
Under consideration for publication in Theory and Practice of Logic Programming 1

A Simple and E�cient Lock-Free Hash Trie Design

for Concurrent Tabling

MIGUEL AREIAS and RICARDO ROCHA

CRACS & INESC TEC, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

(e-mail: {miguel-areias,ricroc}@dcc.fc.up.pt)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

A critical component in the implementation of a concurrent tabling system is the design of the
table space. One of the most successful proposals for representing tables is based on a two-level
trie data structure, where one trie level stores the tabled subgoal calls and the other stores the
computed answers. In this work, we present a simple and e�cient lock-free design where both
levels of the tries can be shared among threads in a concurrent environment. To implement
lock-freedom we took advantage of the CAS atomic instruction that nowadays can be widely
found on many common architectures. CAS reduces the granularity of the synchronization when
threads access concurrent areas, but still su�ers from low-level problems such as false sharing
or cache memory side-e�ects. In order to be as e�ective as possible in the concurrent search
and insert operations over the table space data structures, we based our design on a hash trie

data structure in such a way that it minimizes potential low-level synchronization problems by
dispersing as much as possible the concurrent areas. Experimental results in the Yap Prolog
system show that our new lock-free hash trie design can e�ectively reduce the execution time
and scale better than previous designs.

KEYWORDS: Tabling, Concurrency, Hash Tries, Lock-Freedom, Performance.

1 Introduction

Tabling (Chen and Warren 1996) is a recognized and powerful implementation technique

that overcomes some limitations of traditional Prolog systems in dealing with recursion

and redundant sub-computations. Multithreading in Prolog is the ability to perform con-

current computations, in which each thread runs independently but shares the program

clauses (Moura 2008). Despite the availability of both multithreading and tabling in some

Prolog systems, the e�cient implementation of these two features, such that they work

together, implies a complex redesign of several components of the underlying engine. XSB

was the �rst Prolog system to combine tabling with multithreading (Marques and Swift

2008). In more recent work (Areias and Rocha 2012b), we have proposed an alternative

view to XSB's approach, where each thread views its tables as private but, at the engine

level, we use a common table space, i.e., from the thread point of view, the tables are

private but, from the implementation point of view, tables are shared among all threads.

A critical component in the implementation of an e�cient tabling system is the design

of the data structures and algorithms to access and manipulate tabled data. To deal with

2 M. Areias and R. Rocha

concurrent table accesses, our initial approach, implemented on top of the Yap Prolog

system (Santos Costa et al. 2012), was to use lock-based data structures (Areias and

Rocha 2012b). Yap implements the table space using a two-level trie data structure,

where one trie level stores the tabled subgoal calls and the other stores the computed

answers. More recently (Areias and Rocha 2014), we presented a sophisticated lock-

free design to deal with concurrency in both trie levels. Lock-freedom allows individual

threads to starve but guarantees system-wide throughput. To implement lock-freedom

we took advantage of the CAS atomic instruction that nowadays can be widely found on

many common architectures. The CAS reduces the granularity of the synchronization

when threads access concurrent areas, but still su�ers from contention points where

synchronized operations are done on the same memory locations, leading to low-level

problems such as false sharing or cache memory ping pong side-e�ects.

In this work, we go one step further and we present a simpler and e�cient lock-

free design based on hash tries that minimizes these problems by dispersing as much

as possible the concurrent areas. Hash tries (or hash array mapped tries) are a trie-

based data structure with nearly ideal characteristics for the implementation of hash

tables (Bagwell 2001). An essential property of the trie data structure is that common

pre�xes are stored only once (Fredkin 1962), which in the context of hash tables allows

us to e�ciently solve the problems of setting the size of the initial hash table and of

dynamically resizing it in order to deal with hash collisions. The aim of our proposal is

to be as e�ective as possible in the search and insert operations, by exploiting the full

potentiality of lock-freedom on those operations, and in such a way that it minimizes the

bottlenecks and performance problems mentioned above without introducing signi�cant

overheads for sequential execution.

Several approaches do exist in the literature for the implementation of lock-free hash

tables, such as Shalev and Shavit split-ordered lists (Shalev and Shavit 2006), Triplett

et al. relativistic hash tables (Triplett et al. 2011) or Prokopec et al. CTries (Prokopec

et al. 2012). However, to the best of our knowledge, none of them is speci�cally aimed for

an environment with the characteristics of our tabling framework that does not requires

concurrent deletion support. In general, a tabled program is deterministic, �nite and

only executes search and insert operations over the table space data structures. In Yap

Prolog, space is recovered when the last running thread abolish a table. Since no delete

operations are performed, the size of the tables always grows monotonically during an

evaluation. Initial experiments, on top of a 32 core AMD machine, show that our new

lock-free hash-trie design can e�ectively reduce the execution time and scale better than

all the previously implemented lock-based and lock-free strategies.

2 Background

A trie is a tree structure where each di�erent path corresponds to a term described by

the tokens labeling the nodes traversed. For example, the tokenized form of the term

p(1, f(X)) is the sequence of 4 tokens p/2, 1, f/1 and V AR0, where each variable is

represented as a distinct V ARi constant. Two terms with common pre�xes will branch

o� from each other at the �rst distinguishing token. Consider, for example, a second term

p(1, a). Since the main functor and the �rst argument, tokens p/2 and 1, are common to

A Simple and E�cient Lock-Free Hash Trie Design for Concurrent Tabling 3

both terms, only one additional node will be required to fully represent this second term

in the trie. Figure 1 shows Yap's trie structure that represents both terms.

1

p/2

f/1 a

VAR0

Fig. 1. Trie
example

Whenever the chain of child nodes for a common parent node be-

comes larger than a prede�ned threshold value, a hash mechanism is

used to provide direct node access and therefore optimize the search. To

deal with hash collisions, all previous Yap's approaches implemented a

dynamic resizing of the hash tables by doubling the size of the bucket

entries in the hash. Our initial approach to support concurrent tabling

was lock-based, which required synchronization between threads when

performing the hash expansion procedure (Areias and Rocha 2012b).

More recently, we proposed a lock-free design for concurrent table ac-

cesses that avoids thread synchronization, even when threads are ex-

panding the hash tables (Areias and Rocha 2014). In this work, we present a simpler and

e�cient lock-free design based on hash tries to implement the hash mechanism inside

the subgoal and answer tries.

hash
trie

subgoal/answer trie

table entry

subgoal trie

answer trie

subgoal frame

Fig. 2. Trie hierarchical levels overview

To put our proposal in perspective,

Fig. 2 shows a schematic representa-

tion of the trie hierarchical levels we

are proposing to implement Yap's table

space. For each predicate being tabled,

Yap implements tables using two lev-

els of tries together with the table entry

and subgoal frame auxiliary data struc-

tures (Rocha et al. 2005). The �rst level,

the subgoal trie, stores the tabled subgoal calls and the second level, the answer trie,

stores the answers for a given call. Then, for each particular subgoal/answer trie, we

have as many trie levels as the number of parent/child relationships (for example, the

trie in Fig. 1 has 4 trie levels). Finally, to implement hashing inside the subgoal/answer

tries, we use another trie-based data structure, the hash trie, which is the focus of the

current work. In a nutshell, a hash trie is composed by internal hash arrays and leaf

nodes. The leaf nodes store key values and the internal hash arrays implement a hierar-

chy of hash levels of �xed size 2w. To map a key into this hierarchy, we �rst compute

the hash value h for key and then use chunks of w bits from h to index the entry in the

appropriate hash level. Hash collisions are solved by simply walking down the tree as we

consume successive chunks of w bits from the hash value h.

3 Our Proposal By Example

We will use three examples to illustrate the di�erent con�gurations that the hash trie

assumes for one, two and three levels (for more levels, the same idea applies). We begin

with Fig. 3 showing a small example that illustrates how the concurrent insertion of

nodes is done in a hash level.

Figure 3(a) shows the initial con�guration for a hash level. Each hash level Hi is

formed by a bucket array of 2w entries and by a backward reference to the previous

level (represented as Prev in the �gures that follow). For the root level, the backward

reference is Nil. In Fig. 3(a), Ek represents a particular bucket entry of the hash level.

4 M. Areias and R. Rocha

(a) (b) (c)

.
.
.

Prev

K1 K1 K2 K3EkEkEk

.
.
.

.
.
.

Prev

Ek

.
.
.

.
.
.

Prev

.
.
.

2
entries

w

Hi Hi Hi

Fig. 3. Insert procedure in a hash level

Ek and the remaining entries are all initialized with a reference to the current level Hi.

During execution, each bucket entry stores either a reference to a hash level or a reference

to a separate chaining mechanism, using a chain of internal nodes, that deals with the

hash collisions for that entry. Each internal node holds a key value and a reference to the

next-on-chain internal node. Figure 3(b) shows the hash con�guration after the insertion

of node K1 on the bucket entry Ek and Fig. 3(c) shows the hash con�guration after the

insertion of nodes K2 and K3 also in Ek. Note that the insertion of new nodes is done at

the end of the chain and that any new node being inserted closes the chain by referencing

back the current level.

During execution, the di�erent memory locations that form a hash trie are considered

to be in one of the following states: black, white or gray. A black state represents a memory

location that can be updated by any thread (concurrently). A white state represents a

memory location that can be updated only by one (speci�c) thread (not concurrently).

A gray state represents a memory location used only for reading purposes. As the hash

trie evolves during time, a memory location can change between black and white states

until reaching the gray state, where it is no further updated.

The initial state for Ek is black, because it represents the next synchronization point

for the insertion of new nodes. After the insertion of node K1, Ek moves to the white

state and K1 becomes the next synchronization point for the insertion of new nodes. To

guarantee the property of lock-freedom, all updates to black states are done using CAS

operations. Since we are using single word CAS operations, when inserting a new node

in the chain, �rst we set the node with the reference to the current level and only then

the CAS operation is executed to insert the new node in the chain.

When the number of nodes in a chain exceeds a MAX_NODES threshold value,

then the corresponding bucket entry is expanded with a new hash level and the nodes

in the chain are remapped in the new level. Thus, instead of growing a single monolithic

hash table, the hash trie settles for a hierarchy of small hash tables of �xed size 2w.

To map our key values into this hierarchy, we use chunks of w bits from the hash values

computed by our hash function. For example, consider a key value and the corresponding

hash value h. For each hash level Hi, we use the w ∗ i least signi�cant bits of h to index

the entry in the appropriate bucket array, i.e., we consume h one chunk at a time as we

walk down the hash levels. Starting from the con�guration in Fig. 3(c), Fig. 4 illustrates

the expansion mechanism with a second level hash Hi+1 for the bucket entry Ek.

The expansion procedure is activated whenever a thread T meets the following two

conditions: (i) the key at hand was not found in the chain and (ii) the number of nodes in

the chain is equal to the threshold value (in what follows, we consider a threshold value

of three nodes). In such case, T starts by pre-allocating a second level hash Hi+1, with

all entries referring the respective level (Fig. 4(a)). At this stage, the bucket entries in

A Simple and E�cient Lock-Free Hash Trie Design for Concurrent Tabling 5

Ek

(b)

K1 K2 K3

.
.
.

Hi+1

(c)

.
.
.

Hi+1

K3

Em

En

Em

En

Ek

.
.
.

Hi

.
.
.

Ek

.
.
.

Hi

.
.
.

K1 K2

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

(a)

(d)

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1 K2

(e)

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

(f)

.
.
.

Hi+1

K3

Em

En

Ek

.
.
.

Hi

.
.
.

K1

K4 K2

(g)

Hi+1

K3

Em

En

.
.
.

Hi

.
.
. K5

K4 K2

.
.
.

Hi+1

K3

Em

En

EkEk

.
.
.

Hi

.
.
. K5

K4 K2

K1

(h)
.
.
.K1

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Fig. 4. Expanding a bucket entry with a second level hash

Hi+1 can be considered white memory locations, because the hash level is still not visible

for the other threads. The new hash level is then used to implement a synchronization

point with the last node on the chain (node K3 in the �gure) that will correspond to a

successful CAS operation trying to update Hi to Hi+1 (Fig. 4(b)). From this point on,

the insertion of new nodes on Ek will be done starting from the new hash level Hi+1.

If the CAS operation fails, that means that another thread has gained access to the

expansion procedure and, in such case, T aborts its expansion procedure. Otherwise,

T starts the remapping process of placing the internal nodes K1, K2 and K3 in the

correct bucket entries in the new level. Figures 4(c) to 4(h) show the remapping sequence

in detail. For simplicity of illustration, we will consider only the entries Em and En

on level Hi+1 and assume that K1, K2 and K3 will be remapped to entries Em, En

and En, respectively. In order to ensure lock-free synchronization, we need to guarantee

that, at any time, all threads are able to read all the available nodes and insert new

nodes without any delay from the remapping process. To guarantee both properties, the

remapping process is thus done in reverse order, starting from the last node on the chain,

initially K3.

Figure 4(c) then shows the hash trie con�guration after the successful CAS operation

that adjusted node K3 to entry En. After this step, En moves to the white state and K3

becomes the next synchronization point for the insertion of new nodes on En. Note that

the initial chain for Ek has not been a�ected yet, since K2 still refers to K3. Next, on

Fig. 4(d), the chain is broken and K2 is updated to refer to the second level hash Hi+1.

6 M. Areias and R. Rocha

The process then repeats for K2 (the new last node on the chain for Ek). First, K2 is

remapped to entry En (Fig. 4(e)) and then it is removed from the original chain, meaning

that the previous node K1 is updated to refer to Hi+1 (Fig. 4(f)). Finally, the same idea

applies to the last node K1. Here, K1 is also remapped to a bucket entry on Hi+1 (Em

in the �gure) and then removed from the original chain, meaning in this case that the

bucket entry Ek itself becomes a reference to the second level hash Hi+1 (Fig. 4(h)).

From now on, EK is also a gray memory location since it will be no further updated.

Concurrently with the remapping process, other threads can be inserting nodes in the

same bucket entries for the new level. This is shown in Fig. 4(e), where a new node K4

is inserted before K2 in En and, in Fig. 4(g), where a node K5 is inserted before K1 in

Em. As mentioned before, lock-freedom is ensured by the use of CAS operations when

updating black state memory locations.

To ensure the correctness of the remapping process, we also need to guarantee that

the nodes being remapped are not missed by any other thread traversing the hash trie.

Please remember that any chaining of nodes is closed by the last node referencing back

the hash level for the node. Thus, if when traversing a chain of nodes, a thread U ends in

a second level hash Hi+1 di�erent from the initial one Hi, this means that U has started

from a bucket entry Ek being remapped, which includes the possibility that some nodes

initially on Ek were not seem by U . To guarantee that no node is missed, U simply needs

to restart its traversal from Hi+1.

We conclude the description of our proposal with a last example that shows a expansion

procedure involving three hash levels. Starting from the con�guration on Fig. 4(b), Fig. 5

assumes a scenario where a set of nodes (K4, K5, K6 and K7 in the �gure) are inserted

in the bucket entries Em and En before the beginning of the remapping process of nodes

K1, K2 and K3. Again, we will consider only the entries Em and En on level Hi+1 and

assume that K1, K2 and K3 will be remapped to entries Em, En and En, respectively.

Figure 5(a) shows the situation where K3 is scheduled to be remapped to entry En

on level Hi+1 but, since the number of nodes on En is equal to the threshold value, a

preliminary expansion procedure for En should be done, which leads to the pre-allocation

of a third level hash Hi+2. Figure 5(b) then shows the hash trie con�guration after the

remapping of the nodes on En to the level Hi+2. Please note that En became a gray state

memory location since it is now referring the third level hash Hi+2, which means that

any operation scheduled to En should be rescheduled to Hi+2. This is the case shown

in Fig. 5(c), where K3 and K2 were both rescheduled to entry Ez on Hi+2. Despite this

third level remapping, the chaining reference of the last node on the chain (for example,

K1 in Fig. 5(c)) is still made to refer to the second level hash Hi+1. To conclude the

example, Fig. 5(d) shows the con�guration at the end of the remapping process. Here,

K1 is remapped to the bucket entry Em on Hi+1 and removed from the initial chain,

meaning that Ek itself becomes a reference to Hi+1 and moves to a gray state.

For each con�guration shown, the reader is encourage to verify that, at any moment,

all threads are able to access all available nodes. Consider, for example, the con�guration

shown in Fig. 5(c) and a thread entering on level Hi searching for a node with the key

K7. The thread would begin by hashing the key K7 on level Hi and obtain the bucket

entry Ek. Then, it would follow the chain of nodes (K1 in this case) and reach level Hi+1.

At level Hi+1, it would hash again the key K7, obtain the bucket entry En and follow

A Simple and E�cient Lock-Free Hash Trie Design for Concurrent Tabling 7

K1 K2 K3Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

(a)

.
.
.

Hi+2

Ex

EzK4 K6 K7

K5

K1 K2Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em
.
.
.

Hi+2

Ex

Ez

K5 K6 K7

K4

K1Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em K5

K3

Ek

.
.
.

Hi

.
.
.

.
.
.

Hi+1

Em

En

.
.
.

Hi+2

Ex

Ez

K5 K6 K7

K4 K3

K1

K2

(b)

(c)

(d)

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

Prev

En

En

.
.
.

Hi+2

Ex

Ez

K6 K7

K4 K3 K2

Prev

Fig. 5. Remapping nodes on a third level hash

the reference to level Hi+2. Finally, it would hash one more time the key K7, now for

level Hi+2, obtain the entry Ex and follow the chain until reaching node K7.

We argue that a key design decision in our approach is thus the combination of hash

tries with the use of a separate chaining (with a threshold value) to resolve hash collisions

(the original hash trie design expands a bucket entry when a second key is mapped to

it). Also, to ensure that nodes being remapped are not missed by any other thread

traversing the hash trie, any chaining of nodes is closed by the last node referencing back

the hash level for the node, which allows to detect the situations where a node changes

level. This is very important because it allows to implement a clean design to resolve

hash collisions by simply moving nodes between the levels. In our design, updates and

expansions of the hash levels are never done by using replacement of data structures

(i.e., create a new one to replace the old one), which also avoids the complex mechanisms

necessary to support the recovering of the unused data structures. Another important

design decision which minimizes the low-level synchronization problems leading to false

sharing or cache memory side-e�ects, is the insertion of nodes done at the end of the

separate chain. Inserting nodes at the end of the chain allows for dispersing as much

as possible the memory locations being updated concurrently (the last node is always

di�erent) and, more importantly, reduces the updates for the memory locations accessed

more frequently, like the bucket entries for the hash levels (each bucket entry is at most

only updated twice).

8 M. Areias and R. Rocha

4 Performance Evaluation

To put our results in perspective, we compared our new lock-free hash trie design (LFHT)

against all the previously implemented Yap's lock-based and lock-free strategies for con-

current tabling. For the sake of simplicity, here we will only consider Yap's best lock-based

strategy (LB) and the lock-free design (LF) presented in (Areias and Rocha 2014). For

benchmarking, we used the set of tabling benchmarks from (Areias and Rocha 2012a)

which includes 19 di�erent programs in total. We choose these benchmarks because they

have characteristics that cover a wide number of scenarios in terms of trie usage. The

benchmarks create di�erent trie con�gurations with lower and higher number of nodes

and depths, and also have di�erent demands in terms of trie traversing.

Since the system's performance is highly dependent on the available concurrency that

a particular program might have, our initial goal was to evaluate the robustness of our

implementation when exposed to worst case scenarios and, for that, we ran the bench-

marks with all threads executing the same query goal. By doing that, we avoid the

peculiarities of the program at hand and we try to focus on measuring the real value

of our new design. Since, all threads are executing the same query goal, it is expected

that all threads will access the table space, to check/insert for subgoals and answers, at

similar times, thus stressing the synchronization on common memory locations, which

can increase the aforementioned problems of false sharing and cache memory side-e�ects

and thus penalize the less robust designs.

 0

 50

 100

 150

 200

 8 16 24 32

#threads (p)

Execution Time by Design (TD(p))

 1

 2

 3

 4

 5

 8 16 24 32

#threads (p)

Overhead by Design (TD(p) / TD(1))

Fig. 6. Average execution time,
in seconds, and average over-
head, against the execution time
with one thread, for the set
of tabling benchmarks with
all threads executing the same
query goal

The environment for our experiments was a machine

with 2x16 (32) Core AMD Opteron (tm) Processor 6274

@ 2.2 GHz with 32 GBytes of memory and running the

Linux kernel 3.8.3-1.fc17.x86_64 with Yap Prolog 6.3.

We experimented with intervals of 8 threads up to 32

threads and all results are the average of 5 runs for each

benchmark. Figure 6 shows the average execution time,

in seconds, and the average overhead, compared against

the respective execution time with one thread, for the

LFHT, LF and LB designs when running the set of

tabling benchmarks with all threads executing the same

query goal.

The results clearly show that the new LFHT design

achieves the best performance for both the execution

time and the overhead. As expected, LF is the second

best and LB is the worst. In general, our design clearly

outperforms the other designs with a overhead of at most

1.74 for 32 threads (the number of cores in the ma-

chine). Another important observation is that both LF

and LB show an initial high overhead in the execution

time in most experiments, mainly when going from 1 to

8 threads, in contrast to LFHT that shows more smooth

curves. The di�erence between LFHT and LF/LB for

the overhead ratio in these benchmarks clearly shows the

distinct potential of the LFHT design.

A Simple and E�cient Lock-Free Hash Trie Design for Concurrent Tabling 9

 0

 20

 40

 60

 8 16 24 32

#threads (p)

Execution Time by Benchmark (TB(p))

 5

 10

 15

 20

 8 16 24 32

#threads (p)

Speedup by Benchmark (TB(1) / TB(p))

Fig. 7. Execution time, in
seconds, and speedup, against
the execution time with one
thread, for running the naive
scheduler program with the

LFHT design

Besides measuring the value of our new design through

the use of worst case scenarios, we conclude the pa-

per by showing the potential of our work to speedup

the execution of tabled programs. Other works have al-

ready showed the capabilities of the use of multithreaded

tabling to speedup tabled execution (Marques and Swift

2008; Marques et al. 2010). Here, for each program, we

considered a set of di�erent queries and then we ran this

set with di�erent number of threads. To do that, we im-

plemented a naive scheduler in Prolog code that initially

launches the number of threads required and then uses a

mutex to synchronize access to the pool of queries. We

experimented with a Path program using a grid-like con-

�guration and with two well-known ILP data-sets, the

Carcinogenesis andMutagenesis data-sets. We used the

same 32 Core AMD machine, experimented with inter-

vals of 8 threads up to 32 threads and the results that

follow are the average of 5 runs. Figure 7 shows the aver-

age execution time, in seconds, and the average speedup,

compared against the respective execution time with one

thread, for running the naive scheduler on top of these

three programs with the LFHT design.

The results show that our design has potential to

speedup the execution of tabled programs. For the Path benchmark, the speedup in-

creases up to 10.24 with 16 threads, but then it starts to slow down. We believe that

this behavior is related with the large number of tabled dependencies in the program.

For the Carcino and Muta benchmarks, the speedup increases up to a value of 16.68

and 18.84 for 32 threads, respectively. Note that our goal with these experiments was

not to achieve maximum speedup because this would require to take into account the

peculiarities of each program and eventually develop specialized schedulers for each one,

which is orthogonal to the focus of this work.

5 Conclusions

We have presented a novel, simple and e�cient lock-free design for concurrent tabling.

A key design decision in our approach is the combination of hash tries with the use of

a separate chaining closed by the last node referencing back the hash level for the node.

This allows us to implement a clean design to solve hash collisions by simply moving

nodes between the levels. In our design, updates and expansions of the hash levels are

never done by using replacement of data structures (i.e., create a new one to replace the

old one), which also avoids the need for memory recovery mechanisms. Another important

design decision which minimizes the bottlenecks and performance problems leading to

false sharing or cache memory side-e�ects, is the insertion of nodes done at the end of

the separate chain. This allows for dispersing as much as possible the memory locations

being updated concurrently and, more importantly, reduces the updates for the memory

locations accessed more frequently, like the bucket entries for the hash levels.

10 M. Areias and R. Rocha

Experimental results in the context of Yap's concurrent tabling environment, showed

that our design clearly achieved the best results for the execution time, speedups and

overhead ratios. In particular, for worst case scenarios, our design clearly outperformed

the previous designs with a superb overhead always below 1.74 for 32 threads or less.

We thus argue that our design is the best proposal to support concurrency in general

purpose multithreaded tabling applications.

Acknowledgments

This work is partially funded by the ERDF (European Regional Development Fund)

through the COMPETE Programme and by FCT (Portuguese Foundation for Science

and Technology) within project SIBILA (NORTE-07-0124-FEDER-000059). Miguel Areias

is funded by the FCT grant SFRH/BD/69673/2010.

References

Areias, M. and Rocha, R. 2012a. An E�cient and Scalable Memory Allocator for Multi-
threaded Tabled Evaluation of Logic Programs. In International Conference on Parallel and

Distributed Systems. IEEE Computer Society, 636�643.

Areias, M. and Rocha, R. 2012b. Towards Multi-Threaded Local Tabling Using a Common
Table Space. Journal of Theory and Practice of Logic Programming, International Conference
on Logic Programming, Special Issue 12, 4 & 5, 427�443.

Areias, M. and Rocha, R. 2014. On the Correctness and E�ciency of Lock-Free Expand-
able Tries for Tabled Logic Programs. In International Symposium on Practical Aspects of

Declarative Languages. Number 8324 in LNCS. Springer-Verlag, 168�183.

Bagwell, P. 2001. Ideal Hash Trees. Es Grands Champs 1195.

Chen, W. and Warren, D. S. 1996. Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM 43, 1, 20�74.

Fredkin, E. 1962. Trie Memory. Communications of the ACM 3, 490�499.

Marques, R. and Swift, T. 2008. Concurrent and Local Evaluation of Normal Programs.
In International Conference on Logic Programming. Number 5366 in LNCS. Springer-Verlag,
206�222.

Marques, R., Swift, T., and Cunha, J. C. 2010. A Simple and E�cient Implementation
of Concurrent Local Tabling. In International Symposium on Practical Aspects of Declarative

Languages. Number 5937 in LNCS. Springer-Verlag, 264�278.

Moura, P. 2008. ISO/IEC DTR 13211�5:2007 Prolog Multi-threading Predicates.

Prokopec, A., Bronson, N. G., Bagwell, P., and Odersky, M. 2012. Concurrent Tries
with E�cient Non-Blocking Snapshots. In ACM Symposium on Principles and Practice of

Parallel Programming. ACM, 151�160.

Rocha, R., Silva, F., and Santos Costa, V. 2005. On applying or-parallelism and tabling
to logic programs. Theory and Practice of Logic Programming 5, 1 & 2, 161�205.

Santos Costa, V., Rocha, R., and Damas, L. 2012. The YAP Prolog System. Journal of
Theory and Practice of Logic Programming 12, 1 & 2, 5�34.

Shalev, O. and Shavit, N. 2006. Split-Ordered Lists: Lock-Free Extensible Hash Tables.
Journal of the ACM 53, 3, 379�405.

Triplett, J., McKenney, P. E., and Walpole, J. 2011. Resizable, Scalable, Concur-
rent Hash Tables via Relativistic Programming. In USENIX Annual Technical Conference.
USENIX Association, 11�11.

