(P )bδ andτ(P ) are in a tight correspondence.

Lemma 3. Let P be an ASP(LC) program that may involve real variables,δ a new
variable, andb > 0 a bound.

1. For any solutionν |= τ(P ), there is a solutionν′ |= τ(P )bδ such thatν(a) = ν′(a)
for eacha ∈ A(P ), ν |= t iff ν′ |= t for eacht ∈ T (P ), andν′(δ) > 0.

2. For any solutionν |= τ(P )bδ whereν(δ) > 0, there is a solutionν′ of τ(P ) such
thatν(a) = ν′(a) for eacha ∈ A(P ) andν |= t iff ν′ |= t for eacht ∈ T (P ).

Proof. We prove(i) and omit the proof of(ii) which is similar. Letν be a solution
of τ(P ). Givenν, we extendτ(P ) to τ ′(P ) by adding for each atoma ∈ A(P ), a
constrainta = ν(a), and for each theory atomt ∈ T (P ) and the variabled introduced
for t in (6), d = ν(d). It is clear thatν′ = ν is a solution ofτ ′(P ). Let τ ′′(P ) be the
analogous extension ofτ(P )bδ . Applying Theorem 2 toτ ′(P ), there is a solutionν′′

of τ ′′(P ) such thatν′′(δ) > 0 and for eacha, ν′′(a) = ν′(a) = ν(a), and for each
d, ν′′(d) = ν′(d) = ν(d). The valuationν′′ is also a solution ofτ(P )bδ, asτ(P )bδ ⊂
τ ′′(P ). Note that for anyt ∈ T (P ) and the respective atomd, ν(d) = 1 iff ν |= t, and
ν′′(d) = 1 iff ν′′ |= t. Thenν |= t iff ν′′ |= t due toν(d) = ν′′(d). ⊓⊔

Now, we relate the solutions ofτ(P )bδ and the answer sets ofP . As a consequence
of Lemma 3 and the generalization of Theorem 1 for real variables, we obtain:

Theorem 3. Let P be an ASP(LC) program that may involve real variables,δ a new
variable, andb > 0 a bound.

1. If ν is a solution ofτ(P )bδ such thatν(δ) > 0, thenIνP ∈ AS(P ).
2. If I ∈ AS(P ), then there is a solutionν of τ(P )bδ such thatI = IνP andν(δ) > 0.

Example 4.Let us revisit Example 3. By settingb = 1 as the bound, we obtain the
non-strict translationτ(P )1δ as follows:

maximize δ
subject to 0 ≤ δ ≤ 1

d1 = 1→ h(tom) ≥ 8.25, d1 = 0→ h(tom) + δ ≤ 8.25,
d2 = 1→ h(tom) + δ ≤ 8.25, d2 = 0→ h(tom) ≥ 8.25,
bonus(tom)− d1 = 0, d2 = 0.

For any optimal solutionν of τ(P )1δ , we haveν(bonus(tom)) = ν(d) = ν(δ) = 1
andν(h(tom)) ≥ 8.25 that corresponds to the intended answer set〈{bonus(tom)},
{h(tom) ≥ 8.25}〉. We note thatCPLEX provides exactly this solution forτ(P )1δ . ⊓⊔

It can be verified that the non-strict translationτ(P )bδ reduces to the MIP-translation
if the variables inP and the new variableδ are integers and the boundb is set to1.

4 Extension with Objective Functions

In this section, we define optimal answer sets for ASP(LC) programs enhanced byob-
jective functionsof the form (2) and illustrate the resulting concept by examples.
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Definition 5. LetP be an ASP(LC) program with an objective functionf and〈M,T 〉 ∈
AS(P ). The answer set〈M,T 〉 is optimaliff there is a solution ofT ∪ T̄ that gives the
optimal value tof among the set of valuations

{ν | ν |= T ∪ T̄ for some〈M,T 〉 ∈ AS(P )}.

Example 5.LetP be an ASP(LC) program

minimize x. a← x ≥ 5. b← x ≥ 7. ← x < 5.

The answer sets ofP areI1 = 〈{a}, {x ≥ 5}〉 andI2 = 〈{a, b}, {x ≥ 5, x ≥ 7}〉. Let
T1 = {x ≥ 5} andT2 = {x ≥ 5, x ≥ 7}. The solutions ofT1 ∪ T̄1 = {x ≥ 5, x < 7}
admit a smaller value off(x) = x (i.e.,5) than any solution ofT2 ∪ T̄2 = {x ≥ 5, x ≥
7}. Therefore the answer setI1 is optimal. ⊓⊔

According to Definition 5, each optimal answer set identifiesan optimal objective
value. In other words, if the objective function is unbounded with respect to an answer
set, then the answer set is not optimal. This is illustrated by our next example.

Example 6.LetP be an ASP(LC) program

minimize x. a← x ≤ 4. b← x > 4.

The programP has two answer setsI1 = 〈{a}, {x ≤ 4}〉 andI2 = 〈{b}, {x > 4}〉. Let
T1 = {x ≤ 4} andT2 = {x > 4}. We haveT1 ∪ T̄1 = T1 andT2 ∪ T̄2 = T2. Although
T1 ∪ T̄1 admits smaller values ofx thanT2 ∪ T̄2, I1 is not optimal, sincex may become
infinitely small subject toT1 ∪ T̄1. Therefore,P has no optimal answer set. ⊓⊔

For a program that does not involve real variables, we can establish an approach to
computing the optimal answer sets as stated in the theorem below. This result essentially
follows from Definition 5 and Theorem 1.

Theorem 4. LetP be an ASP(LC) program involving integer variables only andf the
objective function ofP . Then〈M,T 〉 is an optimal answer set ofP iff there is a solution
ν |= τ(P ) such thatIνP = 〈M,T 〉 andν gives the optimal value tof .

However, when real variables are involved, the non-strict translation from ASP to
MIP programs cannot be employed to compute the optimal answer sets, since the vari-
ableδ introduced in the translation may affect the optimal objective function value.

The ASP languages implemented in [6, 16] support objective functions of the form

#optimize [a1 = wa1 , ..., am = wam , notb1 = wb1 , ..., notbn = wbn ] (26)

where the keywordoptimize is minimize or maximize, ai and ”notbi” are lit-
erals, andwai andwbi are integer weights associated with the respective literals. The
difference between the functions (2) and (26) is thatxi’s in the former are integer vari-
ables whereasai’s andbi’s in the latter are Boolean variables, i.e., propositionalatoms
from the ASP viewpoint. Proper objective functions facilitate modeling optimization
problems as one needs not to encode integer variables in terms of Booleans.

Example 7.Let x be an integer variable taking a value from1 to n and we want to
minimizex. Using an objective function, this can be concisely encodedby:

101



minimize x. x ≥ 1. x ≤ n.

Following [14, 17], to encode the same using the function (26), we need:

#minimize [x(1) = 1, . . . , x(n) = n]. (27)

x(i)← notx(1), . . . , notx(i − 1), notx(i+ 1), . . . notx(n). 1 ≤ i ≤ n (28)

where the Boolean variablex(i) represents thatx takes valuei and the rules in (28)
encode thatx takes exactly one value from1 ton. The size of the ASP(LC) encoding is
constant, while that of the original ASP encoding is quadratic2 in the size of the domain
of x, i.e., the objective function of lengthn plusn rules of lengthn. ⊓⊔

Restriction to Boolean variables affects the performance of ASP systems when deal-
ing with problems involving large domains. A detailed account can be found in [11].

5 A Comparison of ASP(LC) with MIP

In the ASP(LC) paradigm, a problem is solved indirectly, i.e., by first modeling it as
an ASP program, then by translating the program to a MIP program, and by solving
it. A question is how the approach compares with native MIP. In this section, we study
the modeling capabilities of ASP(LC) and MIP languages. We focus on two widely
used primitives in modeling:reachabilityanddisjunctivity. For the former, we study a
Hamiltonian Routing Problem (HRP) and for the latter, a Job Shop Problem (JSP). The
main observation is that ASP(LC) can provide more intuitiveand compact encodings in
debt to its capability to model non-trivial logical relations. But, the compactness does
not always offer computational efficiency as perceived in the sequel.

In the HRP, we have a network and a set ofcritical vertices. The goal is to route
a package along a Hamiltonian cycle in the network so that thepackage reaches each
critical vertex within a given vertex-specific time limit. The network is represented by
a set of verticesV = {1, . . . , n} and a set of weighted edgesE consisting of elements
(i, j, d) where1 ≤ i, j ≤ n andd is a real number representing that the delay of
the edge fromi to j is d. The set of critical verticesCV consists of pairs(i, t) where
1 < i ≤ n andt is a real number representing that the time limit of vertexi is t.

The ASP(LC) encoding of HRP in Figure 1 is obtained by extending the encod-
ing of Hamiltonian cycle problem [14] with timing constraints3. The rules (29)–(35)
specify a Hamiltonian cycle. To model the timing constraints, we use a real variable
t(X) to denote the time when a vertexX is reached. Rules (36) and (37) determine the
respective times of reaching vertices. The rule (38) ensures each critical vertex to be
reached in time. The MIP program of HRP in Figure 2 is from [15]with extensions of
timing constraints4. The binary variablexij represents whether an edge(i, j, d) is on
the Hamiltonian cycle (xij = 1) or not (xij = 0) and the integer variablepi denotes the

2 Linear and logarithmic encodings can be achieved usingcardinality constraints[6, 16] andbit
vectors[13], respectively. But both are more complex than the givenASP(LC) encoding.

3 A rule with the operator “=” in the head, such as (36) and (37),is a shorthand for a pair of
rules with the operators “≤” and “≥” in their heads respectively.

4 Disequalities and implications can be represented using the operators ”≤” and ”≥” [15].
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hc(X,Y )← e(X,Y,D), notnhc(X,Y ). (29)

nhc(X,Y )← e(X,Y,D1), e(X,Z,D2), hc(X,Z), Y 6= Z. (30)

nhc(X,Y )← e(X,Y,D1), e(Z, Y,D2), hc(Z, Y ), X 6= Z. (31)

initial(1). (32)

reach(X)← reach(Y ), hc(Y,X), not initial(Y ), e(Y,X,D). (33)

reach(X)← hc(Y,X), initial(Y ), e(Y,X,D). (34)

← v(X), not reach(X). (35)

t(1) = 0. (36)

t(X)− t(Y ) = D ← hc(Y,X), e(Y,X,D), X 6= 1. (37)

t(X) ≤ T ← critical(X,T ). (38)

Fig. 1.An ASP(LC) encoding of HRP

∑
(i,j,d)∈E xij = 1 i ∈ V (39)

∑
(j,i,d)∈E xji = 1 i ∈ V (40)

1 ≤ pi ≤ n i ∈ V (41)

pi 6= pj i ∈ V, j ∈ V, i 6= j (42)

pj 6= pi + 1 (i, j, d) 6∈ E, i 6= j (43)

(pi = n)→ (pj ≥ 2) (i, j, d) 6∈ E, i 6= j (44)

r1 = 0 (45)

xij = 1→ rj − ri = dij (i, j, d) 6∈ E (46)

ri ≤ ti (i, t) ∈ CV (47)

Fig. 2. A MIP encoding of HRP

position of the vertexi on the cycle. The real variableri denotes the time of reaching
vertexi. The constraints (39)–(44) encode a Hamiltonian cycle and (45)–(47) are the
counterparts of (36)–(38) respectively.

In comparison, reachability is modeled by the recursive rules (33) and (34) in the
ASP(LC) program. Since MIP language cannot express such recursion directly, the
reachability condition is captured otherwise—by constraining the positions of the nodes
in (41)–(44). Note that the node positions are actually irrelevant for the existence of a
cycle. In fact, modeling Hamiltonian cycles in non-complete graphs is challenging in
MIP and the above encoding is the most compact one to the best of our knowledge.

In the JSP, we have a set of tasksT = {1, ..., n} to be executed by a machine. Each
task is associated with an earliest starting time and a processing duration. The goal is
to schedule the tasks so that each task starts at its earlieststarting time or later, the
processing of the tasks do not overlap, and all tasks are finished by a given deadline.
Using ASP(LC) we model the problem in Figure 3 where the predicatetask(I, E,D)
denotes that a taskI has an earliest starting timeE and a durationD and the real
variabless(I) ande(I) denote the starting and ending times of taskI, respectively. The
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s(I) ≥ E ← task(I,E,D). (48)

e(I)− s(I) ≥ D ← task(I, E,D). (49)

← task(I,E1, D1), task(J,E2, D2), I 6= J, s(I)− s(J) ≤ 0, s(J)− e(I) ≤ 0. (50)

e(I) ≤ deadline ← task(I, E,D). (51)

Fig. 3. An ASP(LC) encoding of JSP

si ≥ est i i ∈ T (52)

ei − si ≥ di i ∈ T (53)

xij = 1→ ei − sj < 0 i ∈ T, j ∈ T, i 6= j (54)

xij = 0→ ei − sj ≥ 0 i ∈ T, j ∈ T, i 6= j (55)

xij + xji = 1 i ∈ T, j ∈ T, i 6= j (56)

ei ≤ deadline i ∈ T (57)

Fig. 4.A MIP encoding of JSP

rule (48) says that a task starts at its earliest starting time or later. The rule (49) ensures
each task being processed long enough. The rule (50) encodesthe mutual exclusion of
the tasks, i.e., for any two tasks, one must be finished beforethe starting of the other.
The rule (51) enforces each task being finished by the deadline. Figure 4 adopts a recent
MIP encoding of JSP [9] inCPLEX language, where the variablessi andei represent
the starting and ending times of taski, respectively;est i anddi are the earliest starting
time and processing duration of taski; the binary variablexij denotes that taski ends
before taskj starts. The constraints (52), (53), and (57) are the counterparts of (48),
(49), and (51) respectively. The constraints (54)–(56) exclude overlapping tasks.

In the ASP(LC) program of JSP, the mutual exclusion ofs(I) − s(J) ≤ 0 and
s(J) − e(I) ≤ 0 is expressed by one rule (50). In contrast, MIP language lacks direct
encoding of relations between constraints and therefore, to encode the relation ofei <
sj andej < si, one has to first represent them by new variablesxij andxji and then
encode the relations of the variables (56). Note that, for computation, the ASP(LC) and
the native MIP encodings are essentially the same, since thetranslation of the rule (50)
includes two indicator constraints to represent the constraintss(I) − s(J) ≤ 0 and
s(J)− e(I) ≤ 0, respectively, and additional constraints to encode the rule.

6 Experiments

We implemented the non-strict translation of ASP(LC) programs and the MIP objective
functions by modifying theMINGO system [11]. The new system is calledMINGOr . We
testedMINGOr with a number of benchmarks5: the HRP and JSP detailed in Section 5,

5 A prototype implementation of theMINGOrsystem and benchmarks can be found under
http://research.ics.aalto.fi/software/asp/mingoR/
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the Newspaper, Routing Max, and Routing Min problems from [11], and the Disjunc-
tive Scheduling problem from [4]. These problems were selected as they involve either
reachability or disjunctivity. The original instances arerevised to include real numbers.
The objective functions of the optimization versions of HRPand JSP are to minimize
the time of reaching some critical node and the ending time ofsome task, respectively.
The optimization problems involve integers only. The experiments were run on a Linux
cluster having 112 AMD Opteron and 120 Intel Xeon nodes with Linux 6.1. In each
run, the memory is limited to 4GB and the cutoff time is set to 600 seconds.

In Table 1, we evaluateMINGOr with different values of the parameterb, the bound
used in the non-strict translation. The goal is to find a default setting for b. Table 1
suggests thatb = 10−6 is the best, considering the number of solved instances and
the running time. We tested100 random instances for each problem except Disjunctive
Scheduling where we used the10 instances given in [4]. Each instance was run5 times
and the average number of solved instances and running time are reported. We also
include the average sizes of resultinggroundprograms in kilobytes to give an idea on
the space complexity of the instances. It is also worth pointing out that none of the
problems reported in Table 1 is solvable by existing ASP systems since they involve
real variables and thus comparisons ofMINGOr with other ASP systems are infeasible.

Tables 2 and 3 provide comparisons of the translation-basedASP approach with
native MIP approach, where bothMINGOr andCPLEX are run with default settings. For
the HRP problem in Table 2, we tested50 randomly generated graphs of30 nodes for
eachdensity(the ratio of the number of edges to the number of edges in the complete
graph). The results show that the instances with medium densities are unsolvable to
CPLEX before the cutoff butMINGOr can solve them in reasonable time. We also note
that CPLEX performs better for the graphs of high densities. This is because the MIP
program encodes the positions of nonadjacent nodes. For theJSP problem in Table 3,
we tested50 random instances for each number of tasks andMINGOr is slower than
CPLEX by roughly a order of magnitude but, in spite of this, scalingis similar.

In summary, some observations are in order. On one hand, the ASP(LC) language
enables compact encodings in debt to its capability of expressing non-trivial logical re-
lations. Thus some redundant information, such as the orderof nodes in a cycle in HRP,
can be left out in favor of computational performance. On theother hand, the transla-
tion of ASP(LC) programs into MIP is fully general and thus some unnecessary extra
variables could be introduced. E.g., in the case of JSP, the structure of the translation is
more complex than the native MIP encoding. As a consequence,the translation-based
approach is likely to be slower due to extra time needed for propagation.

7 Related Work

Dutertre and de Moura [5] translate strict linear constraints into non-strict ones using a
new variableδ in analogy to Lemma 1. However, the variable remains unbounded from
above in their proposal. In contrast to this, an explicit upper bound is introduced by our
translation. The bound facilitates computation: if the translated set of constraints has no
solutionν with ν(δ) > 0 under a particular boundb, this result is conclusive and no
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Benchmark
b = 10−9 b = 10−6 b = 10−3 b = 1 b = 103

Size
Solved Time Solved Time Solved Time Solved Time Solved Time

Disj. Scheduling 10 0.60 10 0.78 10 0.99 10 0.89 10 12.60 206
Ham. Routing 100 30.79 100 24.52 100 23.16 100 41.63 0 NA 155
Job Shop 100 9.76 100 9.56 100 25.98 100 14.61 10 66.08 387
Newspaper 100 22.64 100 21.61 93 77.90 100 40.76 0 NA 846
Routing Max. 100 0.11 100 0.14 100 0.25 100 0.55 100 0.69 7
Routing Min. 76 109.58 77 102.98 80 127.12 46 95.07 20 79.07 368

Table 1.The effect of the boundb > 0

Density
Decision Optimization

MINGOr CPLEX MINGOr CPLEX

10 0.03 0.01 0.07 0.01
20 0.05 0.01 0.12 0.01
30 0.92 NA 50.81 NA
40 41.62 NA NA NA
50 13.94 NA NA NA
60 64.91 NA NA NA
70 35.78 NA NA NA
80 8.02 95.40 NA NA
90 181.33 24.74 NA NA

100 146.18 13.88 NA NA

Table 2.Hamiltonian Routing Problem

Tasks
Decision Optimization

MINGOr CPLEX MINGOr CPLEX

10 0.42 0.14 0.35 0.08
20 4.04 0.18 1.56 0.14
30 6.78 0.40 4.69 0.49
40 13.74 0.72 12.18 1.62
50 27.37 1.36 16.15 1.16
60 45.44 1.72 30.82 2.01
70 51.56 1.57 47.85 1.80
80 88.72 2.34 68.99 2.83
90 114.32 2.97 79.28 6.43

100 192.09 4.19 112.09 8.05

Table 3.Job Shop Problem

further computations are needed. Unbounded variables are problematic for typical MIP
systems and thus having an upper bound forδ is important.

Given the extension of ASP(LC) programs with objective functions, MIP programs
can be seen as a special case of ASP(LC) programs, i.e., for any MIP programP with
an objective function (2) and constraints in (3), there is anASP(LC) programP ′ whose
objective function is (2) and whose rules simply list the constraints in (3) as theory
atoms (facts in ASP terminology). Note that in this setting the non-strict translation of
P ′ is identical toP , sinceP ′ involves non-strict constraints only.

In theory, all similar paradigms proposed in [1, 7, 12] coverreal-valued constraints.
Moreover, a recent ASP systemCLINGCON [7] is implemented where constraints over
integers are allowed in logic programs. But, to the best of our knowledge, there has
not been any system that supports real-valued constraints nor integer-based objective
functions. With the non-strict translation of ASP programsinto mixed integer programs,
we are able to implement these primitives in the context of ASP.

8 Conclusion and Future Work

In this paper, we generalize a translation from ASP(LC) programs to MIP programs
so that linear constraints over real variables are enabled in answer set programming.
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Moreover, we introduce integer objective functions to ASP(LC) language. These re-
sults extend the applicability of answer set programming. Finally, we compare the ASP
approach with the native MIP approach and the results show that ASP extensions in
question facilitate modeling and offer computational advantage at least for some prob-
lems. Our results suggest that MIP and ASP paradigms can benefit mutually. Efficient
MIP formulations may be obtained by translating a compact ASP(LC) program. On
the other hand, ASP language can be extended using MIP constraints and an objective
function to deal with problems that are not directly solvable within standard ASP.

The future work will be focused on system development and experiments. E.g., we
will study techniques to reduce the number of extra variables needed in translations and
to stop the solving phase early (as soon asδ is positive). These goals aim at more ef-
ficient implementation ofMINGOrwhich also lacks a user-friendly front-end parser for
the moment. Experiments that compareMINGOrwith other constraint logic program-
ming systems [10] will also be conducted to provide insightsinto improvingMINGOr.
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Propositional Encoding of Constraints over
Tree-Shaped Data

Alexander Bau ? and Johannes Waldmann
HTWK Leipzig, Fakultät IMN, 04277 Leipzig, Germany

Abstract. We present a functional programming language for specify-
ing constraints over tree-shaped data. The language allows for Haskell-
like algebraic data types and pattern matching. Our constraint compiler
CO4 translates these programs into satisfiability problems in proposi-
tional logic. We present an application from the area of automated anal-
ysis of termination of rewrite systems, and also relate CO4 to Curry.

1 Motivation

The paper presents a high-level declarative language CO4 for describing con-
straint systems. The language includes user-defined algebraic data types and
recursive functions defined by pattern matching, as well as higher-order and
polymorphic types. This language comes with a compiler that transforms a high-
level constraint system into a satisfiability problem in propositional logic. This
is motivated by the following.

Constraint solvers for propositional logic (SAT solvers) like Minisat [ES03] are
based on the Davis-Putnam-Logemann-Loveland (DPLL) [DLL62] algorithm
and extended with conflict-driven clause learning (CDCL) [SS96] and prepro-
cessing. They are able to find satisfying assignments for conjunctive normal
forms with 106 and more clauses in a lot of cases quickly. SAT solvers are used
in industrial-grade verification of hardware and software.

With the availability of powerful SAT solvers, propositional encoding is a promis-
ing method to solve constraint systems that originate in different domains.
In particular, this approach had been used for automatically analyzing (non-
)termination of rewriting [KK04,ZSHM10,CGSKT12] successfully, as can be seen
from the results of International Termination Competitions (most of the partic-
ipants use propositional encodings).

So far, these encodings are written manually: the programmer has to construct
explicitly a formula in propositional logic that encodes the desired properties.
Such a construction is similar to programming in assembly language: the advan-
tage is that it allows for clever optimizations, but the drawbacks are that the
process is inflexible and error-prone.
? This author is supported by an ESF grant
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This is especially so if the data domain for the constraint system is remote from
the “sequence of bits” domain that naturally fits propositional logic. In typical
applications, data is not a flat but hierarchical (e.g., using lists and trees), and
one wants to write constraints on such data in a direct way.

Therefore, we introduce a constraint language CO4 that comes with a compiler
to propositional logic. Syntactically, CO4 is a subset of Haskell [Jon03], including
data declarations, case expressions, higher order functions, polymorphism (but
no type classes). The advantages of re-using a high level declarative language
for expressing constraint systems are: the programmer can rely on established
syntax and semantics, does not have to learn a new language, can re-use his
experience and intuition, and can re-use actual code. For instance, the (Haskell)
function that describes the application of a rewrite rule at some position in some
string or term can be directly used in a constraint system that describes a rewrite
sequence with a certain property.

A constraint programming language needs some way of parameterizing the con-
straint system to data that is not available when writing the program. For in-
stance, a constraint program for finding looping derivations for a rewrite system
R, will not contain a fixed system R, but will get R as run-time input.

A formal specification of compilation is given in Section 2, and a concrete re-
alization of compilation of first-order programs using algebraic data types and
pattern matching is given in Section 3. In these sections, we assume that data
types are finite (e.g., composed from Bool, Maybe, Either), and programs are
total. We then extend this in section 4 to handle infinite (that is, recursive) data
types (e.g., lists, trees), and partial functions. Note that a propositional encod-
ing can only represent a finite subset of values of any type, e.g., lists of booleans
with at most 5 elements, so partial functions come into play naturally.

We then treat in Section 5 briefly some ideas that serve to improve writing and
executing CO4 programs. These are higher-order functions and polymorphism,
as well as hash-consing, memoization, and built-in binary numbers.

Next, we give an application of CO4 in the termination analysis of rewrite
systems: In Section 6 we describe a constraint system for looping derivations
in string rewriting. We compare this to a hand-written propositional encod-
ing [ZSHM10], and evaluate performance. The subject of Section 7 is the com-
parison of CO4 to Curry [Han11], using the standard N -Queens-Problem as a
test case.

Our constraint language and compiler had been announced in short workshop
contributions at HaL 8 (Leipzig, 21 June 13) and Haskell and Rewriting Tech-
niques (Eindhoven, 26 June 13). Here, we explain CO4 in more detail, and with
fresh examples. Because of space restrictions, we still leave out some technicali-
ties in Sections 2 and 3, and instead refer to the extended version [BW13].
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2 Semantics of Propositional Encodings

In this section, we introduce CO4 syntax and semantics, and give the specifica-
tion for compilation of CO4 expressions, in the form of an invariant (it should
hold for all sub-expressions). When applied to the full input program, the specifi-
cation implies that the compiler works as expected: a solution for the constraint
system can be found via the external SAT solver. We defer discussion of our
implementation of this specification to Section 3, and give here a more formal,
but still high-level view of the CO4 language and compiler.

Evaluations on concrete data. We denote by P the set of expressions in the input
language. It is a first-order functional language with algebraic data types, pattern
matching, and global and local function definitions (using let) that may be
recursive. The concrete syntax is a subset of Haskell. We give examples— which
may appear unrealistically simple but at this point we cannot use higher-order
or polymorphic features. These will be discussed in see Section 5.

data Bool = False | True
and2 :: Bool -> Bool -> Bool
and2 x y = case x of { False -> False ; True -> y }

data Maybe_Bool = Nothing | Just Bool
f :: Maybe_Bool -> Maybe_Bool -> Maybe_Bool
f p q = case p of

Nothing -> Nothing
Just x -> case q of

{ Nothing -> Nothing ; Just y -> Just (and2 x y) }

For instance, f (Just x) Nothing is an expression of P, containing a variable
x. We allow only simple patterns (a constructor followed by variables), and we
require that pattern matches are complete (there is exactly one pattern for each
constructor of the respective type). It is obvious that nested patterns can be
translated to this form.

Evaluation of expressions is defined in the standard way: The domain of concrete
values C is the set of data terms. For instance, Just False ∈ C. A concrete
environment is a mapping from program variables to C. A concrete evaluation
function concrete-value : EC×P→ C computes the value of a concrete expression
p ∈ P in a concrete environment eC. Evaluation of function and constructor
arguments is strict.

Evaluations on abstract data. The CO4 compiler transforms an input program
that operates on concrete values, to an abstract program that operates on abstract
values. An abstract value contains propositional logic formulas that may contain
free propositional variables. An abstract value represents a set of concrete values.
Each assignment of the propositional values produces a concrete value.
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We formalize this in the following way: the domain of abstract values is called A.
The set of assignments (mappings from propositional variables to truth values
B = {0, 1}) is called Σ, and there is a function decode : A×Σ → C.

We now specify abstract evaluation. (The implementation is given in Section 3.)
We use abstract environments EA that map program variables to abstract values,
and an abstract evaluation function abstract-value : EA × P→ A.

Allocators. As explained in the introduction, the constraint program receives
known and unknown arguments. The compiled program operates on abstract
values.

The abstract value that represents a (finite) set of concrete values of an unknown
argument is obtained from an allocator. For a property q : C → B of concrete
values, a q-allocator constructs an object a ∈ A that represents all concrete
objects that satisfy q:

∀c ∈ C : q(c) ⇐⇒ ∃σ ∈ Σ : c = decode(a, σ).

We use allocators for properties q that specify c uses constructors that belong
to a specific type. Later (with recursive types, see Section 4) we also specify a
size bound for c. An example is an allocator for lists of booleans of length ≤ 4.

As a special case, an allocator for a singleton set is used for encoding a known
concrete value. This constant allocator is given by a function encode : C → A
with the property that ∀c ∈ C, σ ∈ Σ : decode(encode(c), σ) = c.

Correctness of constraint compilation. The semantical relation between an ex-
pression p (a concrete program) and its compiled version compile(p) (an abstract
program) is given by the following relation between concrete and abstract eval-
uation:

Definition 1. We say that p ∈ P is compiled correctly if

∀e ∈ EA ∀σ ∈ Σ : decode(abstract-value(e, compile(p)), σ)
= concrete-value(decode(e, σ), p)

(1)

Here we used decode(e, σ) as notation for lifting the decoding function to envi-
ronments, defined element-wise by

∀e ∈ EA ∀v ∈ dom(e) ∀σ ∈ Σ : decode(e, σ)(v) = decode(e(v), σ).

Application of the Correctness Property. We are now in a position to show how
the stages of CO4 compilation and execution fit together.

The top-level parametric constraint is given by a function declaration main k u = b
where b (the body, a concrete program) is of type Bool. It will be processed in
the following stages:
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1. compilation produces an abstract program compile(b),

2. abstract computation takes a concrete parameter value p ∈ C and a q-
allocator a ∈ A, and computes the abstract value

V = abstract-value({k 7→ encode(p), u 7→ a}, compile(b))

3. solving calls the backend SAT solver to determine σ ∈ Σ with decode(V, σ) =
True. If this was successful,

4. decoding produces a concrete value s = decode(a, σ),

5. and optionally, testing checks concrete-value({k 7→ p, u 7→ s}, b) = True.

The last step is just for reassurance against implementation errors, since the
invariant implies that the test returns True. This highlights another advantage of
re-using Haskell for constraint programming: one can easily check the correctness
of a solution candidate.

3 Implementation of a Propositional Encoding

In this section, we give a realization for abstract values, and show how compi-
lation creates programs that operate correctly on those values, as specified in
Definition 1.

Encoding and Decoding of Abstract Values. The central idea is to represent an
abstract value as a tree, where each node contains an encoding for a symbol (a
constructor) at the corresponding position, and the list of concrete children of
the node is a prefix of the list of abstract children (the length of the prefix is the
arity of the constructor).

The encoding of constructors is by a sequence of formulas that represent the
number of the constructor in binary notation.

We denote by F the set of propositional logic formulas. At this point, we do
not prescribe a concrete representation. For efficiency reasons, we will allow
some form of sharing. Our implementation (satchmo-core) assigns names to
subformulas by doing the Tseitin transform [Tse83] on-the-fly, creating a fresh
propositional literal for each subformula.

Definition 2. The set of abstract values A is the smallest set with A = F∗×A∗.

An element a ∈ A thus has shape (−→f ,−→a ) where −→f is a sequence of formulas,
called the flags of a, and −→a is a sequence of abstract values, called the arguments
of a. Equivalently, in Haskell notation,

data A = A { flags :: [F] , arguments :: [A] }
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We introduce notation

– flags : A→ F∗ gives the flags of an abstract value
– flagsi : A→ F gives the i-th flag of an abstract value
– arguments : A→ A∗ gives the arguments of an abstract value,
– argumenti : A→ A gives the i-th argument of an abstract value

The sequence of flags of an abstract value encodes the number of its constructor.
We use the following variant of a binary encoding: For each data type T with c
constructors, we use as flags a set of sequences Sc ⊆ {0, 1}∗ with |Sc| = c and
such that each long enough w ∈ {0, 1}∗ does have exactly one prefix in Sc:

S1 = {ε}; for n > 1: Sn = 0 · Sdn/2e ∪ 1 · Sbn/2c

For example, S2 = {0, 1}, S3 = {00, 01, 1}, S5 = {000, 001, 01, 10, 11}. The lexi-
cographic order of Sc induces a bijection numericc : Sc → {1, . . . , c}.

The encoding function (from concrete to abstract values) is defined by

encodeT (C(v1, . . .)) = (numeric−c (i), [encodeT1(v1), . . .])

where C is the i-th constructor of type T , and Tj is the type of the j-th argument
of C. Note that here, numeric−c (i) denotes a sequence of constant flags (formulas)
that represents the corresponding binary string.

For decoding, we need to take care of extra flags and arguments that may have
been created by the function merge (Definition 4) that is used in the compilation
of case expressions.

We extend the mapping numericc to longer strings by numericc(u·v) := numericc(u)
for each u ∈ Sc, v ∈ {0, 1}∗. This is possible by the unique-prefix condition.

Given the type declaration data Bool = False | True the concrete value True
can be represented by the abstract value a1 = ([x], []) and assignment {x =
1}, since True is the second (of two) constructors, and numeric2([1]) = 2. The
same concrete value True can also be represented by the abstract value a2 =
([x, y], [a1]) and assignment {x = 1, y = 0}, since numeric2([1, 0]) = 2. This shows
that extra flags and extra arguments are ignored in decoding.

We give a formal definition: for a type T with c constructors, decodeT ((f, a), σ)
is the concrete value v = Ci(v1, . . .) where i = numericc(fσ), and Ci is the i-
th constructor of T , and vj = decodeTj

(aj , σ) where Tj is the type of the j-th
argument of Ci.

As stated, this is a partial function, since any of f, a may be too short. For this
Section, we assume that abstract values always have enough flags and arguments
for decoding, and we defer a discussion of partial decodings to Section 4.
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Allocators for Abstract Values. Since we consider (in this section) finite types
only, we restrict to complete allocators: for a type T , a complete allocator is an
abstract value a ∈ A that can represent each element of T : for each e ∈ T , there
is some σ such that decodeT (a, σ) = e.

For some exemplary types, complete allocators are

type complete allocator
data Bool = False | True a1 = ([x1], [])
data Ordering = LT | EQ | GT a2 = ([x1, x2], [])
data EBO = Left Bool | Right Ordering a3 = ([x1], [([x2, x3], [])])

where x1, . . . are (boolean) variables. We compute decode(a3, σ) for σ = {x1 =
0, x2 = 1, x3 = 0}): Since numeric2([0]) = 1, the top constructor is Left. It
has one argument, obtained as decodeBool(([x2, x3], []), σ). For this we compute
numeric2([1, 0]) = 2, denoting the second constructor (True) of Bool. Thus,
decode(a3, σ) = Left True.

Compilation of Programs. In the following we illustrate the actual transforma-
tion of the input program (that operates on concrete values) to an abstract
program (operating on abstract values).

Generally, compilation keeps structure and names of the program intact. For
instance, if the original program defines functions f and g, and the implemen-
tation of g calls f , then the transformed program also defines functions f and
g, and the implementation of g calls f .

Compilation of variables, bindings, and function calls is straightforward, and we
omit details.

We deal now with pattern matches. They appear naturally in the input program,
since we operate on algebraic data types. The basic plan is that compilation re-
moves pattern matches. This is motivated as follows. Concrete evaluation of a
pattern match (in the input program) consists of choosing a branch according
to a concrete value (of the discriminant expression). Abstract evaluation cannot
access this concrete value (since it will only be available after the SAT solver de-
termines an assignment). This means that we cannot abstractly evaluate pattern
matches. Therefore, they must be removed by compilation.

We restrict to pattern matches where patterns are simple (a constructor followed
by variables) and complete (one branch for each constructor of the type).

Definition 3 (Compilation, pattern match).

Consider a pattern match expression e of shape case d of {. . . }, for a discrim-
inant expression d of type T with c constructors.

We have compile(e) = let x = compile(d) in mergec(flags(x), b1, . . .) where x
is a fresh variable, and bi represents the compilation of the i-th branch.
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Each such branch is of shape C v1 . . . vn → ei, where C is the i-th constructor
of the type T .

Then bi is obtained as let {v1 = argument1(x); . . . } in compile(ei).

We need the following auxiliary function that combines the abstract values from
branches of pattern matches, according to the flags of the discriminant.

Definition 4 (Combining function). merge : F ∗×Ac → A combines abstract
values so that merge(−→f , a1, . . . , ac) is an abstract value (−→g , z1, . . . , zn), where

– number of arguments: n = max(| arguments(a1)|, . . . , | arguments(ac)|)
– number of flags: |−→g | = max(| flags(a1)|, . . . , | flags(ac)|)
– combining the flags:

for 1 ≤ i ≤ |−→g |, gi ↔
∧

1≤j≤c

(numericc(−→f ) = j → flagsi(aj)) (2)

– combining the arguments recursively:

for each 1 ≤ i ≤ n, zi = merge(−→f , argumenti(a1), . . . , argumenti(ac)).

Example 1. Consider the expression case e of False -> u; True -> v, where
e,u,v are of type Bool, represented by abstract values ([fe], []), ([fu], []), ([fv], [])
with one flag an no arguments. The case expression is compiled into an abstract
value ([fr], []) where

fr = merge2([fe], ([fu], []), ([fv], []))
= (numeric2(fe) = 1→ fu) ∧ (numeric2(fe) = 2→ fv)
= (fe → fu) ∧ (fe → fv)

We refer to extend version [BW13] for the full specification of compilation, and
proofs of correctness.

We mention already here one way of optimization: if all flags of the discriminant
are constant (i.e., known during abstract evaluation, before running the SAT
solver) then abstract evaluation will evaluate only the branch specified by the
flags, instead of evaluating all, and merging the results. Typically, flags will be
constant while evaluating expressions that only depend on the input parameter,
and not on the unknown.

4 Partial encoding of Infinite Types

We discuss the compilation and abstract evaluation for constraints over infinite
types, like lists and trees. Consider declarations
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data N = Z | S N
double :: N -> N
double x = case x of { Z -> Z ; S x’ -> S (S (double x’)) }

Assume we have an abstract value a to represent x. It consists of a flag (to
distinguish between Z and S), and of one child (the argument for S), which is
another abstract value. At some depth, recursion must stop, since the abstract
value is finite (it can only contain a finite number of flags). Therefore, there is
a child with no arguments, and it must have its flag set to [False] (it must
represent Z).

There is another option: if we leave the flag open (it can take on values False
or True), then we have an abstract value with (possibly) a constructor argu-
ment missing. When evaluating the concrete program, the result of accessing a
non-existing component gives a bottom value. This corresponds to the Haskell
semantics where each data type contains bottom, and values like S (S ⊥) are
valid. To represent these values, we extend our previous definition to:

Definition 5. The set of abstract values A⊥ is the smallest set with A⊥ =
F∗×A∗⊥×F, i.e. an abstract value is a triple of flags and arguments (cf. definition
2) extended by an additional definedness constraint.

We write def : A⊥ → F to give the definedness constraint of an abstract value,
and keep flags and argument notation of Definition 2.

The decoding function is modified accordingly: decodeT (a, σ) for a type T with c
constructors is ⊥ if def(a)σ = False, or numericc(flags(a)) is undefined (because
of “missing” flags), or | arguments(a)| is less than the number of arguments of
the decoded constructor.

The correctness invariant for compilation (Eq. 1) is still the same, but we now
interpret it in the domain C⊥, so the equality says that if one side is ⊥, then both
must be. Consequently, for the application of the invariant, we now require that
the abstract value of the top-level constraint under the assignment is defined
and True. Abstract evaluation is extended to A⊥ by the following:

– explicit bottoms: a source expression undefined results in an abstract value
([], [], 0) (flags and arguments are empty, definedness is False)

– constructors are lazy: the abstract value created by a constructor application
has its definedness flag set to True

– pattern matches are strict: the definedness flag of the abstract value con-
structed for a pattern match is the conjunction of the definedness of the
discriminant with the definedness of the results of the branches, combined
by merge.

116



5 Extensions for Expressiveness and Efficiency

We briefly present some enhancements of the basic CO4 language. To increase
expressiveness, we introduce higher order functions and polymorphism. To im-
prove efficiency, we use hash-consing and memoization, as well as built-in binary
numbers.

More Haskell features in CO4. For formulating the constraints, expressiveness
in the language is welcome. Since we base our design on Haskell, it is natural
to include some of its features that go beyond first-order programs: higher order
functions and polymorphic types.

Our program semantics is first-order: we cannot (easily) include functions as
result values or in environments, since we have no corresponding abstract values
for functions. Therefore, we instantiate all higher-order functions in a standard
preprocessing step, starting from the main program.

Polymorphic types do not change the compilation process. The important infor-
mation is the same as with monomorphic typing: the total number of constructors
of a type, and the number (the encoding) of one constructor.

In all, we can use in CO4 a large part of the Haskell Prelude functions. CO4 just
compiles their “natural” definition, e.g.,

and xs = foldl (&&) True xs ; a ++ b = foldr (:) b a

Memoization. We describe another optimization: in the abstract program, we
use memoization for all subprograms. That is, during execution of the abstract
program, we keep a map from (function name, argument tuple) to result. Note
that arguments and result are abstract values. This allows to write “natural”
specifications and still get a reasonable implementation.

For instance, The textbook definition of the lexicographic path order >lpo (cf.
[BN98]) defines an order over terms according to some precedence. Its textbook
definition is recursive, and leads to an exponential time algorithm, if imple-
mented literally. By calling s >lpo t the algorithm still does only compare sub-
terms of s and t, and in total, there are |s| · |t| pairs of subterms, and this is also
the cost of the textbook algorithm with a memoizing implementation.

For memoization we frequently need table lookups. For fast lookups we need fast
equality tests (for abstract values). We get these by hash-consing: abstract con-
structor calls are memoized as well, so that abstract nodes are globally unique,
and structural equality is equivalent to pointer equality.

Memoization is awkward in Haskell, since it transforms pure functions into state-
changing operations. This is not a problem for CO4 since this change of types
only applies to the abstract program, and thus is invisible on the source level.
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Built-in data types and operations. Consider the following natural definition:

not a = case a of { False -> True ; True -> False }

Abstract values for a, b, and output, contain one flag each (and no arguments).
CO4 will compile not in such a way that a fresh propositional variable is allocated
for the output, and then emit two CNF clauses that assert the bi-implication
between input and output (by Definition 4). This fresh variable is actually not
necessary since we can invert the polarity of the input literal directly. To achieve
this, Booleans and (some of) their operations are handled specially by CO4.

Similarly, we can model binary numbers as lists of bits:

data [] a = [] | a : [a] ; data Nat = Nat [ Bool ]

An abstract value for a k-bit number then is a tree of depth k. Instead of this,
we provide built-in data types Natk that represent a k-bit number as one ab-
stract node with k flags, and no arguments. These types come with standard
arithmetical and relational operations.

We remark that a binary propositional encoding for numbers is related to the
“sets-of-intervals” representation that a finite domain (FD) constraint solver
would typically use. A partially assigned binary number, e.g., [∗, 0, 1, ∗, ∗], also
represents a union of intervals, here, [4..7] ∪ [20..23]. Assigning variables can be
thought of as splitting intervals. See Section 7 an application of CO4 to a typical
FD problem.

6 Case study: Loops in String Rewriting

We use CO4 for compiling constraint systems that describe looping derivations
in rewriting. W make essential use of CO4’s ability to encode (programs over) un-
known objects of algebraic data types, in particular, of lists of unknown lengths,
and with unknown elements.

The application is motivated by automated analysis of programs. A loop is an
infinite computation, which may be unwanted behaviour, indicating an error in
the program’s design. In general, it is undecidable whether a rewriting system
admits a loop. Loops can be found by enumerating finite derivations.

Our approach is to write the predicate “the derivation d conforms to a rewrite
system R and d is looping” as a Haskell function, and solve the resulting con-
straint system, after putting bounds on the sizes of the terms that are involved.

Previous work uses several heuristics for enumerations resp. hand-written propo-
sitional encodings for finding loops in string rewriting systems [ZSHM10].

We compare this to a propositional encoding via CO4. We give here the type dec-
larations and some code examples. Full source code is available from https://
github.com/apunktbau/co4/blob/master/CO4/Test/Loop.standalone.hs.
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In the following, we show the data declarations we use, and give code examples.

– We represent symbols as binary numbers of flexible width, since we do not
know (at compile-time) the size of the alphabet: type Symbol = [ Bool ].

– We have words: type Word = [Symbol] , rules: type Rule = (Word, Word),
and rewrite systems type SRS = [Rule].

– A rewrite step (p++l++s)→R (p++r++s), where rule (l, r) is applied with left
context p and right context s, is represented by Step p (l,r) s where

data Step = Step Word Rule Word

– a derivation is a list of steps: type Derivation = [Step], where each step
uses a rule from the rewrite system, and consecutive steps fit each other.

– a derivation is looping if the output of the last step is a subword of the input
of the first step

constraint :: SRS -> Looping_Derivation -> Bool
constraint srs (Looping_Derivation pre d suf) =

conformant srs d && eqWord (pre ++ start d ++ suf) (result d)

This is the top-level constraint. The rewrite system srs is given at run-time.
The derivation is unknown. An allocator represents a set of derivations with
given maximal length (number of steps) and width (length of words).

Overall, the complete CO4 code consists of roughly 100 lines of code. The code
snippets above indicate that the constraint system literally follows the textbook
definitions. E.g., note the list-append (++) operators in constraint.

In contrast, Tyrolean Termination Tool 2 (TTT2, version 1.13) contains a hand-
written propositional encoding for (roughly) the same constraint (ttt2/src/
processors/src/nontermination/loopSat.ml) consisting of roughly 300 lines
of (non-boilerplate) code. The TTT2 implementation explicitly allocates propo-
sitional variables (this is implicit in CO4), and explicitly manipulates indices
(again, this is implicit in our ++).

Table 1 compares the performance of our implementation to that of TTT2 on
some string rewriting systems of the Termination Problems Data Base collection.
We restrict the search space in both tools to derivations of length 16 and words
of length 16. All test were run on a Intel Core 2 Duo CPU with 2.20GHz and
4GB RAM.

We note that CO4 generates larger formulas, for which, in general, MiniSat needs
more time to solve. There are rare cases where CO4’s formula is solved faster.
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Table 1: Finding looping derivations in rewrite systems.
Gebhardt/ 03 Gebhardt/ 08 Zantema_04/

z042
Zantema_06/
loop1

CO4 TTT2 CO4 TTT2 CO4 TTT2 CO4 TTT2
#vars 132232 23759 132168 23696 248990 32180 132024 21880
#clauses 448543 39541 448351 39445 854949 50150 447935 35842
solving 192s 10s 11s 30s 7.5s 3s 8.3s 4s

7 A Comparison to Curry

We compare the CO4 language and implementation to that of the functional logic
programming language Curry [Han11], and its PAKCS implementation (using
the SICSTUS prolog system).

A common theme is that both languages are based on Haskell (syntax and typ-
ing), and extend this by some form of non-determinism, so the implementation
has to realize some form of search.

In Curry, nondeterminism is created lazily (while searching for a solution). In
CO4, nondeterminism is represented by additional boolean decision variables
that are created beforehand (in compilation).

The connection from CO4 to Curry is easy: a CO4 constraint program with top-
level constraint main :: Known -> Unknown -> Bool is equivalent to a Curry
program (query) main k u =:= True where u free.

In the other direction, it is not possible to translate a Curry program to a CO4
program since it may contain locally free variables, a concept that is currently
not supported in CO4. For doing the comparison, we restrict to CO4 programs.

Example 2. We give an example where the CO4 strategy seems superior: the n
queens problem.

We compare our approach to a Curry formulation (taken from the PAKCS online
examples collection) that uses the CLPFD library for finite-domain constraint
programming. Our CO4 formulation uses built-in 8-bit binary numbers (Sec-
tion 5) but otherwise is a direct translation. Note that with 8 bit numbers we
can handle board sizes up to 27: we add co-ordinates when checking for diagonal
attacks.

Table 2 shows the runtimes on several instances of the n queens problem. CO4’s
runtime is the runtime of the compiled program in addition to the runtime of
the SAT-solver. The runtimes for PAKCS were measured using the :set +time
flag after compiling the Curry program in the PAKCS evaluator.
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Fig. 1: Two approaches to solve the n queens problem

CO4 source code Curry source code

constraint n xs =
all (\ x -> le (nat8 1) x

&& le x n ) xs
&& all_safe xs

all_safe xs = case xs of
[] -> True
x:xs’ -> safe x xs’ (nat8 1)

&& all_safe xs’

safe x ys p = case ys of
[] -> True
y : ys’ ->

no_attack x y p
&& safe x ys’ (increment p)

no_attack x y p =
neq x y && neq (add x p) y

&& neq x (add y p)

le = leNat8
neq a b = not (eqNat8 a b)
add = plusNat8
increment x = add x (nat8 1)

import CLPFD

queens options n l =
gen_vars n =:= l &
domain l 1 (length l) &
all_safe l &
labeling options l

all_safe [] = success
all_safe (q:qs) = safe q qs 1

& all_safe qs

safe _ [] _ = success
safe q (q1:qs) p = no_attack q q1 p

& safe q qs (p+#1)

no_attack q1 q2 p = q1 /=# q2
& q1 /=# q2+#p
& q1 /=# q2-p

gen_vars n = if n==0
then []
else var : gen_vars (n-1)

where var free

Table 2: Time for finding one solution of the n queens problem

n 8 12 16 20 24 32 64 128
CO4 0.08s 0.16s 0.31s 0.57s 0.73 1.59s 10.8s 53.1s
Curry/PAKCS 0.02s 0.13s 0.43s 8.54s >10m >10m >10m >10m

The PAKCS software also includes an implementation of the n queens problem
that does not use the CLPFD library. As this implementation already needs 6
seconds to solve a n = 8 instance, we omit it in the previous comparison.

8 Discussion

In this paper we described the CO4 constraint language and compiler that allows
to write constraints on tree-shaped data in a natural way, and to solve them via
propositional encoding.
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We presented the basic ideas for encoding data and translating programs, and
gave an outline of a correctness proof for our implementation.

We gave an example where CO4 is used to solve an application problem from
the area of termination analysis. This example shows that SAT compilation has
advantages w.r.t. manual encodings.

We also gave an experimental comparison between CO4 and Curry, showing
that propositional encoding is an interesting option for solving finite domain
(FD) constraint problems.

Work on CO4 is ongoing. Our immediate goals are, on the one hand, to reduce
the size of the formulas that are built during abstract evaluation, and on the
other hand, to extend the source language with more Haskell features (e.g., type
classes).
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Abstract. Coverage driven test generation (CDTG) is an essential part
of functional verification where the objective is to generate input stimuli
that maximize the functional coverage of a design. CDTG techniques
analyze coverage results and adapt the stimulus generation process to
improve the coverage. One of the important component of CDTG based
tools is the constraint solver. The efficiency of the verification process
depends on the performance of the solver. The speed of the solver can
be increased if inconsistent values can be removed from the domain of
input variables. In this paper, we propose a new efficient consistency
algorithm called GACCC-op (generalized arc consistency on conjunction
of constraints-optimized) which can be used along with the constraint
solver of CDTG tools. With the proposed algorithm, the time to generate
solutions was reduced by 19% in the case of 3-Sat instances.

1 Introduction

In electronic design automation (EDA), functional verification is the task of ver-
ifying whether the hardware design conforms the required specification. This is
a complex task which consumes the majority of the time and effort in most of
the electronic system design projects. Many studies show that up to 70% of de-
sign development time and resources are spent on functional verification[11]. In
coverage based test generation techniques, coverage tools are used side by side
with a stimulus generator (constraint solver) in order to assess the progress of
the verification plan during the verification cycle. Coverage analysis allows for
the modification of the directives for the stimulus generators and the targeting of
areas of the design that are not covered well. This process of adapting the direc-
tives of stimulus generator, according to the feedback based on coverage reports,
is called Coverage Driven Test Generation(fig 1). CDTG is time consuming and
an exhaustive process, but essential for the completion of the verification cycle.

The most important component in CDTG is the constraint solver. The effi-
ciency of a CDTG is heavily dependent on the constraint solver. The stimulus
generation methods of CDTGs are similar to a constraint satisfaction problem
(CSP). But the CSPs arising from stimulus generation are different from typical
CSPs [9]. One striking difference is the existence of variables with huge domains.
Another difference is the requirement to produce multiple different solutions, dis-
tributed uniformly, for the same CSP. Hence available general purpose constraint
solvers cannot be used along with CDTG tools.
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Fig. 1. Coverage Driven Test Generation Technique

Let us look at one example involving verification of the floating-point unit
present in microprocessors. Stimulus generation for floating-point unit verifica-
tion involves targeting corner cases, which can often be solved only through
complex constraint solving. Hence the main task of the constraint solver is to
generate a set of input stimulus that comprises a representative sample of the
entire space, taking into account the many corner cases. Consider a floating
point unit with two input operands. This potentially yields 400 (202) cases that
must be covered, assuming 20 major FP instruction types (e.g. +/-zero, +/-min
denorm). With four floating point instructions (addition, subtraction, division
and multiplication) there is about 1600 cases to be covered. The probability that
a CDTG tool will generate a sequence that covers a particular combination is
very low (1:217)[12]. Hence a CDTG tool will take many hours to generate the
input stimuli required to attain the needed coverage.

Certain values in the domain of input variables of the constraints used for
stimulus generation cannot be part of the solution. The inconsistent values can
be found out by consistency search and can be removed from the domain of input
variables. If the reduced domain is given to the constraint solver of CDTG, then
the solutions for CSP can be generated in less time and with reduced memory
consumption. In this paper, we propose a consistency search algorithm which
can be used along with CDTG tools, to reduce the domain of input variables.
The remainder of this paper is organized as follows. We will explain some of
the related work in Section 2. Section 3 describes the proposed consistency
algorithm. Finally, we present our experimental results in Section 4, and give
some concluding remarks and future work in Section 5.

2 Related work

Existing research in CDTG have been focused on improving the input stimuli
generated by CDTG tools. All high-end hardware manufacturers use CDTG
to produce input stimulus. Some manufacturers of less complex designs rely on
electronic design automation (EDA) tool vendors (e.g.Cadence, Mentor Graphics
and Synopsys) for their stimulus generation needs. Those EDA tools, in turn, are
based on internally developed constraint solvers [13]. Others such as Intel [15],
adapt external off-the-shelf solvers to the stimulus generation problem. Some
manufacturers such as IBM rely on proprietary constraint solvers developed in-
house to solve this problem [12].
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One approach for solving CSP is based on removing inconsistent values from
the domain of variables till the solution is obtained. These methods are called
consistency techniques. The most widely used consistency technique is called
arc consistency (AC). The arc consistency algorithms are divided into two cat-
egories: coarse-grained algorithms and fine-grained algorithms. Coarse grained
algorithms are algorithms in which the removal of a value from the domain of
a variable will affect all other variables in the problem. The first consistency al-
gorithms AC-1[14] and AC-3[14] belong to this category. These two consistency
algorithms are succeeded by AC2000 [8], AC2001-OP [4], AC3-OP [3] and AC3d
[10].

Fine grained consistency algorithms are algorithms in which removal of a
value from the domain of a variable ’X’ will affect only other variables which
are related to the variable ’X’. Since only the variables that are affected by
change in domain value are revisited, this algorithm is faster than coarse grained
algorithms. Algorithms AC-4 [16], AC4-OP [2], AC-5 [17] and AC-6 [5] belong
to this category. AC-7[6] is an algorithm developed based on AC-6. It uses the
knowledge about the constraint properties to reduce the cost of consistency
check.

All the above algorithms are developed for binary constraints. GAC-scheme
[7] is a consistency algorithm developed for n-arity (n variables are there in the
constraint) constraints. It is the extension of AC-7 for n-arity constraints. Con-
junctive Consistency [7] enforces GAC-scheme on conjunctions of constraints.
We chose GAC scheme on conjunction of constraints for our purpose because:

1. We need to eliminate as much invalid domain values as possible. This can
be done by conjunction of constraints.

2. GAC scheme do not require any specific data structure.
3. The constraints used in CDTG can have more than two variables and GAC-

scheme can handle constraint of n-arity.
4. The constraints used in CDTG are not of a fixed type and GAC-scheme can

be used with any type of constraints.

3 Consistency Algorithm

3.1 Preliminaries

Tuple: A tuple τ on an ordered set of variables is an ordered list which contains
values for all the variables. X(τ) represents the set of variables in the tuple τ .

Constraint: X(Ci) represents the set of variables in the constraint Ci. A con-
straint Ci on an ordered set of variables gives the list of allowed tuples for the
set of variables.

Constraint Network: A constraint network is defined as a tuple N = 〈X,D,C〉
where

X is a set of n variables X = {x1,. . ., xn}
D is a finite set of domains for the n variables = {D(x1),. . ., D(xn)}
C is a set of constraints between variables={C1,. . .,Ck}
where n and k are non zero positive integers.
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Valid Tuple: The value of variable x in a tuple τ is denoted by τ [x]. A tuple τ
on Ci is valid iff ∀x ∈X(Ci), τ [x] ∈D(x) and τ satisfies the constraint Ci.

Support: If a ∈D(xi) and τ be a valid tuple on Cj , then τ is called a support
for (xi, a) on Cj .

Arc Consistency: A value a ∈D(xi) is consistent with Ci iff xi ∈X(Ci) and
∃τ such that τ is a support for (xi, a) on Ci. Ci is arc consistent iff ∀xi
∈X(Ci),D(xi) 6=0 and ∀a ∈D(xi), a is consistent with Ci.

Generalized Arc Consistency of a network: A CSP is generalized arc
consistent iff ∀Ci ∈C is arc consistent.

Conjunctive Consistency: If X(Sj)=X(C1)∪. . .∪X(Ck) where X(Ci)= set of
variables in Ci, then Sj is conjunctively consistent iff ∀a ∈D(xk), xk ∈X(Sj) and
there exists a tuple τ such that a=τ [xk] and τ is a support ∀xk.

Conjunctive Consistency of a network: Let P=<X, D, S> be a constraint
network. P is conjunctive consistent network iff ∀Sj ∈S is conjunctive consistent.

3.2 GACCC

In GACCC[7], first a variable in a conjunction of constraint is selected and the
variable will be assigned a value from its domain. The algorithm will generate
tuples in lexicographical order (the selected variable value will not change) and
check whether the tuple satisfies the constraint. The tuples are generated until
all the tuples are generated or a tuple which satisfies the constraint is generated.
If there is no tuple which satisfies the constraint for the selected variable value,
then that variable value is inconsistent and removed from the variable domain.
The process is repeated for all the domain values of the selected variable, then
for all the variables in the constraint and for all the constraints in the constraint
network.

To illustrate the idea discussed above, let us consider the following CSP: set of
variables X = {m,n, o, p, q}, domain of the variables D(m)={1, 2}, D(n)={2, 3},
D(o)={1, 2}, D(p)={1, 3}, D(q)={2, 3} and the constraints C1 : m+n+o+p = 7
and C2 : m+o+q = 9. The consistency search (for conjunction of constraints) for
m = 1 has to go through 16 tuples to find out that value is not consistent because
each of the remaining variables (n, o, p, q) has two variables in the domain.

3.3 Intuitive Idea of GACCC-op

In consistency check, if any one constraint is not satisfied, the tuple generated
is inconsistent with the conjunction set. We can reduce the consistency search
by using this property. Initially for a given variable, we consider the constraint
with lowest number of variables and contains the specified variable. We generate
tuples for the above constraint and search for consistency. If the tuple generated
for the smallest constraint is not consistent then all the tuples generated for the
conjunction of constraints are also not consistent. If the tuple generated for the
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smallest constraint is consistent, then only we need to generate the tuples for the
conjunction of constraints (The tuple generated for conjunction of constraints
should contain the tuple which is consistent with the smallest constraint). Since
the number of variables in the smallest constraint is less when compared to
tuple for conjunction of constraints, consistency can be checked in less number
of iterations.

In the above CSP, C2 is the smallest constraint in the set, which has 3 variable
and the variable m. Consistency check is first performed on this constraint. In
4(2x2) iterations we can find that m = 1 is inconsistent with the constraint
C2. Hence m=1 is inconsistent for the conjunction of constraints. The tuples
for a variable in conjunction of constraints is generated only if the smallest
constraint containing the variable is satisfied by the tuple. Consider another set
of constraints C3 : m+n+o+p = 8 and C4 : m+o+q = 6. By GACCC we have
to generate 8 tuples to find a consistent tuple. By using the new algorithm we
need only 5(4 iterations for C3 and 1 for conjunction of C3 and C4) iterations to
find the tuple which satisfies the constraints. So by using the proposed algorithm
consistency check can be finished in less number of iteration when compared to
GACCC.

So the difference between GACCC and GACCC-op are as follows:

1. In GACCC the support list is made by using some existing variable order
scheme. In GACCC-op we propose a new variable ordering scheme in which
the consistency search start with the variable, which is present in the con-
straint with the lowest arity and has the largest number of domain values.

2. In GACCC during consistency search of a domain value of a variable, the tu-
ples generated will contain all the variable in the conjunction set. In GACCC-
op the consistency search for a variable x will begin with tuples which con-
tain only variables from the smallest constraint(Cs)(Cs should contain the
variable x). If there is a tuple which satisfies the constraint Cs, only then
GACCC-op generates tuples with all the variable in the conjunction set.

3.4 GACCC-op

Let us start the discussion with the main program (Algorithm 1). First the
data structures (lastSc, supportlist, deletionlist and Sclast) must be created and
initialized. Sclast, supportlist, deletionlist and lastSc are initialized in such a way
that

1. Sclast contains the last tuple returned by the function SeekValidSupport-
Set as a support for variable value

2. supportlist contains all tuples that are support for variable value
3. deletionlist contains all variable values that are inconsistent
4. lastSc is the last tuple returned by the function SeekValidSupport as a

support for variable value

Then for each set of constraints, for each variable present in the constraints, all
the domain values of the variable are put in supportlist. The domain values of
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Algorithm 1 PROPOSED CONSISTENCY Algorithm

1: for each constraint set do
2: for each variable in set do
3: for each domain value of variable do
4: Add to support stream(S,y,b)
5: end for
6: end for
7: end for
8: while support stream 6= nil do
9: σ = SeekInferableSupport(S,y,b)

10: if σ = nil then
11: c = smallest constraint containing variable y
12: while found soln ‖ checked all tuples do
13: σ∗ = lastSc(C,y,b)
14: if σ∗ = nil then
15: LOOP2: σ∗ = SeekValidSupport (C,y,b,σ∗)
16: if σ∗ = nil then
17: DeletionStream (y,b)
18: else
19: if variables in all the constraints are same then
20: Add to Sclast(S,y,b)
21: else
22: Add to lastSc(C,y,b)
23: go to LOOP1
24: end if
25: end if
26: else
27: if Sclast(S,y,b)6= nil then
28: σ ∗ ∗ = Sclast(S,y,b)
29: go to LOOP1
30: else
31: σ ∗ ∗ = nil
32: end if
33: end if
34: LOOP1: λ* = SeekValidSupportSet(S,y,b,σ ∗ ∗)
35: if λ*6= nil then
36: Add to Sclast(S,y,b)
37: else
38: go to LOOP2
39: end if
40: end while
41: end if
42: end while
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the variables in a conjunction set are added to supportlist using the following
heuristics:

1. Find the lowest arity constraint(Cl) in the conjunction set.
2. Find a variable (xl) where the variable and Cl is not added to the list, the

variable is in Cl, has the highest number of domain values.
3. Add the domain values of the selected variable (xl), variable and the con-

straint to the list.
4. Repeat step 2 until all the variables in the constraint Cl are considered.
5. If there is any variable to be added to the list from the conjunction set, then

find the next highest arity constraint and repeat step 2.

This supportlist is used to find the support(support is a tuple which satisfies
the constraint) for each variable value in the constraint set. For each value in
supportlist the algorithm will try to find a valid support by using the function
SeekInferableSupport. Function SeekInferableSupport checks whether an
already checked tuple is a support for (y,b). If there is no valid support to be
inferred then we will search for a valid support.

For every value ’b’, for a variable ’y’ in X(C), lastSc(C,y,b) is the last tu-
ple returned by SeekValidSupport as a support for (y,b) if SeekValidSup-
port(C,y,b) has already been called or empty otherwise. The above two functions
help to avoid checking several times whether the same tuple is a support for the
constraint or not. If the search is new we look for support from the first valid
tuple.

If no valid tuple is found then the variable value is not consistent with the con-
straint. Hence it is not consistent with constraint set. This variable value will be
deleted from the domain of the variable by the function DeletionStream(y,b).

Algorithm 2 SeekInferableSupport

1: SeekInferableSupport (in S:constraint; in y:variable; in b:value):tuple
2: while support stream 6= nil do
3: if Sclast(var(S,y),τ [y]) = b then
4: zigma = Sclast(S,y,b)
5: else
6: zigma = nil
7: end if
8: return zigma
9: end while

If a tuple is returned by lastSc(C,y,b), we will check for Sclast(S,y,b). Sclast(S,y,b)
is the last tuple returned by SeekValidSupportSet as a support for (S,y,b) if
SeekValidSupportSet has already been called or empty otherwise. If a tu-
ple is returned we start the search for support for conjunction constraint set
from that tuple, else we will start search from the first valid tuple for the con-
junction set, with variables in constraint C has the values of the tuple from
lastSc(C,y,b). If the SeekValidSupportSet returns empty then we will call
function SeekValidSupport and repeat the process until a valid tuple for the
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for conjunction constraint set is found or the lastSc(C,y,b) returns empty. If
the lastSc(C,y,b) returns empty then the variable value is deleted the function
DeletionStream(y,b). The above processes will be repeated until both the dele-
tionlist and supportlist are empty.

The function SeekInferableSupport(Algorithm 2) ensures that the algo-
rithm will never look for a support for a value when a tuple supporting this value
has already been checked. The idea is to exploit the property: ”If (y,b) belongs
to a tuple supporting another value, then this tuple also supports (y,b)”.

Algorithm 3 SeekValidSupport

1: SeekValidSupport (in C:constraint; in y:variable; in b:value; in
τ :tuple):tuple

2: if τ 6= nil then
3: zigma = NextTuple(C,y,b,τ)
4: else
5: zigma = FirstTuple(C,y,b)
6: end if
7: zigma1 = SeekCandidateTuple(C,y,b,τ)
8: solution found = false
9: while (zigma1 6= nil) and (not solution found) do

10: if zigma1 satisfies constraint C then
11: solution found = true
12: else
13: zigma1= NextTuple(C,y,b,zigma1)
14: zigma1 = SeekCandidateTuple(C,y,b,zigma1)
15: end if
16: return zigma1
17: end while

After the function SeekInferableSupport fails to find any previously checked
tuple as a support for (y,b) on the constraint C, the function SeekValidSup-
port (Algorithm 3) is called to find a new support for (y,b). But the function
has to avoid checking tuples which are already checked. This is taken care by
using the function SeekCandidateTuple. The function NextTuple will gen-
erate new tuples in a lexicographical order which can be a valid support for the
constraint variable value.

Function SeekCandidateTuple(C,y,b,τ)(Algorithm 4) returns the smallest
candidate greater than or equal to τ . For each index from 1 to |X(C)| SeekCan-
didateTuple verifies whether τ is greater than lastSc (λ). If τ is smaller than λ,
the search moves forward to the smallest valid tuple following τ , else to the valid
tuple following λ. When the search moves to the next valid tuple greater than
τ or λ, some values before the index may have changed. In this cases we again
repeats the previous process to make sure that we are not repeating a previously
checked tuple.
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Algorithm 4 SeekCandidateTuple

1: SeekCandidateTuple (in C:constraint; in y:variable; in b:value; in
τ :tuple):tuple

2: k = 1
3: while (τ 6= nil) and (k≤X(C)) do
4: if lastc(var(C,k),τ [k])6= nil then
5: λ = lastSc(var(C,k),τ [k])
6: split = 1
7: while τ [split] = λ[split] do
8: split = split+1
9: end while

10: if τ [split] < λ[split] then
11: if split < k then
12: (τ ,k’)= NextTuple( C,y,b,λ)
13: k = k’+1
14: else
15: (τ ,k’)= NextTuple( C,y,b,λ)
16: k = min(k’-1, k)
17: end if
18: end if
19: end if
20: k = k+1
21: end while
22: return τ

Algorithm 5 SeekValidSupportSet

1: SeekCandidateTuple (in S:constraint set; in y:variable; in b:value; in
τ :tuple):tuple

2: if τ 6= nil then
3: zigma = NextTuple(S,y,b,τ ,θ)
4: else
5: zigma = FirstTuple(S,y,b)
6: end if
7: zigma1 = SeekCandidateSet(S,y,b,τ ,θ)
8: solution found = false
9: while (zigma1 6= nil) and (not solution found) do

10: if zigma1 satisfies constraint set S then
11: solution found = true
12: else
13: zigma1= NextTuple(S,y,b,zigma1,θ)
14: zigma1 = SeekCandidateSet(D,y,b,zigma1,θ)
15: end if
16: return zigma1
17: end while
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The function SeekValidSupportSet(Algorithm 5) is called to find a new
support for (y,b) on the conjunction of constraints. But the function has to avoid
checking tuples which are already checked. This is taken care by using the func-
tion SeekCandidateSet. This function is similar to the function SeekCandi-
dateTuple. The function SeekCandidateSet returns the smallest tuple which
is a support of the conjunction of constraints.

Algorithm 6 DeletionStream

1: SeekCandidateTuple (in y:variable; in b:value)
2: if Sclast(var(C,y),τ [y])= b then
3: Add to supportlist (S,(var(C,x)),a) where x6= y and τ [x]=a
4: delete λ from Sclast
5: end if

If there is no support for a variable value, then that variable value is deleted
from the variable domain by the function DeletionStream(Algorithm 6). The
function also checks whether any tuple in Sclast contains the variable value.
If there is such a tuple, then all the variable value in the tuple is added to
supportlist to find new support.

3.5 Heuristic for generating Conjunction set

The CSPs associated with the verification scenarios have large number of con-
straints, large domain for each input variables and many of the constraints have
the same variables. The pruning capability by consistency search can be in-
creased, by combining/conjuncting a large number of constraints together. If a
large number of constraints are conjuncted, the variables in the tuple increases
and the number of tuples that has to be generated also increases. So there should
be a limit to the number of constraints conjuncted together. Similarly the number
of variables in the tuple has to be regulated to prevent the tuple from becoming
very large. For conjunction of constraints to be effective in reducing the domain
values, the constraints in the conjunction set should have a certain number of
variables in common. The number of constraints (k), number of variable in the
conjunction set (j ) and the number of variable common to all the constraints in
the conjunction set (i) depends on the CSP and the machine capacity. So there
should be a heuristic based on the parameters i, j and k to determine which
constraints can be combined together to make the conjunction set.

The heuristic for grouping constraints into conjunctive sets is as follows:

1. Initially there will be ’n’ conjunctive sets(S), each containing a single con-
straint (where n is the total number of constraints in the CSP).

2. If there exists two conjunctive sets S1, S2 such that variables in S1 is equal
to variables in S2, then remove S1 and S2 and add a new set which is con-
junction of all the constraints in S1 and S2.
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3. If there exist two conjunctive sets S1, S2 such that (a) S1, S2 share at least
i variables (b) the number of variables in S1 ∪ S2 is less than j (c) the total
number of constraints in S1 and S2 is less than k then remove S1 and S2
and add a new set which is conjunction of all the constraints in S1 and S2.

4. Repeat 2 and 3 until no more such pairs exist.

3.6 Correctness of the algorithm

To show the correctness of the algorithm it is necessary to prove that every
inconsistent value is removed (completeness) and that no consistent value is
removed by the algorithm (soundness) when the algorithm terminates. Moreover,
we need to prove that the algorithm terminates.

Lemma 1. Algorithm will terminate.

Proof. The algorithm consists of a for loop and two while loops. The generation
of elements for the list called support stream(S,y,b) uses a for loop. The number of
domain values, variable and constraints are finite. Hence the elements generated
for the list is finite and the for loop will terminate. The pruning process for
the domain values uses a while loop. During each cycle, one element is removed
from the list. The elements are added to this list only when a value is removed
from some domain. Thus, it is possible to add only a finite number of elements
to the list (some elements can be added repeatedly). Hence the while loop will
terminate. The algorithm uses a while loop to find support for a variable value
in a constraint. The algorithm generates tuples in lexicographic order starting
for the smallest one. Since the number of possible tuples for a constraint is finite,
the while loop will terminate when it finds a valid support tuple or when all the
tuples are generated.

Lemma 2. SeekCandidateTuple will not miss any valid tuple during the gener-
ation of next tuple.

Proof. Consider that there is a candidate tuple σ′ between σ and the tuple
returned by the function NextTuple. This implies that σ′[1...k] = σ[1...k] else σ′

will the tuple returned by NextTuple. Hence σ′ should be smaller than λ (lines
10-11). If σ′ is smaller than λ then that tuple is already generated and checked
for consistency. So σ′ cannot be a tuple between σ and the tuple returned by
the function NextTuple.

Another possibility is that there can be a candidate tuple σ′ between σ and
λ. Then σ′[1...k] should be equal to λ[1...k] (lines 7-11). This is not possible
candidate since λ is not a valid support tuple.

Lemma 3. The algorithm does not remove any consistent value from the do-
main of variables.

Proof. A value is removed from the domain of a variable only if the value is not
arc consistent i.e. there is no valid support tuple for the variable value. Thus,
the algorithm does not remove any consistent value from the variables’ domains
so the algorithm is sound.
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Lemma 4. When the algorithm terminates, then the domain of variables con-
tain only arc consistent values (or some domain is empty).

Proof. Every value in the domain has to pass the consistency test and incon-
sistent values will be deleted. When an inconsistent value is deleted and if the
deleted value is part of a valid support tuple, then all variable values in that
tuple are checked for consistency again. Hence when the algorithm terminates
only consistent values remain in the domain.

3.7 Complexity of the algorithm

Lemma 5. The worst case time complexity of the algorithm is O(en2dn).

Proof. The worst-case time complexity of GACCC-op depends on the arity of
the constraints involved in the constraint network. The greater the number of
variables involved in a constraint, the higher the cost to propagate it. Let us
first limit our analysis to the cost of enforcing GAC on a single conjunction
constraint, Si , of arity n (n = |X(Si)|) and d = size of the domain of the
variable. For each variable xi∈ X(Si), for each value a∈ D(xi) , we look for
supports in the space where xi = a ,which can contain up to dn−1 tuples. If the
cost to check whether a tuple satisfies the constraint is in O(n), then the cost
for checking consistency of a value is in O(ndn−1). Since we have to find support
for nd values, the cost of enforcing GAC on Si is in O(n2dn). If we enforce GAC
on the whole constraint network, values can be pruned by other constraints,
and each time a value is pruned from the domain of a variable involved in Si,
we have to call SeekValidSupportSet on Si. So, Si can be revised up to nd
times. Fortunately, additional calls to SeekValidSupportSet do not increase
its complexity since, last(Si, y, b) ensures that the search for support for (xi, a)
on Si will never check twice the same tuple. Therefore, in a network involving
e number of constraints with arity bounded by n, the total time complexity of
GACCC-op is in O(en2dn).

Lemma 6. The worst case space complexity of the algorithm is O(en2d).

Proof. Consistency search generates at most one valid support tuple for each
variable value. Then there are at most nd tuples in memory for a constraint.
One tuple will contain n elements. Then the set of all tuples which are a valid
support for a constraint can be represented in O(n2d). Therefore, in a network
involving e constraints with arity bounded by n, the total space complexity of
GACCC-op is in O(en2d).

4 Experimental Results

We implemented the proposed algorithm in C++. The tool will take SystemVer-
ilog constraints and the domain of the input variables as input and generates the
reduced domain as output. For our purpose we considered a subset of SystemVer-
ilog constraints which can be given as input to the tool. Our tool can handle
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Fig. 2. CDTG with consistency

unary constraint, binary constraints and some high order constraints. The high
order constraints considered includes arithmetic, logical, mutex and implication
constraints. The proposed consistency search algorithm is used along with exist-
ing CDTG as shown in fig 2. As shown earlier in fig 1 the different verification
scenarios are converted to constraints. We used SystemVerilog to model the
scenarios as constraints. The domain of the input variables are also specified
as constraints. These constraints and the domain of the variables are given to
the consistency check tool(based on GACCC-op). The reduced domain obtained
from the tool and the SystemVerilog constraints are then given to the constraint
solver of CDTG tools. The output of the solver is the input stimulus required
for verification of the DUV.

No: of No: of No of tuples No of tuples %improvement
Variables Constraints with GACCC with GACCC-op in time

10 14 98 76 12.34
12 14 96 70 10.66
14 14 103 82 11.46
18 30 168 120 19.86
20 30 170 131 17.96
20 40 256 216 17.43

Table 1. Time for consistency search for 3-SAT problem instances

We report on experiments we performed with different CSP models. The first
is a model for the 3-SAT problems[1] with different number of variables. The SAT
problems with a set of clauses are converted into CSPs containing the same set
of variables. In our case, we set i=2, k=2 and j=5(i, j and k are the values from
the heuristic for generating conjunction set) and generated the conjunction set.
Hence the model contained some conjunction set which has 2 variables shared
between member constraints. The results are shown in Table 1. For each problem
the experiment is repeated for 20 instances. We implemented the GAC-scheme on
conjunction of constraints and the proposed algorithm using the C++ language.
The result shows that the proposed algorithm attains consistency faster than
the existing algorithm.

In order to show the effect of consistency check on constraint solvers associ-
ated with CDTG, we took three different CSP benchmark problems, Langford
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Series, Magic Sequence and Golomb Ruler. The three CSPs are modeled using
SystemVerilog (modeling language used by CDTGs). The SystemVerilog con-
straints are then used for consistency search. The reduced input variable domain
are generated by the consistency search. This reduced domain is then used by
the CDTG tool VCS to generate the CSP solutions. From the Table 2 we can
see that the time to solve the three CSPs are reduced after giving the reduced
domain. In the cases of Magic Sequence the time is significantly reduced, be-
cause, after the domain reduction the number of domain values in most of the
variables is reduced to one. Since the domain of input variables are reduced, the
search space which has to be covered by the solver is reduced. This helps the
solver to generate the solutions for CSP in less time and with reduced memory
consumption.

5 Conclusions

Existing CDTG tools take large amount of time and memory to generate the
required test cases. In this paper, we presented a consistency check algorithm
which helps CDTG tools to reduce the memory consumption and time required
to generate the test cases. The results showed that the proposed algorithm helps
in getting solution faster and with reduced memory consumption. For illustra-
tion purposes, we provided the analysis of the Magic Sequence, Langford Series,
Golomb Ruler and 3-SAT problem. The requirements of constraint solvers as-
sociated with CDTG open the doors to many interesting and novel directions
of research. Some worth mentioning are, generating all possible solutions and
uniformity in randomization. In future we would like to propose a methodology
based on consistency search which will be able to attain 100% coverage at a
faster rate with fewer iterations.

Improvement After
Domain Reduction

Benchmark No: of No: of Time Memory
Problem Variables Domain Values (%) (%)

Langford Series
6 3 10.0 23.5
8 4 21.4 27.7
14 7 25.0 40.8

Golomb Ruler

3 4 8.3 23.2
4 7 7.1 28.2
5 12 9.5 39.1
6 18 13.8 73.1

Magic Sequence
4 4 30.0 50.0
5 5 40.0 71.6
7 7 55.0 73.3
8 8 62.5 81.5

Table 2. Results for benchmark CSP problems using VCS
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Abstract. In this paper, we propose a new approach for the verifica-
tion of Haskell programs by combining graph transformation units and
SAT solving. Therefore, function equations, known properties, and the
property to be proven are translated into graph transformation units
to perform structural induction proofs. In general, the automation of
this process is highly nondeterministic because in each rewriting step
several rules could be applied, also those that may lead in the wrong
direction. To tackle this deficiency we translate the derivation process of
graph transformation into propositional formulas and explore, thereby,
the whole state space up to a certain bound.

Keywords: Haskell, verification, graph rewriting, SAT encoding

1 Introduction

This paper is an extended version of an unpublished informal workshop contri-
bution submitted to HART2013 [9] where we propose a new approach for prov-
ing the correctness of programs written in the functional programming language
Haskell. This extended version includes an improved translation to propositional
formulas based on typed nodes, more theoretical results, and detailed remarks,
examples, and figures.

We introduce a prototypical framework for verifying properties of Haskell
programs via structural induction proofs based on graph transformation units
[13] and their combination with SAT solving [3]. This seems to us worthwhile
for four reasons: (1) Graph rewriting techniques have proven successful in term
rewriting (cf. [16]) and functional programming (cf. [4, 12]); (2) For the func-
tional programming language CLEAN [4] the theorem prover SPARKLE [15]
was developed and both have a semantic based on graph rewriting; (3) Auto-
matically applying function equations (or their graph transformation rule coun-
terparts) is highly nondeterministic, but a translation of rule applications to
propositional formulas can tackle this nondeterminism such as shown in [14, 10];
(4) Verification with model checkers and SAT solvers is a hot topic in general,
but not much studied in graph transformation. Besides our SATaGraT tool, the
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GROOVE tool [17] is the only tool in the graph transformation area that directly
combines graph transformation with model checking and verification. In [1], an
encoding of term graph rewriting into dynamic logic is proposed. Furthermore,
in [2] model checking for graph transformation is introduced via a translation of
specifications of the graph transformation machine AGG into Bogor models.

A graph transformation unit consists of an initial and a terminal graph class
expression describing the permitted in- and outputs, a set of graph transfor-
mation rules and a control condition for guiding the rule application. Haskell
function equations that are converted into graph transformation rules and a
property in equation form are translated into graph transformation units for
the base case and the inductive step. In both cases, the left-hand side of the
property is the input of the graph transformation unit and the right-hand side
is its output. If both graph transformation units find a successful derivation, i.e.
a derivation from the input to the output graph, then the property has been
proven.

Why is rule application highly nondeterministic and how can a translation
to SAT tackle this deficiency? In each derivation step several rules can be ap-
plied, but only some of them yield a proper result whereas the rest leads in the
wrong direction. It is possible that a rule, e.g. the identity in addition, is ap-
plied infinitely often because of automating the verification. So one would need a
backtracking mechanism to continue at another point of the derivation. By using
a translation to SAT the whole state space up to a certain bound is generated
and a SAT solver like MiniSat [7] performs a backtracking based on the DPLL
procedure [6].

We devise a new translation of the derivation process of graph transforma-
tion units into propositional formulas directly yielding formulas in conjunctive
normal form (the conversion to CNF via the Tseitin transformation [18] was a
bottleneck of the previous version), the standard input format for today’s SAT
solvers. Furthermore, we reduce the formula sizes by introducing node types. The
translation of graph transformation to SAT, the application of MiniSat, and the
evaluation of the output is done fully automatically in our tool SATaGraT (SAT
solving assists Graph Transformation Engine) [10, 8]. We extend SATaGraT by
our new translation to SAT and our proposed verification framework. Finally,
we test the framework.

The paper is organized as follows. Section 2 explains the connection between
Haskell and graph transformation and Section 3 details how graph transforma-
tion is translated into propositional formulas. The main ideas behind our frame-
work are described in Section 4. In Section 5, we present conducted experiments.
Section 6 contains the conclusion.

2 From Haskell to Graph Transformation

In this section, we detail the basic notions of graphs, graph transformation, and
graph transformation units and how these concepts can be applied to Haskell
and term rewriting.
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Graphs, Graph Morphisms, and Matches. We use edge labeled directed graphs
without multiple edges and with a finite set of typed nodes. For a finite set Σ
of edge labels and a set T of types such a graph is a triple G = (V,E, t) where
V ⊆ {1, . . . , n} = [n] for some n ∈ N is a finite set of nodes, E ⊆ V ×Σ × V is
a set of labeled edges, and t : V → T is a mapping that maps each node v in V
to a type type in T . n is called the size of G. The components V , E, t are also
denoted by VG, EG, and tG. In some cases it is useful to have a special node
type arbitrary that indicates an arbitrary node type. We call an edge (v, x, v) a
loop. A special graph is the empty graph ∅ = (∅, ∅, ∅). We call G a subgraph of
H, denoted by G ⊆ H, if VG ⊆ VH , EG ⊆ EH , and tG(v) = tH(v) for all v ∈ VG.

Furthermore, we use injective graph morphisms for the matching. Let G,H
be two graphs as defined above. An injective graph morphism g : G → H is an
injective mapping gV : VG → VH , that is structure-, label- and type-preserving,
i.e. for each edge (v, x, v′) ∈ EG, (gV (v), x, gV (v′)) ∈ EH such that t(v) =
t(gV (v)) and t(v′) = t(gV (v′)). An injective graph morphism g : G → H yields
the image g(G) = (gV (VG), gE(EG)) ⊆ H with gE(EG)) = {(gV (v), x, gV (v′)) |
(v, x, v′) ∈ EG} called the match of G in H. In the following, we will write g(v)
and g(e) for nodes v ∈ VG and edges e ∈ EG because the type of the argument
indicates the indices V and E.

Remark 1 (Haskell terms and graphs). Our approach considers a subset of Haskell
consisting of predefined data types (like Int, Char, String or Lists) and functions
defined by functions equations without guards or local definitions. Terms are
represented by trees where nodes are typed with function symbols, constants,
or variables. The outermost function name is the root, and constants and vari-
ables are leafs. The outgoing edges of nodes with function symbols are labeled
with the argument positions of the corresponding function arguments. Otherwise
the terms xs ++ ys and ys ++ xs would have the same tree representation. In
drawings, we use rectangles for function symbols, circles for constants and vari-
ables, and draw the node types inside the nodes. Node numbers are drawn in
bold, right or below right outside the nodes whereas the numbers in normal font
represent function argument positions. The drawing of node numbers is optional.

Figure 1 shows an example for a term graph with node numbers. Here, we
represent the Haskell term length ([] ++ ys) by the graph G = (V,E, t) where
V = {1, 2, 3, 4}, E = {(1, 1, 2), (2, 1, 3), (2, 2, 4)}), and t = {1 7→ length, 2 7→
++, 3 7→ [], 4 7→ ys). Figure 2 shows the same graph without node numbers.

++ 2

length 1

[]
3

ys
4

1

1

2

Fig. 1. A term graph with node numbers

++

length

[] ys

1

1 2

Fig. 2. A term graph
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Rules and Their Application. A rule r = (L ⊇ K ⊆ R) consists of three graphs:
the left-hand side L, the gluing graph K, and the right-hand side R. In our
approach, we only consider rules with EK = ∅ and an invariant node set, i.e.
VL = VK = VR. For that reason, we simplify the rule notation to r = (L→ R),
denote the set of nodes of a rule r by Vr, and its size by size(r).

The application of a rule to a graph works as follows. Let r = (L → R)
be a rule, G a graph, and g : L → G an injective graph morphism. Remove
the edges in g(L) from G yielding D and add R disjointly to D. Finally, glue
R and D as follows. (1) Merge each v ∈ VR with g(v). (2) If there is an edge
(v, x, v′) ∈ ER with v, v′ ∈ VR and an edge (g(v), x, g(v′)) ∈ ED then these
edges are identified. The application of a rule r to a graph G with respect to
an injective graph morphism g yielding a graph H is denoted by G=⇒

r,g
H. This

is called rule application or direct derivation and fits into the double-pushout
approach (cf. [5]). The sequential composition d = G0 =⇒

r1,g1
G1 =⇒

r2,g2
· · · =⇒

rn,gn
Gn

of n direct derivations for some n ∈ N is called a derivation, shortly denoted
by G0

∗
=⇒
P
Gn if r1, . . . , rn ∈ P . In general, rule matching corresponds to the

well-known subgraph isomorphism problem and is NP-complete but by using a
fixed number of non-parametrized rules the matching and, hence, the number of
matches of a rule r in a graph V is polynomially bounded.

Remark 2 (From Haskell function equations to rules). In the following, we de-
note by tree(t) the tree representation of a term t. A Haskell function equation
l=r can be easily converted into a graph transformation rule by translating
the left-hand side and the right-hand side into trees, i.e. l=r is translated into
tree(l) → tree(r) because Haskell function equations match the left-hand side
and replace the match by the right-hand side.

As defined above, we use rules that add and delete edges for transforming
graphs. To handle the addition and deletion of nodes we employ a simple trick:
deleted and unused nodes are marked with a special label named del (or 1 in the
propositional encoding). By removing this label, one can add the corresponding
node. For reasons of readability, we allow in drawings the deletion of nodes
instead of using a special label.

The function equation [] ++ ys = ys is translated into the graph transfor-
mation rule (++)1 drawn in Figure 3. The same rule without drawing deleted
nodes can be found in Figure 4. Please note, that the term ys is a placeholder
for an arbitrary term of the same type. For example, the term xs ++ ys could
be matched. Moreover, we need for the SAT encoding an additional node v of an
arbitrary type that is connected with the node vofs typed with the outermost
function symbol of the left-hand side. If this node is deleted, the edge between
v and vofs is redirected to the new outermost function symbol, variable, or con-
stant.

An example for a derivation can be found in Figure 5. Here, the rule (++)1 is
applied to the term graph of the term length ([] ++ x:xs) w.r.t. the mapping
g = {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 1}. The result is the term graph of length x:xs.
Finally, the graph transformational counterpart of length x:xs = 1 + length
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++ 1

[]
2

ys
3

4

−→ ++
1

del

4

[]
2

del

ys
3

1

2

1 1

Fig. 3. The rule (++)1 where deleted nodes
are drawn

++

[]

ys −→ ys

1

2

Fig. 4. The rule (++)1 where
deleted nodes are not drawn

xs, called length1 in the following, is applied yielding the last term graph of the
derivation. To apply length1 it is necessary that the second graph contains two
additional and new nodes of type 1 and +.

length 1

++ 2

[]
3

: 4

x
5

xs
6

=⇒
(++)1

length 1

: 4

x
5

xs
6

=⇒
length1

+ 7

1
8

length 1

xs
6

1

1 2

1 2

1

1 2

1 2

1

Fig. 5. Result of applying (++)1 and length1 to tree(length ([] ++ x:xs))

Graph Transformation Units. A graph transformation unit [13] (gtu for short)
is a system gtu = (I, P, C, T ) where I and T are graph class expressions to
specify the initial and terminal graphs, P is a set of rules, and C is a control
condition. The graph transformation unit gtu specifies all derivations from initial
to terminal graphs that are allowed by the control condition. Such derivations
are called successful.

Control conditions guide the rule application and restrict their nondetermin-
ism. Each control condition C specifies a language L(C) ⊆ P ∗. The elements of
L(C) are called rule sequences. The finite sublanguage L(C)(m) = {w ∈ L(C) |
|w| = m} describes the set of all rule sequences in L(C) with length m. In
this paper, we use regular expressions as control conditions. The set of all rule
sequences of a regular expression regexp can be easily generated by using the
corresponding regular language L(regexp). More precisely, every rule r is a con-
trol condition that requires one application of r. For control conditions c, c1, c2,
the expressions c1; c2, c1|c2, and c∗ are control conditions where c1; c2 means to
apply c1 before c2, c1|c2 means to apply c1 or c2, and c∗ means to iterate the
application of c arbitrarily but finitely often. A rule set P = {r1, . . . , rn} can
also be used as control condition, it abbreviates the expression r1| . . . |rn.

142



Graph class expressions are used to specify the initial and terminal graphs of
derivations. Typical examples are the sets of all unlabeled graphs or subsets ∆ of
Σ specifying terminally labeled graphs. Concrete graphs can also be considered
as graph class expressions, i.e. each graph G specifies itself. We use single graphs
as initial and terminal graphs, they indicate the left-hand side and the right-hand
side of a property to be proven.

Remark 3 (Term rewriting via graph transformation units). The derivation from
Figure 5 can be expressed via the following simple graph transformation unit:
gtu = (I, P, C, T ) where I = tree(length ([] ++ x:xs)), P = {(++)1, length1},
C = (++)1 ; length1, T = tree(1 + length xs), and length1 = tree(length
x:xs) → tree(1 + length xs). This can be noted down in the following way
(cf. Figure 6):

initial: tree(length ([] ++ x:xs))
rules: (++)1

length1

cond.: (++)1 ; length1

terminal: tree(1 + length xs)

Fig. 6. A sample unit gtu

3 Translating the Semantic of Graph Transformation
Units into Propositional Formulas

In this section, we show how the semantic of graph transformation units can be
described by propositional formulas. For this, we have to translate the graph
class expressions of initial and terminal graphs and the derivation process into
propositional formulas. A satisfying variable assignment to the formula repre-
sents one of the successful derivations from initial to terminal graphs.

Representing Graphs and Graph Sequences as Propositional Formulas. To de-
scribe the edges of a derivation G0 =⇒

r1,g1
G1 =⇒

r2,g2
· · · =⇒

rm,gm
Gm we have to add a

k ∈ N to each edge that determines the derivation step in which the edge oc-
curs. For this, every propositional formula with variable set {edge(e, k) | e ∈
[n]×Σ× [n], k ∈ [m]} represents a sequence G1, . . . , Gm of graphs for each vari-
able assignment f satisfying the formula, i.e. the graph Gk contains the edge e if
and only if f(edge(e, k)) = TRUE. A single initial graph G in the kth derivation
step can be described by the formula

graph(G, k) =
∧

(v,a,v′)∈EG

edge(v, a, v′, k)∧
∧

(v,a,v′)∈([n]×Σ×[n])−EG

¬edge(v, a, v′, k).
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Example 1. Then, the graph from Figure 2, called G0 in the following, is ex-
pressed via the following formula (where E0 = {(1, 1, 2), 2, 1, 3), (2, 2, 4)})

edge(1, 1, 2, 0) ∧ edge(2, 1, 3, 0) ∧ edge(2, 2, 4, 0) ∧
∧

e∈([n]×Σ×[n])−E0

¬(e, 0).

Remark 4 (Variables do not contain node types). Please note, that it is not nec-
essary for the variables to contain node types. Why is that? The node types are
fixed by the type mapping and are not changed during a derivation, i.e. each
node–if deleted or not–has the same type at the beginning and at the end of a
derivation.

Remark 5 (Bound for additional nodes). If rules allow the addition of nodes, we
have to guarantee that the initial graph contains a sufficient number of extra
nodes. These nodes are labeled with del at the beginning of a derivation. The
bound can be determined by the rule that adds a maximum number of nodes to
a graph and the number of derivation steps. For example, if we have two rules
adding two and three nodes, respectively, and we have ten derivation steps. Then
the inital graph has to contain 3 ∗ 10 extra nodes because in the worst case the
rule that adds three nodes is applied in each derivation step.

Representing Rule Applications as Propositional Formulas. Please remember,
that the set of nodes is invariant during the derivation process, i.e. all graphs in
the derivation have the same set of nodes V and node numbers [n]. For applying
a rule, we have to compute the set of all injective matchings from the left-hand
side of the rule into the considered graph. Because of the definition of injective
matchings, nodes of the left-hand side can only match nodes of the same type
in the considered graph. Nodes of arbitrary type like the top node in Figure 3
can match every node in a graph.

For a rule r = (L → R) the set of injective graph morphisms from r to the
set of nodes [n] is denoted by M(r, n). Let k ∈ N be a derivation step, Gk−1 be
a graph of size n, r = (L→ R) be a rule, and g ∈M(r, n). The application of r
to Gk−1 with respect to g is then expressed by the following formulas1

– morph(r, g, k) = morph(r, g, k)↔ ∧
(v,a,v′)∈EL

edge(g(v), a, g(v′), k − 1),

– rem(r, g, k) = rem(r, g, k)↔ ∧
(v,a,v′)∈EL−ER

¬edge(g(v), a, g(v′), k),

– add(r, g, k) = add(r, g, k)↔ ∧
(v,a,v′)∈ER

edge(g(v), a, g(v′), k),

– keep(r, g, k) = keep(r, g, k) ↔
(∧

(v,a,v′)6∈g(EL∪ER)

(
edge(v, a, v′, k − 1) ↔

edge(v, a, v′, k)
))

where g(EL ∪ ER) = {(g(v), a, g(v′)) | (v, a, v′),∈ EL ∪
ER},

– apply(r, g, k) = apply(r, g, k)↔
(
morph(r, g, k) ∧ rem(r, g, k) ∧ add(r, g, k) ∧

keep(r, g, k)
)
.

1 Please note, that in the following the expressions in bold typewriter font like
morph(r, g, k) or rem(r, g, k) abbreviate propositional formulas whereas the italic font
is used for variables (e.g. morph(r, g, k), rem(r, g, k), or edge(v, a, v′, k)).
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The formula morph describes that g is a graph morphism from L to Gk−1, i.e.
it describes a matching of L in Gk−1. The removal of the images of every edge
of the left-hand side L from Gk−1 is expressed by rem. The addition of edges of
the right-hand side R is described by add. That edges that have been neither
deleted nor added must be kept, corresponds to the formula keep. Finally, apply
describes the whole application of r to Gk−1 with respect to g.

In our tool, all formulas are directly expressed as CNF. The conversion to
CNF can be done in at most quadratic time.

Lemma 1. Let r be a rule, g be an injective graph morphism, and k ∈ N
be a derivation step. Then the formulas morph(r, g, k), rem(r, g, k), add(r, g, k),
keep(r, g, k), and apply(r, g, k) can be converted into CNF in at most quadratic
time.

The following theorem states that a satisfying assignment to apply corre-
sponds to a direct derivation, i.e a rule application.

Theorem 1. Gk−1 =⇒
r,g

Gk if and only if it there is a satisfying assignment to

graph(Gk−1, k− 1) ∧ apply(r, g, k) ∧ graph(Gk, k).

Example 2. Please note, that we use in the SAT encodings the label 1 instead of
del. But for reasons of readability we write del. For the rule (++)1 in Figure 3,
the first graph in Figure 5, and the graph morphism g = {1 7→ 2, 2 7→ 3, 3 7→
4, 4 7→ 1)} we get the following formulas. Please note, that the node typing of
the left-hand side nodes corresponds under the mapping g to the node typing of
the considered graph.

– morph((++)1, g, 1)↔
(
edge(2, 1, 3, 0) ∧ edge(2, 2, 4, 0) ∧ edge(1, 1, 2, 0)

)

– rem((++)1, g, 1)↔
(
¬edge(2, 1, 3, 1) ∧ ¬edge(2, 2, 4, 1) ∧ ¬edge(1, 1, 2, 1

)

– add((++)1, g, 1)↔
(
edge(1, 1, 4, 1) ∧ edge(2, del, 2, 1) ∧ edge(3, del, 3, 1)

)

– keep((++)1, g, 1)↔ ∧
(v,a,v′)∈Ekeep

(
edge(v, a, v′, 0)↔ edge(v, a, v′, 1)

)

where

Ekeep = ([n]×Σ × [n])− g(EL(++)1
∪ ER(++)1

)

= ([n]×Σ × [n])− {(2, 1, 3), (2, 2, 4), (1, 1, 2), (1, 1, 4), (2, del, 2), (3, del, 3)}.

because the left-hand side edges of (++)1 are EL(++)1
= {(1, 1, 2), (1, 2, 3), (4, 1, 1)}

and the right-hand side edges are ER(++)1
= {(4, 1, 3), (1, del, 1), (2, del, 2)}. For

example, the edge (4, 2, 2) is kept because it is neither matched, nor added, nor
removed.

Translation of Graph Transformation Units into Propositional Formulas. The
kth derivation step is expressed via

step(n, r, k) =
∨

g∈M(r,n)

apply(r, g, k).
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Here, for each mapping g ∈ M(r, n), the possible applications of r to Gk−1 are
described. Each of these apply-variables corresponds to a formula that expresses
the matched, added, deleted, and kept edges. This fact results in the following
formula
stepEdges(n, r, k) =

∧
g∈M(r,n)

(
apply(r, g, k)∧morph(r, g, k)∧rem(r, g, k)∧add(r, g, k)

∧keep(r, g, k)
)

where the apply-variables are included in apply(r, g, k).
Let gtu = (I, C, P, T ) be a graph transformation unit with single graphs GI

and GT as initial and terminal graphs. Then for all natural numbers m,n and
for all r1 · · · rm ∈ L(C)(m) a derivation of length m from an initial graph of size
n that follows r1 · · · rm is expressed via

fgtu(n, r1 · · · rm) = graph(GI, 0)∧
m∧

k=1

(
step(n, rk, k)∧stepEdges(n, rk, k)

)
∧graph(GT,m).

The following theorem states that a satisfying assignment to fgtu corresponds
to a successful derivation from an initial to a terminal graph.

Theorem 2. Let gtu = (GI , P, C,GT ) be a graph transformation unit with sin-
gle initial and terminal graphs GI and GT of size n. Then there is a successful
derivation GI =⇒

r1,g1
G1 =⇒

r2,g2
· · · =⇒

rm,gm
GT from the inital graph GI to the terminal

graph GT guided by the rule sequence r1 · · · rm ∈ L(C) if and only if there is a
satisfying assignment to fgtu(n, r1 · · · rm).

If we assume that morph, rem, add, keep, and apply are already in CNF, such
as stated in Lemma 1, then we can formulate the following statement.

Lemma 2. Let gtu = (GI , P, C,GT ) be a graph transformation unit with single
initial and terminal graphs GI and GT of size n and r1 · · · rm ∈ L(C) be a rule
sequence. Then the following holds:

1. For all k ∈ {1, . . . ,m}, step(n, rk, k) and stepEdges(n, rk, k) are in CNF.
2. fgtu(n, r1 · · · rm) is in CNF.

The set of all derivations of length m from a graph with node set [n] is
described by

fall(n,m) =
∨

r1···rm∈L(C)(m)

fgtu(n, r1 · · · rm)

where each of the subformulas fgtu can be generated and solved separately. This
may lead to a speed-up in the processing time in some cases and leaves open the
possibility of using parallelization, i.e. each fgtu could be solved on a separate
core.

If we add the empty rule empty = (∅ → ∅) to the rule set, such as shown in
[14], every derivation of a length less than p(n) can be prolonged by empty steps
to the length p(n). Note, that a successful derivation of length p(n) with empty
steps is also successful if the empty steps are removed. For this, we can express
the set of all polynomial derivations by fall(n, p(n)).
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Remark 6. We introduce new variables like morph(r, g, k) or add(r, g, k) to ex-
actly reconstruct computed derivations. In previous versions of SATaGraT, only
edge-variables are used where all informations about applied rules and mor-
phisms get lost and have to be reconstructed via an algorithm that delivers for
some rule sets ambiguous results (cf. [10]). For example, the previous morph was
described by morph(r, g, k) =

∧
(v,a,v′)∈EL

edge(g(v), a, g(v′), k − 1).

4 Structural Induction via Graph Transformation Units

We want to sketch the main ideas of how graph transformation can be employed
for structural induction proofs by verifying a well-known list property in our
framework. The corresponding implementation is currently in a prototypical
stage and supports the mentioned subset of Haskell (cf. Section 2).

The function (++) given by the equations

(++) [] ys = ys

(++) (x:xs) ys = x:xs ++ ys

can be easily translated into graph transformational rules (++)1 and (++)2 (cf.
Figures 4 and 7).

++

: ys

x xs

−→
:

x ++

xs ys

1 2

1 2

1 2

1 2

Fig. 7. The rule (++)2

As described in Section 2, Haskell terms are represented by trees where the
outermost function name is the root and constant names and variables are the
leafs. The function length has also a simple rule representation which can be
generated in the same way as shown above. To simplify the example, we are
using the following definition of length instead of the Prelude definition in
Data.List.genericLength:

length [] = 0

length (x:xs) = 1 + length xs

where the corresponding rules are abbreviated with length1 and length2.
A property p = (l=r) consists of two Haskell terms of the same type and may

contain variables of a variable set. We write p(xs) = (l(xs)=r(xs)) to indicate
that the left-hand side and the right-hand side contain a common variable xs.
A simple structural induction for list properties can be defined in the following
way.
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Definition 1 (Simple Structural Induction). Let p(xs) = (l(xs)=r(xs))
be a list property. Then the property holds for all finite lists xs if and only if
p([]) = (l([])=r([])) holds and p(xs) implies that p(x:xs) = (l(x:xs)=r(x:xs))
holds.

One interesting property to be proven by a structural induction proof could
be, whether the length of a list concatenation is the sum of the separate list
lengths, i.e.

length (xs ++ ys) = length xs + length ys for all finite lists xs and ys.

This can be proven by using two graph transformation units: One unit for
the base case and the other for the inductive step where we perform an induc-
tion over xs. The input of both units is the left-hand side of the property, i.e.
length ([] ++ ys) and length (x:xs ++ ys), respectively, and the output is
the right-hand side, i.e. length [] + length ys and length x:xs + length

ys, respectively. All known function equations can be used as rules, in the in-
ductive step the hypothesis is added as additional rule. This idea can be stated
in the following way.

Definition 2. Let p(xs) = (l(xs)=r(xs)) be a list property with induction vari-
able xs and let P be a set of graph transformational rules representing Haskell
function equations. Then the base case unit and the inductive step unit are de-
fined as follows.

– base(p([])) = (tree(l([])), P, P ∗, tree(r([])))
– step(p(x:xs)) = (tree(l(x:xs)), P∪{hyp1, hyp2}, Cstep, tree(r(x:xs))) where
hyp1 = (tree(l(xs))→ tree(r(xs))), hyp2 = (tree(r(xs))→ tree(l(xs))),
and Cstep = P ∗ ; (hyp1 | hyp2) ; P ∗.

If it is found in both cases a derivation from the initial to the terminal graph,
the property has been proven. This can be formulated in the following way.

Theorem 3. Let p(xs) be a property, base(p([])) be a base case unit, and
step(p(x:xs)) be an inductive step unit. If there is a successful derivation in
base(p([])) as well as in step(p(x:xs)), then the property holds.

Why is that? Obviously, the rule arrows can be reversed, i.e. one can apply
the rules also from right to left, and, thus, the derivation process can be reversed,
i.e. it also exists a derivation from the terminal to the initial graph. Hence, both
sides are equal and the property has been verified. This is stated in the following
lemma. Let r be a rule, then r′ is obtained by reversing the arrow in r.

Lemma 3. Let gtu = (GI , P, C,GT ) be a base case unit (or an inductive step
unit) and r1 · · · rm ∈ L(C). Then GI =⇒

r1···rm
GT if and only if GT =⇒

r′m···r′1
GI .

Let us continue with the example. The unit for the base case can be found in
Figure 8 where identityadd is the rule counterpart of 0 + x = x, and length′1 =
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initial: tree(length ([] ++ ys))
rules: (++)1, length′1, identityadd
cond.:

(
(++)1 | length′1 | identityadd

)∗
terminal: tree(length [] + length ys)

Fig. 8. base case unit

initial: tree(length (x:xs ++ ys))
rules: (++)2, len2, len′2, assocadd,

hypothesis

cond.:
(
(++)2 | len2 | len′2 | assocadd

)∗
; hypothesis

;
(
(++)2 | len2 | len′2 | assocadd

)∗
terminal: tree(length x:xs + length ys)

Fig. 9. inductive step unit

tree(0) → tree(length []), i.e. the rule length with a reversed arrow.2 The
inductive step unit in Figure 9 has two additional rules, the hypothesis (see
Figure 11) and a rule for the associativity of addition. For reasons of space, we
omit the hypothesis rule with a reversed arrow. The rule length2 and the same
rule but with an reversed arrow are abbreviated by len2 and len′2, respectively.
Now, we can formulate the following proposition.

Proposition 1. If there is a successful derivation in the base case unit from
Figure 8 as well as in the inductive step unit from Figure 9, then the property

length (xs ++ ys) = length xs + length ys

holds for all finite lists xs and ys.

Proof. One successful derivation for the base case proof can be found in Fig-
ure 10. The first graph is the initial graph, the second graph is derived by ap-
plying the rule (++)1, the third graph is the result of the application of the rule
for the identity of addition, and, finally, the fourth graph is the terminal graph
derived by applying the rule length′1.

One successful derivation for the inductive step can be found in Figure 12.
The first graph is the initial graph, the second graph is derived by applying the
rule (++)2, the third graph is the result of applying the rule len2, the fourth
graph is derived by applying the hypothesis rule, the fifth graph is derived by
applying assocadd and, finally, the terminal graph is the result of applying len′2.

5 Experiments

In [9], it was only possible to prove the base case of the length-property given in
Section 2. The inductive step unit leads to a stack overflow because of the formula
size. The set Σ for edge labels really blows up the formulas and, therefore, we
introduce nodes with types. This significantly reduces the formula sizes because
Σ now only consists of argument positions. Hence, our tool allows to prove base

2 Please note, that we choose for reasons of comprehensibility an adequate and simple
rule set in both cases. In general, the rule set can consist of much more function
equations and properties.
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Ibase = tree(length ([] ++ ys))

=

length

++

[] ys

(++)1
=⇒

length

ys

identityadd=⇒

+

0 length

ys

length′
1=⇒

+

length

[]

length

ys

= tree(length [] + length ys)) = Tbase

1

1 2
1

1 2

1

1

1

2

1

Fig. 10. Base case proof performed by the base case unit

length

++

xs ys

−→

+

length length

xs ys

1

1 2

1 2

1 1

Fig. 11. The rule hypothesis

length

++

:

x xs

ys

(++)2
=⇒

length

:

++x

xs ys

len2=⇒

+

1 length

++

xs ys

hypothesis
=⇒

+

1 +

length

xs

length

ys

assocadd=⇒

+

+1

length

xs

length

ys

len′
2=⇒

+

length

:

x xs

length

ys

1

1 2

1 2

1

1 2

1 2

1 2

1

1 2

1 2

1

1

2

1

1 2
1

2 1

1

1

1

1 2

2

1

Fig. 12. Inductive step performed by the inductive step unit
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cases and inductive steps of various properties. We supplemented the proposed
approach to our SATaGraT tool where a detailed system description can be
found in [8]. The table below (cf. Table 1) presents results for well-known list
properties. The properties were tested under Ubuntu 10.04 LTS on an AMD 2.0
GHz with 4GB RAM where lemma 4 is proven by a direct proof via lemma 3.

Lemma Strategy Base case Inductive step

length (xs ++ ys) = length xs + length ys induction 8 sec 90 sec
xs ++ (ys ++ zs) = (xs ++ ys) ++ zs induction 0.3 sec 17 sec
xs ++ [] = xs induction 1 sec 1 sec
[] ++ (xs ++ []) = xs direct proof 0 sec

Table 1. Proven lemmata

6 Conclusion

In this paper, we have introduced an approach for automatically verifying Haskell
programs by means of graph transformation units and SAT solving. Our first
experiments with this technique nurture the hope that it can be employed for
verification proofs in Haskell.

We are planning to undertake further investigations in the future. At the
moment, we are working on an automatic translation of a subset of Haskell pro-
grams and properties to be proven into graph transformation units. On the one
hand, we are thinking about extending this framework step-by-step by further
aspects of Haskell like lambda abstractions, local definitions, or user-defined data
structures. On the other hand, we could use the preprocessing described in [11]
to transform Haskell programs into equivalent Haskell programs consisting only
of a subset of Haskell constructs. Hence, it would be sufficient to apply our ap-
proach only to this subset. In addition, it could be of interest to compare the
GROOVE tool [17] with our approach because GROOVE also allows to explore
state spaces.
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6372, pp. 59–74. Springer (2010)

151



2. Baresi, L., Rafe, V., Rahmani, A. T., Spoletini, P.: An efficient solution for model
checking graph transformation systems. Electr. Notes Theor. Comput. Sci. 213(1),
3–21 (2008)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

4. Brus, T. H., van Eekelen, M. C. J. D., van Leer, M. O., Plasmeijer, M. J.: Clean: A
language for functional graph writing. In: Kahn, G. (ed.) FPCA. LNCS, vol. 274,
pp. 364–384. Springer (1987)

5. Corradini, A., Ehrig, H., Heckel, R., Löwe, M., Montanari, U., Rossi, F.: Algebraic
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Abstract.  A language FOBS-X (Extensible FOBS) is described.  This lan-

guage is an interpreted language, intended as a universal scripting language.  

An interesting feature of the language is its ability to be extended, allowing it to 

be adapted to new scripting environments.   

The interpretation process is structured as a core-language parser back-end, and 

a macro processor front-end.  The macro processor allows the language syntax 

to be modified.  A configurable library is used to help modify the semantics of 

the language, adding the required capabilities for interacting in a new scripting 

environment. 

This paper focuses on the macro capability of the language.  A macro extension 

to the language has been developed, called the standard extension, that gives 

FOBS-X a friendlier syntax. It also serves as a convenient tool for demonstrat-

ing the macro expansion process. 

Keywords:  hybrid, scripting, functional, object-oriented. 

1  Introduction 

The object-oriented programming paradigm and the functional paradigm both offer 

valuable tools to the programmer.  Many problems lend themselves to elegant func-

tional solutions.  Others are better expressed in terms of communicating objects.  

FOBS-X is a single language with the expressive power of both paradigms allowing 

the user to tackle both types of problems, with fluency in only one language.  FOBS-

X is a modification to the FOBS language described in Gil de Lamadrid and Zim-

merman [4].  The modification involves simplifications to the pointers used in the 

scoping rules. 

FOBS-X has a distinctly functional flavor.  In particular, it is characterized by the 

following features: 

 A single, simple, elegant data type called a FOB, that functions both as a function 

and an object. 

 Stateless programming.  In the runtime environment, mutable objects are not al-

lowed. Mutation is accomplished, as in functional languages, by the creation of 

new objects with the required changes. 
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 A simple form of inheritance.  A sub-FOB is built from another super-FOB,  inher-

iting all attributes from the super-FOB in the process. 

 A form of scoping that supports attribute overriding in inheritance.  This allows a 

sub-FOB to replace data or behaviors inherited from a super-FOB. 

 A macro expansion capability, enabling the user to introduce new syntax. 

As with many scripting languages FOBS-X is weakly typed, a condition necessi-

tated by the fact that it only has one data type.  However, with interpreted languages 

the line between parsing and execution is more blurred than with compiled languages, 

and the necessity to perform extensive type checking before execution becomes less 

important. 

Several researchers have built hybrid language systems, in an attempt to combine 

the functional and object-oriented paradigms, but have sacrificed referential transpar-

ency in the process.  Yau et al. [7] present a language called PROOF.  PROOF tries to 

fit objects into the functional paradigm with little modification to take into account 

the functional programming style.  The language D by Alexandrescu [1] is a rework 

of the language C transforming it into a more natural scripting language similar to 

Ruby and Javascript.   

Two languages that seek to preserve functional features are FLC by Beaven et al. 

[2], and FOOPS by Goguen and Mesegner [5].  FOOPS is built around the addition of 

ADTs to functional features.  We feel that the approach of FLC is conceptually sim-

pler.  In FLC, classes are represented as functions.  This is the basis for FOBS also.  

In FOBS we have, however, removed the concept of the class.  In a stateless envi-

ronment, the job of the class as a “factory” of individual objects, each with their own 

state, is not applicable.  In stateless systems a class of similar objects is better repre-

sented as a single prototype object that can be copied with slight modifications to 

produce variants.  

Scripting languages have tended to shy away from the functional paradigm.  Sev-

eral object-oriented scripting languages such as Python [3] are available.  Although 

mostly object-oriented, its support for functional programming is decent, and includes 

LISP characteristics such as anonymous functions and dynamic typing.  However, 

Python lacks referential transparency.  We consider this as one of the important ad-

vantages of FOBS-X. In the design of FOBS-X, we also felt that a simpler data struc-

ture could be used to implement objects and the inheritance concept, than was used in 

this popular language.  

2  Language Description 

FOBS-X is built around a core language, core-FOBS-X.  Core-FOBS-X has only 

one type of data: the FOB.  A simple FOB is a quadruplet, 

 [m i -> e ^ ] 

The FOB has two tasks. Its first task is to bind an identifier, i, to an expression, e.  

The e-expression is unevaluated until the identifier is accessed.  Its second task is to 
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supply a return value when invoked as a function.   (the -expression) is an unevalu-

ated expression that is evaluated and returned upon invocation. 

The FOB also includes a modifier, m.  This modifier indicates the visibility of the 

identifier.  The possible values are: “`+”, indicating public access, “`~”, indicating 

protected access, and “`$”, indicating argument access.  Identifiers that are protected 

are visible only in the FOB, or any FOB inheriting from it.  An argument identifier is 

one that will be used as a formal argument, when the FOB is invoked as a function.  

All argument identifiers are also accessible as public. 

For example, the FOB 

 [`+x -> 3 ^ 6] 

is a FOB that binds the variable x to the value 3.  The variable x is considered to be 

public, and if the FOB is used as a function, it will return the value 6. 

Primitive data is defined in the FOB-X library.  The types  Boolean, Char, Real, 

and String have constants with forms close to their equivalent C types.  The Vector 

type is a container type, with constants of a form close to that of the ML list.  For 

example, the vector 

 [“abc”, 3, true] 

represents an ordered list of a string, an integer, and a Boolean value.  Semantically, a 

vector is more like the Java type of the same name.  It can be accessed as a standard 

list, using the usual car, cdr, and cons operations, or as an array using indexes, and is 

implemented as a Perl List structure.  Unlike the Java type, the FOBS-X type is im-

mutable.  The best approximation to the mutate operation is the creation of a brand 

new modified vector. 

There are three operations that can be performed on any FOB.  These are called 

access, invoke, and combine. 

An access operation accesses a variable inside a FOB, provided that the variable 

has been given a public or argument modifier.  As an example, in the expression 

 [`+x -> 3 ^ 6].x 

the operator “.” indicates an access, and is followed by the identifier being accessed.  

The expression would evaluate to the value of x,  which is 3. 

An invoke operation invokes a FOB as a function, and is indicated by writing two 

adjacent FOBs. In the following example 

 [`$y -> _ ^ y.+[1]] [3] 

a FOB is defined that binds the variable y to the empty FOB and returns the result 

of the expression y + 1, when used as a function.  When used as a function, since y is 

an argument variable, the binding of the variable y to the empty FOB is considered 

only a default binding.  This binding is replaced by a binding to the actual argument, 

3.  To do the addition, y is accessed for the FOB bound to the identifier “+”, and this 

FOB is invoked with 1 as its actual argument.  The result of the invocation is 4. 
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In an invocation, it is assumed that the second operand is a vector.  This explains 

why the second operand in the above example is enclosed in square braces.  Invoca-

tion involves binding the actual argument to the argument variable in the FOB, and 

then evaluating the expression, giving the return value. 

A combine operation is indicated with the operator “;”.  It is used to implement in-

heritance.  In the following example 

 [`+x -> 3 ^ _] ; [`$y -> _ ^ x.+[y]] (1) 

two FOBs are combined.  The super-FOB defines a public variable x.  The sub-FOB 

defines an argument variable y, and a -expression.  Notice that the sub-FOB has 

unrestricted access to the super-FOB, and is allowed access to the variable x, whether 

modified as public, argument or protected.   

p

j
f

g

m

  

Fig. 1.   (a) Example binary search tree. Fig. 1. (b) Example FOB structure. 

Multiple combine operations result in FOB stacks, which are compound FOBs.  

For example, the following code  creates a FOB with an attribute x and a two argu-

ment function that multiplies its arguments together.  The code then uses the FOB to 

multiply 9 by 2. 

 ([`+x -> 5 ^ _] ; [`$a -> _ ^ _] ;  

  [`$b -> _ ^ a.*[b]]) [9, 2] 

In the invocation, the arguments are substituted in the order from top to bottom of 

the FOB stack, so that the formal argument a would be bound to the actual argument 

2, and the formal argument b would be bound to 9. 

In addition to the three FOBS-X operations, many operations on primitive data are 

defined in the FOBS-X library. These operations include the usual arithmetic, logic, 

and string manipulation operations.  In addition, conversion functions provide conver-

sion from one primitive type to another, when appropriate.   

We present a larger example to demonstrate how FOBS code might be used to 

solve more complex programming problems.  In this example we build the binary 

search tree, shown in Fig. 1(a)., and then search it for the character 'f'.  In the FOBS-X 

solution, we construct a FOB with the structure shown in Fig. 1(b).  The Node FOB is 

the prototype that is copied to create Node objects.  The method called r.v. indicates 

the return value of the FOB. 
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The FOBS-X code for the example follows. 

 ## definition of the NodeMaker FOB        

 ([NodeMaker ->  

  [`$lt -> _ ^ _] ; 

  [`$rt -> _ ^ _] ; 

  [`$in -> _ ^ _] ; 

  [`~Node ->  

   [`~left -> lt ^ _] ; 

   [`~right -> rt ^ _] ; 

   [`~info -> in ^ _] ; 

   [`~_ -> _ ^ 

    [`~a1 -> info.=[key] ^ _] ; 

    [`~a2 -> FOBS.isEmpty[left].|[a1].if[false,  

     left[key]] ^ _];  

    [`~a3 -> FOBS.isEmpty[right].|[a1].if[false,  

     right[key]]^_]; 

    [`+a4 -> a1.|[a2].|[a3] ^ _]).a4] ^ _] 

  ^ Node] ; 

 ## build the tree 

 [`+tree ->  

  NodeMaker['m', NodeMaker['g', NodeMaker['f', _, _],  

   NodeMaker['j', _, _]], NodeMaker['p', _, _]]  

 ^_] 

 ## search for 'f' 

 .tree['f'] 

 #. 

  (2) 

This code has two types of elements: a FOB expression, and macro directives.  

Macro directives begin with the “#” character, and are expanded by the macro prepro-

cessor. The two seen here are the comment directive, “##”, and the end of expression 

directive, “#.”.   

The top-level FOB defines a FOB NodeMaker, and the search tree, tree.  The top-

level FOB is accessed for the tree, and it is searched for the value “f”, using the in-

voke operator. 

NodeMaker creates a FOB with the required attributes, and a return value that does 

a search.  The return value uses the local variables a1, a2, a3, and a4 to save the re-

sults of the comparison with the node, the left child, the right child, and the final re-

sult, respectively. 

Often it is necessary to compare a FOB with the empty FOB, as in Example (2), 

where it must be determined if the two subtrees are empty.  This is done using code 

like FOBS.isEmpty[left] that uses a function from the library FOB, FOBS. 

FOBS-X code is run by feeding FOBS-X expressions to the interpreter.  Each 

FOBS-X expression produces as its value a single FOB, which is returned back to the 

user and printed.  This example would cause the value true to be printed.  
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3  Core-FOBS-X Design Issues 

Expression evaluation in FOBS-X is fairly straight forward.  Three issues, howev-

er, need some clarification.  These issues are: the semantics of the redefinition of a 

variable, the semantics of a FOB invocation, and the interaction between dynamic and 

static scoping. 

3.1  Variable overriding 

A FOB stack may contain several definitions of the same identifier, resulting in 

overriding.  For example, in the following FOB 

 [`$m -> 'a' ^ m.toInt[]] ; [`+m -> 3 ^ m] 

the variable m has two definitions; in the super-FOB it is defined as an argument vari-

able, and in the sub-FOB another definition is stacked on top with m defined as a 

public variable.  The consequence of stacking on a new variable definition is that it 

completely overrides any definition of the same variable already in the FOB stack, 

including the modifier.  In addition, the new return value becomes the return value of 

the full FOB stack.  

3.2  Argument substitution 

As mentioned earlier, the invoke operator creates bindings between formal and ac-

tual arguments, and then evaluates the -expression of the FOB being invoked.  At 

this point we give a more detailed description of the process. 

Consider the following FOB that adds together two arguments, and is being in-

voked with values 10 and 6. 

 ([`$r -> 5 ^ _] ; [`$s -> 3 ^ r.+[s]]) [10, 6]  

The result of this invocation is the creation of the following FOB stack 

[`$r -> 5 ^ _] ;        

[`$s -> 3 ^ r.+[s]] ; 

[`+r -> 6 ^ r.+[s]] ;  

[`+s -> 10 ^ r.+[s]] 

In this new FOB the formal arguments are now public variables bound to the actual 

arguments, and the return value of the invoked FOB has been copied up to the top of 

the FOB stack.  The return value of the original FOB can now be computed easily 

with this new FOB by doing a standard evaluation of its -expression, yielding a val-

ue of 16. 
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3.3  Variable scope, and expression evaluation 

Pure lexical scoping does not cope well with variable overriding, as understood in 

the object-oriented sense, which typically involves dynamic message binding.  To 

address this issue, FOBS-X uses a hybrid scoping system which combines lexical and 

dynamic scoping. 

Consider the following FOB expression. 

  [`~y -> 1^_] ;   

 [`~x ->  

  [`+n -> y + m ^ n] ; 

  [`~m -> 2 ^_] 

 ^_] ;  

 [`~z -> 3 ^x.n]        

  (3) 

 

This expression defines a FOB stack that is three deep, containing declarations for 

a protected variable y, with value 1,  a protected variable x with a FOB stack as its 

value, and a protected variable z with the value 3 as its value.  The stack that is the 

value of x consists of two FOBs, one defining a public variable n, and one defining a 

protected variable m. 

We are currently mostly interested in the FOB stack structure of Expression (3), 

and can represent it graphically with the stack graph, given in Fig. 2.  In the stack 

graph each node represents a simple FOB, and is labeled with the variable defined in 

the FOB.  Three types of edges are used to connect nodes: the s-pointer, the t-pointer, 

and the -pointer.   

The s-pointer describes the lexical nested block structure of one FOB defined in-

side of another.  The s-pointer for each node points to the FOB in which it is defined.  

For example m is defined inside of the FOB x.   

s

t

t

t

n

m

y

x

z





s



 

Fig. 2.    Stack graph of Example (3). 

The t-pointer for each node points to the super-FOB of a FOB.  It describes the 

FOB stack structure of the graph.  In Fig. 2 there are basically two stacks: the top 
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level stack consists of nodes z, x, and y, and the nested stack consisting of nodes m, 

and n. 

The -pointer is a back pointer, that points up the FOB stack to the top.  This pro-

vides an easy efficient mechanism for finding the top of a stack from any of the nodes 

in the stack. 

If the FOB z were invoked, it would access the FOB n for the value of n.  This 

would cause the expression y + m to be evaluated, a process that demonstrates the use 

of all three pointers when searching for the value of y. 

The process of resolving a reference in FOBS-X first examines the current FOB 

stack.  The top of the current stack is reached by following the -pointer.  Then the t-

pointers are used to search the stack from top to bottom.  If the reference is still unre-

solved, the s-pointer is used to find the FOB stack enclosing the current stack.  This 

enclosing stack now becomes the current stack, and is now searched in the same fash-

ion, from top to bottom, using the -pointer to find the top of the stack, and the t-

pointers to descend to the bottom.   

4  Library Structure 

The FOBS-X library contains definitions for both primitive FOBs, and utility 

FOBs, which are shown in Fig. 3.  These FOBs are all used to define the primitive 

data types of the FOBS-X language. 

Utility FOBs are an organizational tool with similarities to mix-in classes described 

by Page-Jones [6].  Operations that are common among several FOBs are collected 

into utility FOBs.  The utility FOBs are then stacked into other primitive FOBs in the 

library.  

The primitive FOBs of the library mix in the utility FOBs to provide themselves 

with necessary operations.  Fig. 3 shows the mix-in connections in the library, using 

UML  The utility FOBs are shown at the top of the diagram, and the primitive FOBs 

that inherit from them are shown on the bottom. 

There are four utility FOBs in the library: 

Numeric: contains the usual arithmetic operations. 

Comparable: contains relational operators. 

Eq: contains operations for comparing FOBs for equality. 

Printable: contains an operation to generate a print-string for a FOB. 

The FOB FOBS will eventually contain operations for interacting with the outside 

environment, enabling the language to be used for scripting. 

As a more detailed example, consider the primitive FOB Boolean, and the utility 

FOB Eq.  The contents of these two FOBs are given in Table 1.  The table gives the 

definitions contained in the FOBs, and a brief description of their function.  Table 1 

shows that the Boolean FOB contains operators for the if function, the and function, 

the or function, and the not function.  Fig. 3 shows that the FOB Boolean inherits 

from the utility FOBs Printable, giving it the ability to be printed, and Eq, giving it 

the ability to be compared with the equals operator.  Table 1 shows that the Eq FOB 

provides the operations equal, and not-equal, to that end. 
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Fig. 3. Mix-in structure of the FOBS library. 

Table 1. Operations for the FOBs Eq, and Boolean. 

Library FOB Operation Description 

Boolean b.if[x, y] If boolean value b is true, return x, otherwise return y 

 
b.&[x] Return the boolean value of the expression b  x 

 
b.|[x] Return the boolean value of the expression b  x 

 b.![] Return the boolean value of the expression b 

Eq e.=[x] Return the boolean value of the expression e  x 

 e.!=[x] Return the boolean value of the expression e  x 

5  Macro Expansion 

FOBS-X allows extensions to its syntax using a macro processor.  Macros in 

FOBS-X are quadruplets <S1 → S2: P, d>.  The semantics of the quadruplet notation is 

as follows. 

 S1: the search string, which includes wild-card tokens. 

 S2: the replacement string, which includes wild-card tokens. 

 P:  the priority of the macro, with priority 19 being highest priority, and priority 0 

being the lowest. 

 d:  the direction of the scan, with r indicating right-to-left, and l indicating left-to-

right. 
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The quadruple gives a rewrite rule in which an occurrence of a search string is re-

placed by a replacement string.  Incorporated into the rule is an operator precedence 

and associativity.  As an example, a FOBS-X macro to turn multiplication into an 

infix operator might appear as follows. 

 < #?multiplicand * #?multiplier →       

  ( #?multiplicand .* [ #?multiplier ] ) : 18 , l > 

  (4) 

As is often the case in macros, the above macro contains wild-card tokens.  These 

tokens are distinguished from normal literal tokens by the fact that they begin with the 

“#” character.  Wild-card tokens are named, in order to allow references to their bind-

ings.  In the example the wild-card tokens are #?multiplicand, and #?mul-

tiplier. 

Interpreting the example macro, we start with the search string, S1 = #?multi-

plicand * #?multiplier.  To successfully match this string, first the wild-

card token #?multiplicand is used to match what is called an atom.  Then a 

token “*” is matched, and finally another atom must match the wild-card token 

#?multiplier.   

Following the successful match, the replacement string, S2 = ( #?multipli-

cand . * [ #?multiplier ] ) is used to replace the matched text, with a 

string composed of the text matched by the wild-cards, and a few other delimiting 

characters.   

As an example, suppose that the search sting matched the text x * y.  The wild 

card #?multiplicand would, as a result, be bound to the text x, and the wild-card 

#?multiplier would be bound to the text y.  Substituting these bindings into the 

replacement string, would yield the replacement text (x.*[y]). 

From Example (4), we see that a priority of 18 is specified for the multiplication 

macro.  The priority of the macro is used to establish the precedence of operators 

defined as macros.  This macro defines an operator with an extremely high prece-

dence.   

To implement priority in the macros, the FOBS-X macro processor does a multi-

layered expansion.  In this process macro definitions are queued by their priority.  

Each rule is then matched in the order in which it occurs in the queue.  If written cor-

rectly, high priority macros consume operands, and then their expansions become 

operands for lower priority macros, implementing a precedence hierarchy. 

Direction in the macro is used to implement associativity for macro defined opera-

tors.  In the multiplication example, it is indicated that the direction is left-to-right.  

This macro rule would then be applied by searching for the search string from the left 

of a FOBS-X expression to its right.  Right-to-left direction indicates that the search 

string is matched moving from the right of the FOBS-X expression to its left.  If writ-

ten correctly, direction can be used to implement associativity.  For example, with 

left-to-right direction,  the left most occurrence of an operator would become an oper-

and for the next occurrence of the operator to the right. 
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It Is possible to have nested macros.  This happens in one of two ways: The input 

text may contain a macro invocation inside of another invocation, or a macro defini-

tion may contain an invocation of another macro in its replacement string.  In either 

case, once the macro has been expanded, the replacement text still contains macro 

invocations.   To handle this situation, each time a rule triggers, the macro processor 

pushes the replacement text on to the front of the input, so that any further processing 

will reexamine the replacement text, as well as any remaining input. 

As mentioned, in FOBS-X macros match text in units of atoms.  The term atom is 

often used to refer to the simple tokens of a programming language, such as identifier, 

constants, or delimiters.  In FOBS-X the term is used in a slightly more extended 

manner.  Certainly simple tokens are atoms.  However, in addition we allow the mac-

ro processor to process compound atoms, consisting of a sequence of atoms enclosed 

in balanced bracketing symbols.  The recognized bracketing symbols are “(“, “)”, “{“, 

“}”, “[“, and “]”. 

6  Macro Files 

The syntax for macro definition is demonstrated by the following example that de-

fines the multiplication macro from Example (4). 

## numeric multiply operator  

#defleft 

 #?op1 * #?op2 

#as 

 ( #?op1 .:*: [ #?op2 ] ) 

#level 

 9 

#end 

#defleft 

 :*: 

#as 

 * 

#level 

 0 

#end 

  (5) 

There are two macro definitions in this example.  Each definition begins with the 

directive #defleft, and ends with the directive #end.  The markers #as, and 

#level separate the search string from the replacement string, and the replacement 

string from the priority, respectively.  The direction of the macro is indicated be the 

beginning marker: #defleft for left-to-right, and #defright for right-to-left. 

The example illustrates a common technique used when defining macros that simp-

ly move an operator from a prefix position to an infix position.  Simply moving the 

operator leaves it vulnerable to being rematched by the same macro rule again, result-
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ing in infinite macro expansion.  The solution is to split the process of replacement 

between two macro rules.  The top rule does indeed move the operator “*”, but also 

changes it to the string “:*:”.  After the top macro rule has finished its work and has 

been removed from the priority queue, the bottom macro, which is still in the priority 

queue because of its lower priority, changes the name of the operator form “:*:” back 

to just “*”. 

7  The Standard Extension 

The syntax in core-FOBS-X is a little cumbersome.  It has been designed with min-

imalistic notation, allowing a concise formal description.  It is not necessarily attrac-

tive to the programmer.  Standard extension (SE) FOBS-X attempts to rectify this 

situation.  In particular, SE-FOBS-X includes constructs to implement the following 

 Allow infix notation for most operators. 

 Eliminate the cumbersome syntax associated with declaring a FOB. 

 Introduce English keywords to replace some of the more cryptic notation. 

 Allow some parts of the syntax to be optionally omitted. 

SE-FOBS-X is a language defined entirely using the macro processor.  It demon-

strates the flexibility of the FOBS-X macro capability to almost entirely rework the 

syntax of the language, without touching the back-end of the interpreter. 

In the previous section we presented Example (5), a macro that converted multipli-

cation from a prefix operation into an infix operation.  In SE-FOBS-X this has been 

done for most operators in the library, using the same technique described in that 

section. 

The definition of a FOB in core-FOBS-X is cryptic, relying on a small set of de-

limiter characters to structure the definition.  In SE-FOBS-X a more verbose mecha-

nism has been provided, using keywords as delimiter.  At the same time, SE-FOBS-X 

eliminates the need to fill in all information when describing a FOB, when there are 

parts that are not being used.  Below, as an example, is one of the macros that helps 

streamline FOB definitions. 

 #defleft            

   fob { #?id ret { #*ret } \ #*x } 

 #as 

   ( [ `~ #?id -> _ ^ #*ret ] ; fob { #*x } ) 

 #level 

   3 

 #end 

  (6) 

This macro defines two keywords, fob, and ret, that delimit the beginning of a FOB 

definition, and delimit the return value, respectively.  This new syntax also allows a 

fob structure that is missing e-expression information, so that the text 
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 fob{x ret{3 * 5}\} 

can be converted into the core-FOBS-X expression 

 ([`~x -> _ ^ (3.*[5])] ; _) 

In this transformation the macro rule fills in the modifier for the variable x, and a 

default value for x, which is the empty FOB.  The multiplication macro rules convert 

the multiplication into its infix form. 

Close inspection of Example (6) reveals that the fob syntax of SE-FOBS-X is set 

up to to define full FOB stacks, as opposed to just single FOBs.  The “\” syntax is 

designed to introduce new fob structures, recursively, in order to string together sev-

eral FOBs into a stack as shown in the following example. 

fob{ 

   public x val{3} \ 

   y val{5} ret{x + y} \ 

} 

which expands to the FOB stack 

 ([`+x -> 3 ^ _] ; ([`~y -> 5 ^ (x.+[y])] ; _)) 

Each element of the FOB stack is enclosed in the fob structure, and terminated by the 

“\” symbol.  Each element can contain an optional modifier keyword, such as public, 

an optional val structure, giving its e-expression, and an optional ret structure, provid-

ing the -expression. 

8  An SE-FOBS-X Example 

We present a larger example to demonstrate how SE-FOBS-X code is used to solve 

more complex programming problems.  This example is the SE-FOBS-X version of 

Example (2).  

#use #SE        

## definition of the NodeMaker FOB          

 (fob{ 

 NodeMaker  

 val{ 

  fob{ 

   argument lt \ 

   argument rt \ 

   argument in \ 

   Node  

   val{ 

    fob{ 

     left val {lt} \ 
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     right val {rt} \ 

     info val {in} \ 

     argument key  

     ret{ 

      (fob{ 

       a1 val {info = key} \   

       a2  

       val{ 

        if {nofob left | a1}  

        then {false}  

        else {left[key]}  

       } \ 

       a3  

       val{ 

        if {nofob right | a1 | a2}  

        then {false} 

        else {right[key]}  

       } \  

       public a4 val{a1 | a2 | a3} \ 

         } ).a4 

     } \ 

    }  

   } 

   ret {Node} \ 

  }  

 } \  

 ## build the sample tree 

 public tree  

 val{ 

  NodeMaker['m', NodeMaker['g', NodeMaker['f', _, _],  

   NodeMaker['j', _, _]], NodeMaker['p', _, _]]  

 } \ 

} ) 

## use the main FOB tree variable to search for 'f' 

.tree['f'] 

#. 

#! 

  (7) 

This code has two types of elements: a FOB expression, and macro directives.  The 

four macro directives seen here are the comment directive, “##”, the end of expression 

directive, “#.”, the end of script directive, “#!”, and the “#use” directive.  The “#use” 

directive installs an extension with the given name, by locating the macro file and 

processing it, and also locating the corresponding library modules and loading them 

into the FOBS primitive FOB.  
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Several Features of SE-FOBS-X are demonstrated by the example.  These include 

more readable syntax for primitive FOBS-X functions, such as the if construct that 

translates into an invocation of the Boolean primitive FOB function of the same 

name, and the nofob operator that translates into a call to the FOBS FOB function 

isEmpty.  Also shown is the use of the SE-FOBS-X modifier names public, and 

argument, instead of the more cryptic core-FOBS-X equivalents.  Finally, the ex-

ample demonstrates the use of the SE-FOBS-X fob-val-ret structure, with optional val 

and ret parts. 

9  Conclusion 

We have presented a core FOBS-X language.  This language is designed as the ba-

sis of a universal scripting language. It has a simple syntax and semantics.   

FOBS-X is a hybrid language, which combines the tools and features of object ori-

ented languages with the tools and features of functional languages.  In fact, the defin-

ing data structure of FOBS-X is a combination of an object and a function.  The lan-

guage provides the advantages of referential transparency, as well as the ability to 

easily build structures that encapsulate data and behavior.  This provides the user the 

choice of paradigms. 

Core-FOBS-X is the core of an extended language, SE-FOBS-X, in which pro-

grams are translated into the core by a macro processor.   This allows for a language 

with syntactic “sugar”, that still has the simple semantics of our core-FOBS-X lan-

guage. 

Because of the ability to be extended, which is utilized by SE-FOBS-X,  the 

FOBS-X language gains the flexibility that enables it to be a universal scripting lan-

guage.  The language can be adapted syntactically, using the macro capability, to new 

scripting applications.  In the future, the library will also be adaptable, allowing the 

user to add the operations necessary to adapt it to interact with a new environment. 
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Abstract. In this study, we started to investigate how the Partitioned
Global Address Space (PGAS) programming language X10 would suit
the implementation of a Constraint-Based Local Search solver. We wanted
to code in this language because we expect to gain from its ease of use
and independence from specific parallel architectures. We present the im-
plementation strategy, and search for different sources of parallelism. We
discuss the algorithms, their implementations and present a performance
evaluation on a representative set of benchmarks.

1 Introduction

Constraint Programming has been successfully used to model and solve many
real-life problems in diverse areas such as planning, resource allocation, schedul-
ing and product line modeling [16, 17]. Classically constraint satisfaction prob-
lems (CSPs) may be solved exhaustively by complete methods which are able
to find all solutions, and therefore determine whether any solutions exist. How-
ever efficient these solvers may be, a significant class of problems remains out of
reach because of exponential growth of search space, which must be exhaustively
explored. Another approach to solving CSPs entails giving up completeness and
resorting to (meta-) heuristics which will guide the process of searching for so-
lutions to the problem. Solvers in this class make choices which limit the search
space which actually gets visited, enough so to make problems tractable. For in-
stance a complete solver for the magic squares benchmark will fail for problems
larger than 15× 15 whereas a local search method will easily solve a 100× 100
problem instance within the lower resource bounds. On the other hand, a local
search procedure may not be able to find a solution, even when one exists.

However, it is unquestionable that the more computational resources are
available, the more complex the problems that may be solved. We would therefore
like to be able to tap into the forms of augmented computational power which
are actually available, as conveniently as feasible. This requires taming various
forms of explicitly parallel architectures.

Present-day parallel computational resources include increasingly multi-core
processors, General Purpose Graphic Processing Units (GPGPUs), computer
clusters and grid computing platforms. Each of these forms requires a different
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programming model and the use of specific software tools, the combination of
which makes software development even more difficult.

The foremost software platforms used for parallel programming include POSIX
Threads [1] and OpenMP [15] for shared-memory multiprocessors and multicore
CPUs, MPI [20] for distributed-memory clusters or CUDA [14] and OpenCL [10]
for massively parallel architectures such as GPGPUs. This diversity is a chal-
lenge from the programming language design standpoint, and a few proposals
have emerged that try to simultaneously address the multiplicity of parallel com-
putational architectures.

Several modern language designs are built around the Partitioned Global
Address Space (PGAS) memory model, as is the case with X10 [19], Unified
Parallel C [7] or Chapel [5]. Many of these languages propose abstractions which
capture the several forms in which multiprocessors can be organized. Other, less
radical, approaches consist in supplying a library of inter-process communication
which relies on and uses a PGAS model.

In our quest to find a scalable and architecture-independent implementation
platform for our exploration of high-performance parallel constraint-based local
search methods, we decided to experiment with one of the most promising new-
generation languages, X10 [19].

The remainder of this article is organized as follows: Section 2 discusses the
PGAS Model and briefly introduces the X10 programming language. Section 3
introduces native X10 implementations exploiting different sources of parallelism
of the Adaptive Search algorithm. Section 4 presents an evaluation of these
implementations. A short conclusion ends the paper.

2 X10 and the Partitioned Global Address Space (PGAS)
model

The current arrangement of tools to exploit parallelism in machines are strongly
linked to the platform used. As it was said above, two broad programming mod-
els stand out in this matter: distributed and shared memory models. For large
distributed memory systems, like clusters and grid computing, Message Passing
Interface (MPI) [20] is a de-facto programming standard. The key idea in MPI is
to decompose the computation over a collection of processes with private mem-
ory space. These processes can communicate with each other through message
passing, generally over a communication network.

With the recent growth of many-core architectures, the shared memory ap-
proach has increased its popularity. This model decomposes the computation in
multiple threads of execution sharing a common address space, communicating
with each other by reading and writing shared variables. Actually, this is the
model used by traditional programming tools like Fortran or C through libraries
like pthreads [1] or OpenMP [15].

The PGAS model tries to combine the advantages of the two approaches
mentioned so far. This model extends shared memory to a distributed memory
setting. The execution model allows having multiple processes (like MPI), multi-
ple threads in a process (like OpenMP), or a combination (see Figure 1). Ideally,

2 169



the user would be allowed to decide how tasks get mapped to physical resources.
X10 [19], Unified Parallel C [22] and Chapel [5] are examples of PGAS-enabled
languages, but there exist also PGAS-based IPC libraries such as GPI [12], for
use in traditional programming languages. For the experiments described herein,
we used the X10 language.

Fig. 1. PGAS Model

X10 [19] is a general-purpose language developed by IBM, which provides a
PGAS variation: Asynchronous PGAS (APGAS). APGAS extends the PGAS
model making it flexible, even in non-HPC platforms [18]. Through this model
X10 can support different levels of concurrency with simple language constructs.

There are two main abstractions in the X10 model: places and activities. A
place is the abstraction of a virtual shared-memory process, it has a coherent
portion of the address space together with threads (activities) that operate on
that memory. The X10 construct for creating a place in X10 is at, and is com-
monly used to create a place for each processing unit in the platform. An activity
is the mechanism to abstract the single threads that perform computation within
a place. Multiple activities may be active simultaneously in a place.

X10 implements the major components of the PGAS model, by the use of
places and activities. However, the language includes other interesting tools with
the goal of improving the abstraction level of the language. Synchronization is
supported thanks to various operations such as finish, atomic and clock. The
operation finish is used to wait for the termination of a set of activities, it
behaves like a traditional barrier. The constructs atomic ensures an exclusive
access to a critical portion of code. Finally, the construct clock is the standard
way to ensure the synchronization between activities or places. X10 supports the
distributed array construct, which makes it possible to divide an array into sub-
arrays which are mapped to available places. Doing this ensures a local access
from each place to the related assigned sub-array. A detailed examination of
X10, including tutorial, language specification and examples can be consulted
at http://x10-lang.org/.
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3 Native X10 Implementations of Adaptive Search

In order to take advantage of the parallelism it is necessary to identify the
sources of parallelism of the Adaptive Search algorithm. In [4], the authors survey
the state-of-the-art of the main parallel meta-heuristic strategies and discuss
general design and implementation principles. They classify the decomposition
of activities for parallel work in two main groups: functional parallelism and data
parallelism (also known as OR-parallelism and AND-parallelism in the Logic
Programming community).

On the one hand, in functional parallelism different tasks run on multiple
compute instances across the same or different datasets. On the other hand, data
parallelism refers to the methods in which the problem domain or the associated
search space is decomposed. A particular solution methodology is used to address
the problem on each of the resulting components of the search space. This article
reports on our experiments concerning both kinds of parallelism applied to the
Adaptive Search method.

3.1 Sequential Implementation

Our first experiment with AS in X10 was to develop a sequential implementation
corresponding to a specialized version of the Adaptive Search for permutation
problems [13]3.

Figure 2 shows the class diagram of the basic X10 project. The class ASPer-
mutSolver contains the Adaptive Search permutation specialized method imple-
mentation. This class inherits the basic functionality from a general implemen-
tation of the Adaptive Search solver (in class AdaptiveSearchSolver), which in
turn inherits a very simple Local Search method implementation from the class
LocalSearchSolver. This class is then specialized for different parallel approaches,
which we experimented with. As we will see below, we experimented with two
versions of Functional Parallelism (FP1 and FP2) and a Data Parallelism version
(called Random Walk, i.e. RW).

Moreover, a simple CSP model is described in the class CSPModel, and
specialized implementations of each CSP benchmark problem are contained in
the classes PartitModel, MagicSquareModel, AllIntervallModel and CostasModel,
which have all data structures and methods to implement the error function of
each problem.

Listing 1.1 shows a simplified skeleton code of our X10 sequential imple-
mentation, based on Algorithm 1. The core of the Adaptive Search algorithm
is implemented in the method solve. The solve method receives a CSPModel
instance as parameter. On line 8, the CSP variables of the model are initial-
ized with a random permutation. On the next line the total cost of the current
configuration is computed. The while instruction on line 10 corresponds to the
main loop of the algorithm. The selectVarHighCost function (Line 12) selects the

3 In a permutation problem, all N variables have the same initial domain of size N
and are subject to an implicit all-different constraint. The associated algorithm is
reported in the appendix.
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Fig. 2. X10 Class Diagram basic project

variable with the maximal error and saves the result in the maxI variable. The
selectVarMinConflict function (Line 13) selects the best neighbor move from the
highest cost variable maxI, and saves the result in the minJ variable. Finally,
if no local minimum is detected, the algorithm swaps the variables maxI and
minJ (permutation problem) and computes the total cost of the resulting new
configuration (Line 16). The solver function ends if the totalCost variable equals
0 or when the maximum number of iterations is reached.

Listing 1.1. Simplified AS X10 Sequential Implementation

1 class ASPermutSolver {
2 var totalCost: Int;
3 var maxI: Int;
4 var minJ: Int;
5
6 public def solve (csp: CSPModel): Int {
7 . . . local variables . . .
8 csp.initialize();
9 totalCost = csp.costOfSolution();

10 while (totalCost != 0) {
11 . . . restart code . . .
12 maxI = selectVarHighCost (csp);
13 minJ = selectVarMinConflict (csp);
14 . . . local min tabu list, reset code . . .
15 csp.swapVariables (maxI, minJ);
16 totalCost = csp.costOfSolution ();
17 }
18 return totalCost;
19 }
20 }

3.2 Functional Parallel Implementation

Functional parallelism is our first attempt to parallelize the Adaptive Search
algorithm. The key aim for this implementation is to decompose the problem
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into different tasks, each task working in parallel on the same data. To achieve
this objective it is necessary to change the inner loop of the sequential Adaptive
Search algorithm.

In this experiment, we decided to change the structure of the selectVarHigh-
Cost function, because therein lies the most costly activities performed in the
inner loop. The most important task performed by this function is to go through
the variable array of the CSP model to compute the cost of each variable (in or-
der to select the variable with the highest cost). A X10 skeleton implementation
of selectVarHighCost function is presented in Listing 1.2.

Listing 1.2. Function selVarHighCost in X10

1 public def selectVarHighCost( csp : CSPModel ) : Int {
2 . . . local variables . . .
3 // main loop: go through each variable in the CSP
4 for (i = 0; i < size; i++) {
5 . . . count marked variables . . .
6 cost = csp.costOnVariable (i);
7 . . . select the highest cost . . .
8 }
9 return maxI; // (index of the highest cost)

10 }
Since this function must process the entire variable vector at each iteration,

it is then natural to try to parallelize this task. For problems with many variables
(e.g. the magic square problem involves N2 variables) the gain could be very in-
teresting. We developed a first approach (called FP1), in which n single activities
are created at each iteration. Each activity processes a portion of the variables
array and performs the required computations. The X10 construct async was
chosen to create individual activities sharing the global array. Listing 1.3 shows
the X10 skeleton code for the first approach of the functional parallelism in the
function selectVarHighCost.

Listing 1.3. First approach to functional parallelism

1 public def selectVarHighCost (csp : CSPModel) : Int {
2 // Initialization of Global variables
3 var partition : Int = csp.size/THNUM;
4 finish for(th in 1..THNUM){
5 async{
6 for (i = ((th−1)∗partition); i < th∗partition; i++){
7 . . . calculate individual cost of each variable . . .
8 . . . save variable with higher cost . . .
9 }

10 }
11 }
12 . . . terminate function: merge solutions . . .
13 return maxI; //(Index of the higher cost)
14 }

In this implementation the constant THNUM on line 4 represents the number
of concurrent activities that are deployed by the program. On the same line,
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the keyword finish ensures the termination of all spawned activities. Finally, the
construct async on line 5 spawns independent individual tasks to cross over a
portion of the variable array (sentence for on line 6). With this strategy we face
up with a well known problem of functional parallelism: the overhead due to the
management of fine-grained activities. As expected results are not good enough
(see Section 4 for detailed results).

In order to limit the overhead due to activity creation, we implemented a
second approach (called FP2). Here the n working activities are created at the
very beginning of the solving process, just before the main loop of the algorithm.
These activities are thus available for all subsequent iterations. However, it is
necessary to develop a synchronization mechanism to assign tasks to the working
activities and to wait for their termination. For this purpose we created two new
classes: ComputePlace and ActivityBarrier. ComputePlace is a compute instance,
which contains the functionality of the working activities. ActivityBarrier is a
very simple barrier developed with X10 monitors (X10 concurrent package).

Listing 1.4 shows the X10 implementation of the second approach.

Listing 1.4. Second approach to functional parallelism

1 public class ASSolverFP1 extends ASPermutSolver{
2 val computeInst : Array[ComputePlace];
3 var startBarrier : ActivityBarrier;
4 var doneBarrier : ActivityBarrier;
5
6 public def solve(csp : CSPModel):Int{
7 for(var th : Int = 1; th <= THNUM ; th++)

8 computeInst(th)4 = new ComputePlace(th , csp);
9

10 for(id in computeInst)
11 async computeInst(id).run();
12
13 while(total cost!=0){
14 . . . restart code . . .
15 for(id in computeInst)
16 computeInst(id).activityToDo = SELECVARHIGHCOST;
17
18 startBarrier.wait(); // send start signal
19 // activities working...
20 doneBarrier.wait(); // work ready
21 maxI=terminateSelVarHighCost();
22 . . . local min tabu list, reset code . . .
23 }
24 // Finish activities
25 for(id in computeInst)
26 computeInst(id).activityToDo = FINISH;
27
28 startBarrier.wait();
29 doneBarrier.wait();

4 Remark: in X10 the array notation is table(index) instead of table[index] as in C.
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30 return totalCost;
31 }
32 }

This code begins with the definition of three global variables on lines 2-
4: computeInst, startBarrier and doneBarrier ; computeInst is an array of Com-
putePlace objects, one for each working activity desired. startBarrier and doneBar-
rier are ActivityBarrier instances created to signalize the starting and ending of
the task in the compute place. On lines 7-11, before the main loop THNUM work-
ing activities are created and started over an independent X10 activity. When
the algorithm needs to execute the selectVarHighCost functionality, the main
activity assigns this task putting a specific value into the variable activityToDo
in the corresponding instance of the ComputePlace class (lines 15 and 16), then
the function wait() is executed over the barrier startBarrier to notify all work-
ing activities to start (line 18). Finally, the function wait() is executed over the
barrier doneBarrier to wait the termination of the working activities (line 20).
Then on line 21 the main activity can process the data with the function ter-
minateSelVarHighCost. When the main loop ends, all the working activities are
notified to end and the solve function returns (lines 25-30). Unfortunately, as we
will see below, the improvement of this second approach is not important enough
(and, in addition, it has its own overhead due to synchronization mechanisms).

3.3 Data Parallel Implementation

A straightforward implementation of data parallelism in the Adaptive Search al-
gorithm is the multiple independent Random Walks (IRW) approach. The idea
is to use isolated sequential Adaptive Search solver instances dividing the search
space of the problem through different random starting points. This strategy is
also known as Multi Search (MPSS, Multiple initial Points, Same search Strate-
gies) [4] and has proven to be very efficient [6, 11].

The key of this implementation is to have several independent and isolated
instances of the Adaptive Search Solver applied to the same problem model.
The problem is distributed to the available processing resources in the computer
platform. Each solver runs independently (starting with a random assignment
of values). When one instance finds a solution it is necessary to stop all other
running instances. This is achieved using a termination detection communication
strategy. This simple parallel version has no inter-process communication, mak-
ing it Embarrassingly or Pleasantly Parallel. The skeleton code of the algorithm
is shown in the Listing 1.5.

Listing 1.5. Adaptive Search data parallel X10 implementation

1 public class ASSolverRW{
2 val solDist : DistArray[ASPermutSolver];
3 val cspDist : DistArray[CSPModel];
4 def this( ){
5 solDist=DistArray.make[ASPermutSolver](Dist.makeUnique());
6 cspDist=DistArray.make[CSPModel](Dist.makeUnique());
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7 }
8 public def solve(){
9 val random = new Random();

10 finish for(p in Place.places()){
11 val seed = random.nextLong();
12 at(p) async {
13 cspDist(here.id) = new CSPModel(seed);
14 solDist(here.id) = new ASPermutSolver(seed);
15 cost = solDist(here.id).solve(cspDist(here.id));
16 if (cost==0){
17 for (k in Place.places())
18 if (here.id != k.id)
19 at(k) async{
20 solDist(here.id).kill = true;
21 }
22 }
23 }
24 }
25 return cost;
26 }
27 }

For this implementation the ASSolverRW class was created. The algorithm
has two global distributed arrays: solDist and cspDist (lines 2 and 3). As ex-
plained in Section 2, the DistArray class creates an array which is spread across
multiple X10 places. In this case, an instance of ASPermutSolver and CSPModel
are stored at each available place in the program. On lines 5 and 6 function make
creates and initializes the ditributed vector in the region created by the function
Dist.makeUnique() (makeUnique function creates a distribution over a region
that maps every point in the region to a distinct place, and which maps some
point in the region to every place). On line 10 a finish operation is executed over
a for loop that goes through all the places in the program (Place.places()). Then,
an activity is created in each place with the sentence at(p) async on line 12. Into
the async block, a new instance of the solver (new ASPermutSolver(seed)) and
the problem (new CSPModel(seed)) are created (lines 13 and 14) and a random
seed is passed. On line 15, the solving process is executed and the returned cost
is assigned to the cost variable. If this cost is equal to 0, the solver in a place has
reached a valid solution, it is then necessary to send a termination signal to the
remaining places (lines 16- 22). For this, every place (i.e. every solver), checks
the value of a kill variable at each iteration. When it becomes equal to true the
main loop of the solver is broken and the activity is finished. To set a kill re-
mote variable from any X10 place it was necessary to create a new activity into
each remaining place (sentence at(k) async on line 19) and into the async block
to change the value of the kill variable. On line 18, the sentence if (here.id !=
k.id) filters all places which are not the winning one (here). Finally, the function
returns the solution of the fastest place on line 25.
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4 Performance Analysis

In this section, we present and discuss our experimental results of our X10 im-
plementations of the Adaptive Search algorithm. The testing environment used
was a non-uniform memory access (NUMA) computer, with 2 Intel Xeon W5580
CPUs each one with 4 hyper-threaded cores running at 3.2GHz as well as a sys-
tem based on 4 16-core AMD Opteron 6272 CPUs running at 2.1GHz.

We used a set of benchmarks composed of four classical problems in con-
straint programming: the magic square problem (MSP), the number partition-
ing problem (NPP) and the all-interval problem (AIP), all three taken from the
CSPLib [8]; also we include the Costas Arrays Problem (CAP) introduced in [9],
which is a very challenging real problem. The problems were all tested on sig-
nificantly large instances. The interested reader may find more information on
these benchmarks in [13].

It is worth noting, at the software level, that the X10 runtime system can be
deployed in two different backends: Java backend and C++ backend; they differ
in the native language used to implement the X10 program (Java or C++), also
they present different trade-offs on different machines. Currently, the C++ back-
end seems relatively more mature and faster for scientific computation. There-
fore, we have chosen it for this experimentation.

Regarding the stochastic nature of the Adaptive Search behavior, several
executions of the same problem were done and the times averaged. We ran 100
samples for each experimental case in the benchmark.

In this presentation, all tables report raw times in seconds (average of 100
runs) and relative speed-ups. These tables respect the same format: the first
column identifies the problem instance, the second column is the execution time
of the problem in the sequential implementation, the next group of columns
contains the corresponding speed-up obtained with a varying number of cores
(places), and the last column presents the execution time of the problem with
the highest number of places.

4.1 Sequential Performance

Even if our first goal in using X10 is parallelism, it is interesting to compare the
sequential X10 implementation with a reference implementation: our low-level
and highly optimized C version initially used in [2, 3] and continuously improved
since then. The X10 implementation appears to be 3 to 5 times slower than the
C version: this is not a prohibitive price to pay, if one takes into account the
possibilities promised by X10 for future experimentation.

A possible explanation of the difference between the performances of both
implementations is probably the richness of the X10 language (OOP, architecture
abstractions, communication abstractions, etc.). Also, maybe it is necessary to
improve our X10 language skills good enough to get the best performance of this
tool.
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4.2 Functional Parallel Performance

Table 1 shows the results of the first version of the functional parallelism X10
implementation. Only two benchmarks (2 instances of MSP and CAP) are pre-
sented. Indeed, we did not investigate this approach any further since the results
are clearly not good. Each problem instance was executed with a variable number
of activities (THNUM = 2, 4 and 8). It is worth noting, that the environmental
X10 variable X10 NTHREADS was passed to the program with an appropriate
value to each execution. This variable controls the number of initial working
threads per place in the X10 runtime system.

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 8 8 places

MSP-100 11.98 0.86 0.95 0.77 15.49
MSP-120 24.17 1.04 0.97 0.98 24.65

CAP-17 1.56 0.43 0.28 0.24 6.53
CAP-18 12.84 0.51 0.45 0.22 57.16

Table 1. Functional Parallelism – first approach (timings and speed-ups)

As seen in Table 1, for all the treated cases the obtained speed-up is less
than 1 (i.e. a slowdown factor), showing a deterioration of the execution time
due to this parallel implementation. So, it is possible to conclude that no gain
time is obtainable in this approach. To analyze this behavior it is important
to return to the description of the Listing 1.3. As already noted, the parallel
function selVarHighCost in this implementation are located into the main loop
of the algorithm, so THNUM activities are created, scheduled and synchronized
at each iteration in the program execution, being a very important source of
overhead. The results we obtained suggest that this overhead is larger than the
improvement obtained by the implementation of this parallel strategy.

Turning to the second approach, Table 2 shows the results obtained with this
strategy. Equally, the number of activities spawn, in this case at the beginning,
was varied from 2 to 8.

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 8 8 places

MSP-100 11.98 1.15 0.80 0.86 13.87
MSP-120 24.17 1.23 0.94 0.63 38.34

CAP-17 1.56 0.56 0.30 0.25 6.35
CAP-18 12.84 0.74 0.39 0.27 46.84

Table 2. Functional Parallelism – second approach (timings and speed-ups)
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Even if the results are slightly better, there is no noticeable speed-up. This
is due to a new form of overhead due to the synchronization mechanism which
is used in the inner loop of the algorithm to assign tasks and to wait for their
termination (see Listing 1.4).

4.3 Data Parallel Performance

Table 3 and Figure 3 document the speedups we obtained when resorting to
data parallelism. Observe that, for this particular set of runs, we used a different
hardware platform, with more cores than for the other runs.

Problem time (s) speed-up with k places time (s)
instance seq. 8 16 24 32 32 places

AIP-300 56.7 4.7 7.1 9.9 10.0 5.6
NPP-2300 6.6 6.1 9.8 10.5 12.0 0.5
MSP-200 365 8.3 12.2 13.6 14.6 24.9
CAP-20 731 5.6 12.0 16.1 20.5 35.7

Table 3. Data Parallelism (timings and speed-ups)

Fig. 3. Speed-ups for the most difficult instance of each problem

The performance of data parallel version is clearly above the performance
of the functional parallel version. The resulting average runtime and the speed-
ups obtained in the entire experimental test performed seems to lie within the
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predictable bounds proposed by [21]. The Costas Arrays Problem displays re-
markable performance with this strategy, e.g. the CAP reaches a speed-up of
20.5 with 32 places. It can be seen that the speed-up increases almost linearly
with the number of used places. However, for other problems (e.g. MSP), the
curve clearly tends to flat when the number of places increases.

5 Conclusion and Future Work

We presented different parallel X10 implementations of an effective Local Search
algorithm, Adaptive Search in order to exploit various sources of parallelism. We
first experimented two functional parallelism versions, i.e. trying to divide the
inner loop of the algorithm into various concurrent tasks. This turns out to yield
no speed-up at all, most likely because of the bookkeeping overhead (creation,
scheduling and synchronization) that is incompatible with such a fine-grained
level of parallelism.

We then proceeded with a data parallel implementation, in which the search
space is decomposed into possible different random initial configurations of the
problem and getting isolated solver instances to work on each point concurrently.
We got a good level of performance for the X10 data-parallel implementation
with monotonously increasing speed-ups in all problems we studied, although
they taper off after some point.

The main result we draw from this experiment, is that X10 has proved a
suitable platform to exploit parallelism in different ways for constraint-based lo-
cal search solvers. These entail experimenting with different forms of parallelism,
ranging from single shared memory inter-process communication to a distributed
memory programming model. Additionally, the use of the X10 implicit commu-
nication mechanisms allowed us to abstract away from the complexity of the
parallel architecture with a very simple and consistent device: the distributed
arrays and the termination detection system in our data parallel implementa-
tion.

Considering that straightforward forms of parallelism seem to get lower gains
as we increase the number of cores, we want to look for ways of improving on
this situation. Future work will focus on the implementation of a cooperative
Local Search parallel solver based on data parallelism. The key idea is to take
advantage of the many communications tools available in this APGAS model,
to exchange information between different solver instances in order to obtain a
more efficient and, most importantly, scalable solver implementation. We also
plan to test the behavior of a cooperative implementation under different HPC
architectures, such as the many-core Xeon Phi, GPGPU accelerators and grid
computing platforms.
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Algorithm 1 Adaptive Search Base Algorithm

Input: problem given in CSP format:

– set of variables V = {X1, X2 · · ·} with their domains
– set of constraints Cj with error functions
– function to project constraint errors on vars (positive) cost function to minimize
– T : Tabu tenure (number of iterations a variable is frozen on local minima)
– RL: number of frozen variables triggering a reset
– MI: maximal number of iterations before restart
– MR: maximal number of restarts

Output: a solution if the CSP is satisfied or a quasi-solution of minimal cost otherwise.

1: Restart← 0
2: repeat
3: Restart← Restart+ 1
4: Iteration← 0
5: Compute a random assignment A of variables in V
6: Opt Sol← A
7: Opt Cost← cost(A)
8: repeat
9: Iteration← Iteration+ 1

10: Compute errors constraints in C and project on relevant variables
11: Select variable X with highest error: MaxV
12: . not marked Tabu
13: Select the move with best cost from X: MinConflictV
14: if no improvement move exists then
15: mark X as Tabu for T iterations
16: if number of variables marked Tabu ≥ RL then
17: randomly reset some variables in V
18: . and unmark those Tabu
19: end if
20: else
21: swap(MaxV ,MinConflictV ),
22: . modifying the configuration A
23: if cost(A) < Opt Cost then
24: Opt Sol← A
25: Opt Cost← costs(A)
26: end if
27: end if
28: until Opt Cost = 0 (solution found) or Iteration ≥MI
29: until Opt Cost = 0 (solution found) or Restart ≥MR
30: output(Opt Sol, Opt Cost)
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Abstract. Cyber Physical Systems (CPS) are technical devices typically
consisting of numerous interacting electronic and mechanical components.
A CPS incorporates many forms of control and monitoring based on a
specific selection of physical quantities like temperature and acceleration.
When designing a CPS from scratch, the question arises how to identify
an optimal setting of components and interaction schemes. Due to the
large number of combinations, resulting properties of system candidates
like energy consumption or overall feasibility are hard to predict.

We present a constraint-based approach to model and inspect configu-
rations of a CPS in an early stage of its development cycle. In addition,
utilisation of constraints facilitates consideration of incomplete systems
towards identification of valid configurations. A case study concerning
a CPS for fall detection using temperature and acceleration sensors
demonstrates the practicability of our approach.

1 Motivation

Nowadays, computer systems can be found in most aspects of human life. They
emerged as an essential part of daily life in industrialised countries. For example,
the percentage of costs for electronics and software in cars is currently already
more than a third and assumed to increase in the future [1]. However, where
previously relatively closed embedded systems have done their work, we now have
to deal with a set of embedded systems. These systems are much more powerful
and connected to each other, which leads to a higher complexity of the resulting
entire system. In order to cope with this complexity, new methods to analyse
and to create such systems are needed. This led to the concept of Cyber Physical
Systems (CPS) [2].

CPS means that calculations and physical processes influence each other. In
addition, a CPS differs from a traditional embedded system by using a lot of
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heterogeneous and independently developed components, which are intercon-
nected to each other. A variety of different application areas benefits from these
CPS. Examples include the control of manufacturing systems and production
processes, traffic control systems, medical devices and systems for monitoring
patient conditions or assistance systems in the field of assisted living.

In order to be able to fulfil the increasing requirements for these applications,
embedded systems must be rich in functionality based on an efficient design.
Therefore, CPS are often built by connecting multiple components or even by
composition of complete embedded systems. In addition, also non-functional
behaviour as timing, costs, and power consumption have to be taken into account.
Developers of such CPS are therefore faced with entirely new design challenges.

The properties of a CPS as a whole depend on both the properties of the
system components as well as the systems architecture. For the developer of
a CPS, it is difficult to know in advance how a system behaves with certain
components. In the beginning, the developer has only a raw idea about the system
currently under design, e.g. he may know which components are mandatory, but
does not know how exactly to configure them, or if there are some unused reserve
available to add further optional components. So we are looking for a method to
be able to iteratively deduce the structure and the behaviour of a system starting
from an incomplete configuration. As a possible solution, we present a constraint-
based approach, implemented in a prototypical tool. At the moment, this tool just
covers specific CPS, which we will describe later, but it already demonstrates its
benefits. The developer can specify an individual CPS and gets a Boolean answer
whether the current configuration is feasible or not. Beyond that, constraints
allow the developer to specify incomplete systems by replacing unknown values,
for instance for a sensor configuration, by variables. The underlying solver then
is able to evaluate all given constraints to calculate valid domains for those
variables, which the developer in turn can use to iteratively complete the system.

The main advantage here lies in the possibility to save time and costs for
prototyping, because only those configurations are generated that own the desired
properties. This prevents the developer from wasting time for testing systems
with inappropriate configurations.

This paper is structured as follows. Section 2 describes related work in the
field of optimizing non-functional requirements, such as power consumption and
performance. Section 3 is dedicated to the general modelling approach for the
system components. The implementation of our approach is described in Section 4.
A case study based on the real word application of a smart vest is shown in
Section 5. Conclusions and an outlook are given in Section 6.

2 Related Work

The evaluation of non-functional requirements such as power consumption or tim-
ing can be divided into simulation-based and static approaches. Simulation-based
approaches (see e.g. [3]) are based on running an executable system description
e.g. in a system description language. Languages such as SystemC [4] allow to
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simulate complete systems including software and hardware. Simulations may
also include the timing behaviour. The timing can be modelled at different levels
of abstraction depending on the needed simulation performance and accuracy [5].
Although these approaches necessitate a complete system model, the evaluation
is done using real execution traces of the system.

Static approaches, in contrast, work on simplified models of the components.
Therefore, they are applicable before a real system model exists and enable an
early optimization regarding desired properties.

Hang, Manolios, and Papavasileiou [6] discussed a constraint-based synthesis
of cyber-physical architectural models using an IMT (Integer linear programming
Modulo Theories) solver. Here, models are specified using the modelling language
CoBaSA in a declarative way. Exclusively scheduling problems are described by
real-time constraints.

Similarly, in our approach we use interval constraint-based methods for the
system description but aim at taking further and more general non-functional
system requirements into consideration.

Energy- and/or temperature-constrained scheduling is done using e.g. model
checking approaches [7], local search [8], or constraint programming [9]. Chuo, Liu,
Li, and Bagherzadeh [10] present the IMPACCT design tool along with a method-
ology for power-aware embedded systems which combine static components and
simulation. The designer gives as system input a model of the application and
timing- and power-constraints. Furthermore, he provides a model of the target
architecture with components from a library instantiated and configured by the
user. The tool performs power-aware scheduling [11] using a heuristic local search
approach on a graph of timing constraints between tasks. It supports a simulation
back-end for the integrated evaluation of the system under design. In contrast to
these approaches, we abstract from the scheduling level and aim at the feasibility
of the system model. Future extensions of our tool might include the application
of constraint-based methods for modelling the different system levels.

In [12], Katoen, Noll, Wu, Santen, and Seifert present a method for deter-
mining the software/hardware deployment that minimizes the expected energy
consumption. Their method combines constraint-solving techniques – the SMT
(Satisfiability Modulo Theories) solver Z3 – for generating deployment candidates
and probabilistic analyses of Markov chains for computing the expected energy
consumption of the respective deployment. In contrast, we consistently apply the
constraint-based approach also to the modelling of non-functional requirements
such as timing behavior and power consumption.

3 Modelling a Cyber Physical System

Obtaining an early perception of the overall power consumption caused by the
system after assembly is one of the main applications of our approach. Further, it
is required that the system in its current configuration is valid, which means that
all existing functional and non-functional requirements are fulfilled. Primarily
it would be nice if we could specify systems which are partially incomplete and
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could receive suggestions for the missing parts. This, for example, would be useful
to find out, whether it is possible to add one or two additional components which
make a system more reliable and/or useful, or not. Another possible intention
could be to estimate the CPU frequency which ensures the functionality of the
system. This would help to save free CPU capacity, which again reduces the
overall systems power consumption and increases the battery lifetime. To be able
to gather such information we need specific data about a CPS which is discussed
in this section, as well as the behavioural profile.

3.1 General Structure of a System

In the following, we assume that a system consists of these types of components:

– One CPU or microcontroller running a software application (or an operating
system).

– At least one bus connecting external components (sensors, actuators) to the
CPU, or another module like a bluetooth device. Main characteristics of
such components is that they occupy one of the microcontrollers peripheral
interfaces.

– There should be at least one sensor or actuator connected to a bus to collect
information from the environment or to perform interactions with it.

At the moment, we do not model inter-CPU communication in our model,
hence we assume that a system just consists of one single CPU. However, this
is no general restriction of our approach. We assume further that every bus
is connected to exactly one CPU and every sensor to exactly one bus. If the
system would consist of more than one CPU, it could be divided into appropriate
subsystems.

To estimate the overall power consumption of such systems we need certain
static and dynamic parameters of our components, e.g. the supply voltage, the
states of the system and their statistical frequency and the currents of the
components. To allow a more precise approximation for the power consumption
we distinguish at least between two power modes for every component. So, a
component can either be in an active or inactive/standby mode.

To be more specific, a CPU or microcontroller is determined by static units
like the supply voltage V cc, the processor clock frequency f and current tuples
for each supported mode, which would be in this case Iactive and Iinactive. Each
tuple further consists of two values, a lower bound Ilow for the current, and an
upper bound Ihigh. These values will later used to form an interval for the current
of the component. Some data sheets provide additionally a standard value for
the current. The developer here can decide himself, whether he uses the standard
value as a bound or not. In addition, every microcontroller consists of several
peripheral interfaces PIi, each supporting various protocols Proti like UART, I 2C
or SPI. The buses, sensors, and modules consist of a set of possible configurations
Ci and a configuration index CfgIndex, which indicates with which configuration
the component is running. Analogously to the CPU, we distinguish between
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two different modes, each described by a power consumption value (Pactive and
Pinactive)

3 for the buses, and sensors or modules only support specific protocols
within individual configurations. Moreover, a system is described by several states,
whereas each state marks some components to be active while others may not.
This could be described by adding a set of active states S to the sensor or module
components. Thus the structure of a system can be formalized as follows:

– CPU = (Vcc, f, Iactive, Iinactive, P I1, . . . , P Im)

– I = (Ilow, Ihigh)

– PIi = {Prot1, . . . , P rotn}

– BUS = (CfgIndex, {CBUS1 , . . . , CBUSp })
– CBUSi = (f, Pactive, Pinactive, P I)

– Sensor = (CfgIndex, S, {CSensor1 , . . . , CSensorq })
– CSensori = (Vcc, f, Iactive, Iinactive, {Prot1, . . . , P rotk1})
– S = {StateId1, . . . , StateIdr}

– Modulei = (CfgIndex, S, {CModule
1 , . . . , CModule

s })
– CModule

i = (Vcc, Iactive, Iinactive, {Prot1, . . . , P rotk2})

In addition, we need mappings to determine the connections between compo-
nents:

– connectedBUS(CPU, p)→ {b | bus b with a configuration connected to the
given CPU using a protocol p}

– connectedSensors(bus)→ {s | sensor s with configuration connected to the
given bus}

– connectedModule(CPU, p)→ {m | module m with a configuration connected
to the given CPU using a protocol p}

Beyond these mappings, we can define additional rules which are fulfilled by
a correctly designed system. For instance:

– There should be at most as many buses or modules connected to the micro-
controller as peripheral interfaces are available.

– Modules should only be connected to interfaces, if they have at least one
type of protocol in common.

– All sensors on the same bus have to use the same protocol, which further
should also be supported by the corresponding peripheral interface.

3 The usage of the combination of the voltage and the current for some components,
while for others directly employing the power consumption is caused by the availability
of these value within the later example. Actually, there should be no difference in
switching between both representations.
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3.2 Cost Parameters and Behavioural Profile

Within the parameters of the aforementioned components, we also take the
following quantitative parameters into consideration, in order to determine a
valid system including its expected power consumption, and potential lifetime.

– An approximated number of lines of code (LOC) the CPU needs to process
a single sensor data packet for each type of sensor.

– The approximated number of LOC to retrieve a data packet for each type of
sensor.

– The bus overhead to transmit a data value packet.
– Each system state is executed for a statistically derived duration.

All these values are allowed to vary between different sensor or bus types.
With regard to the analysis of the estimated power consumption of the system,

it is important to safely exclude invalid systems. The validity for a system is only
restricted to the following rules:

– The CPU must be able to process the data of all connected sensors, and
– each bus must be able to transmit the data of its sensors.

4 Modelling Cyber Physical Systems using Constraints

Based on the model introduced in Section 3, we will now present some interesting
key points of the implementation of our prototypical tool. We describe how a
system can be modelled using constraints and what kind of benefit we obtain in
comparison to an imperative implementation.

We are using the ECLiPSe Prolog solver [13] with the IC library. This
library allows to model integer and real interval arithmetic constraints in one
solver, which perfectly fits for our needs. On the one hand we have to deal with
floating point numbers, which can be represented directly by real variables, to
calculate units like the power consumption. In this way, we avoid an artificial
transformation of those variables into finite domain variables, which would cause
a loss of accuracy. On the other hand, we are mainly interested in lower and upper
bounds for these variables. The internal work-flow of the Prolog program for
finding a valid solution mainly consists of two mandatory steps and one optional
step:

4.1 Step 1 - Validation of the Architectural Design

Here, we ensure that the given system is valid with respect to the design (cf.
Subsection 3.1 correctly designed system).

The encoding of a CPS in Prolog is based on nested lists. Let us sketch the
procedure in brief. As already mentioned, a system consists of various buses and
modules, so we represent each of them by a list, grouped together in another
list, whereby the location in the list indicates to which peripheral interface of
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the microcontroller this component is connected. Listing 4.1 shows the general
pattern, which contains a list for a bus and each module. Here the bus would be
connected to the first microcontroller interface, the module to the second one
and so on.

Listing 4.1 Idea of encoding a system in Prolog

1 [ [ [ CfgIndex ] | Sen sorL i s t ] , % bus
2 [ [ CfgIndex , A c t i v e S t a t e s ] ] , % module
3 . . . ] % f u r t h e r buses and modules

To be able to post constraints, which guarantee the correct design, is now
quite easy if we are using some predicates, which help us to extract the needed
variables and constants. For instance, take a look at Listing 4.2, where we can
see how to ensure that the protocol of the bus or module is supported by the
current peripheral interface. To be able to distinguish between different cases,
i.e. between buses and modules, we use the structure of the lists (see Line 6 and
Line 14). So we can be sure, that in Line 8 we are dealing with a module like a
bluetooth device, or, in the other case, in Line 15 with a bus. At the same time,
we extract the variable which stores the configuration index of the component.
This variable is either bound to a specific value indicating which configuration
is used, or it is currently unbound. In this case the domain contains all values,
which are still feasible. To force that the component protocol is an element of
the supported protocols of the current interface we use the member predicate (cf.
Line 9 and Line 16). In Line 17, another predicate ensures that the connected
sensors also apply the same protocol, respectively. Since the supported protocols
of the components are just facts, which have to be given, e.g. via data sheets,
these values are outsourced in constant predicates. These predicates ensure that
the second argument gets bound to the protocol specified by the index (first
argument). Advantage of using such predicates instead of constants is that they
do not have to be passed as parameters all the time. An example for such an
predicate is shown in Listing 4.4 and will be explained later.

4.2 Step 2 - Ensuring Functional and Non-functional Requirements

After finishing the first step, we can assume that we have a well designed system,
which now needs to be checked for its functional and non-functional requirements.
Since these requirements are mostly of physical quality, like the systems power
consumption or the minimum needed bus frequency to transport all the sensor
data, they can also be excellently represented using arithmetic constraints. Note
that the power consumption of a component cannot be precisely predicted. This
is why we are using intervals with a lower and an upper bound as defined in
Section 3.
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Listing 4.2 Ensuring the usage of a correct bus protocol

1 % Ensure t h a t the g iven components are us ing p r o t o c o l s ,
2 % which are suppor ted by the p e r i p h e r a l i n t e r f a c e s .
3 valPeriCompProtocols ( , [ ] ) .
4 valPeriCompProtocols ( [ I n t e r f a c e | I T a i l ] , [Com | BTail ] ) :−
5 % Ensure , t h a t the curren t component i s a module .
6 Com = [ [ CfgIndex , ] | [ ] ] ,
7 ! ,
8 getComponentProtocols ( CfgIndex , ModuleProtocols ) ,
9 member ( ModuleProtocols , I n t e r f a c e ) ,

10 . . .
11 .
12 valPeriCompProtocols ( [ I n t e r f a c e | I T a i l ] , [Com | BTail ] ) :−
13 % Ensure , t h a t the curren t component i s a bus .
14 Com = [ [ CfgIndex ] | Sensors ] ,
15 ge tBusProtoco l ( CfgIndex , BusProtocol ) ,
16 member ( BusProtocol , I n t e r f a c e ) ,
17 v a l S e n s o r P r o t o c o l s ( Sensors , BusProtocol ) ,
18 valPeriCompProtocols ( ITai l , BTail )
19 .

To allow a more accurate estimation of the power consumption, we consider
different states of the systems. Within these states the behaviour may change
widely, because sensors are allowed to switch into standby mode, which means
that they are inactive to save power, while other components may wake up. The
cpu and the buses then have to process or transmit a different amount of data,
which also affects the power consumption and of course the validity of the system
design. This fact is also supported by the current prototype. Since we also want to
predict the overall systems lifetime, which mostly depends on the systems overall
power consumption, we need stochastic information about the state’s average
execution time. This information can then be used to weight the individual power
consumptions. Listing 4.3 shows the idea of how the distinction between the
active and inactive mode especially works for sensors, but of course this idea
is applicable also for modules. The predicate calcPConsumpSensors gets a list of
sensor’s, whereas each sensor knows its states where it is active (StatesWhenActive,
Line 3), the current system state StateNo, which power consumption should be
calculated, and a variable Psensors for the final power consumption. In Line 4
we ensure that the current system state is within the list of the sensors active
states. If this clause fails, the Prolog engine will backtrack and consider the
next clause in Line 12. The calculation of the power consumption for a sensor is
performed in the Lines 7 - 9.

In Line 7 and Line 8 we see two further examples for constant predicates.
A schematic implementation for those predicates is shown in Listing 4.4. As
noticeable in Line 2 these predicates are implemented using a specific constraint
named element, so that the given Index variable currently does not have to be
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Listing 4.3 Implementation to regard different component states

1 calcPConsumpSensors ( [ ] , , 0 . 0 ) .
2 calcPConsumpSensors ( [ Asensor | Tai l ] , StateNo , Psensors ) :−
3 Asensor = [ CfgIndex , StatesWhenActive ] ,
4 member ( StateNo , StatesWhenActive ) ,
5 ! ,
6 % Use power consumption f o r a c t i v e mode
7 ge tSensorVo l tage ( CfgIndex , UsValue ) ,
8 getSensorCurrent ( CfgIndex , IddValue ) ,
9 Psensors $= IddValue ∗ UsValue + P t a i l ,

10 calcPConsumpSensors ( Tail , StateNo , P t a i l )
11 .
12 calcPConsumpSensors ( [ Sensor | Tai l ] , StateNo , Psensors ) :−
13 % Use power consumption f o r s tandby mode
14 . . .
15 .

bound to a specific value. Therefore the domain of the Value variable can also
contain all possible values, which will all adopted in the subsequent computation
of the program. The constants are values for the configuration related to a specific
unit like the current or voltage of a component, and can mostly be found in the
corresponding data sheets.

Listing 4.4 Using constant predicates to encode constants.

1 ge tCon s tan t Pred ica te ( Index , Value ) :−
2 element ( Index , [ Const 1 , Const 2 , . . . , Const n ] , Value ) ,
3 .

After all necessary information has been accumulated into one single equation,
which estimates the systems overall power consumption, we are able to evaluate
the possible system life time. It should be mentioned here, that we currently do
not consider further energy consuming properties like the battery self-discharge
or the influence of the environmental temperature.

4.3 Step 3 - Selecting Specific Values for the Unknown Components

The program is able to determine solutions, by values and sets of values for
known and unknown components. Since these sets might also be very large, this
optional step should select the most relevant values. For instance, a system with
one unknown sensor may have enough resources to clock a sensor with at most
200 Hz then of course it would also be possible to clock it with a slower sample
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rate like 100 Hz or 50 Hz and so on, but these values mostly do not provide any
new information for the user. Therefore, it seems to be more useful to select
specific values. Please note, that the meaningful values are not always the largest
values within the valid range, e.g. a bus should be clocked with the smallest
available frequency since this almost implies a smaller power consumption.

5 Application to an Example System

Now we will demonstrate the features of our tool in its current state via a
case study. The study is derived from a real world low power embedded system
platform, which for instance can be used for fall detection of a human person.
The example system will be introduced and motivated in Subsection 5.1, and
then we demonstrate in Subsection 5.2 how the used components can be modelled.
Finally, we will show some evaluation results for different input assignments in
Subsection 5.3.

5.1 A Practical Example – The Smart Vest

A recent major challenge in the western world is the increasing proportion of
elderly people in the population. This is accompanied by an increased burden of
the health care systems. Smart clothing defines a branch of research within this
area.

Our example system is a smart vest CPS designed for elderly people including
acceleration and temperature sensors to detect falls. Several similar systems have
been developed and are partly commercially available (cf. [14]).

As elderly people certainly want to be able to live independently and self-
determined as long as possible, a smart vest can be used to monitor people in
residential homes in a more discreet way, since for them a fall often has more
serious consequences than for younger people. In a residential home, the staff
should be made aware of falls to be able to check if everything is still ok. A
sketch of the example system is shown in Figure 1, and consists of the following
components:

– One TIMSP430 8-bit microcontroller [15].
– Two ADXL345 acceleration sensors [16] to detect falls.
– One SHT21 humidity-temperature sensor [17] to detect if the vest is worn.
– An I2C bus to connect the sensors to the microcontroller [18].
– A (RN41) bluetooth radio module [19] to transmit information to the staff

of the residential homes. This module is directly connected to the microcon-
troller.

– A standard 3.3 V, 2000 mAh battery to provide the power for the complete
system.

In such a system low power design is especially important, since it has direct
influence on the weight (battery size) and the runtime of the overall system. But
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Fig. 1. A sketch of an intelligent vest prototype.

on the other hand the sensors have to operate with an appropriate sample rate,
so that a reliable fall detection can be guaranteed. This again stands in conflict
to a higher sample rate, which implies an higher overall power consumption.
Furthermore, we should ensure that the CPU is able to process all values or
the bus is able to transmit all sensor values. Such information can be perfectly
encoded using constraints.

5.2 Modelling the Components

In the following, we describe the parameters used to model the system components.

TIMSP430 Microcontroller and Application Software: The microcontroller in-
cluding the running application mainly influences the power consumption of
the overall system. Figure 2 shows an overview of the program execution. After
the system initialization (initialize system) the system is in State 1 (Standby
state), where only the temperature sensor gets requested (request temperature
sensor) and processed (process temp. value). If a person dresses the vest, then the
temperature may rise about 34◦ C and the system should switch to State 2 (Fall
detection state). In this state all three connected sensors will be requested (request
temperature and acceleration sensors ) and their values processed (process values).
If a fall is detected, the system will switch to State 3, where the bluetooth module
will send a specific help message. If no fall is detected, then it will be checked
whether the vest is still carried by a person. Note that the microcontroller puts
itself into a sleep mode (low power mode 3 (LPM3)) to save some power, until
new sensor values need to be requested. Note, that the controller will wake up
automatically.

The overall power consumed by the microcontroller depends on the current
application and the sample rates of the sensors. The more extensive the applica-
tion, the more energy is consumed. The same applies to the number of sensor
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Fig. 2. Program loop of a possible fall detection system.

values. If more values are processed then the microcontroller operates longer
in the power state active mode (AM). The power consumption, furthermore,
depends on the clock frequency of the processor and the supply voltage, which
has been taken from the data sheet, whose typical and maximum values have
been used. As we apply an interval solver, both values can be easily used in the
system. The power consumption for the LPM3 has also been taken from the data
sheet, and, however, does not depend on the system clock frequency.

Acceleration Sensors: The acceleration sensors are modelled following the op-
erating principle of an ADXL345 acceleration sensor [16]. This sensor supports
different sample rates, where with each sample value data packets are created.
The sample rate ranges from 6.25 Hz up to 3200 Hz. Depending on the selected
sample rate the power consumption of the sensor varies. Each packet consists
of 6 Bytes of data (48 bits), which need to be transferred via the bus to the
microcontroller. Due to the overhead of the I2C protocol, the transmission of one
sensor value takes 81 I2C cycles. Additionally, these sensors also could utilise a
standby mode to consume as few power as possible, which is done in State 1.

Temperature Sensor: The temperature sensor is modelled in accordance with the
SHT21 (humidity and temperature sensor) [17]. For this scenario it is sufficient to
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just allow one possible sample rate about 1 Hz, i.e. every second one measurement
is done. This low sample rate furthermore permits to neglect the self-heating
effect of this sensor.

I2C Bus: The bus system is connecting the sensors with the microcontroller
and can be clocked either with 100 kHz or 400 kHz. Due to the aforementioned
protocol overhead, the actual data rate, for sensors is lower than 100,000 or
400,000 bits/s. An average power consumption for transmitting data has been
calculated for the bus system using a Spice model. This value is independent
of the actual data. If the bus does not transmit anything, then it consumes no
power. Note that the bus speed also influences the time to transmit the sensor
values to the microcontroller, i.e. the request states.

Bluetooth Data Module: The data values for this component are based on the
RN41 module, which also could put into a power saving standby mode. The power
consumption model of this component has been simplified so that we assume,
that the module constantly transmits values with the same power consumption
independent from the current environment.

Our tool only generates functionally correct solutions, i.e. the rules specified
in Subsection 3.2. Furthermore, it directly tries to reduce the number of possible
solutions by selecting the maximum possible sensor sample rates and the minimum
possible bus frequencies.

5.3 Evaluation of the Results

The example system was evaluated for different scenarios to show the possibilities
and power of the tool. It was assumed, that the application running on the
microcontroller takes about 2,000 processor cycles to request one sensor value
and around 5,000 to process it. Note that this is no general restriction of our
approach, however we here assume that worst case execution times of program
functions are available.

In the first scenario the clock frequency of the microcontroller is fixed to
2.4576 MHz, as well as the structure of the system, i.e. the developer does not
want to add any new components. Therefore, the tool has to determine the
overall power consumption and to estimate the systems lifetime regarding to the
mentioned battery. With lifetime we mean the duration, where the system is able
to perform a full emergency call. In consequence, if the power of the battery is so
low that this would not be possible then the battery is declared as empty. The
acceleration sensors were clocked to 50 Hz and the I2C bus to 100 kHz. The tool
then estimates a overall power consumption between 9.455 mW and 9.516 mW
and in the best case the battery would last for around 761 hours (≈ 31 days).

In the second scenario the developer wants to know whether it would be
possible to add a third acceleration sensor, so that the reliability of the fall
detection would increase. This implies that the sensor at least should be clocked
with a sampling rate greater or equals than 25 Hz. Furthermore, the developer
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needs system lifetime of at least 4 weeks. The tool here is able to answer that
”question” and determines a sample rate of at most 200 Hz for the new sensor.

The last scenario could take place in a quite early stage of the system design.
Here the developer has the fewest information about the later system available.
He only knows, that he needs two acceleration sensors, a temperature sensor and
a bluetooth module. We assume that he does not know on which sample rates
the sensors should operate, how the CPU has to be clocked and did not even
thought about a correct design, i.e. he does not know which bus protocols he
has to use. In this case, the optional third step of the tool should not be used,
due to the fact that it would try to maximize the sample rates of the sensors,
which would therefore cause a maximization of the CPU frequency, but the tool
is still able to produce some outputs. The developer receives the information
that the CPU must be clocked at least with a speed of 0.95500 MHz and one
of the acceleration sensors can be clocked with 400 Hz at most. Furthermore,
the system would last between 24 and 34 days, and the bus has to use the I2C
protocol and the bluetooth module the UART protocol.

6 Conclusion

In this paper we presented an approach to check the feasibility of CPS by
constraints. We outlined that they are not only useful to check specific properties,
but rather help to search the design space for valid configurations with respect to
non-functional requirements, like for instance the power consumption. We further
have shown that it is possible to respect dynamic units to retrieve more specific
statements.

The applicability of our approach was shown by a real world case study. The
usage of constraints is very promising, due to the fact that once the system is
modelled, nearly every combination of known and unknown components a user
could think of can be handled. Moreover, the approach allows to investigate
the system design space statically and partly dynamically. It is also possible to
optimize some criteria to reduce the number of possible solutions, which mainly
should help the user to extract meaningful information faster.

We will investigate further ways to make this tool more general, e.g. to
use a model driven development approach, where the user might be able to
specify its own system with its own requirements and constraints. This could
also open up the possibility to consider some economic properties like the cost of
a specific component, so that the system will be constructed with the cheapest
component available which fulfils the requirements. Furthermore, we want to
extend our approach for larger and more detailed system models with broader
design alternatives.
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Abstract. The open–source business logic integration platform DROOLS sup-
ports a declarative, rule–based approach for problem solving. However, rules are
implemented in a JAVA–based way in DROOLS, which is difficult to understand
for non–programmers. The rules for a given scenario are usually provided in natu-
ral language by non–programmers, for instance business analysts; for controlling
the correctness of the implemented rules, it is crucial to integrate these business
analysts into the coding phase.
To bridge the gap between programmers and non–programmers, Domain Specific
Languages (DSLs) allow for implementing rules in a language that is closer to
natural language. In a DSL, rules can be written, read, and modified much easier,
even by non–programmers. DROOLS offers a DSL editor, but both developing a
DSL and implementing rules within the DSL is still difficult.
Thus, in this paper, we present a tool, DSLR Generator, which simplifies the cre-
ation of DSLs and the implementation of rules within the DSL. A graphical user
interface supports the user step by step in the development process. Reusable and
generic DSL templates can be used to write rules in a more readable format. The
maintenance of the meta–data for the rules in DROOLS is supported, too.
With DSLs, it becomes easier to write rules in DROOLS that can also be parsed
in PROLOG. Although the evaluation mechanism of DROOLS is much different
from the resolution mechanism of PROLOG, we can support the rule develop-
ment process by PROLOG technology: the rules could be analyzed, verified, or
transformed by PROLOG software.

Keywords. Domain Specific Lagnuages, DROOLS, PROLOG, Logic Programming,
Business Rules.

1 Introduction

The business rules approach [7] provides methodologies for system development that
create applications as white boxes, whose inner business logic is visible, because it is
separated into business rules written with a simple rule language, or even in natural lan-
guage. Meanwhile, Business Rule Management Systems (BRMS) have been developed,
which can define, deploy, execute, monitor, and maintain the variety and complexity of
decision logic that is used by operational systems within an organization or enterprise.
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Unlike a general–purpose language, such as Java, a Domain Specific Language
(DSL) is a programming language of limited expressiveness for a particular problem
domain [6]. It can be distinguished between internal and external DSLs. Examples of
external DSLs are programming languages dedicated to a particular purpose, such as
SQL for relational database languages and HTML for displaying web pages.

The well–known BRMS DROOLS [8] supports the development of a DSL and the
editing of rules written in a DSL using only basic editors. But, the DSL editor provides
only a few features; e.g., a content assist is not available as in the open development
platform Eclipse, that is very popular within the JAVA community. To develop a DSL
with the DSL editor of DROOLS, most of the DSL must be typed word by word without
support or guidance. Moreover, there is no component which supports the editing of
rules for a developed DSL, which makes it very difficult for domain experts who are not
programmers to write DSL rules. Therefore, we have developed a tool called DSLR Gen-
erator, which is intended to improve the development process within DROOLS, since it
is able to generate a DSL and DSL rules semi–automatically.

The rest of the paper is organized as follows: In Section 2, we give an overview of
DROOLS, the used rule language, and the development of a DSL in DROOLS. In Sec-
tion 3, we present the DSLR Generator with its components and illustrate our approach
by an example from the financial sector. In Section 4, we describe a PROLOG–based
analysis, that can be used during the development phase to find anomalies or errors.
Finally, we summarize our work in Section 5.

2 The Business Logic Integration Platform DROOLS

The BRMS DROOLS consists of several modules. The core module EXPERT of DROOLS
is basically a production rule system. The module GUVNOR provides a web based
BRMS and the module FUSION deals with complex event processing. The module
PLANNER works as a planning engine for optimizing scheduling problems.

2.1 The Core Module DROOLS EXPERT

The module EXPERT provides the inference engine of DROOLS for production rules
based on an improved implementation of the Rete algorithm, called ReteOO. Facts are
stored in a working memory, the rules are loaded by DROOLS in a production memory.
During the inference process, facts can be modified and retracted, and new facts can
be asserted. Conflicting rules are managed by an agenda that uses a conflict resolution
strategy, see Figure 1 from [9]. Rules written in the DROOLS Rule Languange and are
saved in simple text files with the extension .drl. A package is a set of rules. The
package name itself is only a namespace and is not related to the folders. import
statements work just like in JAVA.

DROOLS automatically imports classes from the JAVA package of the same name. In
DROOLS, we have full access to the functionalities of almost all JAVA libraries. Global
variables can be defined with globals. Complex logic can be outsourced and used
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Fig. 1: High–Level View of the Production Rule System DROOLS EXPERT [9].

within a rule by a reference via the statement functions. A rule must have a unique
name within a package. If a rule is added to package already containing a rule with the
same name, then the new rule replaces the old one. Listing 1.1 shows a simple rule
in DROOLS Rule Language format. The left hand side of a rule, which starts with the
keyword when, is the condition part. Conditions consist of patterns that try to match
facts in the working memory; patterns can have constraints to narrow down the set of
potentially matching facts. The right hand side of a rule, which starts with the keyword
then, is basically an action block, that can contain almost arbitrary JAVA statements.
All methods or attributes of classes within the working memory can be accessed; exter-
nal classes can be accessed after an import statement, too.

Listing 1.1: A Rule in the DROOLS Rule Language Format

package LoanApproval

rule "microfinance"
when

application: Application(loan_amount < 10000,
duration_year <= 5 )

customer: Customer(credit_report == "good")
then

application.approval();
application.setInterest_rate(0.028);

end

2.2 Development of Rules in Domain Specific Languages in DROOLS

Rules in a Domain Specific Language are developed in DROOLS in two steps. First,
the expressions of the DSL are designed, and then the mapping of the expressions to
the rule language of DROOLS is written into a file with extension .dsl. Listing 1.2
shows a fragment of a .dsl file, where [when] indicates the scope of the expression
as condition, and [then] is used for actions, respectively. The part before the single
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equality sign "=" is an expression of the DSL, and the part behind is the translation to
the DROOLS Rule Language format.

Listing 1.2: A Fragment of a .dsl File

[when] The customer with monthly_income is greater than {value1}
and credit_report is {value2} =
customer: Customer(

monthly_income > {value1}, credit_report == {value2})

In a second step, we write rules consisting of expressions of the DSL that are defined
in the .dsl file just mentioned. The rules written in the DSL are saved to a file with the
extension .dslr. Listing 1.3 shows a single rule, where we have used the expression from
Listing 1.2 in the condition part of the rule.

For processing the rules defined in the .dslr file, DROOLS uses the mapping infor-
mation contained in the .dsl file to internally transform the rules into the DROOLS Rule
Language format.

Listing 1.3: A DSL Rule

rule "microfinance"
when

The loan with loan_amount is smaller than or equal to 5000
and duration_year is no more than 3
The customer with monthly_income is greater than 2000
and credit_report is "good"

then
The loan will be approved
Set the interest_rate of the loan to 0.025

end

DROOLS provides only a simple DSL editor. However, the editor lacks user friendli-
ness and functionality. Most of the content must be typed word by word and there is
no possibility to reuse created components conveniently. For instance, a content assist
is not available. A package explorer for JAVA classes, attributes or methods would help
greatly in the DSL design process. Additionally, after the completion of the DSL devel-
opment, there is no component in DROOLS that can be used to create rules within the
DSL. Therefore, creating DSLs and working with DSLs is still difficult in DROOLS, and
non–programmers can not be incorporated easily and benefit as much as possible from
the DSL approach. This is exactly where our tool DSLR Generator comes into play.

3 The Tool DSLR Generator

DSLR Generator supports in a few guided steps to edit rules, that have a readable format
and a correct syntax. First, we describe how the user can develop a DSL with the aid of
generic templates and what we mean by templates in this scenario. Then, we describe
shortly the various graphical editors that help in the construction of syntactical correct
rules in the DSL. Finally, we give a brief example illustrating the usage.
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3.1 DSL Templates

We provide several generic templates that contain the mapping information between a
natural language expression and the corresponding code in DROOLS. For instance, we
can use the template shown in Listing 1.4 to generate a simple condition in DSL.

Listing 1.4: A DSL Template

The #instance with #field is smaller than or equal to {value} =
#instance: #class(#field <= {value})

For creating rules, keywords and parameters in a template can be replaced. A key-
word starts with #; e.g., #field is a keyword. We already provide several keywords in
the DSLR Generator, but more can be added. Parameters must be enclosed with curly
brackets "{" and "}". If brackets appear literally in the language expression or the rule
code, then they have to be escaped with a preceding backslash "\"; the same holds for
magic characters of Java’s pattern syntax.

Listing 1.5 gives an example how to use the template from above. In the DSL ex-
pression of Listing 1.4, the key word #instance has been replaced by loan, a name
of an instance of the JAVA class Loan, which replaces #class. The name of an in-
stance in a DSL statement can be different from the name of an actual instance in the
JAVA code. The condition in our example is satisfied if the attribute loan_amount of
an instance of Loan has a value greater than value. The key word #field has been
replaced by loan_amount, the name of an attribute of the class Loan. We will see in
Subsection 3.3 how we support the rule creation using the templates. E.g., once a class
is selected to replace #instance, only attributes of the selected class can be assigned
to #field. Further templates can be added easily.

Listing 1.5: A Simple Condition in DSL

The loan with loan_amount is smaller than or equal to 5000 =
loan: Loan(loan_amount <= 5000).

We provide JAVA annotations to accomplish multilingual DSLs. The desired lan-
guage expression can be chosen by setting a language flag in a config.property
file. Listing 1.6 shows two annotations to reference the attribute loan_amount in
plain English or German. Instead of loan_amount, like in Listing 1.5, #field
would be replaced by the value of the annotation of the chosen language, e.g., amount
of loan for English. This further improves the readability of rules. Additionally we
created the annotation @Invisible() to controll the visibility of classes, attributes
and methodes within the Basic DSL Editor.

Listing 1.6: An Annotation of a Language Expression

@EnExpression(value = "amount of loan")
@GerExpression(value = "Kredithoehe")
private double loan_amount;
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3.2 Template Files

A template for a DSL is stored in a JAVA object of the type Template. All rele-
vant key words are attributes of Template. There are two additional lists of classes
TemplateNode: one is a list of conditions, the other is a list of actions. A Template-
Node is a container for several DSL mappings, like in Listing 1.5.

To improve the readability, we map template objects into a common format. Our
approach currently supports two formats: XML and JavaScript Object Notation (JSON).
For the mapping between JAVA and XML, we use the JAVA Architecture for XML Bind-
ing (JAXB) [12], and for the mapping between JAVA and JSON we use the open–source
Java library FASTJSON [1]. According to the file extension, the Basic DSL Editor can
automatically load the template file. The user only needs to specify a template file path
in the file config.properties.

Listing 1.7 shows a DSL Template in XML. In addition to keywords, there is explicit
a simple condition and an action. Every key word in a DSL statement is represented by
an element, e.g., the key word #instance by a element with the tag <instance>.
There are two DSL statement categories: condition and action; they are represented
by elements, too. Each of it can contain several <dsl> elements. A DSL statement
is tagged in XML by <expression>, the corresponding code in DROOLS simply
by <code>. DSL statements are grouped by a domain; this is represented in XML by
the child <domain> of <condition> and <action>, respectively. We do this,
because during the development phase we want to filter templates by domains.

Listing 1.7: A Template in XML

<template>
<class>#class</class>
<com_parameter>{value}</com_parameter>
<instance>#instance</instance>
<field>#field</field>
<obj>#i</obj>
<condition>

<domain>Common</domain>
<dsl>

<expression>
The #instance with #field is smaller than
or equal to {value}

</expression>
<code>

#instance:#class(#field <= {value})
</code>

</dsl>
</condition> ...
<action>

<domain>Common</domain>
<dsl>

<expression>
Set the #field of the #instance to {value}

</expression>
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<code>
#instance.setField({value});

</code>
</dsl>

</action> ...
</template>

The JSON representation is less verbose, but identical to the XML representation.
With the @XmlType annotation of JAXB, the user can customize the XML already in
JAVA. FASTJSON provides customizing options with the @JSONType annotations for
JSON.

3.3 Creating Rules with DSL Templates

There are four components that can be used during the rule creation process; every
component has a graphical user interface (GUI), see Figures 2 – 6.

Basic DSL Editor. In this editor the templates defined in templates.xml are avail-
able, and simple DSL statements can be created, see Figure 2. The user may customize
his or her own templates. Additionally, there is a package explorer, with which the user
can access JAVA classes as well as attributes and methods conveniently in a selected
package. This editor can generate simple conditions, and actions in DSL. Domain ex-
perts can cooperate with programmers; they can take care of the language expression,
and the programmer takes care of the corresponding code. If attributes and methods in
JAVA already have been annotated, as described in Subsection 3.1, then it is possible for
non–programmers to work with this editor largely independently.

Fig. 2: The Basic DSL Editor.
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Complex Condition Editor. In terms of reusability and complexity, it is important to cre-
ate simple conditions first. Complex conditions and actions are broken into atomic parts.
Our editor supports this procedure, see Figure 3. The user can compose single condi-
tions to complex conditions using conjunction and disjunction. Several conditions with
connectives can be selected in a table and merged simply by hitting the Merge button.
For building complex conditions with different connectives, it is sometimes necessary
to use brackets to make the logic clear. The result is saved to a file with the extension
.dsl.

Fig. 3: The Complex Condition Editor.

DSL Rule Editor. After loading a .dsl file, the user can select conditions and actions
to create rules. For selecting a DSL table item, the user can double click it. If there
are parameters in this DSL sentence, then a Value Editor will popup, see Figure 5.
All parameters will be displayed in a table. The user can directly assign a value to a
parameter, or he can find an attribute of a class and assign it to a parameter within a
Package Explorer. Double clicking a class displays the list of all its attributes. Selecting
a value cell and double clicking on an attribute puts the attribute into the cell. Finally,
the DSL rule must be named before it can be saved into a new .dslr file or appended at
the end of an existing .dslr file.
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Fig. 4: The DSL Rule Editor.

Fig. 5: The Value Editor.
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Attribute Editor. This editor gives an overview over values of special attributes of rules
in DROOLS, e.g., the attribute salience to control a rule’s priority, see Figure 6. The
user can modify these attributes easily and control the behavior of the complete set of
rules in DROOLS.

Fig. 6: The Attribute Editor.

3.4 Case Study: Loan Approval

In the following, we will illustrate the development process with DSLR Generator by
an example from the financial sector [3]. A bank wants to approve a customer’s request
for a loan automatically. For making a decision, certain parameters must be taken into
account: the amount to be borrowed, the duration of the loan, the value of the collateral,
and the credit history of the customer. After a loan has been approved, an interest rate
will be set. A business analyst may have arranged several rules in natural language. For
lack of space we demonstrate only two:

"microfinance". A loan with an amount of less than or equal to 5000 EUR and a du-
ration shorter than or equal to 3 years to a customer with good credit report and
monthly income greater than 2000 EUR, will be approved, and the interest rate is
set to 7.5%.

"deny". A loan with an amount of more than 5000 EUR and a duration longer than 5
years to a customer with weak credit report and monthly income less than 3000
EUR, will be denied.
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First, the programmer designs the entities, in our example the classes Loan and
Customer, that cover all parameters of the application. Then, templates for the DSL
can be designed. In doing this, the business analyst breaks the rules into single condi-
tions and actions, and the programmer then only needs to implement the business logic
of simple conditions and actions. Using meaningful annotations right from the start and
in cooperation with the business analyst improves the readability of the templates and
simplifies the selection of classes, attributes and methods without a programmer’s help.

Now, the programmer can use the Basic DSL Editor to generate the following simple
conditions and actions:

Listing 1.8: Macro Expansion from DSL Format to DROOLS Format

[when] The loan with loan_amount is smaller than
or equal to {value} =
loan:Loan( loan_amount <= {value} )

[when] The loan with duration_year is smaller than
or equal to {value} =
loan:Loan( duration_year <{value} )

[when] The customer with monthly_income is greater
than {value} =
customer:Customer( monthly_income > {value} )

[when] The customer with credit_report is {value2} =
customer:Customer( credit_report == {value2} )

...
[then] Set the interest_rate of the loan to {value} =

loan.setInterest_rate( {value} );
[then] The loan will be approved = loan.approval();
...

With the Complex Condition Editor, simple conditions from Listing 1.8 can be
combined using connectives. This can be done by the business analyst, because the
conditions are already in the readable format of the DSL. The result is saved to the file
LoanApproval.dsl. After loading LoanApproval.dsl with DSLR Generator,
the business analyst can finally generate the following rules:

Listing 1.9: LoanApproval.dslr

package LoanApproval
expander LoanApproval.dsl

rule "microfinance"
when

The loan with loan_amount is smaller than or equal to 5000
and duration_year is no more than 3
The customer with monthly_income is greater than 2000
and credit_report is "good"

then
The loan will be approved
Set the interest_rate of the loan to 0.075

end

208



rule "deny"
when

The loan with loan_amount is greater than 5000
and duration_year is greater than 5
The customer with monthly_income is less than 3000
and credit_report is "weak"

then
The loan will be denied

end

After the delivery of the project, certain maintenance tasks could be carried out
easily by the business analyst, such as modifying a parameter of a rule, disabling a rule,
or even creating a new rule with DSLR Generator, as the following example shows.

"1% Finance". The bank plans to make a "1% Finance" promotion in the Christmas
Season of 2013: a loan with an amount less than or equal to 5000 EUR and a duration
of not more than 2 years to a customer with a good credit report and monthly income
greater than 1000 EUR, will be approved, and the interest rate will be set to 1%. With
DSLR Generator, a business analyst can implement this new requirement easily:

Listing 1.10: 1% Finance

rule "1%finance"
when

The loan with loan_amount is smaller than or equal to 5000
and duration_year is no more than 2
The customer with monthly_income is greater than 1000
and credit_report is "good"

then
The loan will be approved
Set the interest_rate of the loan to 0.010

end

The fixed period, in which the rule is active, can be set in the Attribute Editor via values
for date-effective and date-expires.

If the rule "1%finance" can fire, then the rule "microfinance" can fire, too. Here, the
question is which interest rate should be set: 1% or 7.5% ? A solution is to set values
for the attribute salience in the Attribut Editor to prioritize the rules.

Problematic ambiguity and anomalies between rules can not be avoided by DSLR
Generator. But as we will see in the next section, we want to improve this situation
by transferring experience with analyzing anomalies in ontologies from [4] to rules in
DROOLS and extend the analysis w.r.t. DROOLS specific concepts.

4 PROLOG–Based Analysis

Although the evaluation mechanism of DROOLS is much different from the resolu-
tion mechanism of PROLOG, we can support the rule development process by PROLOG
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technology. We can check for anomalies, such as duplicates of rules, contradictions,
and ambiguities in a set of rules or analyze the templates in the file template.xml
that contains the mapping information from the DSL to DROOLS. Moreover, we can
use ideas from [13] for the visualization of the derivation process via proof trees. In the
following we detail some parts of the PROLOG based analysis.

Templates. The PROLOG call

template_to_prolog(+Template, -FN)

loads a template file in XML into PROLOG. The representation of an XML element in
PROLOG is a term in field notation; we can analyze this term using the query, transfor-
mation and update language FNQUERY of the DDK [15, 17]. The PROLOG call

dsl_anomaly(+DSL1, +DSL2, -Anomaly)

checks <dsl> elements for anomalies, such as duplicates, see Listing 1.11, or an occur-
rence of a keyword in an expression, but not in the corresponding code, and vice versa.
The path expressions Dsl_i/expression select sub–elements of Dsl_i. Addi-
tionally, we can ensure that there is a corresponding element in the XML representation
for every keyword used in an expression.

Listing 1.11: Check for Duplicates

dsl_anomaly(Dsl_1, Dsl_2, Anomaly) :-
( X := Dsl_1/expression,

Y := Dsl_2/expression
; X := Dsl_1/code,

Y := Dsl_2/code )
equivalent(X, Y),
Anomaly = redundant(X, Y).

Rule Mapping. We can transform rules created with DSLR Generator to similar rules in
PROLOG and analyze them for DROOLS specific anomalies. The transformation process
is similar to the transformation process from PROLOG to JAVA as proposed in [14] – in a
slightly reversed manner. A JAVA class is mapped to a PROLOG compound term whose
functor is derived from the name of the class. Class attributes of primitive type become
atomic arguments of the term (or numbers/ strings), otherwise compound terms on their
own. Parameter changes via getter and setter methods in DROOLS are implemented
simply by accessing the corresponding argument of the term in PROLOG. Thereby, the
mapping information contained in the underlying .dsl file is used for the unidirectional
mapping of the rules to PROLOG. However, we do not map every method with its com-
plete functionality; it is enough to keep track of how objects in the working memory are
asserted, retracted, or modified. For instance, methods of application data, i.e., classes
not in direct reference to the working memory in DROOLS, are ignored. Since methods
of application data usually do not influence facts in the working memory, there is no
need to map their functionality. A constraint of a pattern is an expression that always re-
turns a boolean value; this can, e.g., be a comparison of values or a boolean return value
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of a JAVA method. Such methods are mapped to terms whose functors are the method
names and with a single argument that represents the boolean return value. Compara-
tors are mapped to the corresponding comparators in PROLOG. Access to internals of
DROOLS via methods like assertObject() or retractObject() can easily be
simulated by their counterparts in PROLOG. The PROLOG call

dslr_to_prolog(+Dslr_File, +Dsl_File, -Prolog)

maps a .dslr file created with DSLR Generator to a set of PROLOG rules. Listing 1.12
shows the rule microfinance of Listing 1.9 after the mapping to PROLOG.

Listing 1.12: Rule microfinance in PROLOG

microfinance(Loan_1, Customer, Loan_2) :-
Loan_1 = application(_, Cid, Loan, Duration, _, _, _),
call(Loan_1),
Loan =< 5000,
Duration =< 3,
Customer = customer(Cid, _, Credit_Report, Monthly_Income),
call(Customer),
Monthly_Income > 2000,
Credit_Report = good,
State = approved,
Loan_2 = application(_, Cid, Loan, Duration, _, _, State).

Notice that the transformed rules usually cannot be executed in PROLOG, since the
action parts have a procedural semantics. But, we can perform certain types of analysis
on the transformed rules.

Loops. The following non–trivial example of a DROOLS specific anomaly has to do
with loops. A loop occurs in the following simplified situation. Assume that there is a
rule with the name loop containing a single condition cond referencing a fact with the
identifier ident, and in the action block there is only a modifyObject(ident)
instruction. The instruction in the action block notifies DROOLS that the ident fact
has been modified, and DROOLS fires all appropriate rules again, for instance the rule
loop. Thus, DROOLS will enter the action block of the rule loop again, i.e., we have a
loop. It is possible to disable loops by setting the no-loop attribute of a rule to true;
then the rule can not fire again. Anomalies – as in the described scenario – typically
occur during the development process.

With DSLR Generator, we can ensure a correct rule syntax and a readable format,
with PROLOG we concentrate on the semantics. Before saving a .dslr file in DSLR Gen-
erator, we can call PROLOG to detect anomalies with

drools_anomaly(+Prolog, -Anomaly).

The anomalies are reported on backtracking in Anomaly. If there is no anomaly, then
the saving progress can be finished successfully. Otherwise, a warning with details
about the anomaly is displayed, and the saving progress could be interrupted.
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5 Conclusions

We have presented a tool, DSLR Generator, for handling DSLs within DROOLS. It sim-
plifies the creation of DSLs and the implementation of rules within the DSL. Graphical
user interfaces support the user in the rule development with reusable and generic DSL
templates, that can be used to create rules in a more abstract and readable format. The
maintenance of the meta–data for the rules in DROOLS is supported, too. Furthermore,
with DSLR Generator domain experts without programming experience can complete
parts of the development and maintain rules without requiring help from the IT.

In the future, we are planning to provide a library of templates and to extend our
PROLOG–based anomaly analysis.
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Abstract. This paper presents a SAT-based graph rewriting and verifi-
cation tool implemented in the functional programming language Haskell.
Graphs, matchings, single rewriting steps, and complete derivations are
translated into propositional formulas where a satisfying assignment rep-
resents one of the successful derivations. Furthermore, graph properties
like “Is there a Hamiltonian path?” or “Is the graph Eulerian?” can be
expressed in a graph transformation system and, then, proven by a SAT
solver via a translation of graph rewriting to propositional formulas. We
outline the tool concepts and its main components. Moreover, we give a
short motivation why Haskell is the language of choice for our approach.

Keywords: graph rewriting, SAT solving, verification, Haskell

1 Introduction

Usually, graph related problems like the Hamiltonian path problem or the trav-
elling salesperson problem are expressed and solved in common programming
languages like Haskell, C++, or Java, in some cases by applying special ap-
proaches like parallelization, heuristics, or SAT solving. But an implementation
of graph algorithms in such languages is often not straightforward. One has to
describe graphs in internal data structures and has to implement methods or
functions that operate on these data structures. Thereby, one introduces a new
layer instead of directly working on graphs. Graph rewriting techniques have
been proposed to directly describe and compute graph problems on the graph
level what significantly eases the implementation of graph algorithms. Therefore,
there is a need for appropriate graph rewriting tools that allow the implemen-
tation and execution of graph algorithms. Examples for such machines are the
graph rewriting engine GrGen.Net [4] or the GROOVE tool [7].

The application of graph rewriting rules is in general nondeterministic be-
cause in each derivation step several matches and rules could be applied. Using
control conditions for guiding the rule application is a first step to restrict the
nondeterminism. But especially in case of NP-complete graph problems this is
not sufficient because one gets an exponential number of derivations but only
a small part of them yield proper results. Hence, a translation to propositional
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formulas seems promising to benefit from fast solving techniques implemented
in modern SAT solvers.

In this paper, we present our SATaGraT tool1 for implementing and solving
graph problems in a SAT-based graph rewriting and verification framework.
Graph transformation units [5] are employed as graph rewriting systems and
their semantic is translated into propositional formulas. By using this approach
it is also possible to verify certain graph properties like “Is there a Hamiltonian
path?” or “Is the graph Eulerian?”. A first implementation of the tool based on
the translation in [6] is introduced in the author’s diploma thesis [1] and has
been extended to the SATaGraT tool where an early version is described in [3].
Another translation to propositional formulas is introduced in a contribution to
WFLP 2013 [2].

Main contributions. The implementation is now restructured in three sepa-
rate processing steps: Preprocessing for generating propositional formulas, pro-
cessing for finding a successful derivation, and postprocessing for visualization.
The new formulas and the proposed verification approach from [2] are supple-
mented. Furthermore, first steps for translations into CSP and SMT are done
(cf. Section 3.2). Moreover, this paper contains the first detailed description of
SATaGraTs functionality and main concepts.

The paper is organized as follows. Graph rewriting and its translation into
propositional formulas is explained in Section 2. In Section 3, we give an overview
of the tool concepts, motivate the application of Haskell for graph rewriting and
propositional formulas, and present conducted experiments. Section 4 contains
the conclusion.

2 From Graph Rewriting to SAT

SATaGraT uses edge labeled directed graphs without multiple edges and with a
finite node set. For a finite set Σ of labels, such a graph is a pair G = (V,E)
where V = {1, . . . , n} for some n ∈ N is a finite set of nodes and E ⊆ V ×Σ×V is
a set of labeled edges. For the matching of subgraphs in graphs, we use injective
graph morphisms that are structure- and label-preserving.

For transforming graphs, we use rules that add and delete edges. To handle
the addition and deletion of nodes, deleted and unused nodes are marked with a
special label named deleted. Such a rule r = (L → R) consists of two graphs:
the left-hand side L and the right-hand side R where the node set remains
invariant, i.e. VL = VR. The rule application of r to a graph G works as follows:
Search for a subgraph H that is isomorphic to L, i.e. find a match g(L) in G. If
such a subgraph is found, delete the edges of g(L) and add the edges of g(R).

A graph transformation unit is a system gtu = (I, P, C, T ) where I and T
are classes of initial and terminal graphs, P is a set of rules, and C is a control
condition. A unit specifies all derivations from initial to terminal graphs that are

1 SATaGraT is an abbreviation for SAT solving assists Graph Transformation En-
gine. For downloading and testing our tool, please visit the SATaGraT home page:
www.informatik.uni-bremen.de/∼maermler/satagrat/index.html.
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allowed by the control condition. We use regular expressions as control conditions
supplemented by the as-long-as-possible operator.

The semantic of graph transformation units is translated into propositional
formulas. Single rule applications are expressed via four formulas: (1) one for
describing matches of left-hand sides into graphs, (2) one for expressing the
added edges, (3) one for describing deleted edges, and (4) one for describing
those edges that are not added or deleted. Moreover, single derivations and all
possible derivations are expressed via formulas. To get an impression how these
formulas work and look like, we explain the formula for matchings from [6]:

morph(r, g, k) =
∧

(v,a,v′)∈EL

edge(g(v), a, g(v′), k − 1).

All edges of the left-hand side of the rule r must have a match in the graph of
the (k − 1)th derivation step w.r.t. to a graph morphism g.

3 Implementation

In the following, we motivate the application of Haskell to graph rewriting and
propositional formulas, describe the main components of SATaGraT, detail the
three processing steps of the tool, and give some experimental results.

3.1 Why is Haskell the Language of Choice?

The implementation of the formulas from [6], [3], and [2] is in most cases straight-
forward and can easily be expressed via primitive recursion or using higher-order
functions like foldr. For example, the formula morph for the matching can be
implemented by using foldr in the following way.

morph :: Rule -> GraphMorphism -> DerivationStep -> Tree PropEdge
morph r g k
= foldr (\ (v,a,v’) edges

-> TAnd (TLeaf $ makePropEdge (image g v) a (image g v’) (k-1)) edges)
TTrue edges

where edges = Set.toList $ getEdges $ getLeftHandSide r

Graphs and graph rewriting rules can also be implemented in a straightforward
way. All implementations are near to their mathematical description. Therefore,
the author decided to use Haskell as language of choice.

3.2 Main Components

SATaGraT has been implemented in Haskell, uses MiniSat 22, Funsat 0.6.03,
GrGen.NET 3.0, and Glasgow Haskell Compiler 6.12 and has been tested on
an Intel 3.2 GHz with 8GB RAM. Optional are the CSP Solver Sugar 1.14.74,
Limboole 0.25, and the SMT Solver Yices 1.0296. SATaGraT consists of the fol-

2 http://minisat.se/
3 http://hackage.haskell.org/package/funsat
4 http://bach.istc.kobe-u.ac.jp/sugar/
5 http://fmv.jku.at/limboole/
6 http://yices.csl.sri.com/

215



lowing five main components.

– Graph rewriting. Modules for graphs, graph morphisms, rules, control
conditions and graph transformation units are implemented.

– Propositional formulas. Three different translations can be utilized: (1)
In [6], the first translations to SAT were introduced where used rules and
morphisms can only be reconstructed via an algorithm that yields in some
cases ambiguous results (cf. [3]). But the formulas are still smaller as those
proposed in [2]; (2) in [2], the translations yield formulas in conjunctive nor-
mal form by introducing additional variables. These variables allow to easily
reconstruct applied rules and morphisms for each derivation step. Moreover,
this makes it possible to solve subformulas and, in this way, results in a
speed-up of the processing time in some cases. But, the new variables lead
to greater formulas compared with those in [6]; (3) the translations in [3]
generate smaller formulas as those in [6, 2] and supplements the as-long-as-
possible operator. But, the generated formulas are not in CNF.

– Solvers. SATaGraT provides the application of the SAT solvers MiniSat,
Limboole, and Funsat. Furthermore, we adopt the CSP solver Sugar and
the SMT solver Yices. At the moment, both solvers are only applied on
propositional formulas. For coming SATaGraT versions it is planned to find
translations of graph rewriting into CSP and SMT.

– Verification. One can prove existentially quantified properties like “Is there
a Hamiltonian path?” or “Is the graph Eulerian?”. In [2], we propose an
approach of how all quantified properties over terms can be proven.

– Examples. One can find examples for various graph problems like the
Hamiltonian path problem, job-shop scheduling, or the vertex cover problem.

3.3 Processing Steps

In this subsection, we describe the processing steps of the current SATaGraT
version. The processing steps in the earlier versions differ in some aspects like
generating whole formulas instead of subformulas or using no final visualization
in GrGen.NET. In the system descriptions in Figure 1, Figure 2, and Figure 3
data is surrounded by rectangles with rounded corners and operations on data
are surrounded by rectangles.

Preprocessing: From Graph Transformation Units to Rule Sequences. A graph
transformation unit and a polynomial bound for the state space exploration are
the input of SATaGraT (cf. Figure 1). The set L(C)(p(n)) in Figure 1 denotes
the language that results from a control condition C with the restriction to a
word length of exact p(n). Each of these words is a rule sequence with length
p(n) and describes a sequence of rule applications from initial to terminal graphs.

Processing: Finding a Solution via a Translation into Propositional Formulas
and SAT Solving. One of the rule sequences is chosen (see Figure 2) and to-
gether with the graph transformation unit and the polynomial translated into
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Fig. 1. Preprocessing in SATaGraT
Fig. 2. Processing: Finding
a solution

a formula in CNF that represents a derivation. Then, the generated formula is
fed into MiniSat, a fast, competitive, and easy-to-use SAT solver. If the formula
is satisfiable, MiniSat delivers a satisfying variable assignment and stops further
computations. In the negative case, a simple No is sent and the next, not yet
processed rule sequence is selected. This process runs as long as no solution is
found or all possible rule sequences are already processed. A satisfying assign-
ment states that the derivation is successful, i.e. we can reach a terminal graph
for the given input graph by sequentially applying the rules of the rule sequence.

Postprocessing: Visualization by GrGen.NET. If a solution is found, the deriva-
tion is directly extracted from the variable assignment to present it the user
in two different ways (see Figure 3): (1) the applied rules and matches in ev-

Fig. 3. Postprocessing

|V | |E| k VC? SATaGraT 2011 SATaGraT 2012

7 8 2 no 5 5
9 12 2 no 30 32
11 14 4 yes 96 34.5
13 20 3 yes 366 112
13 18 3 no 357 456
15 24 3 yes > 3600 438

Fig. 4. Results for instances of VC

ery derivation step are displayed on the console and (2) the necessary files to
run GrGen.NET are generated, in particular a graph model, a graph rewrite
script consisting of the computed rules and matches, and rewrite rules; finally,
GrGen.NET is executed.

3.4 Experiments

We conducted experiments for the NP-complete vertex cover (VC) problem (see
Figure 4). The first three columns list the number of nodes, edges, and members
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of the vertex cover instance. The fourth column indicates whether the corre-
sponding formula is satisfiable or not. The last two columns each contain the
overall computation time in seconds. The overall time includes the generation
time of the formula as well as the solving time of MiniSat. SATaGraT 2012 con-
tains the translation of [2] and delivers for the test cases the answer yes faster
than the 2011 version. On the other hand, SATaGraT 2011 that is based on [6, 3]
is a little bit faster in giving a no answer. Both is a result of the facts described
in Section 3.2.

4 Conclusion

In this paper, we have presented a SAT-based rewriting and verification tool by
giving an overview of its main concepts and a system description. Further con-
ducted experiments can be found in [1, 3, 2]. We are planning to make it more
usable by means of a graphical user interface for the input of graph transfor-
mation units and a visualization of rewriting steps. A first idea is to extend the
GROOVE tool [7] by our SAT approach because it offers an appropriate GUI
and visualization. At the moment, we can prove properties for single graphs like
“Is the graph Eulerian”. In future, we want to transfer the ideas from [2] to
graphs for proving all quantified properties like “For all graphs G . . . ”.

Acknowledgments. The author is grateful to the anonymous referees for their
helpful comments and suggestions.
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LNCS, vol. 6372, pp. 27–42. Springer (2010)

7. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz,
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Abstract. We introduce Euler/X, a toolkit for logic-based taxonomy
integration. Given two taxonomies and a set of alignment constraints be-
tween them, Euler/X provides tools for detecting, explaining, and rec-
onciling inconsistencies; finding all possible merges between (consistent)
taxonomies; and visualizing merge results. Euler/X employs a number
of different underlying reasoning systems, including first-order reasoners
(Prover9 and Mace4), answer set programming (DLV and Potassco), and
RCC reasoners (PyRCC8). We demonstrate the features of Euler/X
and provide experimental results showing its feasibility on various syn-
thetic and real-world examples.

1 Introduction

Biological taxonomies are hierarchical representations used to specify formal
classifications of organismal groups (e.g., species, genera, families, etc.). While
the names used for organismal groups (i.e., taxa) are regulated by various Codes
of nomenclature, it is widely recognized that names alone are not sufficiently
granular to integrate taxonomic entities occuring in related classifications [8,5,2].
Thus additional information is required to relate taxonomic entities across tax-
onomies. These relationships can then be used to compare different taxonomies
and integrate multiple taxonomies into a single hierarchical representation.

The first attempts to provide formal reasoning over taxonomies were made
in the MoReTax project [1], which introduced the use of RCC-5 relations [10]
for defining relationships (articulations) among taxonomic concepts. RCC-5 pro-
vides five basic relations for defining congruence, proper inclusion, inverse proper
inclusion, overlap, and exclusion among pairs of sets. These comparative rela-
tions are intuitive to taxonomic experts who assert them and who may also
express ambiguity in their assessment among concept pairs by using disjunc-
tions of articulations: when the exact relation is unknown to the expert, she can
choose multiple RCC-5 relations of which one is assumed true. The MoReTax
approach was formalized in first-order logic and implemented in CleanTax [12].
This system implemented RCC-5 reasoning using the first-order theorem provers
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Mace4 and Prover9 [9], but also adding three taxonomic covering assumptions—
non-emptiness, sibling disjointness, and parent coverage—to achieve a working
environment for taxonomic reasoning.

Here we demonstrate the Euler/X toolkit which offers a suite of interactive
reasoning and visualization programs that extend the capabilities of Clean-
Tax while improving scalability. Euler/X also adds new reasoning approaches
to CleanTax including ASP (Answer Set Programming [6]) and a specialized
RCC-8 reasoner [11]. The toolkit implements a comprehensive taxonomy import,
merge, and visualization workflow, with new features such as (1) PostgreSQL
input of the original taxonomies and expert-asserted articulations [4], (2) de-
tection of alignment inconsistencies, (3) diagnosis of inconsistency provenance
(based on provenance semirings [7]) and interactive repair, (4) alignment am-
biguity reduction, and (5) visualization of merged taxonomies based on a set
of inferred, maximally informative relationships (MIR) that reflect (6) one or
multiple possible worlds scenarios for taxonomy integration. We illustrate these
features using an abstract example that embodies various of the aforementioned
challenges (inconsistency, ambiguity, multiple possible worlds) while maintaining
close resemblance with real-life use cases [5,3].

Euler/X encodes the input taxonomies, articulations, and constraints and
feeds various inferences problems to different reasoners (the “X” in Euler/X),
then translates the output from those reasoners to suit user needs. The main
technical contribution are the ASP and other encodings, the use of provenance,
and result visualization, applied to real-world taxonomy integration problems.

2 System Demonstration

Example. To demonstrate Euler/X, we introduce a simple example (Fig. 1)
of two taxonomies T1 (original) and T2 (revised). Each taxonomy includes only
two levels (genus and species) and ten constituent taxonomic concepts (1 A,
1 B, 2 A, . . .). Moreover there are six initial, expert-asserted articulations that
connect the respective entities. Three of these include disjunctions (‘or’), reflect-
ing the expert’s uncertainty as to the precise relationship among concept pairs,
and one leads to an inconsistency (though the expert is not yet aware of this
error). Comparable, real-life examples are provided in [3].

Fig. 1: Abstract example with two succeeding taxonomic classifications T1, T2 and a
set of expert-asserted articulations (A) among taxonomic concepts. Three articulations
are disjunctive; one (‘*’) leads to an inconsistency. T2 (revised) builds on T1 (original)
but is a modification of T1; it reuses T1 entities but views and arranges them differently.
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T1+T2+
TCs+A

Are they 
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Fig. 2: Euler/X workflow overview: Input taxonomies T1,T2 together with expert
articulations A and other taxonomic constraints TCs yield MIRs, merged taxonomies,
and visualization products.

Workflow Overview. Euler/X will ingest the example input (Fig. 1) into
PostgreSQL in the form of three simple spreadsheets: (1) a table that uniquely
identifies each of the ten taxonomic concepts; (2) a table that incorporates each
set of five concepts into its respective taxonomy (T1, T2) via is a parent/child
relationships (e.g., 1 B is a 1 A, etc.); and (3) a table with the six input articula-
tions (A). The user also specifies a set of taxonomic constraints (TCs), e.g., cov-
erage. The system then guides the user through an interactive workflow (Fig. 2)
that includes the following major functions: consistency checking (including in-
consistency explanation and repair), MIR generation, ambiguity representation
(possible worlds4) and reduction, and lastly output of the merged taxonomies, in-
cluding visualization and explanation of newly inferred MIR. Jointly, these func-
tions enable the expert to obtain and comprehend a maximally consistent and
unambiguous tabular and graphic representation of the merged taxonomy. Alter-
native reasoners—Prover9/Mace4 (FOL), DLV, Pottasco (ASP), and PyRCC8
(RCC)—are integrated into the workflow to suit specific reasoning challenges.

Consistency Checking and Inconsistency Repair. The example (Fig. 1) is
computable in Euler/X using either FOL or ASP reasoners (Fig. 2). The first
processing step focuses on testing the consistency of the input alignment (A).
In our use case, the Euler/ASP and Euler/FO both infer that the input is
inconsistent. In particular, Euler/FO provides a black-box explanation that
“1 D includes 2 A” is inconsistent with the remaining articulations, and recom-
mends removing this articulation to obtain a consistent alignment. In contrast,
Euler/ASP offers a white-box explanation, stating that “1 D includes 2 A”
(implying that 1 D is a high-level, inclusive taxonomic concept) is inconsistent
with “1 A equals or is included in 2 A” and “1 D is a 1 A” (jointly asserting that
1 D is a low-level, non-inclusive concept). Thus one can repair the inconsistency
simply by deleting the articulation “1 D includes 2 A”. Based on subsequent
Euler/X reasoning (MIR), we will find that the correct 1 D/2 A articulation
is “1 D is included in 2 A”.

Generating MIR and Possible World Visualizations. Once the input ex-
ample’s inconsistency is repaired, Euler/X will proceed to generate all maxi-
mally informative relations (MIR; see Thau et al., 2009 [12]) among taxonomic
concept pairs. The interaction of the three articulations involving disjunction

4 In each possible world, the relation of any two taxa is one of the RCC5.
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Fig. 3: Set of possible worlds pw0, pw1, . . . , pw6 (here: reduced containment graphs
RCGs) resulting from the MIR inferred by Euler/X based on the repaired input
example: blue nodes show congruent, merged concept in both taxonomies; black nodes
show concept unique to each taxonomy; black edges show input is a relations; dashed
grey edges show redundant is a relations; and red edges show newly inferred is a
relations. Note that RCGs do not represent concept overlap.

(Fig. 1) form an inherently ambiguous input alignment, which results a total of
seven equally consistent “possible world” solutions. These possible worlds can
be displayed using a simple “reduced containment graph” (Fig. 3).

pw2

pw0

4

pw1
1

pw3

3

2

pw4

1

pw5

1

2

pw6

2

2

Fig. 4: Visualization of possible worlds for
the input example, where the distance be-
tween two possible worlds is the shortest
distance traceable in the graph (e.g., the
distance between worlds 5 and 6 is 4).

Facilitating interactive ambigu-
ity reduction. Although the seven
possible worlds (Fig. 3) accurately re-
flect the resolving power of the in-
put alignment (Fig. 1), the user may
now have the ability and desire to re-
duce the inherent ambiguity by selec-
tively eliminating certain (apparently
improbable) possible worlds. This is
facilitated by the Euler/X feature
of ambiguity reduction. At run time,
Euler will ask the user more ques-
tions (generated by a decision tree
function) via the pop-out interactive
windows which allow the user to se-
lect the preferred answer.

Visual clustering of similar pos-
sible worlds. We can expect some
use cases with larger sized input tax-
onomies and multiple inherent ambiguities to yield large numbers of possible
worlds. Euler/X offers a visual representation of the cumulative possible worlds
“universe” via a distance matrix (Fig. 4). As shown in Fig. 3, our input example
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has seven possible worlds. We can compute pairwise distances among these by
integrating the numbers of MIRs in which they differ and thereby generating a
network that summarizes the similarities and differences.

Additional features. Euler/X also provides information on the provenance
of a newly generated MIR relation. Moreover the program can provide users with
a consensus perspective of all possible worlds, i.e., specifying what is true in all
of them, or how often a particular MIR occurs across all possible worlds.

3 Performance Results

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140

Ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

Number of entities in each taxonomy

Running time for Consistency Checking

Euler/FO (CleanTax++)
Euler/ASP (DLV)

Euler/ASP (Pottasco)
Euler/PyRCC

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  20  40  60  80  100

Ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

Number of entities in each taxonomy

Running time for Taxonomy Merge

Euler/FO (CleanTax++)
Euler/ASP (DLV)

Euler/ASP (Pottasco)
Euler/PyRCC

Fig. 5: Running times for consistency checking
(top) and taxonomy merge (down) on synthetic
taxonomies (balanced taxonomy trees of depth 8
with “is included in” articulations, resulting in a
single possible world).

We tested the performance and
scalability of different reason-
ing approaches, including Eu-
ler/FO (Prover9/Mace4), Eu-
ler/ASP (DLV and Pottasco),
and Euler/PyRCC (PyRCC8).
Tests used both real-life and sim-
ulated examples as well as per-
formed both consistency checks
and MIR and possible worlds
computation. The running time
was measured using increasingly
larger input datasets. All exam-
ples were tested on an 8-core,
32GB-memory Linux server.

While Euler/FO checks con-
sistency by calling Mace4 once
and then generates each MIR
by calling Prover95 (for m ∗ n
MIR’s assuming there are m,n
entities in each taxonomy), the
other Euler tools only invoke
the reasoner once to check con-
sistency and merge taxonomies
(MIR and possible world gener-
ation). This is why Euler/FO
is faster for consistency check-
ing (specifically, Euler/FO is
slower than Euler/ASP (Pot-
tasco) when the number of enti-
ties in each taxonomy is less than 100, but faster when it is more than 100), but
very slow in MIR generation as shown in Fig. 5. For taxonomy merge, PyRCC8 is
faster than Potassco, Potassco is faster than DLV, and DLV is much faster than
FO. However, note that Euler/PyRCC is not capable of applying the same

5 To get a MIR, Prover9 is called to answer yes or no to the five base relation questions
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merge as the other tools since the coverage constraints cannot be asserted using
RCC-5. When considering all three taxonomic constraints, the Pottasco-based
Euler is the fastest and reasonably good overall, since it can perform taxonomy
merge for realistic taxonomies of 100 entities in half a minute.

4 Conclusions and Future Directions

Euler/X is open source and can be downloaded from BitBucket6. Planned
developments include: (1) support for incremental changes to alignments; (2) an
improved ASP-based tool, using the results from PyRCC8; (3) development of a
user-friendly GUI; and (4) exploration of other reasoners, e.g., those developed
for OWL.

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments. Work supported in part by NSF awards IIS-1118088 and DBI-1147273.
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Abstract. A debate game provides an abstract model of debates between two
players based on the formal argumentation framework. This paper presents a
method of realizing debate games in logic programming. Two players have their
knowledge bases represented by extended logic programs and build claims using
arguments associated with those programs. A player revises its knowledge base
with arguments posed by the opponent player, and tries to refute claims by the
opponent. During a debate game, a player may claim false or incorrect arguments
as a tactic to win the game. The result of this paper provides a new formulation of
debate games in a non-abstract argumentation framework associated with logic
programming. Moreover, it provides a novel application of logic programming to
modelling social debates which involve argumentative reasoning, belief revision
and dishonest reasoning.

1 Introduction

Logic programming and argumentation are two different frameworks for knowledge
representation and reasoning in artificial intelligence (AI). In his seminal paper, Dung
[4] points out a close connection between the two frameworks and shows that a logic
program can be considered as a schema for generating arguments. Since then, several
attempts have been made for integrating the two frameworks ([1, 12, 8, 20]; see [9] for
an overview).

A line of research of formal argumentation is concerned with the dialectical process
of two or more players who are involved in a discussion [3]. Along this line, Sakama
[18] introduces a debate game between two players based on the formal argumentation
framework. In a debate game, a player makes the initial claim, then the opponent player
tries to refute it by building a counter-claim. A debate continues until one cannot refute
the other, and the player who makes the last claim wins the game. A debate game
has unique features such that (i) each player has its own argumentation framework as
its background knowledge, (ii) during a debate each player revises its argumentation
framework by new arguments provided by the opponent player, and (iii) a player may
claim inaccurate or even false arguments as a tactic to win a debate. The study [18]
formulates debate games using the abstract argumentation theory of [4].

The abstract argumentation theory has an advantage that it is not bound to any par-
ticular representation for arguments on the one hand, but on the other hand it does not
specify how arguments are generated from the underlying knowledge base and what
conclusions are yielded by those arguments. In [2] the authors argue that “Argumen-
tation, as it happens in the world around us, is almost never completely abstract. . . .
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Instead, the arguments one encounters in daily life consist of reasons that support par-
ticular claims. These reasons can formally be modelled in the form of rules, that are
instances of underlying argumentation schemes [14].” In this respect, debate games
based on the abstract argumentation theory need yet another formulation based on non-
abstract argumentation frameworks.

With this motivation, this paper uses logic programming as an underlying represen-
tation language and formulates debate games in a non-abstract argumentation frame-
work. In this framework, each player has a knowledge base represented by an ex-
tended logic program, and builds claims using arguments which can contain information
brought by the opponent as well as information in the player’s program. During a game,
a player may use dishonest claims to refute the opponent, while a player must be self-
consistent in its claims. The proposed framework provides an abstraction of real-life
debates and realizes a formal dialogue system in logic programming. The rest of this
paper is organized as follows. Section 2 reviews a framework of argument-based logic
programming. Section 3 introduces debate games in logic programming and investi-
gates formal properties. Section 4 discusses related issues and Section 5 concludes the
paper.

2 Arguments in Logic Programming

In this paper we consider the class of extended logic programs [10]. An objective literal
is a ground atom B or its explicit negation ¬B. We define ¬¬B = B. A default literal
is of the form notL where L is an objective literal and not is negation as failure (NAF).
An extended logic program (or simply a program) P is a finite set of rules of the form:

L0 ← L1, . . . , Lm, not Lm+1, . . . , not Ln

where each Li (0 ≤ i ≤ n) is an objective literal. The literal L0 is the head of the rule
and the conjunction L1, . . . , Lm, not Lm+1, . . . , not Ln is the body of the rule. A rule
r is believed-true in P if r ∈ P . A rule containing default literals is called a default
rule. A rule L ← with the empty body is also called a fact and is identified with a
literal L.

Let Lit be the set of all objective literals in the language of a program. A set S (⊂
Lit) is consistent if L ∈ S implies ¬L �∈ S for any L ∈ Lit. The semantics of
a program is given by its answer sets [10]. First, let P be a program containing no
default literal and S ⊂ Lit. Then, S is an answer set of P if S is a consistent minimal
set satisfying the condition that for each rule of the form L0 ← L1, . . . , Lm in P ,
{L1, . . . , Lm} ⊆ S implies L0 ∈ S. Second, given any program P (possibly containing
default literals) and S ⊂ Lit, a reduct of P with respect to S (written PS) is defined
as follows: a rule L0 ← L1, . . . , Lm is in PS iff there is a rule of the form L0 ←
L1, . . . , Lm, not Lm+1, . . . , not Ln in P such that {Lm+1, . . . , Ln} ∩ S = ∅. Then,
S is an answer set of P if S is an answer set of PS . A program may have none, one
or multiple answer sets in general. A program is consistent if it has an answer set;
otherwise, it is inconsistent.

Definition 2.1. ([12, 20]) An argument associated with a program P is a finite sequence
A = [r1; · · · ; rn] of rules ri ∈ P such that (i) for every 1 ≤ i ≤ n, for every objective
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literal Lj in the body of ri there is a rule rk (k > i) such that the head of rk is Lj . (ii)
No two distinct rules in the sequence have the same head.

The head of a rule in an argument A is called a conclusion of A, and a default literal
notL in the body of a rule in A is called an assumption of A. We write assum(A)
for the set of assumptions and concl(A) for the set of conclusions of an argument A.
By the condition (i) of Definition 2.1, every objective literal in the body of a rule ri is
justified by the consequence of a rule that appears later in the sequence. The condition
(ii) keeps an argument from containing circular sequences of rules. A subargument of
A is a subsequence of A which is an argument. An argument A with a conclusion L
is a minimal argument for L if there is no subargument of A with the conclusion L.
An argument is minimal if it is minimal for some literal L. The minimality condition
presents that an argument does not include rules which do not contribute to conclude
some particular literal L.

Remark: In this paper, we slightly abuse the notation and use the same letter A to denote
the set of rules included in an argument A. Thus, P ∪A means the set of rules included
either in a program P or in an argument A.

Example 2.1. Let P be the program:

p← q,

¬p← not q,

q ←,

r ← s.

Then, the following facts hold.

– The minimal argument for p is A1 = [ p ← q ; q ← ], concl(A1) = {p, q}, and
assum(A1) = ∅.

– The minimal argument for ¬p is A2 = [¬p ← not q ], concl(A2) = {¬p} and
assum(A2) = {not q}.

– The minimal argument for q is A3 = [ q ← ], concl(A3) = {q} and assum(A3) =
∅.

– r and s have no minimal arguments.

Proposition 2.1. Let P be a consistent program containing no default literal. Then, for
any argument A associated with P , concl(A) ⊆ S holds for the answer set S of P .

Proof. Let P ′ be the program which is obtained by replacing every negative literal ¬L
in P with a new atom L′ that is uniquely associated with ¬L. As P is consistent, P ′

has the least model S′ iff P has the answer set S where ¬L in S is replaced by the
atom L′ in S′. Let A′ be an argument associated with P ′. Then, A′ ⊆ P ′ implies
concl(A′) ⊆ S′ by the monotonicity of deduction. By replacing L′ with ¬L, A ⊆ P
implies concl(A) ⊆ S. ��

Definition 2.2. ([12, 20]) Let A1 and A2 be two arguments.
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– A1 undercuts A2 if there is an objective literal L such that L is a conclusion of A1

and notL is an assumption of A2.
– A1 rebuts A2 if there is an objective literal L such that L is a conclusion of A1 and
¬L is a conclusion of A2.

– A1 attacks A2 if A1 undercuts or rebuts A2.
– A1 defeats A2 if A1 undercuts A2, or A1 rebuts A2 and A2 does not undercut A1.

An argument is coherent if it does not attack itself. A set S of arguments is conflict-free
if no argument in S attacks an argument in S. Given a program P , we denote the set of
minimal and coherent arguments associated with P by Args(P ).

If an argument A1 undercuts another argument A2, then A1 denies an assumption
of A2. This means that the assumption conflicts with the evidence to the contrary, and
A1 defeats A2 in this case. If A1 rebuts A2, on the other hand, two arguments support
contradictory conclusions. In this case, the attack relation is symmetric and A1 defeats
A2 under the condition that A2 does not undercut A1. The coherency condition presents
self-consistency of an argument. By definition, if A ∈ Args(P ) then the set A of rules
is consistent.

Example 2.2. In the program P of Example 2.1, the following facts hold.

– Args(P ) = {A1, A2, A3}.
– A1 and A3 undercut (and also defeat) A2.
– A1 rebuts A2 and A2 rebuts A1.
– {A1, A3} is conflict-free, but {A1, A2} and {A2, A3} are not.
– The argument A4 = [p← q ; ¬p← not q; q ←] is incoherent.

Proposition 2.2. Let P be a consistent program. For any argument A ∈ Args(P ), if A
is not defeated by any argument associated with P , then concl(A) ⊆ S for any answer
set S of P .

Proof. Let A+ be the set of rules obtained from A by removing every default literal
in A. When A is not defeated by any argument associated with P , A+ ⊆ AS for any
answer set S of P , where AS is the reduct of A wrt S. By Proposition 2.1, for any
argument AS associated with PS , concl(AS) ⊆ S for any answer set S of P . Since
A+ ⊆ AS implies concl(A+) ⊆ concl(AS), the result holds. ��

In Example 2.1, A1 and A3 are defeated by no argument, then concl(A1) and
concl(A3) are subsets of the answer set {p, q} of P .

3 Debate Games in Logic Programming

3.1 Debate Games

A debate game involves two players. Each player has its knowledge base defined as
follows.
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Definition 3.1 (player). A player has a knowledge base K = (P,O) where P is a
consistent program representing the player’s belief and O is a set of rules brought by
another player. In particular, the initial knowledge base of a player is K = (P, ∅).

In this paper, we identify a player with its knowledge base. We represent two players
by K1 and K2. For a player K1 (resp. K2), the player K2 (resp. K1) is called the
opponent.

Definition 3.2 (revision). Let K = (P,O) be a player and A an argument. Then, revi-
sion of K with A is defined as

rev(K,A) = (P \R, O ∪ A)

where R = { r | there is a literal L in concl(A) such that notL is in the body of a rule
r and A is not defeated by any argument associated with P ∪O ∪A }.

The function rev is iteratively applied to a player. We represent the result of the i-th
revision of K by Ki = (P i, Oi) (i ≥ 0), that is, Ki = (P i, Oi) = rev(Ki−1, Ai)
(i ≥ 1) for arguments A1, . . . , Ai and K0 = (P 0, O0) = (P, ∅).

Note that we handle A as a set here. By definition, revision adds rules A to O
while it removes default rules R from P . When a player K cannot defeat the new
argument A, the player is obliged to accept it and removes default rules R that have
assumptions conflicting with conclusions of A. The reason of separating P and O is
to distinguish belief originated in a player’s program from information brought by the
opponent player. A player having a knowledge base after the i-th revision is represented
by Ki, but we often omit the superscript i when it is unimportant in the context.

Definition 3.3 (claim). Let K1 = (P1, O1) and K2 = (P2, O2) be two players.

1. The initial claim is a pair of the form: (in(A), ) where A ∈ Args(P1). It is read
that “the player K1 claims the argument A.”

2. A counter-claim is a pair of the form: (out(B), in(A)) where A ∈ Args(Pk∪Ok)
and B ∈ Args(Pl ∪ Ol) (k, l = 1, 2; k �= l). It is read that “the argument B by
the player Kl does not hold because the player Kk claims the argument A”.

The initial claim or counter-claims are simply called claims. A claim (in(A), ) or
(out(B), in(A)) by a player is refuted by the claim (out(A), in(C)) with some argu-
ment C by the opponent player.

Definition 3.4 (debate game). Let K0
1 = (P 0

1 , O
0
1) and K0

2 = (P 0
2 , O

0
2) be two play-

ers. Then, an admissible debate Δ is a sequence of claims: [(in(X0), ), (out(X0), in(Y1)),
(out(Y1), in(X1)), . . ., (out(Xi), in(Yi+1)), (out(Yi+1), in(Xi+1)), . . .] such that

(a) (in(X0), ) is the initial claim by K0
1 where X0 ∈ Args(P 0

1 ).
(b) (out(X0), in(Y1)) is a claim by K1

2 where K1
2 = rev(K0

2 , X0) = (P 1
2 , O

1
2) and

Y1 ∈ Args(P 1
2 ∪O1

2).
(c) (out(Yi+1), in(Xi+1)) is a claim by Ki+1

1 where Ki+1
1 = rev(Ki

1, Yi+1) =
(P i+1

1 , Oi+1
1 ) and Xi+1 ∈ Args(P i+1

1 ∪Oi+1
1 ) (i ≥ 0).
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(d) (out(Xi), in(Yi+1)) is a claim by Ki+1
2 where Ki+1

2 = rev(Ki
2, Xi) = (P i+1

2 , Oi+1
2 )

and Yi+1 ∈ Args(P i+1
2 ∪Oi+1

2 ) (i ≥ 0).
(e) for each (out(U), in(V )), V defeats U .
(f) for each out(Z) in a claim by Ki

1 (resp. Ki
2), there is in(Z) in a claim by Kj

2 such
that j ≤ i (resp. Kj

1 such that j < i).
(g) both

⋃
i≥0{Xi | Xi ⊆ P 0

1 } and
⋃

j≥1{Yj | Yj ⊆ P 0
2 } are conflict-free.

Let Γn (n ≥ 0) be any claim. A debate game Δ (for an argument X0) is an
admissible debate between two players [Γ0, Γ1, . . .] where the initial claim is Γ0 =
(in(X0), ) and Γm �= Γm+2k (m ≥ 0; k > 0). A debate game Δ for an argument
X0 terminates with Γn if Δ = [Γ0, Γ1, . . . , Γn] is an admissible debate and there is no
claim Γn+1 such that [Γ0, Γ1, . . . , Γn, Γn+1] is an admissible debate. In this case, the
player who makes the last claim Γn wins the game.

By definition, (a) the player K0
1 starts a debate with the claim Γ0 = (in(X0), ).

(b) The player K0
2 then revises its knowledge base with X0, and responds to the player

K0
1 with a counter-claim Γ1 = (out(X0), in(Y1)) based on the revised knowledge

base K1
2 . In response to Γ1, the player K1

1 revises its knowledge base and builds a
counter-claim Γ2 = (out(Y1), in(X1)). A debate continues by iterating revisions and
claims ((c),(d)), and (e) in each claim an argument V of in(V ) defeats an argument U of
out(U). (f) A player can refute not only the preceding claim of the opponent player, but
any previous claim of the opponent. (g) During a debate game, arguments which come
from a player’s own program must be conflict-free, that is, each player must be self-
consistent in its claims. Note that a player Ki

l (l = 1, 2; i ≥ 1) can construct arguments
using rules included in arguments Oi

l posed by the opponent player as well as rules in
its own program P i

l . This means that conclusions of arguments claimed by a player
may change nonmonotonically during a game. If a player Ki

l claims (out(A), in(B))
which is refuted by a counter-claim (out(B), in(C)) by the opponent, then the player
Kj

l (i < j) can use rules in the argument C for building a claim. Once the player
Kj

l uses rules in C, it implies that Kj
l withdraws some conclusions of the argument B

previously made by Ki
l (because B is defeated by C). Thus, two different claims by the

same player may conflict during a game. The condition (g) states that such a conflict is
not allowed among arguments which consist of rules from a player’s original program
P 0. In a debate game, a player cannot repeat the same claim (Γm �= Γm+2k), otherwise
arguments may go round in circles.

A debate game is represented as a directed tree in which the root node represents
the initial claim, each node represents a claim, and there is a directed edge between
two nodes Γi and Γj if the former refutes the latter. Figure 1 represents a debate game
Δ = [Γ0, Γ1, . . . , Γ6] in which the player K0

1 makes the initial claim Γ0, the player K1
2

makes a counter-claim Γ1, the player K1
1 refutes Γ1 by Γ2, and the player K2

2 refutes Γ2

by Γ3. At this stage, K2
1 cannot refute Γ3 but refutes Γ1 by Γ4. The player K3

2 cannot
refute Γ4 but refutes Γ0 by Γ5. Then, K3

1 refutes Γ5 by Γ6. The player K4
2 cannot refute

Γ6 and other claims by the opponent. As a result, the player K3
1 wins the game. In what

follows, we simply say “a debate game” instead of “a debate game for an argument X0”
when the argument X0 in the initial claim is clear or unimportant in the context.
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Γ3 (by K2
2 )
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���

Γ6 (by K3
1 )

Fig. 1. Debate game

Proposition 3.1. Let Γ be a claim of either (in(U), ) or (out(V ), in(U)) in a de-
bate game. Then, U has a single answer set S such that concl(U) = S and concl(V ) �⊆
S.

Proof. Since U is minimal and coherent, U has a single answer set S such that concl(U) =
S. As U defeats V , there is a rule r ∈ V such that the head of r is not included in S. ��

Proposition 3.2. Every debate game terminates.

Proof. By definition, each player cannot repeat the same claim in a debate game. Since
the number of minimal and coherent arguments associated with a propositional program
is finite, the result holds. ��

Example 3.1. Suppose a dispute between a prosecutor and a defense. First, the prose-
cutor and the defense have knowledge bases K0

1 = (P1, ∅) and K0
2 = (P2, ∅), respec-

tively, where

P1 : guilty ← suspect, motive,

evidence← witness, not ¬ credible,
suspect←, motive←, witness← .

P2 : ¬guilty ← suspect, not evidence,

¬ credible← witness, dark,

suspect←, dark ← .

A debate game proceeds as follows.

– First, the prosecutor K0
1 makes the initial claim:

(in(X0), ) with X0 = [ guilty ← suspect, motive; suspect←; motive← ]

(“The suspect is guilty because he has a motive for the crime.”)

where X0 ∈ Args(P1).
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– The defense revises K0
2 into K1

2 = rev(K0
2 , X0) = (P 1

2 , O
1
2) where P 1

2 = P2 and
O1

2 = X0, and makes a counter-claim:

(out(X0), in(Y1)) with Y1 = [¬guilty ← suspect, not evidence; suspect← ]

(“The suspect is not guilty as there is no evidence.”)

where Y1 ∈ Args(P 1
2 ∪O1

2) and Y1 rebuts X0.
– The prosecutor revises K0

1 into K1
1 = rev(K0

1 , Y1) = (P 1
1 , O

1
1) where P 1

1 = P1

and O1
1 = Y1, and makes a counter-claim:

(out(Y1), in(X1)) with X1 = [ evidence← witness, not ¬ credible; witness← ]

(“There is an eyewitness who saw the suspect on the night of the crime.”)

where X1 ∈ Args(P 1
1 ∪O1

1) and X1 undercuts Y1.
– The defense revises K1

2 into K2
2 = rev(K1

2 , X1) = (P 2
2 , O

2
2) where P 2

2 = P2

and O2
2 = X0 ∪ X1. (Note that the first rule of P2 is not removed by the revision

because P 1
2 ∪O1

2 ∪X1 can defeat X1). Then, the defense makes a counter-claim:

(out(X1), in(Y2)) with Y2 = [¬ credible← witness, dark; witness←; dark ← ]

(“The testimony is incredible because it was dark at night.”)

where Y2 ∈ Args(P 2
2 ∪O2

2) and Y2 undercuts X1.
– The prosecutor revises K1

1 into K2
1 = rev(K1

1 , Y2) = (P 2
1 , O

2
1) where P 2

1 =
P1 \{evidence← witness, not ¬ credible} and O2

1 = Y1∪Y2. Since K2
1 cannot

refute the claim by K2
2 , the defense wins the game.

3.2 Dishonest Player

In debate games, each player constructs claims using rules included in its program or
rules brought by the opponent. To defeat a claim by the opponent, a player may claim
an argument which the player does not believe its conclusion.

Example 3.2. Suppose that the prosecutor in Example 3.1 has the program

P ′
1 = P1 ∪ {¬ dark ← light, not broken, light←, broken←}.

In response to the last claim (out(X1), in(Y2)) by the defense K2
2 , suppose that the

prosecutor K2
1 = (P ′

1
2
, O2

1) where P ′
1
2
= P ′

1 makes a counter-claim:

(out(Y2), in(X2)) with X2 = [¬ dark ← light, not broken; light← ].

(“It was not dark because the witness saw the suspect under the light of the victim’s
apartment.”). Then, X2 defeats Y2.

In Example 3.2, the prosecutor K2
1 claims the argument X2 but he/she does not

believe its conclusion concl(X2). In fact, ¬ dark is included in no answer set of the
program P ′

1
2 ∪ Q for any Q ⊆ O2

1 . Generally, a player may behave dishonestly by
concealing believed facts to justify another fact which the player wants to conclude. We
classify different types of claims which may appear in a debate game.
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Definition 3.5 (credible, misleading, incredible, incorrect, false claims). Let Γ be
a claim of either (in(U), ) or (out(V ), in(U)) by a player Ki

l = (P i
l , O

i
l) (l =

1, 2; i ≥ 0). Also, let US be an argument which consists of rules in the reduct of U with
respect to a set S.

– Γ is credible if concl(U) ⊆ S for every answer set S of P i
l ∪Q for some Q ⊆ Oi

l

such that P i
l ∪Q is consistent and concl(U) = concl(US).

– Γ is misleading if concl(U) ⊆ S for every answer set S of P i
l ∪Q for some Q ⊆ Oi

l

such that P i
l ∪Q is consistent but concl(U) �= concl(US).

– Γ is incredible if concl(U) ⊆ S for some (but not every) answer set S of P i
l ∪ Q

for any Q ⊆ Oi
l such that P i

l ∪Q is consistent.
– Γ is incorrect if concl(U) �⊆ S for any answer set S of P i

l ∪ Q for any Q ⊆ Oi
l

such that P i
l ∪Q is consistent, and concl(U)∪ S is consistent for some answer set

S of P i
l ∪Q for some Q ⊆ Oi

l such that P i
l ∪Q is consistent.

– Γ is false if concl(U) ∪ S is inconsistent for any answer set S of P i
l ∪ Q for any

Q ⊆ Oi
l such that P i

l ∪Q is consistent.

A claim is called dishonest if it is not credible. A player Kl is honest in a debate game
Δ if every claim made by Ki

l (i ≥ 0) in Δ is credible. Otherwise, Kl is dishonest.

During a game, a player Ki
l constructs an argument U using some rules Q ⊆ Oi

l .
Then, U has the answer set which coincides with concl(U) (Proposition 3.1), but this
does not always imply that concl(U) is a subset of an answer set of P i

l .

Proposition 3.3. Every claim in a debate game is classified as one of the five types of
claims of Definition 3.5.

Example 3.3.

– Given K1 = ({ p← not q }, ∅), the claim Γ1 = (in([ p← not q ]), ) is credible.
– Given K2 = ({ p ← not q, p ← q, q ←}, ∅), the claim Γ2 = (in([ p ←

not q ]), ) is misleading.
– Given K3 = ({ p ← not q, q ← not p }, ∅), the claim Γ3 = (in([ p ←

not q ]), ) is incredible.
– Given K4 = ({ p ← not q, q ←}, ∅), the claim Γ4 = (in([ p ← not q ]), ) is

incorrect.
– Given K5 = ({ p← not¬p, ¬p←}, ∅), the claim Γ5 = (in([ p← not¬p ]), )

is false.

In Example 3.3, Γ1 is credible because concl([p ← not q]) = {p} coincides with
the answer set of the program {p← not q} in K1. By contrast, Γ2 is misleading because
for U = {p← not q} it becomes US = ∅ by the answer set S = {p, q} of the program
in K2, so that concl(U) �= concl(US). That is, a misleading claim does not use rules in
a proper manner to reach conclusions. Γ3 is incredible because p is included in some but
not in every answer set of the program in K3. Γ4 is incorrect because p is included in
no answer set of the program in K4. Γ5 is false because ¬p is included in every answer
set of the program in K5.

The existence of dishonest claims is due to the nonmonotonic nature of a program.
A player K = (P,O) is monotonic if P contains no default literal. In this case, the
following result holds.
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Proposition 3.4. Let Δ be a debate game between two monotonic players. Then, every
claim in Δ is credible.

Proof. Let Γ be a claim of either (in(U), ) or (out(V ), in(U)) by a player K =
(P,O). By U ∈ Args(P ∪ O), U ⊆ P ∪ Q for some Q ⊆ O such that P ∪ Q is
consistent. Since U is an argument associated with P ∪ Q, concl(U) ⊆ S holds for
the answer set S of P ∪ Q by Proposition 2.1. By US = U , concl(U) = concl(US).
Hence, Γ is credible. ��

Generally, it is unknown which player wins a debate game. In real life, a player
who is more knowledgeable than another player is likely to win a debate. The situation
is formulated as follows.

Proposition 3.5. Let Δ be a debate game between two players K0
1 = (P1, ∅) and

K0
2 = (P2, ∅). If K1 (resp. K2) is honest and P2 ⊂ P1 (resp. P1 ⊂ P2), then Ki

1 (resp.
Ki

2) (i ≥ 1) wins the game.

Proof. Suppose that K1 is honest and P2 ⊂ P1. Let Γm be a honest claim of either
(in(X0), ) or (out(Yi), in(Xi)) by Ki

1 = (P i
1, O

i
1) (i ≥ 0) in Δ. By Oi

1 ⊆ P1,
P i
1 ⊆ P1 and every rule in P1 \ P i

1 is undercut by some argument A ∈ Args(P1)
and A is not defeated by any argument in Args(P1). Then, every rule in P1 \ P i

1 is
eliminated in the reduct PS

1 for any answer set S of P1. Then, P i
1 and P1 have the

same answer sets. Thus, concl(Xi) ⊆ S for every answer set S of P1. Suppose that
Ki+1

2 makes a counter-claim Γm+1 = (out(Xi), in(Yi+1)), and Ki+1
1 cannot refute

Γm+1 by any honest claim. In this case, P1 has no rule to defeat Yi+1. By P2 ⊂ P1,
Yi+1 ⊂ P1. Then, concl(Yi+1) ⊆ S for every answer set S of P1. Since Yi+1 defeats
Xi, either (i) Yi+1 undercuts Xi or (ii) Yi+1 rebuts Xi but Xi does not undercut Yi+1.
In either case, concl(Xi) �⊆ S for any answer set S of P1. This contradicts the fact that
concl(Xi) ⊆ S. Hence, Ki+1

1 can refute Γm+1 by a honest claim in Δ. As such, every
claim by Ki

2 is honestly refuted by Ki
1. Hence, Ki

1 wins the game. When K2 is honest
and P1 ⊂ P2, it is shown in a similar way that Ki

2 wins the game. ��

Proposition 3.5 presents that if a player K has information more than another player,
K has no reason to behave dishonestly to win a debate. In fact, if a more informative
player K behaves dishonestly, K may lose a game.

Example 3.4. Consider two players K0
1 = (P1, ∅) and K0

2 = (P2, ∅) where P1 =
{ p ← not q, q ←} and P2 = { q ←}. Then, P2 ⊂ P1. Suppose a debate game
between K0

1 and K0
2 such that

K0
1 : Γ0 = (in([ p← not q ]), )

K1
2 : Γ1 = (out([ p← not q]), in([ q ←])).

The claim Γ0 by K0
1 is incorrect because p is included in no answer set of P1. Since the

player K1
1 cannot refute Γ1, K1

2 wins the game.

A player has an incentive to build a dishonest claim if the player cannot build a
honest counter-claim in response to the claim by the opponent. Then, our next question
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is how a player effectively uses dishonest claims as a tactic to win a debate. We first
show that among different types of dishonest claims, misleading claims are useless for
the purpose of winning a debate.

Proposition 3.6. Let Δ be a debate game between two players K0
1 = (P1, ∅) and

K0
2 = (P2, ∅).

1. If the initial claim Γ0 = (in(X0), ) by K0
1 is misleading, there is a credible claim

Γ ′
0 = (in(X), ) by K0

1 such that concl(X) = concl(X0).
2. If a claim Γk = (out(V ), in(U)) by a player Ki

l (l = 1, 2; i ≥ 1) is misleading,
there is a credible claim Γ ′

k = (out(V ), in(W )) by Ki
l such that concl(W ) =

concl(U).

Proof. (1) Since concl(X0) ⊆ S for every answer set S of P1, there is a set X ⊆ P1

of rules such that concl(X0) = concl(X) = concl(XS). Selecting a minimal set X of
rules satisfying the conditions of Definition 2.1, the result holds. (2) Since concl(U) ⊆
S for every answer set S of P i

l ∪ Q for some Q ⊆ Oi
l such that P i

l ∪ Q is consistent,
there is a set W ⊆ P i

l ∪ Q of rules such that concl(U) = concl(W ) = concl(WS).
Selecting a minimal set W of rules satisfying the conditions of Definition 2.1, the result
holds. ��

Thus, dishonest claims which are effectively used for the purpose of winning a de-
bate game are either incredible, incorrect or false claims. Once a player makes a dishon-
est claim in a game, however, it will restrict what the player can claim later in the game.
In Example 3.3, the player K4 who makes the incorrect claim Γ4 cannot subsequently
use the believed-true fact q ← which conflicts with Γ4 (Definition 3.4(g)). To keep
conflict-freeness of a player’s claims in a game, dishonest claims would restrict the use
of believed-true rules in later claims and may result in a net loss of freedom in playing
the game. With this reason, it seems reasonable to select a dishonest claim only if there
is no choice among honest claims. Comparing different types of dishonest claims, it is
considered that incredible claims are preferred to incorrect claims, and incorrect claims
are preferred to false claims. If a claim Γ = (out(V ), in(U)) is incredible, the player
does not skeptically believe the conclusion of U but credulously believes the conclusion
of U . If Γ is incorrect, the player does not credulously believe the conclusion of U but
the conclusion is consistent with the player’s belief. If Γ is false, on the other hand, the
conclusion of U is inconsistent with the player’s belief. Thus, the degree of truthfulness
(against the belief state of a player) decreases from incredible claims to incorrect claims,
and from incorrect claims to false claims (Figure 2). Generally, a dishonest claim devi-
ates from the reality as believed by a player, and a claim which increases such deviation
is undesirable for a player because it increases a chance of making the player’s claims
conflict. A player wants to keep claims close to its own belief as much as possible, so
the best-practice strategy for a debate game is to firstly use credible claims, secondly
use incredible ones, thirdly use incorrect ones, and finally use false ones to refute the
opponent.
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untruthful truthful

Fig. 2. Degree of truthfulness

4 Discussion

A formal argumentation framework has been used for modelling dialogue games or
discussion games ([11, 13, 3]; and references therein). However, most of the studies use
abstract argumentation and pay much attention on identifying acceptable arguments
based on the topological nature of dialectical graphs associated with dialogues. On the
other hand, the content of dialogue is important in human communication. Participants
in debates are interested in why one’s argument is defeated by the opponent, whether
arguments made by the opponent are logically consistent, which arguments made by
the opponent are unacceptable, and so on. In debate games proposed in this paper,
each player can see the inside of the arguments in claims made by the opponent. As a
result, a player can judge whether a counter-claim made by the opponent is grounded
on evidences, and whether claims made by the opponent are consistent throughout a
debate. Moreover, a player can obtain new information from arguments posed by the
opponent.

In AI agents are usually assumed to be honest and little attention has been paid
for representing and reasoning with dishonesty. In real-life debates, however, it is a
common practice for one to misstate their beliefs or opinions [19]. In formal argumen-
tation, [15] characterizes dishonest agents in a game-theoretic argumentation mecha-
nism design and [18] introduces dishonest arguments in a debate game. These studies
use the abstract argumentation framework and do not show how to construct dishonest
arguments from the underlying knowledge base. In this paper, we show how to build
dishonest arguments from a knowledge base represented by a logic program. Using ar-
guments associated with logic programs, we argue that at least four different types of
dishonest claims exist. In building dishonest claims, default literals play an important
role—concealing known rules or facts could produce conclusions which are not be-
lieved by a player. Proposition 3.4 shows an interesting observation that players cannot
behave dishonestly without default assumption. Dishonest reasoning in logic programs
is introduced by [16] in which the notion of logic programs with disinformation is
introduced and its computation by abductive logic programming is provided. An ap-
plication of dishonest reasoning to multiagent negotiation is provided by [17] in which
agents represented by abductive logic programs misstate their bargaining positions to
gain one’s advantage over the other. The current study shows yet another application of
dishonest reasoning in argumentation-based logic programming.

Prakken and Sartor [12] introduce dialogue trees in order to provide a proof the-
ory of argumentation-based extended logic programs. A dialogue tree consists of nodes
representing arguments by the proponent and the opponent, and edges representing at-
tack relations between arguments. Given the initial argument of the proponent at the
root node of a dialogue tree, the opponent attacks the argument by a counterargument
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if any (called a move). Two players move in turn and one player wins a dialogue if the
other player run out of moves in a tree. Comparing dialogue trees with debate games, a
dialogue tree is constructed by arguments associated with a single extended logic pro-
gram. In debate games, on the other hand, two players have different knowledge bases
and build arguments associated with them. Dialogue trees are introduced to provide a
proof theory of argumentation-based logic programs, and they do not intend to provide
a formal theory of dialogues between two players. As a result, dialogue trees do no
have mechanisms of revision and dishonest reasoning. Fan and Toni [6] propose a for-
mal model for argumentation-based dialogues between agents. They use assumption-
based argumentation (ABA) [5] for this purpose. In ABA arguments are built from
rules and supported by assumptions, and attacks against arguments are directed at the
assumptions supporting the arguments, and are provided by arguments for the contrary
of assumptions. In their dialogue model, agents can utter claims to be debated, rules,
assumptions, and contraries. A dialogue between the proponent and the opponent con-
structs a dialectical tree which represents moves by agents during a dialogue and out-
comes. In their framework, two agents share a common ABA framework and assumed
to have a common background knowledge. With this setting, an agent cannot behave
dishonestly as one cannot keep some information from the other.

5 Conclusion

The contributions of this paper are mainly twofold. First, we developed debate games
using a non-abstract argumentation framework associated with logic programming. We
applied argumentation-based extended logic programs to formal modelling of dialogue
games. Second, we showed an application of dishonest reasoning in argumentation-
based logic programming. Debate games introduced in this paper realize dishonest rea-
soning by players using nonmonotonic nature of logic programs. To the best of our
knowledge, there is no formal dialogical system which can deal with argumentative
reasoning, belief revision and dishonest reasoning in a uniform and concrete manner.
The current study contributes to a step toward integrating logic programming and for-
mal argumentation.

The proposed framework will be extended in several ways. In real-life debates,
players may use assumptions in their arguments. Assumptions are also used for con-
structing arguments in an assumption-based argumentation framework [5]. Arguments
considered in this paper use assumptions in the form of default literals. To realize debate
games in which players can also use objective literals as assumptions, we can consider
a non-abstract assumption-based argumentation framework associated with abductive
logic programs. In this framework, an argument associated with an abductive logic
program can contain abducibles as well as rules in a program. A player can claim an ar-
gument containing abducibles whose truthfulness are unknown. This is an another type
of dishonest claims called bullshit [7]. To realize debate games, we are now implement-
ing a prototype system of debate games based on the abstract argumentation framework
[16]. We plan to extend the system to handle non-abstract arguments associated with
extended logic programs.
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Abstract. We present the design and evaluation of a Datalog engine
for execution in Graphics Processing Units (GPUs). The engine eval-
uates recursive and non-recursive Datalog queries using a bottom-up
approach based on typical relational operators. It includes a memory
management scheme that automatically swaps data between memory in
the host platform (a multicore) and memory in the GPU in order to
reduce the number of memory transfers.
To evaluate the performance of the engine, three Datalog queries were
run on the engine and on a single CPU in the multicore host. One query
runs up to 200 times faster on the (GPU) engine than on the CPU.

Keywords: Logic Programming, Datalog, Parallel Computing, GPUs,
Relational Databases

1 Introduction

The traditional view of Datalog as a query language for deductive databases
is changing as a result of the new applications where Datalog has been in use
recently, including declarative networking, program analysis, distributed social
networking, security [17] — datalog recursive queries are at the core of these
applications. This renewed interest in Datalog has in turn prompted new designs
of Datalog targeting computing architectures such as GPUs, Field-programmable
Gate Arrays (FPGAs) [17] and cloud computing based on Google’s Mapreduce
programming model [7]. This paper presents a Datalog engine for GPUs.

GPUs can substantially improve application performance and are thus now
being used for general purpose computing in addition to game applications.
GPUs are single-instruction-multiple-data (SIMD) [2] machines, particularly suit-
able for compute-intensive, highly parallel applications. They fit scientific ap-
plications that model physical phenomena over time and space, wherein the
“compute-intensive” aspect corresponds to the modelling over time, while the
“highly parallel” aspect to the modelling at different points in space.

Data-intensive, highly parallel applications such as database relational opera-
tions can also benefit from the SIMD model, substantially in many cases[11, 16,
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15]. However, the communication-to-computation ratio must be relatively low
for applications to show good performance, i.e.: the cost of moving data from
host memory to GPU memory and vice versa must be low relative to the cost
of the computation performed by the GPU on that data.

The Datalog engine presented here was designed considering various optimi-
sations aimed to reduce the communication-to-computation ratio. Data is pre-
processed in the host (a multicore) in order for: i) data transfers between the
host and the GPU to take less time, and ii) for data to be processed more effi-
ciently by the GPU. Also, a memory management scheme swaps data between
host memory and GPU memory seeking to reduce the number of swaps.

Datalog queries, recursive and non-recursive, are evaluated using typical re-
lational operators, select, join and project, which are also optimised in various
ways in order to capitalise better on the GPU architecture.

Sections 2 and 3 present background material to the GPU architecture and
the Datalog language. Section 4 presents the design and implementation of our
Datalog Engine as a whole, and Section 5 of its relational operators. Section 6
presents an experimental evaluation of our Datalog engine. Section 7 presents
related work and we conclude in Section 8.

2 GPU Architecture and Programming

GPUs are SIMD machines: they consist of many processing elements that all
run the same program but on distinct data items. This same program, referred
to as the kernel, can be quite complex including control statements such as if
and while statements. However, a kernel is synchronised by hardware, i.e.: each
instruction within the kernel is executed across all processing elements running
the kernel. Thus, if a kernel has to compare strings, processing elements that
compare longer strings will take longer and the other processing elements will
wait for them.

Scheduling GPU work is usually as follows. A thread in the host platform
(e.g., a multicore) first copies the data to be processed from host memory to GPU
memory, and then invokes GPU threads to run the kernel to process the data.
Each GPU thread has an unique id which is used by each thread to identify what
part of the data set it will process. When all GPU threads finish their work, the
GPU signals the host thread which will copy the results back from GPU memory
to host memory and schedule new work.

GPU memory is organised hierarchically as shown in Figure 1. Each (GPU)
thread has its own per-thread local memory. Threads are grouped into blocks,
each block having a memory shared by all threads in the block. Finally, thread
blocks are grouped into a single grid to execute a kernel — different grids can
be used to run different kernels. All grids share the global memory.

The global memory is the GPU “main memory”. All data transfers between
the host (CPU) and the GPU are made through reading and writing global
memory. It is the slowest memory. A common technique to reducing the number
of global memory reads is coalesced memory access, which takes place when
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Fig. 1. GPU memory organization.

consecutive threads read consecutive memory locations allowing the hardware
to coalesce the reads into a single one.

The most approach to program Nvidia GPUs is by using the CUDA toolkit,
a set of developing tools and a compiler that allow programmers to develop GPU
applications using a version of the C language extended with keywords to spec-
ify GPU code. CUDA also includes various libraries with algorithms for GPUs
such as the Thrust library [5] which resembles the C++ Standard Template Li-
brary (STL) [18]. We use the functions in this library to perform sorting, prefix
sums [14] and duplicate elimination as their implementation is very efficient.

3 Datalog

As is well known, Datalog is a language based on first order logic that has been
used as a data model for relational databases [22, 23]. A Datalog program consist
of facts about a subject of interest and rules to deduce new facts. Facts can be
seen as rows in a relational database table, while rules can be used to specify
complex queries. Datalog recursive rules facilitate specifying (querying for) the
transitive closure of relations, which is a key concept in many applications [17].

3.1 Datalog Programs

A Datalog program consists of a finite number of facts and rules. Facts and rules
are specified using atomic formulas, which consist of predicate symbols with
arguments[22], e.g.:

FACTS father relational table

-----------------------

father(harry, john). harry john

father(john, david). john david

... ...
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RULE

grandfather(Z, X) :- father(Y, X), father(Z, Y).

Traditionally, names beginning with lower case letters are used for predicate
names and constants, while names beginning with upper case letters are used
for variables; numbers are considered constants. Facts consist of a single atomic
formula, and their arguments are constants; facts that have the same name must
also have the same arity. Rules consist of two or more atomic formulas with
the first one from left to right, the rule head, separated from the other atomic
formulas by the implication symbol ’:-’; the other atomic formulas are subgoals
separated by ’,’, which means a logical AND. We will refer to all the subgoals
of a rule as the body of the rule. Rules, in order to be general, are specified with
variables as arguments, but can also have constants.

3.2 Evaluation of Datalog Programs

Datalog programs can be evaluated through a top-down approach or a bottom-
up approach. The top-down approach (used by the Prolog language) starts with
the goal which is reduced to subgoals, or simpler problems, until a trivial problem
is reached. Thus, the solution of larger problems is composed of the solutions
of simpler problems until the solution of the original problem is obtained. It is
tuple-oriented and hence more difficult to adapt to massive parallelism.

The bottom-up approach works by applying the rules to the given facts,
thereby deriving new facts, and repeating this process with the new facts until
no more facts are derivable. The query is considered only at the end, when the
facts matching the query are selected. Benefits of this approach include the fact
that rules can be evaluated in any order and in a highly parallel manner, based
on equivalent relational operations as described shortly.

To improve the bottom-up approach, several methods have been proposed
such as the magic sets transformation [8] or the subsumptive demand transfor-
mation [21]. Basically, these methods transform a set of rules and a query into a
new set of rules such that the set of facts that can be inferred from the new set
of rules contains only facts that would be inferred during a top-down evaluation.

3.3 Evaluation based on relational algebra operators

Evaluation of Datalog rules can be implemented using the typical relational al-
gebra operators select, join and projection, as outlined in Figure 2. Selections are
made when constants appear in the body of a rule. Then a join is made between
two or more subgoals in the body of a rule using the variables as reference. The
result of a join can be seen as a temporary subgoal that has to be joined in turn
to the rest of the subgoals in the body. Finally, a projection is made over the
variables in the head of the rule.

For recursive rules, fixed-point evaluation is used. The basic idea is to iterate
through the rules in order to derive new facts, and using these new facts to derive
even more new facts until no new facts are derived.
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Fig. 2. Evaluation of a Datalog rule based on relational algebra operations.

4 Our Datalog Engine for GPUs

This section presents the design of our Datalog engine for GPUs.

4.1 Architecture

Figure 3 shows the main components of our Datalog engine. There is a single
host thread that runs in the host platform (a multi-core in our evaluation).
In addition to scheduling GPU work as outlined in Section 2, the host thread
preprocesses the data to send to the GPU so that GPUs can process the data
more efficiently, as described in Section 4.2.

The data sent to the GPU is organized into arrays that are stored in global
memory. The results of rule evaluations are also stored in global memory.

Our Datalog (GPU) engine is organized into various GPU kernels. When
evaluating rules, for each pair of subgoals in a rule, selection and selfjoin ker-
nels are applied first in order to eliminate irrelevant tuples as soon as possible,
followed by join and projection kernels. At the end of each rule evaluation, the
duplicate elimination kernels are applied. Figure 3, right-hand side, shows these
steps.

The memory management module helps to identify the most recently used
data within the GPU in order to maintain it in global memory and discard
sections of data that are no longer necessary.
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Fig. 3. GPU Datalog engine organisation.

4.2 Host Thread Tasks

Parsing. To capitalise on the GPU capacity to process numbers and to have
short and constant processing time for each tuple (strings variable size entails
varying processing time), we identify and use facts and rules with/as numbers,
keeping their corresponding strings in a hashed dictionary. Each unique string
is assigned a unique id, equal strings are assigned the same id. The GPU thus
works with numbers only; the dictionary is used at the very end when the final
results are to be displayed.

Preprocessing. A key factor for good performance is preprocessing data before
sending it to the GPU. As mentioned before, Datalog rules are evaluated through
a series of relational algebra operations: selections, joins and projections. For the
evaluation of each rule, the specification of what operations to perform, including
constants, variables, facts and other rules involved, is carried out in the host (as
opposed to be carried out in the GPU by each kernel thread), and sent to the
GPU for all GPU threads to use. Examples:

– Selection is specified with two values, column number to search and the
constant value to search; the two values are sent as an array which can include
more than one selection (more than one pair of values), as in the following
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example, where columns 0, 2, and 5 will be searched for the constants a, b
and c, respectively:

fact1(’a’,X,’b’,Y,Z,’c’). -> [0, ’a’, 2, ’b’, 5, ’c’]

– Join is specified with two values, column number in the first relation to join
and column number in the second relation to join; the two values are sent as
an array which can include more than one join, as in the following example
where the following columns are joined in pairs: column 1 in fact1 (X) with
column 1 in fact 2, column 2 in fact1 with column 4 in fact2, and column 3
in fact1 with column 0 in fact2.

fact1(A,X,Y,Z), fact2(Z,X,B,C,Y). -> [1, 1, 2, 4, 3, 0]

Other operations are specified similarly with arrays of numbers. These arrays
are stored in GPU shared memory (as opposed to global memory) because they
are small and the shared memory is faster.

4.3 Memory Management

Data transfers between GPU memory and host memory are costly in all CUDA
applications [1]. We designed a memory management scheme that tries to min-
imize the number of such transfers. Its purpose is to maintain facts and rule
results in GPU memory for as long as possible so that, if they are used more
than once, they may often be reused from GPU memory. To do so, we keep track
of GPU memory available and GPU memory used, and maintain a list with in-
formation about each fact and rule result that is resident in GPU memory. When
data (facts or rule results) is requested to be loaded into GPU memory, it is first
looked up in that list. If found, its entry in the list is moved to the beginning of
the list; otherwise, memory is allocated for the data and a list entry is created at
the beginning of the list for it. In either case, its address in memory is returned.
If allocating memory for the data requires deallocating other facts and rule re-
sults, those at the end of the list are deallocated first until enough memory is
obtained — rule results are written to CPU memory before deallocating them.
By so doing, most recently used fact and rule results are kept in GPU memory.

5 GPU Relational Algebra Operators

This section presents the design decisions we made for the relational algebra
operations we use in our Datalog engine: select, join and project operations for
GPUs. The GPU kernels that implement these operations access (read/write)
tables from GPU global memory.

5.1 Selection

Selection has two main issues when designed for running in GPUs. The first issue
is that the size of the result is not known beforehand, and increasing the size
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of the results buffer is not convenient performance-wise because it may involve
reallocating its contents. The other issue is that, for efficiency, each GPU thread
must know onto which global memory location it will write its result without
communicating with other GPU threads.

To avoid those issues, our selection uses three different kernel executions. The
first kernel marks all the rows that satisfy the selection predicate with a value
one. The second kernel performs a prefix sum on the marks to determine the
size of the results buffer and the location where each GPU thread must write
the results. The last kernel writes the results.

5.2 Projection

Projection requires little computation, as it simply involves taking all the el-
ements of each required column and storing them in a new memory location.
While it may seem pointless to use the GPU to move memory, the higher mem-
ory bandwidth of the GPU, compared to that of the host CPU/s, and the fact
that the results remain in GPU memory for further processing, make projection
a suitable operation for GPU processing.

5.3 Join

Our Datalog engine uses these types of join: Single join, Multijoin and Selfjoin. A
single join is used when only two columns are to be joined, e.g.: table1(X,Y ) ./
table2(Y,Z). A multijoin is used when more than two columns are to be joined:
table1(X,Y ) ./ table2(X,Y ). A selfjoin is used when two columns have the same
variable in the same predicate: table1(X,X).

Single join. We use a modified version of the Indexed Nested Loop Join described
in [16], which is as follows:

Make an array for each of the two columns to be joined

Sort one of them

Create a CSS-Tree for the sorted column

Search the tree to determine the join positions

Do a first join to determine the size of the result

Do a second join to write the result

The CSS-Tree [19] (Cache Sensitive Search Tree) is very adequate for GPUs
because it can be quickly constructed in parallel and because tree traversal is
performed via address arithmetic instead of the traditional memory pointers.

While the tree allows us to know the location of an element, it does not tell
us how many times each element is going to be joined with other elements nor in
which memory location must each thread write the result, so we must perform
a “preliminary” join. This join counts the number of times each element has
to be joined and returns an array that, as in the select operation, allows us to
determine the size of the result and write locations when a prefix sum is applied
to it. With the size and write locations known, a second join writes the results.
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Multijoin. To perform a join over more than two columns, e.g., table1(X,Y ) ./
table2(X,Y ), first we take a pair of columns say (X,X) to create and search on
the CSS-Tree as described in the single join algorithm. Then, as we are doing
the first join, we also check if the values of the remaining columns are equal (in
our example we check if Y = Y ) and discard the rows that do not comply.

Selfjoin. The selfjoin operation is very similar to the selection operation. The
main difference is that instead of each thread checking a constant value on its
corresponding row, it checks if the values of the columns affected by the self join
match.

5.4 Optimisations

Our relational algebra operations make use of the following optimisations in
order to improve performance. The purpose of these optimisations is to reduce
memory use and in principle processing time — the cost of the optimisations
themselves is not yet evaluated.

Duplicate Elimination. Duplicate elimination uses the unique function of the
Thrust library. It takes an array and a function to compare two elements in the
array, and returns the same array with the unique elements at the beginning.
We apply duplicate elimination to the result of each rule: when a rule is finished,
its result is sorted and the unique function is applied.

Optimising projections. Running a projection at the end of each join, as
described below, allows us to discard unnecessary columns earlier in the compu-
tation of a rule. For example, consider the following rule:

rule1(Y, W) :- fact1(X, Y), fact2(Y, Z), fact3(Z,W).

The evaluation of the first join, fact1 ./Y fact2, generates a temporary table
with columns (X,Y, Y, Z), not all of which are necessary. One of the two Y
columns can be discarded; and column X can also be discarded because it is not
used again in the body nor in the head of the rule.

Fusing operations. Fusing operations consists of applying two or more oper-
ations to a data set in a single read of the data set, as opposed to applying only
one operation, which involves as many reads of the data set as the number of
operations to be applied. We fuse the following operations.

– All selections required by constant arguments in a subgoal of a rule are
performed at the same time.

– All selfjoins are also performed at the same time.
– Join and projection are always performed together at the same time.
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To illustrate these fusings consider the following rule:

rule1(X,Z):- fact1(X,’const1’,Y,’const2’),fact2(Y,’const3’,Y,Z,Z).

This rule will be evaluated as follows. fact1 is processed first: the selections
required by const1 and const2 are performed at the same time — fact1 does not
require selfjoins. fact2 is processed second: a) the selection required by const3
is performed, and then b) the selfjoins between Y s and Zs are performed at the
same time. Finally, a join is performed between the third column of fact1 and
the first column of fact2 and, at the same time, a projection is made (as required
by the arguments in the rule head) to leave only the first column of fact1 and
the fourth column of fact2.

6 Experimental Evaluation

This section describes our platform, applications and experiments to evaluate
the performance of our Datalog engine. We are at this stage interested in the
performance benefit of using GPUs for the evaluation of Datalog queries, as op-
posed to using a CPU only. Hence we present results that show the performance
of 3 Datalog queries running on our engine compared to the performance of the
same queries running on a single CPU in the host platform. (We plan to compare
our Datalog engine to similar GPU work discussed in Section 7, Related Work,
in further work).

On a single CPU in the host platform, the 3 queries were run with the
Prolog systems YAP [9] and XSB [20], and the Datalog system from the MITRE
Corporation [3]. As the 3 queries showed the best performance with YAP, our
results plots below show the performance of the queries with YAP and with
our Datalog engine only. YAP is a high-performance Prolog compiler developed
at LIACC/Universidade do Porto and at COPPE Sistemas/UFRJ. Its Prolog
engine is based on the WAM (Warren Abstract Machine) [9], extended with some
optimizations to improve performance. The queries were run on this platform:

Hardware. Host platform: Intel Core 2 Quad CPU Q9400 2.66GHz (4 cores
in total), Kingston RAM DDR2 6GB 800 MHz. GPU platform: Fermi GeForce
GTX 580 - 512 cores - 1536 MB GDDR5 memory.

Software. Ubuntu 12.04.1 LTS 64bits. CUDA 5.0 Production Release, gcc
4.5, g++ 4.5. YAP 6.3.3 Development Version, Datalog 2.4, XSB 3.4.0.

For each query, in each subsection below, we describe first the query, and then
discuss the results. Our results show the evaluation of each query once all data
has been preprocessed and in CPU memory, i.e.: I/O, parsing and preprocessing
costs are not included in the evaluation.

6.1 Join over four big tables.

Four tables, all with the same number of rows filled with random numbers, are
joined together to test all the different operations of our Datalog engine. The
rule and query used are:
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join(X,Z) :- table1(X), table2(X,4,Y), table3(Y,Z,Z), table4(Y,Z).

join(X,Z)?

Fig. 4 shows the performance of the join with YAP and our engine, in both
normal and logarithmic scales to better appreciate details. Our engine is clearly
faster, roughly 200 times. Both YAP and our engine take proportionally more
time as the size of the tables grows. Our engine took just above two seconds to
process tables with five million rows each, while YAP took about two minutes
process tables with one million rows each.

The time taken by each operation was as follows: joins were the most costly
operations with the Multijoin alone taking more than 70% of the total time; the
duplicate elimination and the sorting operations were also time consuming but
within acceptable values; prefix sums and selections were the fastest operations.
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Fig. 4. Performance of join over four big tables (log. scale on the right).

6.2 Transitive closure of a graph.

The transitive closure of a graph (TCG) is a recursive query. We use a table with
two columns filled with random numbers that represent the edges of a graph [12].
The idea is to find all the nodes that can be reached if we start from a particular
node. This query is very demanding because recursive queries involve various
iterations over the relational operations that solve the query. The rules and the
query are:

path(X,Y) :- edge(X,Y).

path(X,Z) :- edge(X,Y), path(Y,Z).

path(X,Y)?

Fig. 5 shows the performance of TCG with YAP and our engine. Similar
observations can be made as for the previous experiment. Our engine is 40x
times faster than YAP for TCG. Our engine took less than a second to process
a table of 10 million rows while YAP took 3.5 seconds to process 1 million rows.
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For the first few iterations, duplicate elimination was the most costly oper-
ation of each iteration, and the join second but closely. As the number of rows
to process in each iteration decreased, the join became by far the most costly
operation.
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Fig. 5. Performance of transitive closure of a graph (log. scale on the right).

6.3 Same-Generation program.

This is a well-known program in the Datalog literature, and there are various
versions. We use the version described in [6]. Because of the initial tables and
the way the rules are written, it generates lots of new tuples in each iteration.
The three required tables are created with the following equations:

up = {(a, bi)|iε[1, n]} ∪ {(bi, cj)|i, jε[1, n]}. (1)

flat = {(ci, dj)|i, jε[1, n]}. (2)

down = {(di, ej)|i, jε[1, n]} ∪ {(ei, f)|iε[1, n]}. (3)

Where a and f are two known numbers and b, c, d and e are series of n
random numbers. The rules and query are as follows:

sg(X,Y) :- flat(X,Y).

sg(X,Y) :- up(X,X1), sg(X1,Y1), down(Y1,Y).

sg(a,Y)?

The results show (Fig. 6) very little gain in performance, with our engine
taking an average of 827ms and YAP 1600ms for n = 75. Furthermore, our
engine cannot process this application for n > 90 due to lack of memory.

The analysis of each operation revealed that duplicate elimination takes more
than 80% of the total time and is also the cause of the memory problem. The
reason of this behaviour is that the join creates far too many new tuples, but most
of these tuples are duplicates (as an example, for n = 75 the first join creates
some 30 million rows and, after duplicate elimination, less than 10 thousand
rows remain).
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Fig. 6. Same-Generation program.

7 Related Work

He et. al [15] have designed, implemented and evaluated GDB, an in-memory
relational query coprocessing system for execution on both CPUs and GPUs.
GDB consists of various primitive operations (scan, sort, prefix sum, etc.) and
relational algebra operators built upon those primitives.

We modified the Indexed Nested Loop Join (INLJ) of GDB for our single join
and multijoin, so that more than two columns can be joined, and a projection
performed, at the same time. Their selection operation and ours are similar
too; ours takes advantage of GPU shared memory and uses the Prefix Sum of
the Thrust Library. Our projection is fused into the join and does not perform
duplicate elimination, while they do not use fusion at all.

Diamos et. al [10, 11, 24–26] have also developed relational operators for
GPUs, which are being integrated into the Red Fox [4] platform, an extended
Datalog developed by LogicBlox [13] for multiple-GPU systems [26]. Their re-
lational operators partition and process data in blocks using algorithmic skele-
tons. Their join algorithm, compared to that of GDB, shows 1.69 performance
improvement [11]. Their selection performs two prefix sums and the result is writ-
ten and then moved to eliminate gaps; our selection performs only one prefix
sum and writes the result once. They discuss kernel fusion and fission in [25]. We
applied fusion (e.g., simultaneous selections, selection then join, etc.) at source
code, while they implement it automatically through the compiler. Kernel fis-
sion, the parallel execution of kernels and memory transfers, is not yet adopted
in our work. We plan to compare our relational operators to those of GDB and
Red Fox, and extending them for multiple-GPU systems too.
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8 Conclusions

Our Datalog engine for GPUs evaluates queries based on the relational operators
select, join and projection. Our evaluation using 3 queries shows a dramatic
performance improvement for two of the queries, up to 200 times for one of
them. The performance of the same-generation problem is improved twice only,
but we believe it can be improved more. We will work on the following extensions
to our engine.

– Extended syntax to accept built-in predicates and negation [6].
– Evaluation based on tabling [21] or magic sets [8] methods.
– Managing tables larger than the total amount of GPU memory.
– Mixed processing of rules both on the GPU and on the host multicore.
– Improved join operations to eliminate duplicates before writing final results.
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Abstract. In prior work, we have developed a method for the auto-
matic reconstruction of buggy Prolog programs from correct programs
to model learners’ incorrect reasoning in a tutoring context. The method
combines an innovative variant of algorithmic debugging with program
transformations. Algorithmic debugging is used to indicate a learner’s
error and its type; this informs a program transformation that “repairs”
the expert program into a buggy variant that is closer at replicating
a learner’s behaviour. In this paper, we improve our method by using
heuristic search. To search the space of program transformations, we es-
timate the distance between programs. Instead of only returning the first
irreducible disagreement between program and Oracle, the algorithmic
debugger now traverses the entire program. In the process, all irreducible
agreements and disagreements are counted to compute the distance met-
rics, which also includes the cost of transformations. Overall, the heuristic
approach is a significant improvement to our existing blind method.

1 Introduction

Typically, programs have bugs. We are interested in runtime bugs where the
program terminates with output that the programmer judges incorrect. In these
cases, Shapiro’s algorithmic debugging technique can be used to pinpoint the
location of the error. A dialogue between the debugger and the programmer
unfolds until the meta-interpretation of the program reaches a statement that
captures the cause of disagreement between the program’s actual behaviour and
the programmer’s intent of how the program should behave. Once the bug has
been located, it is the programmer’s task to repair the program, and then, to
start another test-debugging-repair cycle. Let us make the following assumption:
there exists an Oracle that relieves the programmer from answering any of the
questions during the debugging cycle; the Oracle “knows” the programmer’s
intent for each and every piece of code. With the mechanisation of the Oracle
to locate the program’s bugs, we now seek to automate the programmer’s task
to repair the bug, and thus, to fully automate the test-debug-repair cycle.

In the tutoring context, Oracles can be mechanised: for a given domain of
instruction, there is always a reference model that defines expert problem solv-
ing behaviour. Moreover, a learner’s problem solving behaviour is judged with
regard to this model; a learner commits a mistake whenever the learner deviates
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from the expert problem solving path. Algorithmic debugging can be used to
identify the location of learners’ erroneous behaviour. For this, we have to turn
Shapiro’s method on its head: we take the expert program to take the role of
the buggy program, and the learner to take the role of the programmer, that
is, the Oracle. As in the traditional method, any disagreement between the two
parties indicates the location of the bug. Moreover, we can relieve the learner
from answering Oracle questions. Answers to all questions can be reconstructed
from the learner’s answer to a given problem, using the expert model [9].

With the ability to locate a learner’s error, we now seek to “repair” the
expert program (assumed buggy) in such a way that is reproduces the learner’s
erroneous (assumed expert) behaviour. The resulting program acts as symbolic
artifact of a deep diagnosis of a learner’s problem solving process; it can be
used to inform effective remediation, helping learners to realize and correct their
mistakes. Ideally, repair operators shall mirror typical learner errors. This is
feasible indeed. There is a small set of error types, and many of them can be
formally described in a domain-independent manner.

With the identification of an error’s location, and a small, effective set of
mutation operators for program repair, we strive to fully automate the test-
debug-repair cycle in the tutoring context. Our approach is applicable for a
wider context, given the specification of an ideal program and a theory of error.

Main contributions. To address an important issue in intelligent tutoring, the
deep diagnosis of learner input, we cast the problem of automatically deriving
one (erroneous) program from another (expert) program as a heuristic search
problem. We define a metric that quantifies the distance of two given programs
with regard to an input/output pair. We define a number of domain-independent
code perturbation operators whose execution transforms a given program into its
mutated variant. Most mutation operators encode typical actions that learners
perform when encountering an impasse during problem solving. We show the
effectiveness of our approach for the most frequent learner bugs in the domain
of multi-column subtraction. Erroneous procedures are automatically derived to
reproduce these errors. This work extends and generalises our previous work in
this area [9], [10] with regard to the heuristic search approach, which is novel.

Overview. Sect. 2 gives a very brief review on student errors in tutoring. It
presents multi-column subtraction as domain of instruction and gives an encod-
ing of the expert model in Prolog. For each of the top-eight learner errors in
this domain, we demonstrate how the expert model needs to be perturbated to
reproduce them. We show that most perturbations are based on a small but ef-
fective set of mutation operators. Also, we briefly review our existing method of
error diagnosis in the tutoring context. In Sect. 3, we improve and generalise our
method. The problem of deriving one program from another is cast in terms of
a heuristic search problem. We introduce a distance metrics between programs
that is based on algorithmic debugging, and use a best-first search algorithm to
illustrate and evaluate the effectiveness of our approach. Sect. 4 discusses our
approach and relates it to existing work. Sect. 5 concludes with future work.
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2 Background

2.1 Human Error in Tutoring

When learning something new, one is bound to make mistakes. Effective teaching
depends on deep cognitive analyses to diagnose learners’ problem solving path,
and subsequently to repair the incorrect parts. Good teacher are thus capable to
reconstruct students’ erroneous procedures and use this information to inform
their remediation. In the area of elementary school mathematics, our chosen tu-
toring domain, the seminal works of Brown and Burton [1, 2], O’Shea and Young
[8], and VanLehn [7], among others, extensively studied the subtraction errors
of large populations of pupils. Their research included a computational account
of errors by manually constructing cognitive models that reproduced learners’
most frequent errors. The main insight of this research is that student errors
are seldom random. There are two main causes. The first cause is that student
errors may result from correctly executing an erroneous procedure; for some rea-
sons, the erroneous rather than the expert procedure has been acquired. The
second cause is based on VanLehn’s theory of impasses and repairs. Following
VanLehn, learners “know” the correct procedure, but face difficulties executing
it. They “treat the impasse as a problem, solve it, and continue executing the
procedure” [7, p. 42]. The repair strategies to address an impasse are known
to be common across student populations and domains. Typical repairs include
executing only the steps known to the learner and to skip all other steps, or to
adapt the situation to prevent the impasse from happening.

2.2 Expert Model for Multi-Column Subtraction

Fig. 1 depicts the entire cognitive model for multi-column subtraction using the
decomposition method. The Prolog code represents a subtraction problem as
a list of column terms (M, S, R) consisting of a minuend M, a subtrahend S,
and a result cell R. The main predicate subtract/2 determines the number of
columns and passes its arguments to mc_subtract/3.1 This predicate processes
columns from right to left until all columns have been processed and the recursion
terminates. The predicate process column/3 receives a partial sum, and processes
its right-most column (extracted by last/2). There are two cases. Either the
column’s subtrahend is larger than its minuend, when a borrowing operation is
required, or the subtrahend is not larger than the minuend, in which case we
can subtract the former from the latter (calling take difference/4). In the first
case, we add ten to the minuend (add ten to minuend/3) by borrowing from the
left (calling decrement/3). The decrement operation also consists of two clauses,
with the second clause being the easier case. Here, the minuend of the column
left to the current column is not zero, so we simply reduce the minuend by one.
If the minuend is zero, we need to borrow again, and hence decrement/3 is called
recursively. When we return from recursion, we first add ten to the minuend,
and then reduce it by one.

1 The argument CurrentColumn is passed onto most other predicates; it is only used
to help automating the Oracle.
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01 : subtract(PartialSum, Sum)←
02 : length(PartialSum, LSum),
03 : mc subtract(LSum, PartialSum, Sum).

04 : mc subtract( , [ ], [ ]).
05 : mc subtract(CurrentColumn, Sum, NewSum)←
06 : process column(CurrentColumn, Sum, Sum1 ),
07 : shift left(CurrentColumn, Sum1 , Sum2 , ProcessedColumn),
08 : CurrentColumn1 is CurrentColumn − 1,
09 : mc subtract(CurrentColumn1 , Sum2 , SumFinal),
10 : append(SumFinal , [ProcessedColumn], NewSum).

11 : process column(CurrentColumn, Sum, NewSum)←
12 : last(Sum, LastColumn), allbutlast(Sum,RestSum),
13 : minuend(LastColumn, M ), subtrahend(LastColumn, S),
14 : S > M , !,
15 : add ten to minuend(CurrentColumn, M , M10 ),
16 : CurrentColumn1 is CurrentColumn − 1,
17 : decrement(CurrentColumn1 , RestSum, NewRestSum),
18 : take difference(CurrentColumn, M10 , S , R),
19 : append(NewRestSum, [(M10 , S , R)],NewSum).

20 : process column(CurrentColumn, Sum, NewSum)←
21 : last(Sum, LastColumn), allbutlast(Sum,RestSum),
22 : minuend(LastColumn, M ), subtrahend(LastColumn, S),
23 : % S =< M,
24 : take difference(CurrentColumn, M , S , R),
25 : append(RestSum, [(M , S , R)], NewSum).

26 : shift left( CurrentColumn, SumList , RestSumList , Item )←
27 : allbutlast(SumList , RestSumList), last(SumList , Item).

28 : decrement(CurrentColumn, Sum, NewSum )←
29 : irreducible,
30 : last( Sum, (M , S , R) ), allbutlast( Sum, RestSum),
31 : M == 0, !,
32 : CurrentColumn1 is CurrentColumn − 1,
33 : decrement(CurrentColumn1 , RestSum, NewRestSum ),
34 : NM is M + 10,
35 : NM1 is NM − 1,
36 : append( NewRestSum, [(NM1 , S , R)], NewSum),

37 : decrement(CurrentColumn, Sum, NewSum)←
38 : irreducible,
39 : last( Sum, (M , S , R) ), allbutlast( Sum, RestSum),
40 : % \+ (M == 0),
41 : M1 is M − 1,
42 : append( RestSum, [(M1 , S , R)], NewSum ).

43 : add ten to minuend( CC , M , M10 )← irreducible, M10 is M + 10.
44 : take difference( CC , M , S , R)← irreducible, R is M − S .

45 : minuend( (M , S , R), M ).
46 : subtrahend( ( M , S , R), S).

47 : allbutlast([ ], [ ]).
48 : allbutlast([ H ], [ ]).
49 : allbutlast([H1 |[H2 |T ]], [H1 |T1 ])← allbutlast([H2 |T ],T1 ).

50 : irreducible.

Fig. 1. The Decomposition Method for Subtraction in Prolog
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2.3 Buggy Sets in Multi-column Subtraction

9
3 10 11
4 0 1

- 1 9 9

= 2 0 2
(a) correct solution

4 0 1
- 1 9 9

= 3 9 8
(b) smaller-from-larger

3 10 11
4 0 1

- 1 9 9

= 2 1 2
(c) stops-borrow-at-zero

2
3 10 11
4 0 1

- 1 9 9

= 1 1 2
(d) borrow-across-zero

9 11
4 0 1

- 1 9 9

= 3 0 2
(e) borrow-from-zero

10 11
4 0 1

- 1 9 9

= 3 1 2
(f) borrow-no-decrement

11
4 0 1

- 1 9 9

= 3 9 2
(g) stops-borrow-at-
zero diff-0-N=N

2
3 11 11
4 1 1

- 1 9 9

= 1 2 2
(h) always-borrow-left

3 11
4 0 1

- 1 9 9

= 1 9 2
(i) borrow-across-zero
diff-0-N=N

Fig. 2. A correct solution, and the top-eight bugs sets, see [7, p. 195].

Fig. 2(a) depicts the correct solution to the subtraction problem 401 − 199,
the figures 2(b)–2(i) show how the top-eight bug sets from the DEBUGGY study
[7, p. 195, p. 235] manifest themselves in the same task. All erroneous answers
are rooted in learners’ difficulty to borrow: the errors in Fig. 2(b) and 2(f)
result from the learners’ more general impasse “does not know how to borrow”,
and the errors in Fig. 2(c)–Fig. 2(e) results from the learners’ more specific
impasse “does not know how to borrow from zero”. All other errors, but Fig. 2(h),
are variations of the previous error types. Fig. 2(h) is better explained by the
incorrect acquisition of knowledge rather than within the impasse-repair theory.

We now describe how the expert procedure given in Fig. 1 needs to be “re-
paired” to reproduce each of the top-eight bugs.

smaller-from-larger: the student does not borrow, but in each column subtracts
the smaller digit from the larger one [7, p. 228]. The impasse “learner does not
know how to borrow” is overcome by not letting borrowing to happen. The
expert model is perturbated at the level of process column/3. In its first clause,
we delete the calls to add ten to minuend/3 (line 15) and decrement/3 (line 17).
As a consequence, we replace all remaining occurences of M10 and NewRestSum

with M and RestSum, respectively. Moreover, we swap the arguments for M and S

when taking differences (line 18).
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borrow-no-decrement: when borrowing, the student adds ten correctly, but
does not change any column to the left [7, p. 223]. The learner addresses the
impasse “does not know how to borrow” with a partial skipping of steps. In the
first clause of process column/3, the subgoal decrement/3 (line 17) is deleted; the
remaining occurrence of NewRestSum is subsequently by RestSum (line 19).

stops-borrow-at-zero: instead of borrowing across a zero, the student adds ten
to the column he is doing, but does not change any column to the left [7, p. 229].
The impasse “learner does not know how to borrow from zero” is overcome by
not performing complete borrowing when the minuend in question is zero. The
recursive call to decrement/3 (line 33) and the goals producing NM1 and NM (lines
34, 35) are removed, and the remaining occurrence of NM1 replaced by M (line 36).

borrow-across-zero: when borrowing across a 0 , the student skips over the
0 to borrow from the next column. If this causes him to have to borrow twice,
he decrements the same number both times [7, p. 114, p.221]. Same impasse,
different repair. The clauses that produce NM1 and NM (lines 34, 35) are removed;
the remaining occurrence of NM1 in append/3 replaced by M (line 36).

borrow-from-zero: instead of borrowing across a zero, the student changes the
zero to nine, but does not continue borrowing from the column to the left [7,
p. 223]. Same impasse, yet another repair: the assignments NM and NM1 stay in
place, but the recursive call to decrement/3 (line 33) is deleted; the occurrence
of NewRestSum is replaced by RestSum (line 36).

stops-borrow-at-zero diff0-N=N: when the student encounters a column of
the form 0−N , he does not borrow, but instead writes N as the answer, possibly
combined with stops-borrow-at-zero. For diff-0-N=N, we shadow the existing
clause for taking differences with take difference( M, S, R):- M == 0, R = S.

To ensure that no borrowing operation is performed in case the minuend is zero,
the first clause of process column/3 is modified. The constraint S > M (line 14) is
complemented with \+ (M == 0); line 23 is changed to (S =< M) ; (M == 0).

always-borrow-left: the student borrows from the left-most digit instead of bor-
rowing from the digit immediately to the left [7, p. 225]. This error is best ex-
plained by the incorrect acquisition of knowledge rather than within the impasse-
repair theory. To reproduce it, we shadow the existing clauses for decrement/3

with decrement([(M,S,R)|OtherC], [(M1,S,R)|OtherC]) :- !, M1 is M - 1.

borrow-across-zero diff-0-N=N: see above. With both errors already been
dealt with, we combine the respective perturbations to reproduce this error.

Summary. All error types except always-borrow-left require the deletion of one
or more subgoals, in which case a post-processing phase must replace all occur-
rences of the subgoals’ output argument with their respective input argument.
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The error diff0-N=N co-occurs with stops-borrow-at-zero and borrow-across-

zero. It requires a new clause for take difference/4, shadowing the existing
clause when the minuend in question is zero. Also, two constraints need to be
added in each of the two definitions for process column/3. Note that the per-
turbations for diff0-N=N are not in conflict with the perturbations for the other
errors. For smaller-than-larger, the swapping of arguments was necessary. To
reproduce the error type always-borrow-left, we shadowed the existing clauses
for decrement/3 with a new clause. While the top five errors can be reproduced
by syntactic means, the last three errors seem to require constructive action.

2.4 Existing Method

In [10], we have presented a method that interleaves algorithmic debugging with
program transformations for the automatic reconstruction of learners’ erroneous
procedure, see Fig. 3. The function ReconstructErroneousProcedure/3 is recur-
sively called until a program is obtained that reproduces learner behaviour, in
which case there are no further disagreements. Note that multiple perturbations
may be required to reproduce single bugs, and that multiple bugs are tackled by
iterative applications of algorithmic debugging and code perturbation.

1: function ReconstructErroneousProcedure(Program,Problem, Solution)
2: (Disagr, Cause)← AlgorithmicDebugging(Program,Problem, Solution)
3: if Disagr = nil then
4: return Program
5: else
6: NewProgram← Perturbation(Program,Disagr, Cause)
7: ReconstructErroneousProcedure(NewProgram,Problem, Solution)
8: end if
9: end function

10: function Perturbation(Program,Clause, Cause)
11: return chooseOneOf(Cause)
12: DeleteCallToClause(Program,Clause)
13: DeleteSubgoalsOfClause(Program,Clause)
14: SwapClauseArguments(Program,Clause)
15: ShadowClause(Program,Clause)
16: end function

Fig. 3. Pseudo-code: compute variant of Program to reproduce a learner’s Solution.

The irreducible disagreement resulting from the algorithmic debugging phase
locates the code pieces where perturbations must take place; its cause determines
the kind of perturbation. The function Perturbation/3 can invoke various kinds
of transformations: the deletion of a call to the clause in question, or the deletion
of one of its subgoals, or the shadowing of the clause in question by a more spe-
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cialized instance, or the swapping of the clause’ arguments. These perturbations
reflect the repair strategies learners use when encountering an impasse.

Our algorithm for clause call deletion, e.g., traverses a given program until
it identifies a clause whose body contains the clause in question, Clause; once
identified, it removes Clause from the body and replaces all occurrences of its
output argument by its input argument in the adjacent subgoals as well as in
the clause’s head, if present. Then, the modified program is returned.

There are many choice points as an action can materialise in many different
ways. Our original method uses Prolog’s built-in depth-first mechanism to blindly
search the space of program transformations. Our new method uses a heuristics
to make informed decisions during search.

3 Heuristic Search over Program Transformations

The problem of automatically reconstructing a Prolog program to model a
learner’s incorrect reasoning can be cast as a heuristic search problem. The
initial state holds a Prolog program that solves arbitrary multi-column subtrac-
tion tasks in a expert manner. The goal state holds the program’s perturbated
variant whose execution reproduces the learner’s erroneous behaviour. For each
state s, a successor state s′ can be obtained by the application of a single pertur-
bation operator opi. We seek a sequence of perturbation actions op1, op2, ...opn
to define a path between start and goal state, with minimal costs.

3.1 Heuristic Function

Best-first search depends on a heuristic function to evaluate a node’s distance to
the goal node. Our method [10] can be extended to serve as a heuristic function.
A heuristic score can be obtained by counting the number of agreements until
the first irreducible disagreement is found; however, when errors occur early
in the problem solving process, this simple scoring performs poorly. A better
score is yielded by the following: the debugger is modified to always traverse the
entire program and count all irreducible agreements and disagreements during
traversal.

Fig. 4 depicts the algorithmic debugger in pseudo-code; it extends a simple
meta-interpreter. Before start, both counters are initialised, and the references
set for Goal, Problem, Solution to hold the top-level goal, the task to be solved
and the learner’s Solution to the task, respectively. There are four main cases.
The meta-interpreter encounters either (i) a conjunction of goals, (ii) a goal
that is a system predicate, (iii) a goal that does not need to be inspected, or
(iv) a goal that needs to be inspected. For (i), algorithmic debugging is called
recursively on each of the goals of the conjunctions; for (ii), the goal is called;
and for (iii), we obtain the goal’s body and ask the meta-interpreter to inspect
it. The interesting aspect is case (iv) for goals marked relevant. Here, the goal
is evaluated by both the expert program (using call/1) and the Oracle. The
Oracle retrieves the learner’s solution for the given Problem and reconstructs
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1: NumberAgreements← 0, NumberDisagreements← 0
2: Problem ← current task to be solved, Solution ← learner input to task
3: Goal ← top-clause of routine, with input Problem and output Solution
4: procedure algorithmicDebugging(Goal)
5: if Goal is conjunction of goals (Goal1, Goal2) then
6: ← algorithmicDebugging(Goal1)
7: ← algorithmicDebugging(Goal2)
8: end if
9: if Goal is system predicate then

10: ← call(Goal)
11: end if
12: if Goal is not on the list of goals to be discussed with learners then
13: Body ← getClauseSubgoals(Goal)
14: ← algorithmicDebugging(Body)
15: end if
16: if Goal is on the list of goals to be discussed with learners then
17: SystemResult ← call(Goal)
18: OracleResult ← oracle(Goal)
19: if results agree on Goal then
20: Weight ← computeWeight(Goal) . compute # of skills in proof tree
21: NumberAgreements← NumberAgreements+Weight
22: else
23: if Goal is leaf node (or marked as irreducible) then
24: NumberDisagreements← NumberDisagreements+ 1
25: else
26: Body ← getClauseSubgoals(Goal)
27: ← algorithmicDebugging(Body)
28: end if
29: end if
30: end if
31: end procedure
32: Score← NumberDisagreements−NumberAgreements

Fig. 4. Pseudo-code: Top-Down Traversal, Keeping Track of (Dis-)agreements.

from it the learner’s answer to the goal under discussion. Now, there are two
cases. If system and learner agree on the goal’s result, then the goal’s weight is
determined and added to the number of agreements; if they disagree, the goal
must be inspected further to identify the exact location of the disagreement.
If the goal is a leaf node, the irreducible disagreement has been identified and
the disagreement counter is incremented by one; otherwise, the goal’s body is
retrieved and subjected to algorithmic debugging. The heuristic score is obtained
by subtracting the number of agreements from the number of disagreements.

3.2 Best-First Search: Guiding Program Transformations with A∗

Typically, a search method maintains two lists of states: an open list of all states
still to be investigated for the goal property, and a closed list for all states that
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were already checked for the goal property but where the check failed. Among all
the open states, greedy best-first search always selects the most promising can-
didate, i.e., the candidate that is most likely the closest to a given goal state [5,
Chapt. 4]. Our approach also takes into account the cost of program transforma-
tions. With the heuristic function defined as f(n) = g(n) + h(n), we implement
the A∗-algorithm. The cost function g(n) returns the cost of producing state n.
The function h(n) estimates the distance between the program in state n and
the goal state; it is described as Score in Fig. 4.

We discuss our approach by example, using the task 401 − 199 and the
learner’s solution as depicted in Fig. 2(b). The start state is given by the program
in Fig. 1, and we aim for a goal state with a Prolog program that reproduces
the smaller-from-larger error. We start with representational issues.

Representation. Each state in the search tree is represented by the term

(Algorithm,IrreducibleDisagreement,Path),

encoding a reified version of a Prolog program, the first irreducible agreement be-
tween program and learner behavior, and the path of prior perturbation actions
to reach the current state. Moreover, each state n is associated with a numerical
value f(n) that quantifies its production cost as well as the Algorithm’s distance
to the algorithm of the goal state. A successor state of a given state results from
applying a perturbation action. The action obtains a Prolog program in list term
representation, performs some sort of mutation, and returns a modified program.

Initialisation. The start node holds the expert program that produces the cor-
rect solution. Sought is a mutated variant of the expert program to produce the
learner’s erroneous solution, here the error smaller-from-larger:

9
3 10 11
4 0 1

- 1 9 9

= 2 0 2

Start Node
expert

producing
oo heuristic

search
//______ Goal Node

producing

learner //
4 0 1

- 1 9 9

= 3 9 8

Best first search starts with initialising a heap data structure. For this, the
start node’s distance to the goal node is estimated, using the algorithm given in
Fig. 4. There is no single agreement between expert program solving behaviour
and learner behaviour, i.e., no single subtraction cell has been filled out the same
way. There are six disagreements, yielding a heuristic score of 6− 0 = 6.

To inform the generation of the node’s children, the first of the six irreducible
disagreements – add_ten_to_minuend(3,1,1) – (1 instead of 11) is attached to
the node’s second component. The third component is initialised with the empty
path [] (cost 0). The node and its estimate is then added to the empty heap.

Checking for Goal State. A state is a goal state when its associated program
passes algorithmic debugging with zero disagreements. In this case, best-first
search terminates with the goal state, returning the node’s algorithm and its
path, i.e., a list of actions that were applied to reach the goal state. Here, the
initial node, with a non-zero number of disagreements is not the goal node.
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Generation of Successor Nodes. If a given state is not the goal state, the state’s
successors are computed. Given the state’s algorithm and the first irreducible
disagreement that indicates the location of the “error”, Prolog is asked to findall

applicable perturbation actions, see Fig. 3. For the initial state, the following
three successor nodes can be generated:

n1 DeleteCallToClause/2: deletion of the call to add_ten_to_minuend/3 in the
first program clause process_column/3 (line 15).

n2 ShadowClause/2: addition of the irreducible disagreement (learner’s view)
add_ten_to_minuend(3,1,1):-irreducible.

n3 DeleteSubgoalsOfClause/2: deletion of subgoals from the definition of the
predicate add_ten_to_minuend/3. As the goal irreducible/0 cannot be
deleted as it is needed by the Oracle, the only permissible action is to delete
the subgoal M10 is M + 10, and to replace M10 by M in the clause’ header.

To add a successor node to the heap, the existing path is extended with the
respective action taken. Also, for each node’s algorithm, its first irreducible dis-
agreement with the learner must be identified, and the distance to the goal node
must be determined. For all successor nodes, we get the irreducible disagreement
decrement(2,[(4,1,S1),(0,9,S2)],[(3,1,S1),(9,9,S2)]).

Now, consider the nodes’ (dis-) agreement scores. Each of the nodes has five
disagreements, one less than in the parent node; the second and third child now
also feature one agreement. In node n2, there is an agreement with the new
clause add_ten_to_minuend/3 added; in node n3, there is an agreement with
the perturbated clause add_ten_to_minuend/3.

Action Cost. Some program transformations are better than others. Consider the
ShadowClause action, yielding mutations that are specific to a given input/output
pair. The resulting program will, thus, reproduce the learner’s error only for the
given subtraction task, not for other input. The action’s lack of generality is
acknowledged by giving it a high cost, namely 5. Hence, the action will only be
used when more general and less costlier actions are not applicable.

The action DeleteSubgoalsOfClause can delete more than a single subgoal
from the predicate indicated by the disagreement. This adds a notion of focus
to the perturbation and mirrors the fact that learners often address an impasse,
i.e., some difficulty about a skill, with skipping one or more steps of the skill in
question. Its cost is defined by the number of subgoals deleted. The mutations
performed by DeleteCallToClause and SwapClauseArguments have a cost of 1.

Score. We obtain the scores f(n1) = 1 + (5 − 0) = 6, f(n2) = 5 + (5− 1) = 9,
and f(n3) = 3 + (5 − 1) = 7. Best-first search selects the child with the low-
est valuation, n1. Its irreducible disagreement on the decrement/3 operation in
column 2 can be addressed by any of the following repairs:

n11 The action DeleteCallToClause deletes the call to decrement/3 in the first
clause of process_column/3. Consequently, two disagreements disappear

264



12

Start Node
f=0+(6−0)=6

DeleteCallToClause

}}

DeleteSubgoalsOfClause

!!

ShadowClause

��
Node n1

f=1+(5−0)=6
Node n2

f=5+(5−1)=9
Node n3

f=3+(5−1)=7

Fig. 5. Best-first Search over Program Transformations: First Expansion.

because decrement/3 was called twice; also, there is an agreement on take_

difference/4 at the left-most column, because its minuend is not “falsely”
decremented. We obtain f(n11) = (1 + 1) + (2− 1) = 3.

n12 The action DeleteSubgoalsOfClause can remove one or more subgoals in any
of the two clause definitions for decrement/3.

(a) In the first clause of decrement/3, we delete the subgoals NM1 is NM-1,
NM is M+10, and decrement(CurrentColumn1, RestSum, NewRestSum). The
clause becomes a null operation, and hence, has the same effect than the
first action when the minuend is zero. When the minuend is not zero, the
second clause of decrement/3 is called, generating two disagreements with
regards to decrement/3, and subsequently, take_difference/4 (left-most
column). We obtain f(n12(a)) = (1 + 3) + (4− 1) = 7.

(b) When we delete the two goals NM is M + 10 and NM1 is NM-1, we obtain
four disagreements and one agreement: f(n12(b)) = (1 + 2) + 4− 1 = 6.

(c) The deletion of the single goal NM1 is NM-1 in the same clause has no
positive effect. There are still 5 disagreements, and there is no agreement:
f(n12(c)) = (1 + 1) + 5− 0 = 7.

(d) Deleting the recursive call to decrement/3 in decrement/3 yields three
disagreements and one agreement: f(n12(d)) = (1 + 1) + 3− 1 = 4.

n13 If we add the disagreement clause to the program

decrement(2,[(4,1,S1),(0,9,S2)],[(4,1,3),(0,9,9)]):-irreducible.

we also have four disagreements and 1 agreement: f(n13) = (1+5)+4−1 = 9.

The node n11 has the lowest overall estimate; since it is not the goal node,
we continue search on its successors.

Generation of Successors (next level). To attack the irreducible disagreement at
goal(take_difference(3,1,9,8) (8 vs. −8) the choices are:

n111 DeleteCallToClause/2 to delete calls to take_difference/4 in the first or
second clause of process_column/3; this is not fruitful, as the result cell of
each column must obtain a value.

n112 DeleteSubgoalsOfClause/2 to delete the single subgoal in the definition of
take_difference/4; this mutation produces incorrect result cells.
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n113 ShadowClause/2 the insertion of the clause take_difference(3,1,9,8). This
removes the disagreement with regard to this goal in the right-most column,
but does not address the incorrect result cell in the middle column.

n114 SwapClauseArguments/2 to swap the arguments of take_difference/4 in the
first or second clause of process_column/3; Swapping the arguments in the
first clause of yields the intended effect, a program with zero disagreements.

The following sequence of actions to produce a goal node with a program that
reproduces the smaller-from-larger error was found: (1) deletion of the call to
the clause add_ten_to_minuend/3 (line 15), deletion of the call to the clause
decrement/3 (line 17), and the swapping of arguments in take_difference/4

(line 18). This is the same sequence of actions as advertised in Sect. 2.3.

3.3 Evaluation

We have tested our heuristically-driven algorithm against the eight most frequent
bugs of VanLehn’s study (Fig. 2). For the top-five bugs, our method is capable
of reproducing the perturbations as described in Sect. 2.3. For each case, the
goal node found has the same path than the one described. Also, alternative,
costlier, goal nodes were found with variations of the perturbations.

Our method is also capable of reproducing programs for the other errors.
In all three cases, however, they contain ShadowClause perturbations that are
specific to the subtraction task. The reconstruction of always-borrow-left,
e.g., makes the second clause of decrement/3 a null operation (deleting line 41)
– for the task 411-199, the first clause of decrement/3 is never needed – and
then shadows this clause for the left-most column with decrement(1,[(4,1,

_R)],[(2,1,1)]):-irreducible, a rather surprising but effective permutation.
For the reproduction of the error diff-0-N=N the task-specific clause take_

difference(2,0,9,9):-irreducible is added to accommodate the error.
The perturbation action ShadowClause acts as a fallback mechanism that

ensures that our informed search is complete and always terminates with a mu-
tation that completely reproduces a learner’s erroneous answer to a given sub-
traction task. In this case, the resulting mutation is task-specific and usually
fails to reproduce a learner’s consistent erroneous behaviour across other tasks.

4 Related Work

Our research has an interesting link to program testing and the design and
reliability of test data [3]. The theory of program testing rests on the competent
programmer hypothesis, which states that programmers “create programs that
are close to being correct” [3]. In other words, if a program is buggy, then it differs
from the correct program only by a combination of simple errors. Moreover,
programmers have a rough idea of the kind of error that are likely to occur, and
they have the ability to examine their programs in detail. Program testing is also
thought to be aided by the coupling effect: test cases that detect simple types of
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faults are sensitive enough to detect more complex types of faults. The analogy
to VanLehn’s theory of impasses and repairs is striking. When learners encounter
an impasse in executing a correct procedure, they address the impasse by a local
repair, which often can be explained in terms of simple errors. Also, teachers
have a rough idea of the kind of errors learners are likely to make (and learners
might be aware of their repairs, too). Good teachers are able to reconstruct the
erroneous procedure a learner is executing, and learners are able to correct their
mistakes either themselves or under teacher supervision.

In program testing, the technique of mutation testing aims at identifying
deficiencies in test suites, and to increase the programmer’s confidence in the
tests’ fault detection power. A mutated variant p′ of a program p is created
only to evaluate the test suite designed for p on p′. If the behaviour between
p and p′ on test t is different, then the mutant p′ is said to be dead, and the
test suite “good enough” wrt. the mutation. If they are equal, then p and p′

are equivalent, or the test set is not good enough. In this case, the programs’
equivalence must be examined by the programmer; if they are not equivalent,
the test suite must be extended to cover the critical test. This relates to our
approach. When a given program is unable to reproduce a learner’s solution, we
create a set of perturbated variants, or mutants. If one of them reproduces the
learner’s solution, it passes the test, and we are done. Otherwise, we choose the
best mutant, given the heuristic function f , and continue with the perturbations.
The originality of our approach is due to our systematic search for mutations and
the use of f to measure the distance between mutants wrt. a given input/output.

In [4], Kilperäinen & Mannila describe a general method for producing com-
plete sets of test data for simple Prolog programs. Their method is based on
the competent programmer hypothesis, and works by mutating list processing
programs with a small class of suitable modifications. In [6], the authors give
a wide range of mutation operators for Prolog. At the clause level, they have
operators for the removal of subgoals, for changing the order of subgoals, and
for the insertion, removal, or permutation of cuts. At the operator level, they
propose mutations that change one arithmetic or relational operator by another
one. Moreover, they propose mutations that act on Prolog variables or constants,
e.g., the changing of one variable by another variable, an anonymous variable, or
a constant, or the changing of one constant into another one. All mutations are
syntactic, and aim at capturing typical programmer errors. So far, our approach
makes use of a subset of the aforementioned mutation operators. It is surprising
that the top-five bugs, accounting for nearly 50% of all learner errors, can be
explained by learners skipping steps, that is, mostly in terms of clause deletions.

5 Conclusion and Future Work

In this paper, we propose a method to automatically transform an initial Prolog
program into another program capable of producing a given input/output be-
haviour. The method depends on a heuristic function that estimates the distance
between programs. It shows that the test-debug-repair cycle can be mechanised
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in the tutoring context. Here, there is always a reference model to encode ideal
behaviour; moreover, many learner errors can be captured and reproduced by a
combination of simple, syntactically-driven program transformation actions.

In the near future, we would like to include more mutation operators (see [6]),
investigate their interaction with our existing ones, fine-tune the cost function,
and study whether erroneous procedures can be obtained that better reflect
learners’ incorrect reasoning. Ideally, the new operators can be used to “un-
employ” the costly ShadowClause operator, whose primary purpose is to serve as
a fallback action when all other actions fail. With the aforementioned improve-
ments in place, we will also conduct an experimental evaluation to determine
the computational benefits of using heuristic search when compared to the blind
(depth-first) search we have used in [10]. Moreover, we are currently working on
a web-based interface for multi-column subtraction tasks that we want to give
to learners, and where we plan an evaluation in terms of pedagogical benefits.

In the long term, we would like to take-on another domain of instruction to
underline the generality of our approach. The domain of learning programming
in Prolog is particularly interesting. In the subtraction domain discussed in this
paper, we are systematically modifying an expert program into a buggy program
to model a learner’s erroneous behaviour. In the “learning Prolog domain”, we
can re-use our program distance measure in a more traditional sense. When
learners do specify an executable Prolog program, we compare its behaviour
with the prescribed expert program, identify their (dis-)agreement score, and
then repair the learner’s program, step by step, to become the expert program.
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Abstract. HEX-programs extend ASP by external sources. In this paper, we
present domain-specific existential quantifiers on top of HEX-programs, i.e., ASP
programs with external access which may introduce new values that also show
up in the answer sets. Pure logical existential quantification corresponds to a
specific instance of our approach. Programs with existential quantifiers may have
infinite groundings in general, but for specific reasoning tasks a finite subset of the
grounding can suffice. We introduce a generalized grounding algorithm for such
problems, which exploits domain-specific termination criteria in order to generate
a finite grounding for bounded model generation. As an application we consider
query answering over existential rules. In contrast to other approaches, several
extensions can be naturally integrated into our approach. We further show how
terms with function symbols can be handled by HEX-programs, which in fact can
be seen as a specific form of existential quantification.

1 Introduction

Answer Set Programming (ASP) is a declarative programming approach which due
to expressive and efficient systems like SMODELS, DLV and CLASP, has been gaining
popularity for many applications [3]. Current trends in computing, such as context
awareness or distributed systems, raised the need for access to external sources in a
program, which, e.g., on the Web ranges from light-weight data access (e.g., XML, RDF,
or data bases) to knowledge-intensive formalisms (e.g., description logics).

To cater for this need, HEX-programs [7] extend ASP with so-called external atoms,
through which the user can couple any external data source with a logic program.
Roughly, such atoms pass information from the program, given by predicate extensions,
into an external source which returns output values of an (abstract) function that it
computes. This convenient extension has been exploited for many different applications,
including querying data and ontologies on the Web, multi-context reasoning, or e-
government, to mention a few; however, it can also be used to realize built-in functions.
The extension is highly expressive as also recursive data access is possible.

A particular feature of external atoms is value invention, i.e., that they introduce new
values that do not occur in the program. Such values may also occur in an answer set of
a HEX-program, e.g., if we have a rule like

lookup(X,Y )← p(X),&do hash[X](Y )

? This research has been supported by the Austrian Science Fund (FWF) project P20840, P20841,
P24090, and by the Vienna Science and Technology Fund (WWTF) project ICT08-020.
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where intuitively, the external atom &do hash[X](Y ) generates a hash key Y for the
input X and records it in the fact lookup(X,Y ). Here, the variable Y can be seen
under existential quantification, i.e., as ∃Y , where the quantifier is externally evaluated,
by taking domain-specific information into account; in the example above, this would
be a procedure to calculate the hashkey. Such domain-specific quantification occurs
frequently in applications, be it e.g. for built-in functions (just think of arithmetic), the
successor of a current situation in situation calculus, retrieving the social security number
of a person etc. To handle such quantifiers in ordinary ASP is cumbersome; they amount
to interpreted functions and require proper encoding and/or special solvers.

HEX-programs however provide a uniform approach to represent such domain-
specific existentials. The external treatment allows to deal elegantly with datatypes (e.g.,
the social security number, or an IBAN of bank account, or strings and numbers like
reals), to respect parameters, and to realize partial or domain-restricted quantification
of the form ∃Y.φ(X) ⊃ p(X,Y ) where φ(X) is a formula that specifies the domain of
elements X for which an existential value needs to exist; clearly, also range-restricted
quantification ∃Y.ψ(Y ) ⊃ p(X,Y ) that limits the value of Y to elements that satisfy ψ
can be conveniently realized.

In general, such value invention on an infinite domain (e.g.,for strings) leads to
infinite models, which can not be finitely generated. Under suitable restrictions on a
program Π , this can be excluded, in particular if a finite portion of the grounding of Π
is equivalent to its full, infinite grounding. This is exploited by various notions of safety
of HEX-programs that generalize safety of logic programs.

In particular, liberal domain-expansion safety (de-safety) [6] is a recent notion based
on term-bounding functions, which makes it modular and flexible; various well-known
notions of safety are subsumed by it. For example, consider the program

Π = { s(a); t(Y )← s(X),&concat [X, a](Y ); s(X)← t(X), d(X) }, (1)
where &concat [X, a](Y ) is true iff Y is the string concatenation of X and a. Program
Π is safe (in the usual sense) but &concat [X, a](Y ) could hold for infinitely many Y ,
if one disregards the semantics of concat ; however, if this is done by a term bounding
function in abstract form, then the program is found to be liberally de-safe and thus a
finite part of Π’s grounding is sufficient to evaluate it.

Building on a grounding algorithm for liberally de-safe programs [5], we can effec-
tively evaluate HEX-programs with domain-specific existentials that fall in this class.
Moreover, we in fact generalize this algorithm with domain specific termination, such
that for non-safe programs, a finitely bounded grounding is generated. Roughly speaking,
such a bounded grounding amounts to domain-restricted quantification ∃Y.φ(X) ⊃
p(X,Y ) where the domain condition φ(X) is dynamically evaluated during the ground-
ing, and information about the grounding process may be also considered. Thus, domain-
specific termination leads to a partial (bounded) grounding of the program, Π ′, yielding
bounded models of the program Π; the idea is that the grounding is faithful in the sense
that every answer set of Π ′ can be extended to a (possibly infinite) answer set of Π ,
and considering bounded models is sufficient for an application. This may be fruitfully
exploited for applications like query answering over existential rules, reasoning about
actions, or to evaluate classes of logic programs with function symbols like FDNC
programs [8]. Furthermore, even if bounded models are not faithful (i.e., may not be
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extendible to models of the full grounding), they might be convenient e.g. to provide
strings, arithmetic, recursive data structures like lists, trees etc, or action sequences of
bounded length resp. depth. The point is that the bound does not have to be “coded” in
the program (like maxint in DLV to bound the integer range), but can be provided via
termination criteria in the grounding, which gives greater flexibility.

Organization. After the preliminaries we proceed as follows.

• We introduce domain-specific existential quantification in HEX-programs and con-
siders its realization (Section 3). To this end, we introduce a generalized grounding
algorithm with hooks for termination criteria, which enables bounded grounding. No-
tably, its output for de-safe programs (using trivial criteria) is equivalent to the original
program, i.e., it has the same answer sets.
We illustrate some advantages of our approach, which cannot easily be integrated into
direct implementations of existential quantifiers.
• As an example, we consider the realization of null values (which are customary in

databases) as a domain-specific existential quantifier, leading to HEX∃-programs (Sec-
tion 4); they include existential rules of form ∀X∀Z∃Y.ψ(Z,Y)← φ(X,Y,Z) (also
known as tuple-generating dependencies), where ψ(Z,Y) is an atom1 and φ(X,Y,Z)
is a conjunction of atoms. Our framework can be thus exploited for bounded grounding,
and in combination with a HEX-solver for bounded model generation of such programs.
• As an immediate application, we consider query answering over existential rules

(Section 5), which reduces for prominent settings to query answering over a universal
model. Under de-safety, a finite such model can be generated using our framework; this
allows to cover a range of acyclic existential rules, including the very general notion of
model-faithful acyclicity [14]. For non-de safe programs, a bounded universal model
may be generated under suitable conditions; we illustrate this for Shy-programs - a class
of programs with existential rules for which query answering is decidable, cf. [17].
• Furthermore, we show how terms with function symbols can be processed using an

encoding as a HEX-program (Section 6). To this end, we use dedicated external atoms
to construct and decompose functional terms; bounded grounding enables us here to
elegantly restrict the term depth, which is useful for applications such as reasoning with
actions in situation calculus under bounded horizon, or reasoning from FDNC programs.

We conclude with a discussion and an outlook on future work in Section 7. Our
prototype system is available at http://www.kr.tuwien.ac.at/research/systems/dlvhex.

2 Preliminaries

HEX-Program Syntax. HEX-programs generalize (disjunctive) logic programs under
the answer set semantics [13] with external source access; for details and background
see [7]. They are built over mutually disjoint sets P , X , C, and V of ordinary predicates,
external predicates, constants, and variables, respectively. Every p ∈ P has an arity
ar(p) ≥ 0, and every external predicate &g ∈ X has an input arity ar i(&g) ≥ 0 of
input parameters and an output arity aro(&g) ≥ 0 of output arguments.

1 In general, ψ(Z,Y) might be a conjunction of atoms but this may be normalized.
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An external atom is of the form &g [X](Y), where &g ∈ X , X = X1, . . . , X`

(` = ari(&g)) are input parameters with Xi ∈ P ∪ C ∪ V for all 1 ≤ i ≤ `, and
Y = Y1, . . . , Ym (m = aro(&g)) are output terms with Yi ∈ C ∪ V for all 1 ≤ i ≤ m;
we use lower case x = x1, . . . , x` resp. y = y1, . . . , ym if X resp. Y is variable-free.
We assume the input parameters of &g are typed by type(&g , i) ∈ {const, pred} for
1 ≤ i ≤ ar i(&g), and that Xi ∈ P if type(&g , i) = pred and Xi ∈ C ∪ V otherwise.

A HEX-program consists of rules
a1 ∨ · · · ∨ ak ← b1, . . . , bm,not bm+1, . . . ,not bn , (2)

where each ai is an (ordinary) atom p(X1, . . . , X`) with Xi ∈ C ∪ V for all 1 ≤ i ≤ `,
each bj is either an ordinary atom or an external atom, and k + n > 0.

The head of a rule r is H(r) = {a1, . . . , an} and the body is B(r) = {b1, . . . , bm,
not bm+1, . . . ,not bn}. We call b or not b in a rule body a default literal; B+(r) =
{b1, . . . , bm} is the positive body, B−(r) = {bm+1, . . . , bn} is the negative body. For
a program Π (rule r), let A(Π) (A(r)) be the set of all ordinary atoms and EA(Π)
(EA(r)) be the set of all external atoms occurring in Π (in r).

HEX-Program Semantics. Following [11], a (signed) ground literal is a positive or
a negative formula Ta resp. Fa, where a is a ground ordinary atom. For a ground
literal σ=Ta or σ=Fa, let σ denote its opposite, i.e., Ta=Fa and Fa=Ta. An
assignment A is a consistent set of literals Ta or Fa, where Ta expresses that a is true
and Fa that a is false. We also identify a complete assignment A with its true atoms,
i.e., T(A) = {a | Ta ∈ A}. The semantics of a ground external atom &g [x](y) wrt.
a complete assignment A is given by a 1+k+l-ary Boolean-valued oracle function,
f&g(A,x,y). Parameter xi with type(&g , i) = pred is monotonic (antimonotonic), if
f&g(A,x,y) ≤ f&g(A

′,x,y) (f&g(A
′,x,y) ≤ f&g(A,x,y)) whenever A′ increases

A only by literals Ta, where a has predicate xi; otherwise, xi is called nonmonotonic.
Non-ground programs are handled by grounding as usual. The set of constants

appearing in a program Π is denoted CΠ . The grounding grndC(r) of a rule r wrt.
C ⊆ C is the set of all rules {σ(r) | σ : V 7→ C}, where σ is a grounding substitution,
and σ(r) results if each variableX in r is replaced by σ(X). The grounding of a program
Π wrt. C is defined as grndC(Π) =

⋃
r∈Π grndC(r).

Satisfaction of rules and programs [13] is extended to HEX-rules r and programsΠ in
the obvious way. The FLP-reduct is defined as fgrndC(Π)A = {r ∈ grndC(Π) | A |=
B(r)}. An answer set of a programΠ is a model of fgrndC(Π)A that is subset-minimal
in its positive part [9]. We denote by AS(Π) the set of all answer sets of Π .

Take as an example the programΠ = {str(N)← str(L),&head [L](N); str(N)←
str(L),&tail [L](N)}, where &head [L](N) (&tail [L](N)) is true iff string N is string
L without the last (first) character. For str(x), Π computes all substrings of string x.

Safety. In general, C has constants that do not occur in Π and can even be infinite (e.g.,
the set of all strings). Safety criteria guarantee that a finite portion Π ′ ⊆ grndC(Π)
(also called finite grounding of Π; usually by restricting to a finite C ⊆ C) has the same
answer sets as Π . Ordinary safety requires that every variable in a rule r occurs either
in an ordinary atom in B+(r), or in the output list Y of an external atom &g [X](Y) in
B+(r) where all variables in X are safe. However, this notion is not sufficient.
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Example 1. Let Π = {s(a); t(Y )← s(X),&concat [X, a](Y ); s(X)← t(X), d(X)},
where &concat [X, a](Y ) is true iff Y is the string concatenation of X and a. Then Π is
safe but &concat [X, a](Y ) can introduce infinitely many values.

The general notion of (liberal) domain-expansion safety (de-safety) subsumes a
range of other well-known notions and can be easily extended in a modular fashion [6].
It is based on term bounding functions (TBFs), which intuitively declare terms in rules
as bounded, if there are only finitely many substitutions for this term in a canonical
grounding CG(Π) of Π .2 The latter is infinite in general but finite for de-safe programs.

More specifically we consider attributes and ranges. For an ordinary predicate p∈P ,
let p�i be the i-th attribute of p for all 1 ≤ i ≤ ar(p). For an external predicate &g ∈ X
with input list X in rule r, let &g [X]r�T i with T ∈ {I, O} be the i-th input resp. output
attribute of &g [X] in r for all 1 ≤ i ≤ arT (&g). For a ground program Π , an attribute
range is, intuitively, the set of ground terms which occur in the position of the attribute.
Formally, for an attribute p�i we have range(p�i,Π) = {ti | p(t1, . . . , tar(p)) ∈
A(Π)}; for &g [X]r�T i it is range(&g [X]r�T i,Π) = {xTi | &g [xI](xO) ∈ EA(Π)},
where xs = xs1, . . . , x

s
ars(&g). Now term bounding functions are introduced as follows:

Definition 1 (Term Bounding Function (TBF)). A TBF b(Π, r, S,B) maps a program
Π , a rule r ∈ Π , a set S of already safe attributes, and a setB of already bounded terms
in r to an enlarged set b(Π, r, S,B) ⊇ B of bounded terms, s.t. every t ∈ b(Π, r, S,B)
has finitely many substitutions in CG(Π) if (i) the attributes S have a finite range in
CG(Π) and (ii) each term in terms(r) ∩B has finitely many substitutions in CG(Π).

Liberal domain-expansion safety of programs is then parameterized with a term
bounding function, such that concrete syntactic and/or semantic properties can be
plugged in; concrete term bounding functions are described in [6]. The concept is
defined in terms of domain-expansion safe attributes S∞(Π), which are stepwise identi-
fied as Sn(Π) in mutual recursion with bounded terms Bn(r,Π, b) of rules r in Π .

Definition 2 ((Liberal) Domain-expansion Safety). Given a TBF b, the set of bounded
terms Bn(r,Π, b) in step n ≥ 1 in a rule r ∈ Π is Bn(r,Π, b) =

⋃
j≥0Bn,j(r,Π, b)

where Bn,0(r,Π, b) = ∅ and for j ≥ 0, Bn,j+1(r,Π, b) = b(Π, r, Sn−1(Π), Bn,j).
The set of domain-expansion safe attributes S∞(Π) =

⋃
i≥0 Si(Π) of a program

Π is iteratively constructed with S0(Π) = ∅ and for n ≥ 0:
– p�i∈Sn+1(Π) if for each r∈Π and atom p(t1, . . . , tar(p)) ∈ H(r), it holds that
ti ∈ Bn+1(r,Π, b), i.e., ti is bounded;

– &g [X]r�Ii∈Sn+1(Π) if each Xi is a bounded variable, or Xi is a predicate input
parameter p and p�1, . . . , p�ar(p) ∈ Sn(Π);

– &g [X]r�Oi∈Sn+1(Π) if and only if r contains an external atom &g [X](Y) such
that Yi is bounded, or &g [X]r�I1, . . . ,&g [X]r�Iar I(&g) ∈ Sn(Π).

A program Π is (liberally) de-safe, if it is safe and all its attributes are de-safe.

Example 2. The program Π from Example 1 is liberally de-safe using the TBF bsynsem

from [6] as the generation of infinitely many values is prevented by d(X) in the last rule.

Every de-safe HEX-program has a finite grounding that preserves all answer sets [6].
2 CG(Π) is the least fixed point G∞

Π (∅) of a monotone operator GΠ(Π ′) =
⋃
r∈Π{rθ | rθ ∈

grndC(r), ∃A ⊆ A(Π ′),A 6|= ⊥,A |= B+(rθ)} on programs Π ′ [6].
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3 HEX-Programs with Existential Quantification

In this section, we consider HEX-programs with domain-specific existential quantifiers.
This term refers to the introduction of new values in rule bodies which are propagated to
the head such that they may appear in the answer sets of a program. Logical existential
quantification is a special case of our approach (used in Section 4 to illustrate a specific
instance), where just the existence but not the structure of values is of interest. Instead,
in our work also the structure of introduced values may be relevant and can be controlled
by external atoms.

Instantiating, i.e., applying, our approach builds on an extension of the grounding
algorithm for HEX-programs in [5] by additional hooks. They support the insertion
of application-specific termination criteria, and thus can be exploited for computing a
finite subset of the grounding in case of non-de-safe HEX-programs. The latter may be
sufficient to consider a certain reasoning task, e.g., for bounded model building. For
instance, we discuss queries over (positive) programs with (logical) existential quantifiers
in Section 5, which can be answered by computing a finite part of a canonical model.
HEX-Program Grounding. For introducing our bounded grounding algorithm BGround-
HEX, we make use of so-called input auxiliary rules. We say that an external atom
&g [Y](X) joins an atom b, if some variable from Y occurs in b, where in case b is an
external atom the occurrence is in the output list of b.

Definition 3 (Input Auxiliary Rule). Let Π be a HEX-program. Then for each external
atom &g [Y](X) occurring in rule r ∈ Π , a rule r&g[Y](X)

inp is composed as follows:

– The head is H(r
&g[Y](X)
inp ) = {ginp(Y)}, where ginp is a fresh predicate; and

– The bodyB(r
&g[Y](X)
inp ) contains all b ∈ B+(r)\{&g [Y](X)}which join &g [Y](X).

Intuitively, input auxiliary rules are used to derive all ground input tuples y, under
which the external atom needs to be evaluated.

Our grounding approach is based on a grounder for ordinary ASP programs. Com-
pared to the naive grounding grndC(Π), we allow the ASP grounder GroundASP to
eliminate rules if their body is always false, and ordinary body literals from the ground-
ing that are always true, as long as this does not change the answer sets. More formally,
a rule r′ is an o-strengthening (ordinary-strengthening) of a rule r, if H(r′) = H(r),
B(r′) ⊆ B(r) and B(r) \B(r′) contains only ordinary literals, i.e., no external atom
replacements.

Definition 4. An algorithm GroundASP that takes as input a program Π and outputs a
ground program Π ′ is a faithful ASP grounder for a safe program Π , if:

– AS(Π ′) = AS(grndCΠ (Π));
– Π ′ consists of o-strengthenings of rules in grndCΠ (Π);
– if r ∈ grndCΠ (Π) has no o-strengthening inΠ ′, then every answer set of grndCΠ (Π)

falsifies some ordinary literal in B(r); and
– if r ∈ grndCΠ (Π) has some o-strengthening r′ ∈ Π ′, then every answer set of

grndCΠ (Π) satisfies B(r) \B(r′).

Intuitively, the bounded grounding algorithm BGroundHEX can be explained as
follows. Program Π is the non-ground input program. Program Πp is the non-ground
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Algorithm BGroundHEX
Input: A HEX-program Π
Output: A ground HEX-program Πg

(a) Πp = Π ∪ {r&g[Y](X)
inp | &g[Y](X) in r ∈ Π}

Replace all external atoms &g[Y](X) in all rules r in Πp by er,&g[Y](X)

i← 0
(b) while Repeat() do

i← i+ 1 // Remember already processed input tuples at iteration i
(c) Set NewInputTuples ← ∅ and PIT i ← ∅

repeat
Πpg ← GroundASP(Πp) // partial grounding

(d) for &g[Y](X) in a rule r ∈ Π do // evaluate all external atoms
(e) // do this under all relevant assignments

Ama = {Tp(c) | a(c) ∈ A(Πpg), p ∈ Ym} ∪ {Fp(c) | a(c) ∈ A(Πpg), p ∈ Ya}
for Anm ⊆ {Tp(c),Fp(c) | p(c) ∈ A(Πpg), p ∈ Yn} s.t. @a : Ta,Fa ∈ Anm do

A = (Ama ∪Anm ∪ {Ta | a←∈ Πpg}) \ {Fa | a←∈ Πpg}
(f) for y ∈ {c | r&g[Y](X)

inp (c) ∈ A(Πpg) s.t. Evaluate(r&g[Y](X)
inp (c)) = true do

(g) // add ground guessing rules and remember y-evaluation
Πp ← Πp ∪ {er,&g[y](x) ∨ ner,&g[y](x)← | f&g(A,y,x) = 1}
NewInputTuples ← NewInputTuples ∪ {r&g[Y](X)

inp (y)}

PIT i ← PIT i ∪ NewInputTuples

until Πpg did not change

(h) Remove input auxiliary rules and external atom guessing rules from Πpg

Replace all e&g[y](x) in Πpg by &g[y](x)
return Πpg

ordinary ASP prototype program, which is an iteratively updated variant of Π enriched
with additional rules. In each step, the preliminary ground program Πpg is produced by
grounding Πp using a standard ASP grounding algorithm. Program Πpg is intended to
converge against a fixpoint, i.e., a final ground HEX-program Πg. For this purpose, the
loop at (b) and the abortion check at (f) introduce two hooks (Repeat and Evaluate)
which allow for realizing application-specific termination criteria. They need to be
substituted by concrete program fragments depending on the reasoning task; for now we
assume that the loop at (f) runs exactly once and the check at (f) is always true (which is
sound and complete for model computation of de-safe programs, cf. Proposition 1).

The algorithm first introduces input auxiliary rules r&g[Y](X)
inp for every external

atom &g [Y](X) in a rule r in Π in Part (a). Then, all external atoms &g [Y](X) in
all rules r in Πp are replaced by ordinary replacement atoms er,&g[Y](X). This allows
the algorithm to use an ordinary ASP grounder GroundASP in the main loop at (b).
After the grounding step, it is checked whether the grounding contains all relevant
constants. For this, the algorithm checks, for all external atoms (d) and all relevant input
interpretations (e), potential output tuples at (f), if they contain any new value that was
not yet respected in the grounding. (Note that, Ym,Ya,Yn denote the sets of monotonic,
antimonotonic, and nonmonotonic predicate input parameters in Y, respectively.) It adds
the relevant constants in form of guessing rules at (g) to Πp (this may also be expressed
by unstratified negation). Then the main loop starts over again. Eventually, the algorithm
is intended to find a program respecting all relevant constants. Then at (h), auxiliary
input rules are removed and replacement atoms are translated to external atoms.

Let us illustrate the grounding algorithm with the following example.
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Example 3. Let Π be the following program:
f : d(a). d(b). d(c). r1 : s(Y ) ← d(X),&diff [d, n](Y ), d(Y ).

r2 : n(Y )← d(X),&diff [d, s](Y ), d(Y ).
r3 : c(Z) ← &count [s](Z).

Here, &diff [s1, s2](x) is true for all elements x, which are in the extension of s1 but
not in that of s2, and &count [s](i) is true for the integer i corresponding to the number
of elements in the extension of s. The program first partitions the domain (extension of
d) into two sets (extensions of s and n) and then computes the size of s. Program Πp

at the beginning of the first iteration is as follows, where e1(Y ), e2(Y ) and e3(Z) are
shorthands for er1,&diff [d,n](Y ), er2,&diff [d,s](Y ), and er3,&count[s](Z), respectively.

f : d(a). d(b). d(c). r1 : s(Y ) ← d(X), e1(Y ), d(Y ).
r2 : n(Y )← d(X), e2(Y ), d(Y ).
r3 : c(Z) ← e3(Z).

Program Πpg contains no instances of r1, r2 and r3 because the optimizer rec-
ognizes that e1(Y ), e2(Y ) and e3(Z) occur in no rule head and no ground instance
can be true in any answer set. Then the algorithm moves to the checking phase. It
evaluates the external atoms in r1 and r2 under A = {d(a), d(b), d(c)} (note that
&diff [s1, s2](x) is monotonic in s1 and antimonotonic in s2) and adds the rules {ei(Z)∨
nei(Z) ← | Z ∈ {a, b, c}, i ∈ {1, 2}} to Πp. Then it evaluates &count [s](Z) un-
der all A ⊆ {s(a), s(b), s(c)} because it is nonmonotonic in s, and adds the rules
{e3(Z) ∨ ne3(Z)← | Z ∈ {0, 1, 2, 3}}. It terminates after the second iteration. 2

The main difference to the algorithm from [5] is the addition of the two hooks at (c)
(Repeat) and at (f) (Evaluate), that need to be defined for a concrete instance of the
algorithm (which we do in the following). We assume that the hooks are substituted
by code fragments with access to all local variables. Moreover, the set PIT i contains
the input atoms for which the corresponding external atoms have been evaluated in
iteration i. Evaluate decides for a given input atom r

&g[Y](X)
inp (c) if the corresponding

external atom shall be evaluated under c. This allows for abortion of the grounding
even if it is incomplete, which can be exploited for reasoning tasks over programs with
infinite groundings where a finite subset of the grounding is sufficient. The second hook
Repeat allows for repeating the core algorithm multiple times such that Evaluate can
distinguish between input tuples processed in different iterations. Naturally, soundness
and completeness of the algorithm cannot be shown in general, but depends on concrete
instances for (c) and (f) which in turn may vary for different reasoning tasks.

Domain-specific Existential Quantification in HEX-Programs. We can realize domain-
specific existential quantification naturally in HEX-programs by appropriate external
atoms that introduce new values to the program. The realization exploits value invention
as supported by HEX-programs, i.e., external atoms which return constants that do not
show up in the input program. Realizing existentials by external atoms also allows to
use constants different from Skolem terms, i.e., datatypes with a specific semantics. The
values introduced may depend on input parameters passed to the external atom.

Example 4. Consider the following rule:

iban(B, I)← country(B,C), bank(B ,N ),&iban[C,B,N ](I).
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Suppose bank(b, n) models financial institutions b with their associated national number
n, and country(b, c) holds for an institution b and its home country c. Then one can use
&iban[C,B,N ](I) to generate an IBAN (International Bank Account Number) from
the country, the bank name and account number.

Here, the structure of the introduced value is relevant, but an algorithm which
computes it can be hidden from the user. The introduction of new values may also be
subject to additional conditions which cannot easily be expressed in the program.

Example 5. Consider the following rule:
lifetime(M,L)← machine(M,C),&lifetime[M,C](L).

It expresses that each purchased machine m with cost c (machine(m, c)) higher than a
given limit has assigned an expected lifetime l (lifetime(m, l)) used for fiscal purposes,
whereas purchases below that limit are fully tax deductible in the year of acquirement.
Then testing for exceedance of the limit might involve real numbers and cannot easily be
done in the logic program. However, the external atom can easily be extended in such a
way that a value is only introduced if this side constraint holds.

Counting quantifiers may be realized in this way, i.e., expressing that there exist
exactly k or at least k elements, which is used e.g. in description logics.While a direct
implementation of existentials requires changes in the reasoner, a simulation using
external atoms is easily extensible.

4 HEX∃-Programs

We now realize the logical existential quantifier as a specific instance of our approach,
which can also be written in the usual syntax; a rewriting then simulates it by using
external atoms which return dedicated null values to represent a representative for the
unnamed values introduced by existential quantifiers. We start by introducing a language
for HEX-programs with logical existential quantifiers, called HEX∃-programs.

A HEX∃-program is a finite set of rules of form
∀X∃Y : p(X′,Y)← conj[X], (3)

where X and Y are disjoint sets of variables, X′ ⊆ X, p(X′,Y) is an atom, and
conj[X] is a conjunction of default literals or default external literals containing all and
only the variables X; without confusion, we also omit ∀X.

Intuitively speaking, whenever conj[X] holds for some vector of constants X,
then there should exist a vector Y of (unnamed) individuals such that p(X′,Y) holds.
Existential quantifiers are simulated by using new null values which represent the
introduced unnamed individuals. Formally, we assume that N ⊆ C is a set of dedicated
null values, denoted by ωi with i ∈ N, which do not appear in the program.

We transform HEX∃-programs to HEX-programs as follows. For a HEX∃-program Π ,
let T∃(Π) be the HEX-program with each rule r of form (3) replaced by

p(X′,Y)← conj[X],&exists |X
′|,|Y|[r,X′](Y),

where f&existsn,m(A, r,x,y) = 1 iff y = ω1, . . . , ωm is a vector of fresh and unique
null values for r,x, and f&existsn,m(A, r,x,y) = 0 otherwise.
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Each existential quantifier is replaced by an external atom &exists |X
′|,|Y|[r,X′](Y)

of appropriate input and output arity which exploits value invention for simulating the
logical existential quantifier similar to the chase algorithm.

We call a HEX∃-program Π liberally de-safe iff T∃(Π) is liberally de-safe. Various
notions of cyclicity have been introduced, e.g., in [14]; here we use the one from [6].

Example 6. The following set of rules is a HEX∃-program Π:
employee(john). employee(joe).

r1 : ∃Y : office(X,Y )← employee(X). r2 : room(Y )← office(X,Y )

Then T∃(Π) is the following de-safe program:
employee(john). employee(joe).

r′1 : office(X,Y )← employee(X),&exists1 ,1 [r1, X](Y ).
r2 : room(Y )← office(X,Y )

Intuitively, each employee X has some unnamed office Y of X , which is a room.
The unique answer set of T∃(Π) is {employee(john), employee(joe), office(john, ω1),
office(joe, ω2), room(ω1), room(ω2)}.

For grounding de-safe programs, we simply let Repeat test for i < 1 and Evaluate
return true . Explicit model computation is in general infeasible for non-de-safe programs.
However, the resulting algorithm GroundDESafeHEX always terminates for de-safe
programs. For non-de-safe programs, we can support bounded model generation by other
hook instantiations. This is exploited e.g. for query answering over cyclic programs
(described next). One can show that the algorithm computes all models of the program.

Proposition 1. For de-safe programs Π , AS(GroundDESafeHEX(Π)) ≡pos AS(Π),
where ≡pos denotes equivalence of the answer sets on positive atoms.

5 Query Answering over Positive HEX∃-Programs

The basic idea for query answering over programs with possibly infinite models is to
compute a ground program with a single answer set that can be used for answering the
query. Positive programs with existential variables are essentially grounded by simulating
the parsimonious chase procedure from [17], which uses null values for each existential
quantification. However, for termination of BGroundHEX we need to provide specific
instances of the hooks in the grounding algorithm.

We start by restricting the discussion to a fragment of HEX∃-programs, called
Datalog∃-programs [17]. A Datalog∃-program is a HEX∃-program where every rule
body conj[X] consists of positive ordinary atoms. Thus compared to HEX∃-programs,
default negation and external atoms are excluded.

As an example, the following set of rules is a Datalog∃-program:
person(john). person(joe).

r1 : ∃Y : father(X,Y )← person(X). r2 : person(Y )← father(X,Y ).
(4)

Next, we recall homomorphisms as used for defining Datalog∃-semantics and query
answering over Datalog∃-programs. A homomorphism is a mapping h : N ∪V → C∪V .
For a homomorphism h, let h|S be its restriction to S ⊆ N ∪ V , i.e., h|S(X) = h(X)
if X ∈ S and is undefined otherwise. For any atom a, let h(a) be the atom where each
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variable and null value V in a is replaced by h(V ); this is likewise extended to h(S)
for sets S of atoms and/or vectors of terms. A homomorphism h is a substitution, if
h(N) = N for all N ∈ N . An atom a is homomorphic (substitutive) to atom b, if some
homomorphism (substitution) h exists such that h(a) = b. An isomorphism between
two atoms a and b is a bijective homomorphism h s.t. h(a) = b and h−1(b) = a.

A set M of atoms is a model of a Datalog∃-program Π , denoted M |= Π , if
h(B(r))⊆M for some substitution h and r∈Π of form (3) implies that h|X(H(r)) is
substitutive to some atom in M ; the set of all models of Π is denoted by mods(Π).

Next, we can introduce queries over Datalog∃-programs. A conjunctive query (CQ) q
is an expression of form ∃Y : ← conj[X∪Y], where Y and X (the free variables) are
disjoint sets of variables and conj[X∪Y] is a conjunction of ordinary atoms containing
all and only the variables X ∪Y.

The answer of a CQ q with free variables X wrt. a model M is defined as follows:
ans(q,M) = {h|X | h is a substitution and h(conj[X ∪Y]) ⊆M}.

Intuitively, this is the set of assignments to the free variables such that the query holds
wrt. the model. The answer of a CQ q wrt. a program Π is then defined as the set
ans(q,Π) =

⋂
M∈mods(Π) ans(q,M).

Query answering can be carried out over some universal model U of the program that
is embeddable into each of its models by applying a suitable homomorphism. Formally,
a model U of a program Π is called universal if, for each M ∈ mods(Π), there is a
homomorphism h s.t. h(U) ⊆M . Thus, a universal model may be obtained using null
values for unnamed individuals introduced by existential quantifiers. Moreover, it can be
used to answer any query according to the following proposition [10]:

Proposition 2 ([10]). Let U be a universal model of Datalog∃-program Π . Then, for
any CQ q, it holds that h ∈ ans(q,Π) iff h ∈ ans(q, U) and h : V → C \ N .

Intuitively, the set of all answers to q wrt. U which map all variables to non-null
constants is exactly the set of answers to q wrt. Π .

Example 7. Let Π be the program consisting of rules (4). The CQ ∃Y :← person(X),
father(X,Y ) asks for all persons who have a father. The model U = {person(john),
person(joe), father(john, ω1), father(joe, ω2), person(ω1), person(ω2), . . .} is a uni-
versal model ofΠ . Hence, ans(q,Π) contains answers h1(X)= john and h2(X)= joe .

Thus, computing a universal model is a key issue for query answering. A common
approach for this step is the chase procedure. Intuitively, it starts from an empty inter-
pretation and iteratively adds the head atoms of all rules with satisfied bodies, where
existentially quantified variables are substituted by fresh nulls. However, in general this
procedure does not terminate. Thus, a restricted parsimonious chase procedure was
introduced in [17], which derives less atoms, and which is guaranteed to terminate for
the class of Shy-programs. Moreover, it was shown that the interpretation computed by
the parsimonious chase procedure is, although not a model of the program in general,
still sound and complete for query answering and a bounded model in our view.

For query answering over Datalog∃-programs we reuse the translation in Section 4.

Example 8. Consider the Datalog∃-program Π and its HEX translation T∃(Π):
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Π :
person(john). person(joe).

∃Y : father(X,Y )← person(X).
person(Y )← father(X,Y ).

T∃(Π) :
person(john). person(joe).
father(X,Y )← person(X),

&exists1 ,1 [r1, X](Y ).
person(Y )← father(X,Y ).

Intuitively, each person X has some unnamed father Y of X which is also a person.

Note that T∃(Π) is not de-safe in general. However, with the hooks in Algo-
rithm BGroundHEX one can still guarantee termination. Let GroundDatalog∃(Π, k) =
BGroundHEX(T∃(Π)) where Repeat tests for i < k + 1 where k is the number of
existentially quantified variables in the query, and Evaluate(PIT i, x) = true iff atom x
is not homomorphic to any a ∈ PIT i.

The produced program has a single answer set, which essentially coincides with the
result of pChase [17] that can be used for query answering. Thus, query answering over
Shy-programs is reduced to grounding and solving of a HEX-program.

Proposition 3. For a Shy-program Π , GroundDatalog∃(Π, k) has a unique answer set
which is sound and complete for answering CQs with up to k existential variables.

The main difference to pChase in [17] is essentially due to the homomorphism
check. Actually, pChase instantiates existential variables in rules with satisfied body
to new null values only if the resulting head atom is not homomorphic to an already
derived atom. In contrast, our algorithm performs the homomorphism check for the input
to &existsn,m atoms. Thus, homomorphisms are detected when constants are cyclically
sent to the external atom. Consequently, our approach may need one iteration more than
pChase , but allows for a more elegant integration into our algorithm.

Example 9. For the program and query from Example 8, the algorithm computes a pro-
gram with answer set {person(john), person(joe), father(john, ω1), father(joe, ω2),
person(ω1), person(ω2)}. In contrast, pChase would stop already earlier with the in-
terpretation {person(john), person(joe), father(john, ω1), father(joe, ω2)} because
person(ω1), person(ω2) are homomorphic to person(john), person(joe).

More formally, one can show that GroundDatalog∃(Π, k) yields, for a Shy-program
Π , a program with a single answer set that is equivalent to pChase(Π, k + 1) in [17].
Lemma 4.9 in [17] implies that the resulting answer set can be used for answering
queries with k different existentially quantified variables, which proves Proposition 3.

While pChase intermingles grounding and computing a universal model, our algo-
rithm cleanly separates the two stages; modularized program evaluation by the solver
will however also effect such intermingling. We nevertheless expect the more clean
separation to be advantagagoues for extending Shy-programs to programs that involve
existential quantifiers and other external atoms, which we leave for future work.

6 HEX-Programs with Function Symbols

In this section we show how to process terms with function symbols by a rewriting to
de-safe HEX-programs. We will briefly discuss advantages of our approach compared to
a direct implementation of function symbols.
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We consider HEX-programs, where the arguments Xi for 1 ≤ i ≤ ` of ordinary
atoms p(X1, . . . , X`), and the constant input arguments in X and the output Y of an
external atom &g [X](Y) are from a set of terms T , that is the least set T ⊇ V ∪ C such
that f ∈ C (constant symbols are also used as function symbols) and t1, . . . , tn ∈ T
imply f(t1, . . . , tn) ∈ T .

Following [4], we introduce for every k ≥ 0 two external predicates &compk and
&decompk with ar I(&compk ) = 1+ k, ar O(&compk ) = 1, ar I(&decompk ) = 1, and
ar O(&decompk ) = 1 + k. We define

f&compk(A, f,X1, . . . , Xk, T ) = f&decompk(A, T, f,X1, . . . , Xk) = 1,

iff T = f(X1, . . . , Xk).
Composition and decomposition of function terms can be simulated using these

external predicates. Function terms are replaced by new variables and appropriate addi-
tional external atoms with predicate &compk or &decompk in rule bodies to compute
their values. More formally, we introduce the following rewriting.

For any HEX-program Π with function symbols, let Tf (Π) be the HEX-program
where each occurrence of a term t = f(t1, . . . , tn) in a rule r such that B(r) 6= ∅ is
recursively replaced by a new variable V , and if V occurs afterwards inH(r) or the input
list of an external atom in B(r), we add &compn [f, t1, . . . , tn](V ) to B(r); otherwise
(i.e., V occurs afterwards in some ordinary body atom or the output list of an external
atom), we add &decompn [V ](f, t1, . . . , tn) to B(r).

Intuitively, &compn is used to construct a nested term from a function symbol and
arguments, which might be nested terms themselves, and &decompn is used to extract
the function symbol and the arguments from a nested term. The translation can be
optimized wrt. evaluation efficiency, but we disregard this here for space reasons.

Example 10. Consider the HEX-program Π with function symbols and its translation:

Π : q(z). q(y).
p(f(f(X)))← q(X).

r(X)← p(X).
r(X)← r(f(X)).

Tf (Π) : q(z). q(y).
p(V ) ← q(X),&comp1 [f,X](U),

&comp1 [f, U ](V ).
r(X) ← p(X).
r(X) ← r(V ),&decomp1 [V ](f,X).

Intuitively, Tf (Π) builds f(f(X)) for any X on which q holds using two atoms over
&comp1 , and it extracts terms X from derived r(f(X)) facts using a &decomp1 -atom.

Note that &decompn supports a well-ordering on term depth such that its output has
always a strictly smaller depth than its inputs. This is an important property for proving
finite groundability of a program by exploiting the TBFs introduced in [6].

Example 11. The program Π = {q(f(f(a))); q(X) ← q(f(X))} is translated to
Tf (Π) = {q(f(f(a))); q(X) ← q(V ),&decomp1 [V ](f,X)}. Since &decomp1 sup-
ports a well-ordering, the cycle is benign [6], i.e., it cannot introduce infinitely many
values because the nesting depth of terms is strictly decreasing with each iteration.

The realization of function symbols via external atoms (which can in fact also be
seen as domain-specific existential quantifiers) has the advantage that their processing
can be controlled. For instance, the introduction of new nested terms may be restricted by
additional conditions which can be integrated in the semantics of the external predicates
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&compk and &decompk . A concrete example is data type checking, i.e., testing whether
the arguments of a function term are from a certain domain. In particular, values might
also be rejected, e.g., bounded generation up to a maximal term depth is possible.
Another example is to compute some of the term arguments automatically from others,
e.g., constructing the functional term num(7, vii) from 7, where the second argument is
the Roman representation of the first one.

Another advantage is that the use of external atoms for functional term processing
allows for exploiting de-safety of HEX-programs to guarantee finiteness of the grounding.
An expressive framework for handling domain-expansion safe programs [6] can be
reused without the need to enforce safety criteria specific for function terms.

7 Discussion and Conclusion

We presented model computation and query answering over HEX-programs with domain-
specific existential quantifiers, based on external atoms and a new grounding algorithm.
In contrast to usual handling of existential quantifiers, ours especially allows for an
easy integration of extensions such as additional constraints (even of non-logical nature)
or data types. This is useful e.g. for model building applications where particular data
is needed for existential values, and gives one the possibility to implement domain-
restricted quantifiers and introduce null values, as in databases. The new grounding
algorithm allows for controlled bounded grounding; this can be exploited for bounded
model generation, which might be sufficient (or convenient) for applications. Natural
candidates are configuration or, at an abstract level, generating finite models of general
first-order formulas as in [12], where an incremental computation of finite models
is provided by a translation into incremental ASP. There, grounding and solving is
interleaved by continously increasing the bound on the number of elements in the
domain. (Note that, although not designed for interleaved evaluation, our approach is
flexible enough to also mimic exactly this technique with suitable external atoms.) The
work in [1] aims at grounding first-order sentences with complex terms such as functions
and aggregates for model expansion tasks. Similar to ours, it is based on bottom-up
computation, but we do not restrict to finite structures and allow for potentially infinite
domains. As a show case, we considered purely logical existentials (null values), for
which our grounding algorithm amounts to a simulation of the one in [17] for Datalog∃-
programs. However, while [17] combine grounding and model building, our approach
clearly separates the two steps; this may ease possible extensions.

We then realized function symbol processing as in [4], by using external atoms to
manipulate nested terms. In contrast to other approaches, no extension of the reasoner is
needed for this. Furthermore, using external atoms has the advantage that nested terms
can be subject to (even non-logical) constraints given by the semantics of the external
atoms, and that finiteness of the grounding follows from de-safety of HEX-programs.

In model-building over HEX∃-programs, we can combine existentials with function
symbols, as HEX∃-programs can have external atoms in rule bodies. To allow this for
query answering over Datalog∃-programs remains to be considered. More generally,
also combining existentials with arbitrary external atoms and the use of default-negation
in presence of existentials is an interesting issue for future research. This leads to non-
monotonic existential rules, which most recently are considered in [18] and in [15],
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which equips the Datalog±formalism, which is tailored to ontological knowledge rep-
resentation and tractable query answering, with well-founded negation. Another line
for future research is to allow disjunctive rules and existential quantification as in
Datalog∃,∨ [2], leading to a generalization of the class of Shy-programs. Continuing on
the work on guardedness conditions as in open answer set programming [16], Datalog∃,
and Datalog± should prove useful to find important techniques for constructing more
expressive variants of HEX-programs with domain-specific existential quantifiers. The
separation of grounding and solving in our approach should be an advantage for such
enhancements.
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Instituto Politécnico de Bragança

Campus de Santa Apolónia, 5300-253 Bragança, Portugal
mar@ipb.pt

2 Centro de Inteligência Artificial (CENTRIA), Departamento de Informática
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Abstract. In this paper we present a paraconsistent abdutive semantics
for extended normal logic programs, the paraconsistent minimal hypothe-
ses semantics MHP . The MHP is a semantics of total paraconsistent
models wich combines the merits of two already existing semantics: it
inherits the existence property of the abductive minimal hypotheses se-
mantics MH [1], which is a semantics of total models, and the property of
detection of support on contradiction of the paraconsistent well-founded
semantics with explicit negationWFSXP [2], which is a semantics of par-
tial paraconsistent models. The MHP enjoys also the property of simple
relevance, which permits top-down query answering for brave reason-
ing purposes. Besides, the MHP lends itself to various types of skeptical
and brave reasoning, which include the possibility of drawing conclusions
from inconsistent models in a nontrivial way. The MHP coincides with
the MH on normal logic programs, and with the WFSXP on stratified
extended programs.

Keywords: Hypotheses, Semantics, Abduction, Total Paraconsistent
Model, Partial Paraconsistent Model, Paraconsistency.

1 Introduction

In this work we present an abduction based paraconsistent semantics, for ex-
tended logic programs, the MHP , wich combines the merits of two already
existing semantics: an abductive semantics, the minimal hypotheses semantics
MH [1], and a paraconsistent semantics, the well-founded semantics with explicit
negation WFSXP [2]. We first expound on the general merits of abductive se-
mantics, and then highlight the advantages of paraconsistent semantics.

Abductive logic programming is an extension of logic programming to perform
abductive reasoning [3]. The following example gives a glimpse on how it can be
used to get a 2-valued semantics for every normal logic program.

? Partially supported by Fundação para a Ciência e Tecnologia and Instituto
Politécnico de Bragança grant PROTEC : SFHR/49747/2009.
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Example 1. In order for program P = {a← not b, b← not c, c← not a}, that
has no stable models, to have a 2-valued model, a subset of {a, b, c} must be a
part of the positive literals of the model. This can be achieved by considering
abductive extensions [3] P ∪ H of program P , where H is a subset of {a, b, c}
such that P ∪H has a single stable model [4]. For example, if we consider the
explanation H = {a}, the stable model obtained for P ∪H is {a, b}. In case we
take, for instance, the explanation {b} (resp. {c}), we get the model {b, c} (resp.
{c, a}). Each set H is called hypotheses set [1] for the corresponding model, and
is an abductive explanation [3] for program P .

Abduction allows us to envisage loops in normal logic programs as semantic
choice devices. This is one of the main features of the minimal hypotheses se-
mantics MH, presented in section 3. MH takes as assumable hypotheses of a
normal logic program P the atoms that appear default negated in the layered
remainder P̊ , which is a transformed of the original program P . In the example
above, as P = P̊ , the MH models of program P are {a, b}, {b, c}, {c, a}, with
hypotheses sets respectively, {a}, {b}, {c}. The hypotheses sets are minimal with
respect to set inclusion. We next highlight the advantages of having paraconsis-
tent semantics. Several authors, [5–10], have stressed the need to endow normal
logic programs with a second kind of negation operator, the explicit negation ’¬’,
for representing contradictory knowledge, in addition to the negation-as-failure
(or default negation) operator, ’not’, used for representing incomplete informa-
tion. There are plenty of examples that display the need for explicitly negated
literals in logic programming, both in the heads and in the bodies of the rules.
The following is a typical example.

Example 2. (adapted from [11]) Consider the statement ”Penguins do not fly”.
This statement may be represented within logic programming by no fly(X)←
penguin(X). Meanwhile, if additionally we wish to represent the statement
”Birds fly”, fly(X) ← birds(X), no connection results between the predicates
no fly(X) and fly(X), although the intention of the programmer is to set
them as contradictory. In this case it is suitable to have the rule ¬fly(X) ←
penguin(X) instead of no fly(X) ← penguin(X), since a semantics that deals
with the operator ¬ will by definition consider predicates fly(X) and ¬fly(X)
as contradictory opposites.

As a consequence of the need for an explicit negation operator, a number of
semantics that interpret this type of operator have been proposed – those for
extended normal logic programs, ELPs. Among them are the paraconsistent se-
mantics [2, 12–15], i.e. semantics that admit non trivial models containing con-
tradictory literals, say l and ¬l. This has been shown an important property for
frameworks of knowledge and reasoning representation. The well-founded seman-
tics with explicit negation WFSXP , is a paraconsistent semantics for extended
normal logic programs that envisages default negation and explicit negation nec-
essarily related through the coherence principle [7]: if ¬l holds, then not l should
also hold (similarly, if l then not ¬l). In section 5 we define the paraconsistent
minimal hypotheses semantics MHP . As exposed there, the MHP semantics
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endows WFSXP with choice mechanisms, in the fashion of MH, that allow
reasoning by cases. MHP models are total paraconsistent models, meaning that
no MHP model of an extended normal logic program contains undefined liter-
als. MHP inherits the advantages of the MH semantics, being existential, using
loops as choice mechanisms and being simple relevant (see subsection 5.1). It also
inherits the advantages of the WFSXP by not enforcing default consistency and
hence producing models that allow to spot support on contradiction.

The rest of this paper proceeds as follows. In section 2 we define the language of
extended normal logic programs and the terminology to be used in the sequel.
For self-containment we present in sections 3 and 4 the definitions of the MH
semantics and WFSXP semantics. In section 5 we exhibit in technical detail the
definiton and characterization of the MHP semantics. Section 6 is dedicated to
conclusions and future work.

2 Language and Terminology of Logic Programs

An extended normal logic program is a finite set of ground rules, each one of the
form l0 ← l1, · · · , lm, not lm+1, · · · , not ln, where li, 0 ≤ i ≤ n, is an objective
literal (either an atom b or its explicit negation, ¬b, where ¬¬b = b); m,n are
natural numbers, the operator ’,’ stands for the classical conjunctive connective
and the operator not stands for default negation (not l is called a default literal).
The set of all atoms that appear in an extended normal logic program is named
the Herbrand base of P , denoted HP . If m = n = 0 a rule is called fact. If HP
contains no explicitly negated literals, the program is called normal; a rule with
no explicitly negated literals is also called normal. Given a program P , program
Q is a subprogram of P if Q ⊆ P , where Q and P are envisaged as sets of rules.
Given a rule r = l0 ← l1, · · · , lm, not lm+1, · · · , not ln, the objective literal l0 is
the head of the rule and l1, · · · , lm, not lm+1, · · · , not ln is the body of the rule.3

Some terminology used in the sequel is now established, concerning the depen-
dencies among the elements (atoms and rules) of ground normal logic programs,
triggered by the dependency operator ’←’.
Complete Rule Graph. (adapted from [4]) The complete rule graph of an
extended normal logic program P , denoted by CRG(P ), is the directed graph
whose vertices are the rules of P . Two vertices representing rules r1 and r2

3 For ease of exposition, we henceforth use the following abbreviations: Atoms(E), is
the set of all atoms that appear in the ground structure E, where E can be a rule,
a set of rules, a set of logic expressions, etc; Bodies(E), is the set of all bodies that
appear in the set of rules E; if E is unitary, we may use ’Body’ instead of ’Bodies’;
Heads(E), is the set of all atoms that appear in the heads of the set of rules E; if E is
unitary, we may use ’Head’ instead of ’Heads’; Facts(E), is the set of all facts that
appear in the set of rules E; Loops(E), is the set of all rules that appear involved
in some loop contained in the set of rules E (see definition of loop in the sequel).
We may compound some of these abbreviations, as for instance Atoms(Bodies(P ))
whose meaning is immediate.
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define an arc from r1 to r2, iff Head(r1) ∈ Atoms(Body(r2)), or Head(r1) =
¬Head(r2), or Head(r2) = ¬Head(r1).
Subprogram Relevant to an Objective Literal. (adapted from [4]) Let P
be an extended normal logic program. We say that a rule r ∈ P is relevant to an
objective literal l ∈ HP , iff there is a rule s such that Heads(s) = l, and there is
a direct path from r to s in the complete rule graph of P . In particular, rule s
is relevant to l. The set of all rules of P relevant to l is represented by RelP (l),
and is named subprogram relevant to l.
Loop. (adapted from [16]) We say that a finite set of normal ground rules P
forms a loop, iff P is of the form {h1 ← l2, B1, h2 ← l3, B2, · · · , hn ← l1, Bn},
where li = hi, or li = not hi, and each Bi stands for a conjunction (possibly
empty) of a finite number of literals. We say that each rule hi ← li+1, Bi is
involved in the loop through the literal li+1 or through the atom involved in the
literal li+1, where i+ 1 is replaced by 1 if i = n.

Given a 3-valued interpretation I of an extended normal logic program, we rep-
resent by I+ (resp. I− ) the set of its positive objective literals (resp. objective
literals whose default negation is true with respect to I), and by Iu the set of
undefined objective literals with respect to I. We represent I by the 3-tuple
I = 〈I+, Iu, I−〉.4

The following operator shall be used in the sequel.

Definition 1. 4 operator. Given a normal logic program Q, we denote by
4Q the 3-valued interpretation that can be read from Q in the following way:
b ∈ (4Q)+ iff (b ←) ∈ Q; b ∈ (4Q)u iff (b ←) /∈ Q and there is a rule r in Q
such that Head(r) = b; b ∈ (4Q)− iff b has no rule in Q.

3 The MH Semantics

In [17] the authors propose a reduction system comprised of the following five
operators, each of which transforming normal logic programs into normal logic
programs while keeping invariant the well-founded model [18] of the involved
programs: positive reduction, 7→P , negative reduction, 7→N , success, 7→S , failure,
7→F , and loop detection, 7→L

5. We here represent this reduction system by
7→WFS :=7→P ∪ 7→N ∪ 7→S ∪ 7→F ∪ 7→L. Given a normal logic program P , the
transformation P 7→∗WFS P̂

6 is such that WFM(P̂ ) = WFM(P ). Program P̂
will be here called the WFS remainder of P or remainder of P 7. The system
7→WFS is both terminating and confluent, meaning that for any finite ground
normal logic program the number of operations needed to reach P̂ is finite,

4 We also write b = +, b = u, b = −, to mean respectively, b ∈ I+, b ∈ Iu, b ∈ I−.
5 See INAP 11 paper [1], defs. 8, 9, 11, 12, 13, for definitions of these operators.
6 Where 7→∗

WFS means the nondeterministic performing of operations of the system
7→WFS , until the resulting program becomes invariant.

7 See INAP 11 paper [1], def. 16.
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and the order in which the operations are executed is irrelevant, as long as the
preconditions for the application of each one of them are verified. To compute
the MH semantics of a normal logic program, we need the variant 7→LWFS of the
reduction system 7→WFS , which results from 7→WFS by substituting the negative
reduction operator, 7→N , by the layered negative reduction operator, 7→LN – see
[1], def. 10. Given a normal logic program P , the transformation P 7→∗LWFS P̊

8

is such that 4P̊ = LWFS(P ), where LWFS(P ) [4] stands for the layered well-
founded model of P – the transformed program P̊ is called LWFS remainder or
layered remainder of P . The system 7→LWFS is terminating and confluent when
applied to finite ground normal logic programs.

Example 3. The layered remainder of program P (left column) is program P̊

(center column), and the remainder of P is program P̂ (right column) – rules

and literals stripped out, are eliminated during P̊ and P̂ computations.9

b← h b← h b← h

h← not p, b h← not p, b h← not p, b

p← not b p← not b p← not b

a← not c, b a← not c, b a← not c, b

d← not b d← not b d← not b

b← b← b←

The layered well-founded model of P is thus LWFM(P ) = 4P̊ = 〈{a, b}+, {h,
p}u, {c, d}−〉, and the well-founded model of P is WFM(P ) = 4P̂ = 〈{a, b, h}+,
{}u, {c, d, p}−〉.

MH being an abductive semantics, we shall now define the assumable hy-
potheses set and the minimal hypotheses model of a normal logic program.

Definition 2. Assumable Hypotheses Set of a Program. (adapted from
[1]) Let P be a finite ground normal logic program. We write Hyps(P ) to denote
the assumable hypotheses set of P : those atoms that appear default negated in
the bodies of rules of P̊ and which are not facts in P̊ , i.e. they belong to (4P̊ )u.

8 7→∗
LWFS means the nondeterministic performing of operations of the system 7→LWFS

until the resulting program becomes invariant.
9 Rule d← not b in P is eliminated, both in P̊ and P̂ , by layered negative reduction

in the first case and by negative redution in the second – the two operations coincide
here, since the rule is not in loop via literal not b; the body of rule a ← not c, b in
P , becomes empty by success (which eliminates b) and by positive reduction (which

eliminates not c), both in P̊ and P̂ ; rule p← not b in is eliminated in P̂ by negative
reduction, but not in P̊ , since the rule is in loop through literal not b and layered
negative redution does nothing is such cases; b is eliminated from the body of rule
h ← not p, b by success, both in P̊ and P̂ , whilst positive reduction eliminates also
the literal not p in P̂ , because p is an atom without rule due to the elimination of
rule p ← not b, turning h into a fact; h is eliminated from the body of rule b ← h,
by success, in P̂ .
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The purpose of computing P̊ is to find the set of assumable hypotheses of P ,
which are then used to compute the minimal hypoteses models of the program.

Definition 3. Minimal Hypotheses Model. (adapted from [1]) Let P be a
finite ground normal logic program. Let Hyps(P ) be the assumable hypotheses
set of P (cf. def. 2), and H a subset of Hyps(P ). A 2-valued interpretation M of
P is a minimal hypotheses model of P , iff WFMu(P ∪H) = ∅, where H = ∅ or
H is a nonempty set that is minimal with respect to set inclusion (set inclusion
minimality disregards any empty H). I.e. the hypotheses set H is minimal but
sufficient to determine (via the well-founded model) the truth-value of all literals
in the program.

Theorem 1. Every normal logic program has at least one MH model.

Every stable model of a normal logic program is also a minimal hypotheses
model of the program. This justifies the catering for whole models with empty
hypotheses set, which are stable models of programs whose layered remainders
are stratified programs. The reason hypotheses minimization does not contem-
plate empty hypotheses set models, is to allow loops to be taken as choice devices,
also in these cases. For instance, program P in example 3 has the assumable hy-
potheses set Hyps(P ) = {p}, since not p appears in P̊ and p is not a fact of
this program 10. The MH models of P are {a, b, not c, h, not p} with hypotheses
set ∅, and {a, b, not c, not h, p} with hypotheses set {p}. If the empty hypothe-
ses set were allowed in the hypotheses minimization, the non-empty hypotheses
set model would be discarded and we would be left with just the stable model
{a, b, not c, h, not p}.

Example 4. Consider the following variation of the vacation problem11 [1], P =
{a ← not b, b ← not a, not c, c ← not d, d ← not e, not a, e ← not a, not c},
where P = P̊ . The hypotheses set of P is Hyps(P ) = {a, b, c, d, e}. The MH
models of P are: {a, not b, c, not d, not e} with hypotheses set {a}, {not a, b, not c,
d, e} with hypotheses set {b, d}12 and {a, not b, c, not d, e} with hypotheses set
{e}.

This example shows this type of problem is not solvable by resorting to answer
sets semantics [19], if we stick to the set of rules of P , since models may not
be minimal (e.g. {a, not b, c, not d, e} above). Should there be a transformation
on normal logic programs, let it be 7→Y , such that P 7→Y P ∗, where the MH
models of P could be extracted from the stable models of P ∗, then P ∗ would
have a different set of rules and/or a different language, with respect to P , which

10 Notice that although not b appears in P̊ , b is not an assumable hypothesis of P since
it is a fact of P̊ .

11 Five friends are planning a joint vacation. First friend says ”If we don’t go to place
b, then we should go to place a”, which corresponds to rule a ← not b; the same
rationale for the remaining rules.

12 There are no MH models with hypotheses sets H = {b} or H = {d}, since in these
cases WFMu(P ∪H) 6= ∅.
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means that this type of problem is specified in a more elegant way if the solution
is to be obtained via the MH semantics. Yet, it is an open problem whether
such a transformation exists. 13

4 The WFSXP Semantics

The WFSXP model of an extended normal logic program may be computed by
means of a dedicated fixpoint operator [2]. In this section, however, we instead
present a definition of the WFSXP by means of a program transformation
for extended normal logic programs, dubbed t − o transformation14 [20], which
embeds the WFSXP into the WFS. This means that the WFSXP model of
an extended normal logic program P , denoted by WFMP (P ), may be extracted
from the well-founded model of the transformed program P t−o.

Definition 4. t− o Transformation. (adapted from [20]) The t− o transfor-
mation, maps an extended normal logic program P into a normal logic program
P t−o, by means of the two following steps:
1. Every explicitly negated literal in P , say ¬b, appears also in the transformed
program, where it must be read as a new atom, say ¬ b. Let P ∗ be the program
resulting from making these transformations on P .
2. Every rule r = (Head(r) ← Body(r)) in P ∗ is substituted by the following
pair of rules: (i) A rule also designated r, for simplicity, obtained from r ∈ P ∗
by placing the superscript ’o’ in the default negated atoms of Body(r); (ii) A
rule ro, obtained from r ∈ P ∗ by adding to Body(r) the literal not ¬Head(r)
(where ¬¬l = l)15, and by placing the superscript ’o’ in Head(r) and in every
positive literal of Body(r).
We call co-rules to each pair r, ro of rules in P t−o (each rule is the co-rule of the
other one), and co-atoms to each pair b, bo of atoms in P t−o (each atom is the
co-atom of the other one). To each objective literal l of the language of P ∗, there
corresponds the pair of co-atoms l, lo of the language of P t−o and vice-versa.16

13 The solution proposed by MH semantics for the vacation problem has the following
rationale: rule a ← not b, for example, states that the first friend prefers place b to
place a, because a is suggested in case b fails; each model of MH tries to satisfy
the first options of the friends, by considering them as hypotheses. The answer set
solution to this type of problem, when it exists, retrives models that statisfy all the
friends’ demands (rules) with the smallest (with respect to set inclusion) possible
number of places to visit (due to the minimality of models).

14 The original designation is T−TU transformation. Our definition alters the notation,
for simplicity purposes, while keeping the meaning of the original one.

15 The literal not ¬Head(r) is added to enforce the coherence principle.
16 The rules with superscript ’o’ in the heads are used to derive the literals that are

true or undefined in the WFSXp model, and the rules with no superscript in the
head are used to derive the true literals of the WFSXp model.
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Example 5. (adapted from [20]) Program P (left column) has the t − o trans-
formed P t−o (two columns on the right):

a← a← ao ← not ¬a
¬a← ¬a← ¬ao ← not a

b← a b← a bo ← ao, not ¬b
c← not b c← not bo co ← not b, not ¬c
d← not d d← not do do ← not d, not ¬d

The following theorem states how to read the WFMP (P ) model from the
WFM(P t−o), where P is any extended normal logic program.

Theorem 2. WFSXP is embeddable into WFS. (adapted from [20]) Let P
be an extended normal logic program. Then the following equivalences hold for
an arbitrary atom b of the language of P : b ∈WFMp(P ), iff b ∈WFM(P t−o);
not b ∈ WFMp(P ), iff not bo ∈ WFM(P t−o); ¬b ∈ WFMp(P ), iff ¬b ∈
WFM(P t−o); not ¬b ∈ WFMp(P ), iff not ¬bo ∈ WFM(P t−o), where the
symbols ¬b,¬bo on the right sides of the ’iffs’ must be taken as names of atoms
(they are not explicitly negated literals), in accordance with definition 4.

Definition 5. 5 operator. Given a 3-valued interpretation I = 〈I+, Iu, I−〉,
where I+, Iu, I− may contain ’o’ superscript or otherwise nonsuperscript atoms,
we denote by 5I the 3-valued interpretation obtained by means of the lexical
correspondences stated in theorem 2.

Using this operator we may write, for example, WFMP (P ) = 5WFM(P t−o).
The next proposition and corollary characterize the valuations of the pairs of
co-atoms b, bo of the language of P t−o, with respect to the WFM(P t−o): it is
the case that bo ≤t b for any such pair (bo, b standing here for their valuations
with respect to the WFM(P t−o)), where ≤t is the truth ordering17.

Proposition 1. Let P t−o be the t− o transformed of a finite ground extended
normal logic program P . Let ΓnP t−o(∅) be the result of the n-th self composition
of the Gelfond-Lifschitz Γ operator [21] on program P t−o, with argument ∅.
Then, for every n ∈ N and for every atom b of the Herbrand base of P we have
bo ∈ ΓnP t−o(∅)⇒ b ∈ ΓnP t−o(∅).

Corollary 1. (of proposition 1) Let b, bo be two co-atoms of the Herbrand
base of P t−o. Then it is not possible to have any of the following three types of
valuations with respect to the WFM(P t−o): (b, bo) = (−,+), (b, bo) = (−, u),
(b, bo) = (u,+). The only possible valuations are (b, bo) = (−,−), (b, bo) = (u,−),
(b, bo) = (+,−), (b, bo) = (u, u), (b, bo) = (+, u), (b, bo) = (+,+).

17 Given the logic values f (false), u (undefined) and t (true), their truth ordering is
defined by: f ≤t u ≤t t, [11].
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The WFM(P t−o) in example 5 is
〈{a,¬a, b, c}+, {d, do}u, {ao,¬ao, bo,¬b,¬bo, co,¬c,¬co,¬d,¬do}−〉. Using theo-
rem 2 we obtain the WFSXP model 〈{a,¬a, b, c}+, {d}u, {a,¬a, b,¬b, c,¬c,
¬d}−〉. To get the meaning of this model, notice that WFSXP does not enforce
default consistency, i.e. l and not l can be simultaneously true in a paracon-
sistent model, in contradistinction to all other paraconsistent semantics [20],
which allows to detect dependence on contradictory information. This is a con-
sequence of adopting the coherence principle [22]. In the above example, for any
l ∈ {a,¬a, b, c}, both l and not l belong to the WFMP (P ), thus revealing the
valuations of {a, b, c} as inconsistent (the valuation of a is also contradictory
with respect to explicit negation, since a and ¬a are both true; is due to this
contradictory valuation that the inconsistency of a, b, c occurs). The valuation of
atom d is in turn consistent. Table 1 (see appendix) presents in column NINE18

the correspondence between each possible 4-tuple of WFSXP valuations of a lit-
eral (lo, l,¬lo,¬l) and the nine possible logic values literal l may assume with
respect to logic NINE. According to table 1, the logic values of the atoms in
the NINE model corresponding to the WFMP (P ) above, are as follow: a is
contradictory true (logic value I); b, c are true with contradictory belief (logic
value II); d is default true (logic value dt).

Definition 6. Total/Partial Paraconsistent Model. (adapted from [23])
Let P be a finite ground extended normal logic program and SEM a semantics
for extended normal logic programs. A SEM model M = 〈M+,Mu,M−〉 of P
is a total paraconsistent model, iff Mu = ∅. M is called a partial paraconsistent
model, iff Mu 6= ∅.

Proposition 2. The WFSXP semantics is a partial paraconsistent models
semantics, meaning that the WFSXP models of some extended normal logic
programs contain undefined literals.

Theorem 3. (adapted from [2]) If P is a normal logic program, then the models
WFM(P ) and WFMP (P ) are equal, if we neglect the explicitly negated literals
in WFMP (P ).

5 The MHP Semantics

The MHP semantics of an extended normal logic program P is computed via
the following steps: 1) Compute the balanced layered remainder bP t−o of P (see
definition 9); 2) Compute the assumable hypotheses set of P (see definition 10);
3) Compute the MHP models of P (see definition 11).

The balanced layered remainder bP t−o of an extended normal logic program P , is
the outcame of the balanced layered reduction transformation of P , P 7→∗bLWFM

18 A logic dubbed NINE [20], presented in the appendix, provides a truth-functional
model theory for the WFSXp semantics.
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bP t−o, where (i) 7→bLWFM is obtained from 7→LWFM replacing the layered nega-
tive reduction operator, 7→LN , by the balanced layered negative reduction opera-
tor, 7→bLN , defined below; (ii) 7→∗bLWFM means the nondeterministic performing
of operations of the system 7→bLWFM until the resulting program becomes in-
variant under any further operation.

Definition 7. Balanced19 Layered Negative Reduction. Let P1 and P2 be
two ground normal logic programs, whose Herbrand bases contain ’o’ superscript
and nonsuperscript atoms. We say that P2 results from P1 by a balanced layered
negative reduction operation, P1 7→bLN P2, iff one of the next two cases occur:
(1) There is a fact bo in P1 and a rule r in P1 whose body contains the literal
not bo, where neither r is involved in a loop through the literal not bo nor is its
co-rule ro involved in a loop through the literal not b, and P2 = P1 \ {r}; (2)
There is a fact b in P1 and a rule ro in P1 whose body contains the literal not b,
where neither ro is involved in a loop through the literal not b, nor is its co-rule
r involved in a loop through the literal not bo, and P2 = P1 \ {ro}.20

Definition 8. Balanced Layered Reduction. The balanced layered reduction
system is the system 7→bLWFM :=7→P ∪ 7→bLN ∪ 7→S ∪ 7→F ∪ 7→L.

Theorem 4. Termination and Confluency. The system 7→bLWFM , when
applied to finite ground programs, is both terminating and confluent.

Definition 9. Balanced Layered Remainder. Let P be a finite ground ex-
tended normal logic program and P t−o its t − o transformed. We call balanced
layered remainder of P to the program bP t−o such that P t−o 7→∗bLWFM bP t−o.

Example 6. The balanced layered remainder of the program P (left column) is
bP t−o (two columns on the right) – rules and literals stripped out, are eliminated
during bP t−o computation.21

b← h b← h bo← ho, not ¬b
h← not p h← not po ho← not p, not ¬h
p← not b p← not bo po ← not b, not ¬p
b← b← bo ← not ¬b
¬h← ¬h← ¬ho ← not h

19 The expression ’balanced’ refers to the consideration of pairs of co-rules in this
definition.

20 This operation is weaker than layered negative reduction, meaning that where the
former is applicable so is the latter.

21 Notice that rule ho ← not p, not ¬h is eliminated by balanced negative reduction,
because ¬h is a fact of bP t−o, and neither is the rule involved in a loop through
literal ¬h, nor is its co-rule h ← not po involved in a loop through literal ¬ho –
balanced layered negative reduction has, in this case, the same effect as negative
reduction; rule bo ← ho, not ¬b is eliminated by failure, because ho does not have a
rule after elimination of ho ← not p, not ¬h; literals not ¬b, not ¬p are eliminated
by positive reduction, since ¬b,¬p do not have a rule in bP t−o.
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Proposition 3. Let P be an extended normal logic program and M = 4bP t−o.
Then the valuation with respect to M of any pair of co-atoms, say l, lo, of the
Herbrand base of P t−o, agrees with the statement of corollary 1.

Definition 10. Assumable Hypotheses Set of a Program. Let P be a
finite ground extended normal logic program and bP t−o its balanced layered
remainder. We say that Hyps(P ) ⊆ HP is the assumable hypotheses set of P , iff
for all h ∈ Hyps it is the case that the default literal not ho appears in program
bP t−o, and h is not a fact in bP t−o, i.e. h ∈ (4bP t−o)u.22

Definition 11. Paraconsistent Minimal Hypotheses Semantics, MHP.
Let P be a finite ground extended normal logic program, bP t−o its balanced
layered remainder and Hyps the set of assumable hypotheses of P . Then the
paraconsistent minimal hypotheses semantics of P , denoted MHp(P ), is defined
by the paraconsistent minimal hypotheses models M of P , which are computed
as follows:
1. M = WFMP (P ∪H) = 5WFM(P t−o ∪H ∪ {ho ← not ¬h : h ∈ H}),

for all H ⊆ Hyps, H 6= ∅, H is inclusion-minimal and WFMu
P (P ∪H) = ∅.

2. M = WFMP (P ) = 5WFM(P t−o), where WFMu
P (P ) = ∅.

Each hypothesis, say h, is added to bP t−o as a pair of rules {h ←, ho ←
not ¬h}. No MHP model of an extended normal logic program has undefined
literals. Table 1 (see appendix) presents in column SIX23 the correspondence
between each possible 4-tuple of MHP valuations of a literal (lo, l,¬lo,¬l) and
the six possible logic values literal l may assume with respect to SIX.

Example 7. Consider the program in example 6. The assumable hypotheses set
of P is {p}, since although both not bo, not po appear in bP t−o, p is not a fact
in the program bP t−o, whilst b is. The MHP models are:24

M1 = 5WFM(P t−o)

= 5〈{b, bo, h,¬h}+, {}u, {¬b,¬bo, ho,¬ho, p, po,¬p,¬po}−〉
= 〈{b, h,¬h}+, {}u, {¬b, h,¬h, p,¬p}−〉, with hypotheses set ∅

M2 = 5WFM(P t−o ∪ {p} ∪ {po ← not ¬p})
= 5〈{b, bo,¬h,¬ho, p, po}+, {}u, {¬b,¬bo, h, ho,¬p,¬po, }−〉
= 〈{b,¬h, p}+, {}u, {¬b, h,¬p}−〉, with hypotheses set {p}

22 This is equivalent to saying that h ∈ (5 4 bP t−o)u. Notice that the purpose of
computing bP t−o, is to find the set of assumable hypotheses of P .

23 Logic SIX provides a truth-functional model theory for the MHP semantics.
24 According to column SIX of table 1, the interpretations of the valuations of the

literals in the two MHP models above, are as follows: with respect to model M1,
b is true (logic value t), h is contradictory true (logic value I), p has contradictory
belief (logic value IV ); with respect to model M2, b, p are true (logic value t) and h
is false (logic value f).
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We see that the first model is inconsistent while the second is not. The first model
coincides with the WFMP (P ). The second model arises because the MHP uses
the loop {b← h, h← not p, p← not b} of program P as a choice device.

The following results show that MHP is a total paraconsistent models seman-
tics (cf. def. 6) and that MH and MHP coincide for normal logic programs, if
we discard the default literals involving explicitly negated atoms from the MHP

models.

Proposition 4. The MHp semantics is a total paraconsistent models seman-
tics, meaning that for any extended normal logic program P all the MHP models
of P are total paraconsistent models.

Theorem 5. MHp and MH coincide on Normal Logic Programs. Let P
be a normal logic program and P t−o the t− o transformed of P . Let MH(P ) be
the set of minimal hypotheses models of P and MHP (P ) the set of paraconsis-
tent minimal hypotheses models of P . Then M ∈ MH(P ), iff there is a model
Mp ∈ MHP (P ), such that M+ = M+

p and M− = (M−p ∩ Hp), where Hp is the
Herbrand base of P .

5.1 Formal Properties

The MHP semantics enjoys the properties of existence and simple relevance25.

5.2 Complexity

26The theorem below shows that a brave reasoning task with MHP semantics,
i.e. finding an MHP model satisfying some particular set of literals (a query), is
in ΣP

2 .

Theorem 6. Brave reasoning with MHP semantics is in ΣP
2 .

Proof. Let us show that finding a MHP model of an extended normal logic
program P is in ΣP

2 . Computing P t−o is fulfilled in linear time. The balanced
layered remainder bP t−o is computed in polynomial time, by the following rea-
soning: the calculus of the remainder of a normal logic program is kown to be
of polynomial time complexity [17]; the difference between 7→WFS and 7→bLWFS

lies on the operator 7→N of the former being replaced by the operator 7→bLN

of the latter; to perform 7→bLN the rule layering must be computed; the rule
layering can be calculated in polynomial time since it is equivalent to identifying
the strongly connected components [24] in a graph, SCCs, in this case in the
complete rule graph of P t−o; once the SCCs are found, one collects their heads
in sets, one set for each SCC, and searches the bodies of each SCC rules for

25 We say that SEM has the property of simple relevance, iff for any extended normal
logic program P , whenever there is a SEM model of RelP (l) such that l ∈Ml, there
is also a SEM model M of P such that l ∈M .

26 This subsection follows closely subsection 4.6 of [1].
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default literals, collecting in a set per SCC the corresponding atoms that also
pertain to the set of heads of that SCC – this is all linear time; when verifying
the preconditions to perform a negative reduction operation (existence of a fact,
say b, and a rule with not b in the body), it is linear time to check if a rule is in
loop (check if it belongs to a SCC) and if it is in loop through literal not b (check
if b belongs to the heads of the SCC) – the same for cheking if the co-rule is
in loop through not bo; therefore, balanced layered negative reduction adds only
polynomial time complexity operations over negative reduction. Once bP t−o is
computed, nondeterministically guess a set H of hypotheses – the assumable hy-
potheses set, is the set of all atoms involved in default negations in bP t−o, that
are not facts. Check if WFMu

P (P ∪H) = ∅ – this is polynomial time. Checking
that H is empty or non-empty minimal, requires another nondeterministic guess
of a strict subset H ′ of H and then a polynomial check if WFMu

P (P ∪H ′) = ∅.ut

The theorem below shows that a cautious reasoning task with MHP seman-
tics, i.e. guaranteeing that every MHP model satisfies some particular set of
literals (a query), is in ΠP

2 .

Theorem 7. Cautious reasoning with MHP semantics is in ΠP
2 .

Proof. Cautious reasoning is the complement of brave reasoning, and since the
latter is in ΣP

2 the former must necessarily be in ΠP
2 . ut

6 Conclusions and Future Work

We have presented an abductive paraconsistent semantics, MHP , that inherits
the advantages of the abductive semantics MH, which renders the MHP exis-
tential and simple relevant, and of the paraconsistent semantics WFSXP , due
to which the MHP is endowed with the ability to detect support based on con-
tradiction through non-trivial inconsistent models. MHP explores a new way
to envisage logic programming semantics through abduction, by dealing with
paraconsistency using total paraconsistent models. The MHP semantics may be
used to perform reasoning in the following ways (let Q be a query and P an ex-
tended normal logic program in the role of a database): Skeptical Consistent
Reasoning: Query Q succeeds, iff it succeeds for all consistent MHP models of
P (it fails if there are no consistent models); Brave Consistent Reasoning:
Query Q succeeds, iff it succeeds for at least one non-contradictory MHP model
of P ; Skeptical Paraconsistent Reasoning: Query Q succeeds, iff it succeeds
for all MHP models of P , such that none of the atoms in Atoms(Q) has support
on contradiction for any of these models; (it fails if there are no such models);
Brave Paraconsistent Reasoning: Query Q succeeds, iff it succeeds for at
least one MHP model of P , such that none of the atoms in Atoms(Q) has sup-
port on contradiction in this model; Skeptical Liberal Reasoning: Query Q
succeeds, iff it succeeds for all MHP models of P ; Brave Liberal Reasoning:
Query Q succeeds, iff it succeeds for at least one MHP model of P . As future
work, the MHP may be extended in order to obtain a framework for representing
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and integrating knowledge updates from external sources and also inner source
knowledge updates (or self updates), in line with the proposal in [25].

Acknowledgments. We are grateful to three anonymous referees whose obser-
vations were useful to improve the paper.
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Appendix

Logics NINE and SIX

In [20] the author presents a logic, there dubbed NINE, that provides a truth-
functional model theory for the WFSXp, based on Ginsberg’s bilattices concept.
The truth-space of NINE comprises nine logic values, here presented together
with their meanings: ’t’ and ’f’ are the classical values for truth and falsity; ’I’,
is the contradictory truth value; ’II’, is understood as truth with contradictory
belief; ’III’, is understood as falsity with contradictory belief; ’IV’, is understood
as contradictory belief; ’⊥’, is understood as undefinedness; ’df’, is understood
as default falsity; ’dt’, is understood as default truth. Using the ideas seth forth
in the definition of NINE we define SIX, a truth-functional model theory
for the MHp, whose truth-space is {t, f, I, II, III, IV }. Table 1 represents all
the possible 4-tuple valuations of a literal (lo, l,¬lo,¬l) with the corresponding
NINE and SIX logic values. There are 20 possible 4-tuple literal valuations,
as a consequence of corollary 1 and the coherence principle.

Table 1. NINE and SIX valuations

lo − − − − − − − − − − − u u u − − − u u +

l − − − − − − u u u u u u u u + + + + + +

¬l0 − − u − u + − − u − u − − u − − − − − −
¬l − u u + + + − u u + + − u u − u + − u −

NINE IV IV df III f f IV IV df III f dt dt ⊥ II II I t t t

SIX IV IV III f f IV IV III f II II I t t t
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Abstract: Any logic programming engine needs an access to the data stores 
(knowledge-bases) to perform operations on data (facts). As logic programming 
engine does not know, which facts it will need in order to process questions 
(queries) correctly, it has to load in memory and process all necessary data store 
content which is one of the most useless examples of the database usages. Such 
limitation can be eliminated by introducing an abstraction: meta-set, which is 
able to describe one or more facts (becoming meta-facts). This way it is possi-
ble to separate the data store from the logic programming engine turning it into 
meta-set calculus (kind of second order predicate logic) engine, which com-
bines meta-sets (meta-facts and rules) to build resulting meta-set list to be used 
for auto-generating queries to data store. The proposed solution allows running 
deduction process in distributed environments where deduction can be per-
formed on the client tier, and queries for real objects will be sent to the central-
ized data store servers. The meta-set calculi can be used for substituting stand-
ard database querying languages with querying language syntax similar to 
Prolog, therefore improving type safety, rule reuse and reducing the querying 
syntax dependence on data store. Such concept is suitable for querying the 
NoSQL data stores which store the property-value pairs in structured groups as 
well as for querying relational databases. 

Keywords: meta-set calculus, logic programming, second order predicate logic, 
deduction. 

1 Introduction 

Many different expert systems and deductive databases exist, but most of them use 
their own syntax which is not comfortable for using it together with the modern object 
oriented languages. Not only expert system shells use different syntax, but each data 
store uses more or less different querying syntax. In different database querying can 
help abstractions like LINQ – Language Integrated Query [1]. But LINQ cannot help 
in cases where deduction is needed, because such system would request to load in 
memory all database content to work correctly. Problem can be solved with another 
abstraction: meta-set. Classic predicate logic as it is implemented in logic program-
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ming language Prolog [7] does not work with meta-sets. Meta-sets require modifica-
tions in logic programming engine and such modifications in predicate logic leads to 
the definition of second order predicate logic. 

In this paper first order predicate logic is compared with one of the versions of 
second order predicate logic: meta-set calculus. This is the main reason why this pa-
per does not cover detailed meta-set calculus comparison to Prolog, DataLog and 
other first order predicate logic systems. First order predicate logic systems can use 
different approaches to simulate sets, for example, using lists, but lists are not mathe-
matical abstractions. Lists are data structures, which are restricted to contain finite 
number of objects, while sets as mathematical abstractions can describe unknown or 
even infinite number of objects. 

2 Foundation of meta-set calculus 

More abstract thinking leads to a better design [6]. There are many existing abstrac-
tions,1, logics2, formal calculus3, approaches, e.g., MDA4 [2]. Examples of abstrac-
tions with its meta, meta-meta, and further models lead to the question how to classify 
a system which will work with meta-sets. As proposed, the system is based on a mod-
ified predicate logic, it is not only approach-based on axiomatic rules; it is logic or at 
least mathematical formalism. Expressions written in a formal calculus can be trans-
formed into underlying logic; one example is lambda calculus transformations to 
combinatory logic and vice versa. The proposed system is based on a predicate logic, 
but meta-set processing operations cannot be described by simple predicate logic 
expressions, so the meta-set system proposed is not a traditional predicate logic sys-
tem and cannot be transformed into it. First order predicate logic uses variables that 
range over individual objects, but second order logic involves variables which range 
over sets of individual objects [3, 8]. Meta-set is an object set abstraction and meta-set 
calculi is based on the second order predicate logic where meta-sets are used instead 
of object sets. Meta-sets contain neither real objects, nor references to real objects; 
meta-sets can contain only constraints which can be used to generate database query 
and retrieve set of objects. Meta-set calculus engine can be implemented by improv-
ing a basic logic programming engine to work with meta-sets. Meta-set description 
and explanation, which operators are needed for meta-set calculus to be descriptive 
and how these operators work, will be given in the following sections. 

The difference between predicate logic and meta-set calculus, which works with 
meta-sets, is in the way of how facts (business objects) are processed. When working 
with facts directly, programming engine needs to load all necessary database content 

                                                           
1  Interfaces, inheritance, type systems etc. 
2  Combinatory logic, propositional logic, predicate logic etc. 
3  For example lambda calculus which extends combinatory logic with mathematical function 

abstraction. [4] 
4  MDA defines only axiomatic rules and gives model and meta-model description syntax; 

however, development of transformation logic is left up to developers so such approaches 
can’t be used unambiguously. 
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into memory to complete a deduction process. This problem is solved in a meta-set 
programming engine by introducing meta-set (abstraction of business objects). One 
meta-fact can describe many facts, so the number of meta-facts will be significantly 
smaller than a number of total facts in business object database. Therefore meta-set 
programming engine would perform much faster and, more importantly; it will be 
independent from the business object database content allowing decentralization of 
the deduction process. 

Meta-set calculi can be interpreted as similar to idea of constraint logic program-
ming [15], but in addition containing type information and set abstraction. 

2.1 Meta-set logical structure 

Each meta-set can contain 3 different constraint lists: type constraints, property-value 
constraints and object set constraints. The proposed syntax for meta-set declaration: 

<type constraints> [property-value constraints] {ob ject 
set constraints} | bound_Variable 

The mandatory part consists of type constraints which always come before other con-
straints. Property-value constraints and object set constraints are optional and can be 
omitted. Each constraint can be declared together with NOT operator, but that does 
not change type of the constraint. If meta-set contains more than one constraint of the 
same type, they are separated by commas. Bound variable is optional and is used only 
to represent meta-set processing operations during logical deduction process; bound 
variable is not used in any other way – it should not be stored in a database or used to 
generate database query. 

Type constraints are used to indicate types of objects that meta-set represented set 
of objects should contain. When type constraints are used together with NOT opera-
tor, the resulting constraints represent types of objects that meta-set represented set of 
objects should not contain. Meta-set calculus is designed for use in object oriented 
environments and meta-set type constraints support such abstractions as type inher-
itance and interface implementation. For better illustration of type constraint pro-
cessing in meta-set calculus, including meta-set matching and unification, most of 
meta-set examples provided in this article are with the class diagrams as shown in 
Figure 1. 

Example of meta-set, which restricts object types to be subclass of Animal and, at 
the same time, not subclass of Dog: 

<Animal, not(Dog)> 

According to Figure 1 class diagram, query generated from the previously declared 
meta-set would return all instances of the class Cat and the class Giraffe objects, be-
cause these classes inherit from the class Animal and does not inherit the class Dog. 

When using NOT operator for type constraint declaration, it is advised to provide 
at least one type constraint which is not used together with NOT operator, because 
query building system in each database is implemented in a different way and such 
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unambiguous queries can lead to the unexpected results (for example, when type con-
straint is provided in NOT context without usual type constraint, database db4o 8.1 
[12]. interprets it as type constraint ignoring NOT context). In object oriented envi-
ronment it is useful to use interfaces for constraining objects to be of specific types. 

Fig. 1. Physical class structure used in examples of meta-set calculus

Animal

+Gender : Gender
+BodyType : BodyType
+Age : int

Dog

+Hunter : bool

Pet

+Name : string
+Trained : bool

«enumeration»
BodyType

+Big
+Average
+Small

«enumeration»
Gender

+Male
+Female

Cat

Giraffe

Person

+FirstName : string
+LastName : string
+Gender : Gender
+Pets : Pet

1

*

 

Property-value constraints provide desired value range limitation for specified 
property. The proposed syntax for property-value constraint description is following: 

[PropertyName EvaluationMode ConstrainedValue] 

In a pure meta-set calculus 4 different property-value constraint EvaluationMode 
forms are supported: Equal, Greater, Smaller and Contains. This example demon-
strates meta-set which represents dogs younger than 3 years and not trained: 

<Dog>[Age<3,not(Trained=True)] 

Property-value constraints can be not only simple value constraints, but also complex 
constraints indicating type of property returning object and values of its properties. 
These complex constraints can be built as another meta-set containing desired type of 
constraints, property-value constraints and even object set constraints. The next ex-
ample shows how to declare complex meta-set which represents set of persons hav-
ing5 at least one trained dog. 

<Person>[Pets contains <Dog>[_trained=True]] 

Object set constraints are unique for the second order predicate calculus; by using 
object set constraints it is possible to define relationships between two different meta-
sets. Meta-set can be interpreted as a query to database which returns set of objects. 
Sometimes it is necessary to define relationships between different sets of objects. 
Object set constraint can be represented by the following syntax: 

                                                           
5  meaning: property Pets contains 
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{SetsRelationship(meta-set)} 

Relationships of object sets are always defined between two sets represented by meta-
sets: first is meta-set containing object set constraints list (context meta-set) and sec-
ond is meta-set used as an object set constraint. In cases where it is necessary to de-
fine relationships between more than two meta-sets, it is possible to add more object 
set constraints. 
SetsRelationship can be one of 8 supported meta-set relationship forms: 
1. Different – two sets of objects does not contain common objects. 
2. Intersect – two sets of objects have at least one common object. 
3. Equal – two sets of objects are equal – contain equal objects. 
4. NotEqual - two sets are not equal. It does not definitely mean that they are differ-

ent, it means that two object sets are either different or intersect (including cases 
when one set is subset of another set). 

5. Subset1 – the first set (represented by context meta-set) is subset of the second 
set (declared as object set constraint). 

6. NotSubset1 – the first set (represented by context meta-set) is not subset of the 
second set (declared as object set constraint). It means that two object sets are ei-
ther different, intersect or the second set is subset of the first set. 

7. Subset2 – the second set (declared as object set constraint) is subset of the first 
set (represented by context meta-set). 

8. NotSubset2 – the second set (declared as object set constraint) is not subset of the 
first set (represented by context meta-set). It means that two object sets are either 
different, intersect or the first set is subset of the second set. 

Next example shows how to declare meta-set which represents all dogs that are not 
trained dogs: 

<Dog>{different(<Dog>[Trained=True])} 

Equivalent SQL query would be as follows: 

SELECT * FROM Dogs 
EXCEPT 
SELECT * FROM Dogs WHERE Trained='True'; 

2.2 Meta-set matching and unification 

Logic programming engine works with objects, but logic programming engine can be 
modified to work with meta-sets as well. In this case predicate terms could be meta-
sets. For example: 

dog(<Dog>). trained(<Pet>[Trained=True]). 

As meta-sets do not change behavior of variables, their usage does not change rule 
declaration syntax. Here is an example of rule which uses fact declared using meta-
sets: 
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trainedDog(x) :- dog(x), trained(x). 

In logic programming syntactically identical objects match, but unlike objects do not 
match. As far as matching is concerned, there is no difference in the treatment of at-
oms and terms. The difference that is crucial is between variables and non-variables. 
For example: 

female(Ineta) matches with female(Ineta) 
female(Ineta) matches with female(x) binding variable x to object Ineta 
female(Ineta) does not match with female(Alice). 
Meta-set matching differs from object matching, because meta-sets are like small 

parts of larger query that is being built and not all differences in meta-sets are consid-
ered as failures in matching. For example: 

something(<Dog>) matches with something(<Dog>) 
something(<Dog>) matches with something(<Pet>) 
something(<Dog>) matches with something(<Animal>) 
something(<Dog>) does not match with something(<Cat>) 
something(<Dog>) does not match with something(<Person>) 
something(<Dog>) matches with something(x). Matching does not reference vari-

ables with meta-set instances, but unification does. 
In unification, when meta-set type constraints matches and if variable was used in 

matching , the meta-set, to which the variable references, will contain updated list 
with the most specific type constraints from both meta-sets, merged lists of both me-
ta-set property-value constraints and set-constraints and also variable name which 
references to meta-set. For example, if knowledge base contains facts and rule: 

dog(<Dog>). trained(<Pet>[Trained=True]). 
trainedDog(x) :- dog(x), trained(x). 

In this case asking question trainedDog(n)? to meta-set calculus engine will lead to 
unifying trainedDog(n) with trainedDog(x) and in result variable x will be bound to 
variable n and new list of goals would be dog(n) and trained(n). Dog(n) will match 
with dog(<Dog>) from knowledge base leading to reference variable n with copy of 
meta-set <Dog>|n6  and remaining goal will be updated to: trained(<Dog>|n). 
Trained(<Dog>|n) would match with trained(<Pet>[Trained=True]) leading to updat-
ing variable n referenced meta-set <Dog>|n to <Dog>[Trained=True]|n. Now list of 
goals would be empty and variable n points to meta-set <Dog>[Trained=True]|n 
which is the answer to question and reference to variable n is no more needed. 

Unification using NOT operator works similarly, with the difference that con-
straints under NOT operator context are marked with NOT marks and constraints 
which already were marked with NOT marks are released from NOT marks. For ex-
ample, if rule base would contain rule notTrainedDog: 

notTrainedDog(x) :- dog(x), not(trained(x)). 

                                                           
6  Here meta-set <Dog>|n contains reference back to variable n. Such reference is needed for 

meta-set calculus engine to work correctly and it is not necessary to be stored to database. 
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Then meta-set calculus engine to the question notTrainedDog(n)? would give an an-
swer: <Dog>[not(Trained=True)]|n. 

2.3 New operators to deal with meta-sets 

All the necessary meta-sets can be created prior to using them in deduction process, 
but in complex cases it is more type-safe if meta-sets are built dynamically during 
deduction process. Dynamic meta-set creation is possible using special operators. 

Type constraint operator: IsOfType adds type constraint to meta-set. IsOfType can 
be used together with NOT operator. For example: 

animal(<Animal>). 
neededAnimal(x) :- animal(x),not(isOfType<Dog>(x)).  

Processing rule neededAnimal during deduction process will lead to creation of the 
following meta-set: 

<Animal,not(Dog)>|x. 

Pure meta-set calculus supports 4 different property-value comparison operators: 
equalTo, greater, smaller, contains. All property-value comparison operators can be 
used together with NOT operator. Property-value comparison operator usage syntax: 

operator(meta-set, “propertyName”, propertyValue). 

As a result of using the property-value comparison operator, a new constraint will be 
added in a meta-set property-value constraint list. For example: 

person(<Person>). 
adultPerson(x):-person(x),greater(x, "Age", 18). 

Processing rule adultPerson during deduction process will lead to creation of the fol-
lowing meta-set: 

<Person>[Age>18]|x. 

Pure meta-set calculus supports 5 different object set operators: different, intersect, 
equal, subset1, subset2 which together with NOT operator forms 3 additional set rela-
tionships: NotEqual, NotSubset1, NotSubset2. Set operator usage syntax: 

setOperator(metaset1, metaset2). 

For example, operator different can be used to declare predicate dogDifferentThan-
TrainedDog: 

dog(<Dog>). trained(<Pet>[Trained=True]). 
dogDifferentThanTrainedDog(x) :- dog(x), dog(y), 
trained(y), different(x, y). 
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Processing rule dogDifferentThanTrainedDog during deduction process will lead to 
creation of the following meta-set: 

<Dog>{different(<Dog>[Trained=True])}|x. 

2.4 NOT operator support for meta-sets 

In logic programming expression NOT(P) detects presence or absence of the theorem 
P proof in rule base. In such case operator NOT stops search when the first proof 
supporting P is found, but such behavior is not correct for meta-set calculus, because 
meta-sets are not real objects and fact NOT(P) in meta-set case should be persisted in 
meta-set P as constraint. Meta-set calculus also requires searching knowledge base for 
all operator NOT argument proofs, only this way it is possible to get correct NOT 
constraints for all meta-sets involved in the deduction process. 

NOT operator can be used together with all the previously mentioned operators ex-
cept operator “is implied by”. When NOT is used together with AND or OR opera-
tors, De Morgan’s laws are applied to simplify expressions. 

2.5 Running multiple queries in one question to meta-set calculus engine 

In all examples given previously questions were asked using only one variable, but 
logic programming allows asking questions with more than one variable, for example: 

father(x, y)? 

In such case logic programming engine will return all father-son pairs, in form: 

x=Father1, y=Son1; 
x=Father2, y=Son2. 
… 

Meta-set calculus also supports this feature. But as meta-sets are a set of abstractions 
and represent queries to database, in cases when questions with many variables will 
be asked to meta-set calculus engine, it will result in a number of queries equal to the 
number of variables present in question. Theoretically each query generated from 
resulting meta-sets could return resulting objects ordered in different ways causing 
inconsistence according to the question asked. Such behavior is natural because meta-
sets by definition represent object sets and in sets objects are not ordered.  

3 Solution architecture 

Content of meta-set calculus implementation sections depends on experiments that 
have been done. Experimentation platform was .NET and chosen programming lan-
guage C# [10, 11], because these technologies in combination with object database 
db4o 12 inspired foundation of meta-set calculus and its first implementation - DDE. 
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Figure 2 shows generalized meta-set physical structure, where property TypeCon-
straints is intended to contain type constraints for business objects located in database 
and TypeNotConstraints should contain type constraints with applied logical opera-
tion NOT. Relations contain property-value constraints and are the basic aspect of 
meta-set abstraction. E.g., if business object database contain 1000 people and 200 of 
them are younger than 20 years, then all these 200 people (facts) can be described 
with one meta-set which contains the following single relation in its Relations collec-
tion: Age < 20. Similarly is processed NotRelation collection which describes proper-
ty-value constraints the desired object set should not contain. 

Methods GetVariable and SetVariable are used by meta-set calculus engine to hold 
temporarily bound variable. This information is needed only in deduction process and 
does not require to be stored into database; for this reason in meta-set implementation 
for database db4o (Database For Objects) field “variable” is marked with attribute 
[Transient]. 

Class Type is used to generalize approach of defining type constraints. In most 
cases it would be enough to define string representations of types so that they could 
be persisted (in case of db4o, for type constraint storing and retrieving object transla-
tors are used which translate Type objects to String instances and vice versa. Type, 
CultureInfo and some other system type instances depend on .NET internal behavior 
and are difficult to store in database). 

Fig. 2. Generalized meta-set physical structure

 

Figure 3 depicts the architecture of DDE where it interacts with meta-set calculus 
engine and data store querying API to provide interface for managing structured data 
deductive database. The benefit of such architecture is business object database sepa-
ration from meta-sets (meta-facts) and rules database where rules are similar to meta-
facts with the only difference that meta-facts describe facts, but rules combine meta-
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facts. This separation improves meta-fact reusability and allows keeping centralized 
only business objects, while deduction specific information can be located on client 
computers and each client can have different meta-facts and rules based on their spe-
cific needs.  

Fig. 3. Layered structure of DDE

 

3.1 Decentralized Deduction Engine 

DDE connects user interface or external code calls through DDE API calls with meta-
set calculus engine and data store. Figure 4 shows generalized schema of operations 
what DDE does. The result of deduction process is a collection of meta-sets; and if 
database contains more than one instance of each type (for relation databases it means 
more than one row in each table), then the number of resulting meta-sets would be 
significantly smaller than number or querying objects in database. The structure of 
meta-set is similar to simple object data access (SODA) [5] query structure used in 
object databases, thus collection of meta-sets is used to automatically generated object 
database SODA query to retrieve business objects from business object database. For 
this reason DDE does not need to load all database content into memory to work cor-
rectly. 

Fig. 4. Conceptual schema of deduction process in DDE
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One of project goals was to integrate meta-set calculus syntax with existing pro-
gramming languages. Practical experiments were mainly concentrated on .NET 
Framework and programming language C#, but that does not make conceptual re-
strictions for meta-set calculus technology implementation in other programming 
languages. 

Figure 5 represents question processing workflow in DDE showing two different 
forms of questions DDE accepts and how these question forms are processed. 

Fig. 5. Question processing workflow in DDE 

 

Solver works with TermNode expressions translated in conjunctive normal form. 
DDE handles all necessary normalizations, but still main data structure for DDE is 
TermNode expressions, because TermNode instances can be stored in data stores and 
TermNode instances are platform independent. Here is an example of defining Term-
Node instance in C# code7: 

var youngPerson = new TermNode("youngPerson", new 
object[] { metaYoungPerson }); 

Expressions in TermNode form are neither short, nor type safe and user-friendly. To 
solve these problems function types8 are employed in DDE which create TermNode 
instances. Here is an example of defining fact that person is young using DDE built-in 
delegates:  

var youngPerson = Func.Arity1("youngPerson"); 
TermNode fact = youngPerson(metaYoungPerson); 

Delegates can help in fact declaration, but with delegate provided syntax is not 
enough to declare rules and questions with variables in a nicely looking way. There-
fore TermExpression form is introduced in DDE. TermExpression form is based on 
expression tree9 usage similarly as does LINQ to SQL [13] and other data store LINQ 
providers. Variables in TermExpression form are declared as lambda expression pa-
rameters and it results in prolog like syntax in native C# code: 

                                                           
7  Meta-set metaYoungPerson was defined in chapter 2. 
8  In .NET and C# they are delegates. 
9  Dependance on platform .NET. 
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var youngPerson = Func.Arity1("youngPerson"); 
var male = Func.Arity1("male"); 
var youngMalePerson = Func.Arity1("youngMalePerson" ); 
Expression<Func<object, TermNode>> rule = a => 
youngMalePerson(a) == youngPerson(a) & male(a)); 

Here C#’s overloaded operator “==” represents operator “is implied by” in meta-set 
calculus. 

Idea about prolog like syntax in native C# code was firstly introduced by Microsoft 
in LINQ CTP in May 2006 as LogicProgramming sample project [10]. LINQ project 
became part of .NET 3.5, but LogicProgramming sample project quietly disappeared. 
In authors opinion that happened not because Microsoft was trying to hide some po-
tentially valuable ideas, but because project was difficult to understand for average 
programmers and prolog like syntax without meta-set calculus is useless. To work 
properly, logic programming engine requires access to all database content in worst 
case leading to loading in memory all database content that is not the case with meta-
set calculus engine. 

Conversion from TermExpression form to TermNode form suitable for Solver  
TermExpression form is based on expression trees [14] which are not trivial to per-

sist in data stores. TermExpressions can contain references to function pointers and 
user created objects located on heap. Such things are specific for physical computer 
on which application is running. Expression tree instances can be serialized, but, 
when deserialized on a different computer, function pointers and pointers to user ob-
ject instances would point to memory locations where objects are on initial computer 
and that would lead to an exception. TermExpression form uses .NET standard dele-
gate Func overloaded versions and that means arity restriction which does not exceed 
17 terms in each predicate. In this way rules and questions declared using TermEx-
pression syntax are nice-looking, type safe, but they still are not platform independent 
and therefore need to be converted to TermNode form for Solver to work. 

TermExpressions are converted by recursively inspecting expression tree instances 
and creating resulting TermNode objects. To avoid code duplications in standard 
operators like AND, OR, NOT, Equal and standard operator expressions in expression 
trees, only parameters are taken from the expression trees and supplied in an appro-
priate standard operator calls this way building resulting TermNode instance. 

Results returned from execution of all standard operators10, user defined predicates 
and built-in predicates are represented as TermNode instances. This means that AND, 
OR, NOT, Contains, Different, Equals, other built-in predicates and even operator “is 
implied by” are represented as TermNode instances. This feature will be useful in 
communication between different computers, because every expression can be con-
verted in single TermNode instance. 

Meta-set calculus engine  
                                                           
10  C# operators, but predicates in predicate logic and meta-set calculus. 
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Meta-set calculus engine works only with normalized TermNode instances in con-
junctive normal form. However, the following actions are performed prior to conjunc-
tive normalization execution: reduction of nested NOT operators using De Morgan's 
laws and other normalizations. 

Meta-set calculus engine is based on modified unification algorithm which com-
bines constraints of meta-sets as described in section 2.2. Modified unification algo-
rithm supports both: sets-objects and business objects, but such hybrid deduction 
engine is complex and depends on further research about meta-set calculus technolo-
gy use. Unification algorithm improvements could probably progress according to 
two different scenarios: unification, which supports only meta-sets, and hybrid unifi-
cation supporting both: meta-sets and business objects. Meta-set-only unification is 
suitable for database querying and deduction support, which is more attractive to the 
business environment, while hybrid unification could be useful in expert system 
shells. 

NOT operator implementation in meta-set calculus engine is simpler than de-
scribed in pure meta-set calculus description. Physical meta-set model contains two 
lists for type constraints shown in Figure 2: one list for constraints without applied 
NOT operator and one list for type constraints with applied NOT operator. When 
meta-set calculus engine detects meta-set in unifying predicate from knowledge base, 
type constraints from unifying predicate are added to the respective type constraint 
lists of resulting meta-set. But when meta-set calculus engine detects NOT predicate, 
content of list TypeNotConstraints of unifying meta-set located in knowledge base is 
copied to list TypeConstraints of resulting meta-set and content of list TypeCon-
straints from unifying meta-set is copied to list TypeNotConstraints of resulting meta-
set. Property-value constraints in NOT operator context are processed similarly. 
These constraint lists for constraints without applied NOT operator and with applied 
NOT operator are useful when considering future changes. For example, invention of 
new constraints would not require changes in whole constraint handling system and 
the same constraints will continue to work correctly also in combination with NOT 
operator. Only object set constraints are stored in one constraint list, because object 
set constraints are more complex and therefore cannot be classified only in two differ-
ent groups. Object set constraints change SetsRelationship enumeration value depend-
ing on object set constraint, namely, if it is or is not used together with NOT operator. 

Built-in predicate processing is performed by meta-set calculus engine during de-
duction process. For this reason NOT operator and build-in predicates like IsTypeOf, 
Greater, Smaller, EqualTo, Contains, Different, Equal, Subset1, Subset2 and Intersect, 
which are in introduced section 2.4, build the resulting meta-sets dynamically. If pos-
sible, it is recommended to declare facts providing full desired meta-set specification 
instead of using dynamic meta-set building. Dynamic meta-set building performs 
slower and is less type safe. 

Db query generation from deduced meta-set list.  
Database query generation is the most important part in DDE after meta-set calcu-

lus engine. In current DDE prototype only SODA query generation is supported to the 
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database db4o. Next example demonstrates how query is generated from deduced 
meta-set assuming that the knowledge base contains following facts: 

dog(<Dog>). trained(<Pet>[Trained=True]). 
person(<Person>). 

Also it has to be assumed that knowledge base contains rule: 

personWhoOwnsDog(x) :- person(x), dog(y), trained(y ), 
contains(x, "Pets", y). 

Having these assumptions question personWhoOwnsDog(n)? would lead to answer: 

<Person>[Pets contains <Dog>[Trained=True]]|n. 

And from that meta-set DDE auto generates SODA query shown in Figure 6 (idea of 
SODA query representation is taken from db4o supporting documentation [12]). After 
successful query generation, query is executed and gathered objects are returned to 
the user who asked question to DDE system. 

Fig. 6. SODA query generated from meta-set per-sonWhoOwnsDog 

 

Query generation from meta-sets containing only type constraints and property-
value constraints is simple. Query generation from meta-sets containing set con-
straints poses difficulty, because there are databases which do not support set opera-
tors. In cases where the required database system does not support set operators, for 
example, set operator subset1(metaset1, metaset2), DDE generates separate queries 
for metaset1 and metaset2, executes them and processes returned objects from queries 
in a way they comply with used set operator, for example – subset1. 

While not all set operations are supported in db4o, it is possible to generate SODA 
queries from meta-sets containing set constraint: different. For example, from: 

<Dog>[Age=3]{different(<Dog>[Trained=True])}|x 

will be generated SODA query shown in Figure 7, where all meta-sets, which set 
relationship: different, are processed as questions to deduction system with applied 
NOT operator. Generated SODA query contains two equal type constraints (type of 
Dog) and query generation can be improved to contain only one instance of the most 
specific type constraints from all involved meta-sets. 
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Fig. 7. SODA query generated from <Dog>[Age=3]{different(<Dog>[Trained=True])} 

 

Current implementation of DDE supports database query generation from meta-
sets for database db4o, but in similar way it is possible to add query generation sup-
port from meta-sets for other key-value stores which store key-value pairs in struc-
tured way, for example, XML files. It is also possible to add support for relational 
database query generation from meta-sets, but in this field more research is needed, 
because SQL queries can contain join operations which are problematic to interpret in 
object oriented world. Join operator allows selecting parts from different tables, but 
object-oriented world requests all objects and not only parts of many objects. This 
problem could be solved by interpreting queries with join operations as requests for 
some dynamically generated objects11, but it needs further research. 
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