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Abstract—Probabilistic Inductive Logic Programming (PILP)
is a relatively unexplored area of Statistical Relational Learning
which extends classic Inductive Logic Programming (ILP). Within
this scope, we introduce SkILL, a Stochastic Inductive Logic
Learner, which takes probabilistic annotated data and produces
First Order Logic (FOL) theories. Data in several domains
such as medicine and bioinformatics have an inherent degree
of uncertainty, and because SkILL can handle this type of
data, the models produced for these areas are closer to reality.
SkILL can then use probabilistic data to extract non-trivial
knowledge from databases, and also address efficiency issues by
introducing an efficient search strategy for finding hypotheses in
PILP environments. SkILL’s capabilities are demonstrated using
a real world medical dataset in the breast cancer domain.

I. INTRODUCTION

Statistical Relational Learning (SRL) [17] is a well-known
collection of techniques whose main objective is to produce
interpretable probabilistic classifiers, often in the form of un-
derstandable logical sentences. Researchers have often focused
their efforts on defining logic languages to handle probabilistic
data ([20], [11], [19], [6]), but few works have been dedi-
cated to learning understandable rules from that probabilistic
knowledge. In this work, we introduce SkILL – a Stochastic
Inductive Logic Learner – which can combine the rule learning
capability of classic Inductive Logic Programming (ILP) ([14],
[9]) with uncertain knowledge by generating FOL rules based
on a richer and more expressive representation of the data than
traditional ILP supports.

ILP stands out from traditional machine learning due
to its suitability to handle relational data but suffers from
exponential growth of its hypotheses search space with the
size of the dataset. Introducing probabilistic information to
describe data may implicitly reduce the search space since
useful information can still be extracted, for instance, from
marginal distributions. Also, compressing data in such a way
could also be used in order to protect private sensitive data.
Furthermore, in cases where the full conditional probability
table is not known, information can still be used efficiently in
the computation of a hypothesis, for instance, by adding values
from the literature to the background knowledge.

The contributions of this work are: (i) the SkILL system,
which is a general purpose PILP tool that supports logical
constructs, arbitrary variable logical terms and annotated dis-
junctions [21]; (ii) an efficient search strategy to traverse the
PILP search space, and (iii) an analysis of a real-world medical
dataset pertaining breast cancer.

II. SKILL

SkILL is a Probabilistic Inductive Logic Programming
(PILP) tool which can extract non-trivial knowledge (FOL

theories) from probabilistic data. SkILL’s inputs include Prob-
abilistic Background Knowledge (PBK), representing the basic
information known about the problem, which can be composed
of both rules and facts, either probabilistic or not. Additionally,
the observations that the system is attempting to explain, called
Probabilistic Examples (PE), are annotated with their expected
values, which can represent either statistical information or
the degree of belief in an example (using type I or type
II probability structures [4], respectively). PBK and PE can
be seen as the probabilistic versions of ILP’s Background
Knowledge (BK) and Examples input.

The aim of the SkILL tool is to find a hypothesis in the
valid search space which minimizes a loss function w.r.t. the
given PE. Hypotheses are formed by a single clause or by a
set of disjunct clauses, and their length is equal to the number
of clauses they contain. Combining two hypotheses of length
one results in a hypothesis of length two, and so on. The result
of this combination is the logical disjunction of the clauses in
all hypotheses.

SkILL’s hypotheses search space is composed of all com-
binations of hypotheses of length one, up to a maximum user-
defined length. It is easy to see that this search space is expo-
nential and so traversing it exhaustively would not be scalable.
As such, SkILL’s algorithm selects two different populations
of fixed size at every step (Primary and Secondary), so as
to maintain the complexity of the algorithm constant for user-
defined sizes of populations and maximum length. Hypotheses
populations are ranked according to user-defined metrics, so
as to allow for either combining only good hypotheses, or
stochastically selecting candidates.

SkILL supports three metrics to rank and evaluate hy-
potheses: RMSE (root mean squared error), PAcc (probabilis-
tic accuracy) and Random (stochastic selection). The RMSE
metric penalizes predictions farther from the expected values,
while PAcc is the generalization of the discrete accuracy to the
probabilistic setting as introduced by De Raedt and Thon [18]
and also used by Muggleton [13]. SkILL can handle classical
ILP modes such as output/input and constants, and also encode
expert information as probabilistic facts, annotated disjunctions
and probabilistic rules in the PBK.

III. SKILL’S SEARCH ALGORITHM

Algorithm 1 presents SkILL’s main algorithm to traverse
the hypotheses search space. It takes as input the PBK and
PE, plus parameters corresponding to: the maximum length
of the hypotheses to be generated (MaxHypLength); the size
of the two auxiliary sets of hypotheses used for combination
and generation of new longer hypotheses (Psize and Ssize);



two metrics to rank the selection of hypotheses used for
combination (PRankMetric and SRankMetric); and finally, a
metric that is used to decide what is the best hypothesis found
(EvalMetric).

Algorithm 1: SkILL Algorithm
1 Input = PBK, PE, MaxHypLength, Psize, Ssize, PRankMetric,

SRankMetric, EvalMetric
2 Output = Best hypothesis according to EvalMetric
3 Hyps1 = HypsN = AllHyps = generate hyps length one(PBK, PE)
4 for Length = 2; Length ≤ MaxHypLength; Length++ do
5 Primary = select members(HypsN, Psize, PRankMetric)
6 Secondary = select members(Hyps1, Ssize, SRankMetric)
7 HypsN = generate combinations(Primary, Secondary)
8 AllHyps = AllHyps ∪ HypsN
9 end

10 return best hypothesis(AllHyps, EvalMetric)

Initially, the algorithm uses the TopLog engine [15] from
the GILPS ILP system to generate all possible hypotheses
of length one (line 3 in Alg. 1). A hypothesis of length
one is constructed from literals that are contained in the
PBK and are selected by the user. Hypotheses of length one
are generated in such a way as to always entail at least
one of the probabilistic examples. SkILL improves on this
approach by removing hypotheses which are permutations of
each other (i.e., syntactically distinct but semantically equal).
This approach, which is the state-of-the-art in ILP, results in
hypotheses of length one that mirror patterns contained in the
observations w.r.t. the PBK.

Once hypotheses of length one are generated, the algorithm
proceeds by generating hypotheses with length greater than one
(lines 4–9 in Alg. 1) until reaching MaxHypLength. Combin-
ing hypotheses in order to generate new hypotheses with larger
length is not a trivial task; possible combinations are

(
N
K

)
with

N being the total number of length one hypotheses and K the
maximum hypothesis length. SkILL’s search strategy selects
candidate hypotheses for two different sets, named Primary
and Secondary (lines 5–6 in Alg. 1), and new hypotheses are
then generated by combining members from each set (line 7
in Alg. 1).

In each iteration of the algorithm, the primary set is filled
with the Psize best hypotheses, according to a given ranking
metric (argument PRankMetric), from the set of hypotheses
generated in the previous iteration (1 clause hypotheses when
searching for 2 clauses hypotheses; 2 clauses hypotheses when
searching for 3 clauses hypotheses; etc). The secondary set is
populated with Ssize hypotheses from the set of hypotheses
of length one, according to SRankMetric. Depending on the
ranking metrics chosen, the system can generate hypotheses
in a fully stochastic way, use best hypotheses or create a
heterogeneous mix. The stochastic component of the selection
is distinct for each iteration.

Finally, all hypotheses are evaluated according to the
given evaluation metric (argument EvalMetric), and the best
generated hypothesis for all different lengths is returned (line
10 in Alg. 1).

IV. EXPERIMENTAL SETTINGS

SKILL runs on top of the Yap Prolog system [1],
uses GILPS [15] as the basis hypotheses generator and
MetaProbLog [10] (an extension of ProbLog [6]) as the

probabilistic representation language. Knowledge is thus an-
notated according to ProbLog syntax and the MetaProbLog
engine is used to evaluate the probabilities of the generated
theories. This section presents two sets of experiments: (i) a
comparison against ProbFOIL+ which focuses on performance
and scalability, and (ii) a study of a real-world medical dataset
of non-definite biopsies.

A. Comparison with ProbFOIL+

SkILL’s execution time and probabilistic accuracy were
compared against the probabilistic rule learner ProbFOIL+ [2]
using a probabilistic dataset of 44 probabilistic facts about
family relations. The dataset is composed of literals mother,
father and parent (Prolog rule), as well as of 10 examples
of the target predicate grandmother, all with probability 1.00.
ProbFOIL+ differs from SkILL because in addition to learning
a probabilistic hypothesis, it also calculates values for each
clause of the hypothesis which minimize the error over all
examples. However, to the best of the authors’ knowledge,
ProbFOIL+ does not support constant arguments or annotated
disjunctions, making it impossible to compare to the dataset
presented in the remainder of this section. Both SkILL and
ProbFOIL+ were tested using three settings: (i) attempt to use
only the mother literal in the hypothesis, (ii) attempt to use
mother and father literals, and (iii) attempt to use the three
available literals. Table I presents reported execution time and
probabilistic accuracy for SkILL and ProbFOIL+ in these three
settings.

TABLE I. EXECUTION TIME AND PROBABILISTIC ACCURACY OF
SKILL AND PROBFOIL+ IN FAMILY DATASET

Execution time (s) Probabilistic accuracy (%)
Setting SkILL ProbFOIL+ SkILL ProbFOIL+
mother 0.46 0.95 70.0 98.4

mother + father 0.73 2.91 91.0 99.7
mother + father + parent 0.96 45.31 97.0 99.7

In every setting in Table I the hypotheses induced by
both systems were correct and equivalent to each other w.r.t
their literals. ProbFOIL+’s independent error minimization
technique allows for higher accuracy in every experiment, but
as the dataset grows up to 44 facts, SkILL’s accuracy is only
marginally lower to that of ProbFOIL+. Also, SkILL’s runtime
is always shorter than ProbFOIL+’s, in every setting. SkILL is
clearly more scalable than ProbFOIL+, since its runtime only
doubles for 3 literals when compared to 1, whereas ProbFOIL+
gets 50 times slower in the same case.

Whilst SkILL appears to under-perform accuracy-wise,
both systems learn the same logical rules for every setting.
If the best hypothesis found by the ProbFOIL+ system is not
very accurate, then the added tuning mechanism will make a
significant difference in accuracy results, as can be seen in
Table I. However, in the case where a hypothesis already has
high accuracy, both systems produce comparable results. As
datasets grow larger, and/or have more literals available for
hypotheses construction, the best hypotheses available tend
to have higher accuracy, which leads to similar results for
SkILL and ProbFOIL+. This phenomenon is present in the
three-literal setting of this experiment and in the following
experiment.

B. Knowledge Extraction

Breast cancer diagnosis guidelines suggest that patients
presenting suspicious breast lesions should be sent to perform



a diagnostic mammogram and possibly an ultrasound, and
a core needle biopsy to further define this abnormality. The
biopsy is very important in determining malignancy of a
lesion and usually yields definitive results; however, in 5%
to 15% of cases, the results are non-definitive [16]. Routine
practice usually sends all patients with non-definitive biopsies
to excision, even though only a small fraction of them (10-
20%) have in fact a malignant finding confirmed after the
procedure - the remainder of them did not need to be subjected
to surgery.

Although non-definitive biopsies are relatively rare, send-
ing every woman that has a non-definitive biopsy to excision is
not a good practice. Machine learning methods have been used
to mitigate this and other problems by allowing to produce
models of the data that can distinguish between benign and
malignant cases [8], [3]. However, in the medical domain it is
crucial to represent data in a way that experts can understand
and reason about, and as such ILP can successfully be used
to produce such models. Furthermore, probabilistic ILP allows
for incorporating in the PBK the confidence of physicians in
observations and known values from the literature.

In this study, we use 130 biopsies dating from January
2006 to December 2011, which were prospectively given
a non-definitive diagnosis at radiologic-histologic correlation
conferences. 21 cases were determined to be malignant after
surgery, and the remaining 109 proved to be benign. For all
of these cases, several sources of variables were systemati-
cally collected including variables related to demographic and
historical patient information (age, personal history, family his-
tory etc), mammographic BI-RADS descriptors (mass shape,
mass margins, calcifications etc), pathological information
after biopsy (type of disease, if it is incidental or not, number
of foci etc), biopsy procedure information (needle gauge, type
of procedure etc), and other relevant facts about the patient.
Probabilistic data was also gathered: namely the confidence
in malignancy for each case (before excision), assigned by
a group of physicians analysing that case. Furthermore, and
since physicians base their conclusions in literature values
from the universe of all biopsies, values were added in the
PBK as the probability of malignancy given a feature value
( is malignant features). For example, it is well known among
radiologists expert in mammography that if a mass has a
spiculated margin, the probability that the associated finding
is malignant is around 90%.

This experiment uses as examples the probabilities assigned
by group of physicians representing their estimation of the
malignancy of each case. Learning from non-discrete classes
is a unique characteristic of SkILL that combines inter-
pretable rules with a non-boolean classification model. The
resulting theory is presented in Figure 1 (hypothesis found
using: PAcc metric both for ranking and evaluation; prima-
ry/secondary population of 20/200; and generating hypotheses
until length 3).

The is malignant hypothesis found is composed of two
clauses and has a probabilistic accuracy of 90% and prediction
accuracy of 94%, when using a threshold of 0.5. This learnt
predicate does use the following probabilistic facts annotated
from the medical literature:

1) 0.70:: is malignant (mass margin(microlob))
2) 0.50:: is malignant (mass shape( irregular ) )

3) 0.20:: is malignant (mass margin( indistinct ) )
These predicates describe the margins and shapes of a mass

and state the probability of malignancy, in medical literature,
given that the mass margin is microlobulated, the mass shape
is irregular or the mass margin is indistinct. Furthermore,
SkILL’s hypotheses can be used for probabilistic prediction
of malignancy of a tumor. In this experiment we then used
the generated hypothesis to predict the values of the examples
compared this approach against a Naive Bayes classifier using
the same data (as described by Kuusisto et al in [7]). We found
that the probabilities produced by SkILL are much closer to
the expected values than the probability values produced by
the Naive Bayes classifier, making SkILL’s predictions much
closer to the actual values that the physicians use to asses their
patients. In other words, SkILL can produce predictors that are
better calibrated than other traditional probabilistic models.

i s m a l i g n a n t ( F i n d i n g ) ←
i s m a s s ( F ind ing , Mass ) ∧
mass shape ( Mass , i r r e g u l a r ) ∧
m a s s d e n s i t y ( Mass , h igh ) ∧
mass margin ( Mass , m i c r o l o b ) ∧
0 . 7 0 : : i s m a l i g n a n t ( mass margin ( m i c r o l o b ) )

i s m a l i g n a n t ( F i n d i n g ) ←
i s m a s s ( F ind ing , Mass ) ∧
mass shape ( Mass , i r r e g u l a r ) ∧
0 . 5 0 : : i s m a l i g n a n t ( mass shape ( i r r e g u l a r ) ) ∧
mass margin ( Mass , i n d i s t i n c t ) ∧
0 . 2 0 : : i s m a l i g n a n t ( mass margin ( i n d i s t i n c t ) )

Fig. 1. Probabilistic hypothesis for malignancy of non-definitive biopsies

We also concluded that the hypothesis of length 2 presented
in Figure 1 is only marginally better than the two hypotheses of
length 1 composing it (probabilistic accuracies of 89.6% and
86.8% against the combined 90%). However, it is obvious that
there exist problems that would greatly benefit from classifiers
with multiple rules which can give more insight into the
system being analysed. In this aspect, SkILL takes advantage
of its clever search and combination of hypotheses, being
able to explore a more qualitative portion of the full space,
whilst being able to perform both classification and prediction,
efficiently extending the classical ILP approach.

V. RELATED WORK

The PILP setting was first introduced by Raedt and Kerstig
in 2004 [17] and, in 2011, Raedt and Thon presented the first
PILP system ProbFOIL [18]. ProbFOIL is capable of perform-
ing induction over probabilistic examples and on background
knowledge encoded as ProbLog probabilistic facts. A number
of relevant metrics such as precision, accuracy and m-estimate
are adapted from the discrete ILP domain for use in the new
setting, and ProbFOIL’s search for a hypothesis is guided
based on probabilistic accuracy of the theories. Recently, an
extension of ProbFOIL was presented (ProbFOIL+) [2], which
can also tune the probabilistic value of clauses to minimize the
error. However, these systems do not take advantage of the
probabilistic nature of the data to guide their search strategy,
using instead an exhaustive approach. Additionally, and unlike
SkILL, ProbFOIL and ProbFOIL+ don’t support literals with
constants as arguments, and can not handle mutually exclusive
blocks of facts.

Probabilistic Explanation Based Learning (PEBL) [5] can
find the most likely FOL clause which explains a set of positive



examples in terms of a database of probabilistic facts. The
explanation clause is the combination of predicates which
yields the highest probability based on the examples, and is
found by constructing variabilized refutation proofs for the
given examples using SLD resolution. However, since PEBL
is a deductive system, information about the expected structure
of the explanation should be provided as predicates (which are
often recursive).

Orthogonally, Markov Logic Networks (MLNs) [19] also
combine structure learning using a FOL framework with a
probabilistic Markov Random Fields approach [19]. An MLN
is a set of pairs of logic formulae and weights, where the latter
are calculated based on the number of true groundings of the
respective formula. Structure learning for MLNs softens the
hypotheses by using probabilities and as such produces better
classifiers, as shown in [19]. However, MLNs still consider
crisp background knowledge, not taking into account the
possibility of probabilistic logic facts. Additionally, and whilst
MLNs are capable of structure learning, the final classifier is an
MLN itself, which does not have the advantage of readability,
especially when problem sizes are larger.

Finally, Meta-Interpretive Learning [13] – which is a tech-
nique aimed at performing predicate invention in ILP using
abduction – can also be used to perform probabilistic structure
learning by calculating prior and posterior distributions on the
hypotheses space according to the examples explained by a
given hypothesis [12]. This approach is similar to structure
learning for MLNs in the sense that a relation exists be-
tween simultaneously grounded entities in the data and that
hypotheses are ranked according to how many of these possible
configurations they explain. However, probabilistic background
knowledge is also not supported by meta-interpretive learning,
since it does not support probabilistic facts.

VI. CONCLUSIONS

This work presents the PILP learner SkILL, which extends
classic ILP learners by incorporating probabilistic facts and
rules in its BK, as well as by using probabilistic examples.
This system generates FOL rules (hypotheses) that can be used
for classification and prediction and which produce probabilis-
tic values. SkILL addresses efficiency issues in hypotheses
generation by limiting the number of candidate hypotheses in
its search space. This is done by selecting two populations
according to different metrics, and only the combination of the
members of those populations will be performed. Therefore,
the number of SkILL’s evaluation candidates does not increase
exponentially, making it scalable for hypotheses containing
several clauses. SkILL was compared against the PILP learner
ProbFOIL+ using the family dataset and both systems were
found to generate the same final hypotheses. SkILL’s algorithm
performed up to 2 orders of magnitude faster and presented
the same accuracy as ProbFOIL+ for larger datasets. Finally,
SkILL was used to extract non-trivial knowledge from a
dataset of non-definitive biopsies which was annotated with
probabilistic literature values and rules. Results showed that
these annotations to the BK were in fact used in the physi-
cian’s mental models and therefore useful for prediction of
malignancy.
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