
A Hybrid MapReduce Model for Prolog

Joana Côrte-Real, Inês Dutra, and Ricardo Rocha
CRACS & INESC TEC, Faculty of Sciences, University of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
{jcr, ines, ricroc}@dcc.fc.up.pt

Abstract—Interest in the MapReduce programming model has
been rekindled by Google in the past 10 years; its popularity
is mostly due to the convenient abstraction for parallelization
details this framework provides. State-of-the-art systems such
as Google’s, Hadoop or SAGA often provide added features
like a distributed file system, fault tolerance mechanisms, data
redundancy and portability to the basic MapReduce framework.
However, these features pose an additional overhead in terms
of system performance. In this work, we present a MapReduce
design for Prolog which can potentially take advantage of hybrid
parallel environments; this combination allies the easy declarative
syntax of logic programming with its suitability to represent and
handle multi-relational data due to its first order logic basis.
MapReduce for Prolog addresses efficiency issues by performing
load balancing on data with different granularity and allowing for
parallelization in shared memory, as well as across machines. In
an era where multicore processors have become common, taking
advantage of a cluster’s full capabilities requires the hybrid use
of parallelism.

I. INTRODUCTION

MapReduce is a programming model developed by Google
in the early 2000’s [6] aimed at processing large amounts of
data. As the name suggests, it is composed of two elementary
operations: map and reduce, which are based on primitives
originally introduced in functional programming languages
such as Lisp. The MapReduce model was primarily aimed at
application onto a large set of machines linked together - also
known as a cluster - with the purpose of efficiently dividing
data among disks in the cluster.
The relevance of the MapReduce model lies in the fact that
the map and reduce operations are suitable for expressing a
number of classic processing algorithms under a summation
form [4]. This form allows for a direct conversion to map and
reduce operations, and it has been shown by [4] that algorithms
such as locally weighted linear regression, expectation maxi-
mization and neural networks, amongst others, can be applied
successfully to a MapReduce framework.
Whilst these algorithms can be useful, the MapReduce model
is by no means limited to them, as many possible map and
reduce operations can be defined. One needs only to ensure
that the operations have no collateral effects on data other than
that being used in the operation. Furthermore, it is necessary
to guarantee that the operations on the data are associative and
commutative, so that they can be executed in parallel and thus
benefit from the inherent speeding up of the process.
As such, the map operation applies a transformation to a set
of key/value pairs, resulting in another set of the same size
consisting of pairs with the same key but a mapped value.
The reduce operation groups all the mapped pairs with the
same key and aggregates their values to one - or no - result.

There is an auxiliary aggregation operation used to separate
data from different keys and it is independent of both the data
being processed and the map and reduce operations, rendering
it autonomous from the remaining program; this operation
allows the user to run different kinds of data on the same
MapReduce call and group them using a key. This feature
is specific to Google’s MapReduce implementation and it is
not included in all implementations presented in the literature
because the size of the available resources may not justify
burdening the framework with another mandatory operation
since there are different ways to obtain key-like functionality
by using different abstractions.
One might wonder about the relevance of creating a MapRe-
duce framework for Prolog, since there are already several
portable and flexible implementations for other programming
languages in the literature. However, Prolog is a fundamental
infrastructure for many research areas which are difficult to
support in functional, imperative or object-oriented languages,
such as Natural Language Analysis, Machine Learning or
Inductive Logic Programming (ILP). ILP is the preferred target
application for this work because it requires intensive and
iterative processing of large amounts of data so as to infer
rules applicable to it. As such, a hybrid MapReduce construct
would be a valuable tool to make this process simpler and
more efficient.

II. RELATED WORK

There are presently several MapReduce implementations
described in the literature [5]–[12], and in this document the
most relevant to our work will be briefly introduced.
The HDFS or Hadoop Distributed File System [2] is a fault-
tolerant distributed file system, which is designed to run on
low-cost hardware. Its purpose is to meet the requirements of
applications which need to manipulate large datasets and it
was designed with a batch processing methodology in mind,
as opposed to iterative data processing. In [11] Hadoop is
compared to other approaches of large-scale data analysis and
the overall task processing time was found to be 3.2 times
slower than the second slower approach tested [11].
Twister [7] presents an architecture different from other
MapReduce frameworks since it provides efficient support
for iterative MapReduce calls. Unlike most systems in the
literature, it uses a publish/subscribe messaging protocol and
attempts to reduce the amount of communication data to a
minimum by increasing the granularity of the map operation.
This approach presents slightly faster results than Hadoop in
the situations described in [7].
SAGA [8] is a high level API which executes operations
on distributed systems, supporting various architectures like
clusters, clouds or grids. Unlike the two previous frameworks,978-1-4799-4833-8/14/$31.00 c© 2014 IEEE

SAGA is implemented natively in C++, as opposed to Java,
and the MapReduce model was recently introduced into it. This
approach is slower than most others due to its portability; the
fact that it is not optimized for one distributed system only
has a cost in terms of efficiency.

III. MAPREDUCE FOR PROLOG

The MapReduce framework presented here extends the
original MapReduce for Prolog [5]. This framework is native to
the Yap Prolog system [13] and its API is declarative in nature.
It implements a master-slave architecture and it supports both
iterative runs using the same workers and several scheduling
methods for the data, which can be selected by the user at
runtime.
The motivation for the work presented here lies in the need
for a transparent tool which can support explicit parallelism in
heterogeneous environments and whose results present speed-
ups even for small datasets.
Our aim with this work is to improve on the previous imple-
mentation of this framework so as to execute in shared and
distributed memory interchangeably from the user’s point of
view. We believe this contributes towards more and simpler
data processing support in Prolog, and find it particularly rele-
vant at an age when multi-core processors and heterogeneous
clusters are increasingly common and inexpensive.

A. Hybrid Model

The model’s architecture is loosely based on the archi-
tecture described in [6] in the sense that it supports clusters
of machines, but it innovates by taking advantage of the
parallelism within each machine. Figure 1 shows how our
framework can apply to a generic number of processors
running on top of a distributed architecture. Conceptually,
each MapReduce computation will be performed on a com-
municator; this communicator is an abstraction representing a
set of teams - each composed of a set of workers - and its
resources are automatically managed by the system. Figure 1
depicts three processes and two communicators, Comm A (in
blue) composed of two teams (A0 in the Main Process and
A1 in Process 1), with two and three workers respectively, and
Comm B (in orange), also composed of two teams (B1 and B2),
including two and three workers. Each process also includes
a controller thread that handles the MPI communications
between processes; in addition to that, the main process runs
the thread the user should interact with.
Communicators must be created and destroyed by the user
and they have an unique identifier name. Their resources can
belong to different processes, but the data files used by them
must be accessible by all these processes as well. Along with
files, the user must also make the map and reduce predicates
available to all processes; this can be done by making them
available in a file before runtime, or by taking advantage of the
send_script/2 feature of this MapReduce implementation
to run code remotely, in a different communicator.
Unlike earlier implementations of MapReduce for Prolog, this
hybrid implementation allows for non-blocking MapReduce
calls, making it possible to place several calls at one time -
albeit in different communicators - and to retrieve the result at
a later stage in the computation. This new feature makes the
implementations much more flexible and allows for further

concurrency to be taken advantage of since the main thread
is not forced to wait for the termination of a MapReduce
computation in order to proceed with other tasks.
The interface provides the possibility to test whether a MapRe-
duce computation result has arrived in a non-blocking way.
Should the computation be dependent on this result, there
is also a predicate which uses non-busy waiting to wait for
this result. However, the retrieval must be made by the same
process which made the MapReduce call in the first place.
Orthogonally to this, each process in the cluster is assumed
to be running on a separate machine (represented as a grey
box in Figure 1) and so a controller thread is created to
manage communication details; there is only one such thread
per process. This thread is responsible for the creation and
deletion of teams - or sets of worker threads belonging to one
communicator (represented as boxes and octagons in Figure 1,
respectively); the controller also manages all MPI communi-
cation among different processes and maintains control data
structures pertaining to the workers attached to the process.
The controller is thus the only entity to change the global
database of a process, except for the case where the main
thread is also running (typically process 0). This allows for
a significant decrease in synchronization points, since it is
guaranteed that the memory will only be written on by one
thread.
Presently, all teams have a dynamic work scheduling strategy,
meaning that for each team a queue is maintained by the
controller as part of the communicator data structures, and
regularly filled with more work as it becomes empty when
the workers remove tasks. In addition, the system implements
a steal work strategy inside a communicator, so should a
local queue be empty, the controller will attempt to steal
work from other processes where the same communicator
has active teams. Whilst this can be an efficient strategy to
guarantee good load balancing, its communication complexity
can increase with the number of processes. As such, it was
decided to organize these processes in an unidirectional ring,
which also helps to guarantee termination using the Chandy
and Lamport ring termination algorithm [3].
Overall, preliminary experiments of hybrid MapReduce for
Prolog show that it can correctly create and destroy communi-
cators, as well as terminate MapReduce calls placed in differ-
ent orders and configurations of processes and communicators.

B. File System

One of the main goals of this implementation is to provide
a flexible system, which supports both heavy computations
across several machines and lighter iterative runs of MapRe-
duce possibly executing on one machine alone. We have
designed a transparent architecture divided in five functional
modules as follows:

Setup contains the predicates required to initialize a
communicator, as well as to delete it and guar-
antee that all communication is terminated.

Data can be used for loading data files to arrays of data.
The use of this module is optional, since the user
can load the data differently.

Main is composed of user level predicates required to
make MapReduce calls and retrieve their result.
This file should be used only on the process which
will be running the main computation.

Fig. 1. Schematics of MapReduce for Prolog model

Control must be called on all machines/processes not
running the main computation and contains pred-
icates pertaining scheduling techniques and man-
agement of workers.

Worker contains the lower level predicates which perform
the execution of the map and reduce operations
defined by the user.

Additionally, user-defined files are required in order to specify
the several map and reduce predicates to be used. The fact that
this information is specified as Prolog predicates allows the
user to easily reconfigure them – including system architecture
and map and reduce predicates.

C. User Interface

Hybrid MapReduce for Prolog user interface is composed
of seven predicates, as illustrated in Figure 2. The last two
predicates map/2 and reduce/2 are user-defined but their
signature must follow the one presented in Figure 2.

The init_interface/0 and end_interface/0
predicates respectively initialize and end the MPI environment.
These predicates must be called once at the beginning and
end of the execution and are mainly an abstraction to the
MPI_Init() and MPI_Finalize() functions.
Predicates create_communicator/3 and delete_
communicator/1 are, as expected, used to create and delete
communicators; these predicates then remotely run code in
different processes should the communicator own resources in
more than one process. They are also responsible for creating
local workers and a work queue.
MapReduce calls can be made using map_reduce_call/5
predicates; this predicate does not require the last argument
and if it is not provided, no code is executed remotely prior to

init_interface.
end_interface.

create_communicator(+CommunicatorName,+
ListOfResources,+DataFile),

detele_communicator(+CommunicatorName).

map_reduce_call(+CommunicatorName,+
MapPredicate,+ReducePredicate,+
DataList,+PreScript).

map_reduce_get_result(+CommunicatorName,-
Result,+PostScript).

map_reduce_get_result_nonblocking(+
CommunicatorName,-Result,+PostScript).

map(+Value,-MappedValue).
reduce(+ListOfValues,-ReducedValue).

Fig. 2. Hybrid MapReduce for Polog interface

the call. The DataList interval must be provided as a list of
indices and the MapPredicate and ReducePredicate
are the names of the user defined map and reduce operations
and must follow the signature also presented in Figure 2.
The map_reduce_get_result/3 predicate can be used
to retrieve the result of a MapReduce execution in that
communicator and also does not require the last argument.
There is also a non-blocking version of this predicate, which
unifies Result with the result for the operation should it be
completed and fails otherwise.

IV. CURRENT AND FUTURE WORK

As an initial experiment, it was decided to parallelize the
coverage of examples in the ILP Aleph; example coverage is
executed in the assessment of every hypothesis generated by
the system and thus seems like a good starting point. The
overall time an ILP system spends evaluating hypothesis can
represent a large percentage of the execution time and so the
performance of the system can be improved by parallelizing
this code section. However, each hypothesis evaluation takes in
fact a rather short time; the significant execution time spent in
coverage is due to the frequency with which this operation is
executed. This presents an added challenge to the framework:
the overheads of parallelization must be small enough so that
each coverage step speeds-up individually.
Additionally, assessing the coverage of a hypothesis has no
side-effects in other tasks, and so the adaptation process should
be straightforward: in this particular section of code, positive
and negative example evaluation is independent from any
data except the hypothesis being tested. This makes the task
particularly suited for use with our MapReduce for Prolog
framework. The map operation verifies whether the hypothesis
explains the example and the reduce operations counts how
many examples were explained. The final reduce will thus
return the coverage for a given hypothesis.
Despite the alterations to Aleph being fairly straightfor-
ward, our preliminary experiments showed no speed-up. After
analysing the code in order to rule out conceptual issues, it
was decided to run a performance analysis of the code using
gperftools [1]. Results showed that the slowdown was due
to issues in the Yap Prolog system’s access to the internal
database, namely to the Atom Table data structure, now being
handled.
Yap’s Atom Table stores atoms of all types, whether they are
array names, predicate names, simple atoms and so on. Each
entry in the Atom hashtable is a linked list, in which each
object is a different atom, or Atom Entry. If a new atom is
hashed to that entry, it is inserted in the beginning of the linked
list, directly between the hash table and the previously first
atom entry in the list.
An atom entry can then have different sets of properties ac-
cording to what sort of entity it represents. Different properties
for the same atom are also stored in a linked list connected
to the functor property (FuncProp) of that atom. As is the
case with the atom entry linked list, new properties are always
inserted in the beginning of the property list as well. In the
particular case of predicates, and since they are attached to the
functor property of the atom in most cases, there is still another
level to be considered: that of predicate properties (PredProp).
This linked list stores predicates with the same name and arity,
but of different modules. Each of these levels of the Atom
Table is protected by a pthread rwlock and so the attempt to
access the same predicate repeatedly causes a large overhead
due to the configuration of these structures.
The work undertaken thus far is, however, promising. Once the
concurrent database access of the Yap Prolog system has been
resolved, we believe that our proof of concept will indeed scale
the coverage evaluation time in proportion to the number of
cores. We are looking forward to also testing this approach for
several processes, since there are interesting data distribution
issues to be addressed there, as well as performance and
communication issues.

V. CONCLUSION

The hybrid MapReduce for Prolog framework presented
is a flexible and versatile implementation which can take
advantage of both shared and hybrid memory parallelism in
non-structured machine clusters with different configurations.
Its architecture and interface are described, as well as the
methodology for some preliminary experiments. The first stage
of this proof of concept was to apply the hybrid model to
the ILP system Aleph, and the preliminary results show some
performance problems related to the underlying Prolog system.
Once these issues are overcome, this tool is expected to speed-
up Aleph’s hypotheses evaluation process.

ACKNOWLEDGMENT

This work is partially funded by the ERDF (European Re-
gional Development Fund) through the COMPETE Programme
and by FCT (Portuguese Foundation for Science and Tech-
nology) within project PTDC/EEI-SII/2094/2012 (FCOMP-01-
0124-FEDER-029010). Joana Côrte-Real is funded by the FCT
grant SFRH/BD/52235/2013.

REFERENCES

[1] gperftools: Fast, multi-threaded malloc() and nifty performance analysis
tools. https://code.google.com/p/gperftools/.

[2] D. Borthakur. The Hadoop Distributed File System: architecture and
design. Hadoop Project Website, 11:21, 2007.

[3] K. Chandy and L. Lamport. Distributed snapshots: determining global
states of distributed systems. ACM Transactions on Computer Systems
(TOCS), 3(1):63–75, 1985.

[4] Cheng-Tao Chu, S. Kyun Kim, Yi-An Lin, Y. Yu, G. Bradski, A. Y. Ng,
and K. Olukotun. Map-Reduce for Machine Learning on Multicore. In
Advances in Neural Information Processing Systems 19, pages 281–288.
MIT Press, 2007.

[5] J. Côrte-Real, I. Dutra, and R. Rocha. Prolog Programming with a
Map-Reduce Parallel Construct. In T. Schrijvers, editor, Proceedings of
the International Symposium on Principles and Practice of Declarative
Programming (PPDP 2013), pages 285–295, Madrid, Spain, September
2013. ACM Press.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

[7] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox. Twister: Twister: A Runtime for Iterative MapReduce. In ACM
International Symposium on High Performance Distributed Computing,
pages 810–818. ACM, 2010.

[8] C. Miceli, M. Miceli, S. Jha, H. Kaiser, and A. Merzky. Programming
Abstractions for Data Intensive Computing on Clouds and Grids. In
IEEE/ACM International Symposium on Cluster Computing and the
Grid, pages 478–483. IEEE Computer Society, 2009.

[9] S. Pallickara, J. Ekanayake, and G. Fox. Granules: A Lightweight,
Streaming Runtime for Cloud Computing with Support, for Map-
Reduce. In International Conference on Cluster Computing and
Workshops, pages 1–10. IEEE Computer Society, 2009.

[10] S. Papadimitriou and J. Sun. DisCo: Distributed Co-clustering with
Map-Reduce: A Case Study Towards Petabyte-Scale End-to-End Min-
ing. In International Conference on Data Mining, pages 512–521. IEEE
Computer Society, 2008.

[11] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A Comparison of Approaches to Large-Scale Data
Analysis. In ACM International Conference on the Management of
Data, pages 165–178. ACM, 2009.

[12] S. Plimpton and K. Devine. MapReduce in MPI for Large-scale Graph
Algorithms. Parallel Computing, 37(9):610–632, 2011.

[13] V. Santos Costa, R. Rocha, and L. Damas. The YAP Prolog System.
Journal of Theory and Practice of Logic Programming, 12(1 & 2):5–34,
2012.

