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Abstract. Linear logic programs are challenging to implement efficiently
because facts are asserted and retracted frequently. Implementation is
made more difficult with the introduction of useful features such as rule
priorities, which are used to specify the order of rule inference, and com-
prehensions or aggregates, which are mechanisms that make data itera-
tion and gathering more intuitive. In this paper, we describe a compila-
tion scheme for transforming linear logic programs enhanced with those
features into efficient C++ code. Our experimental results show that
compiled logic programs are less than one order of magnitude slower
than hand-written C programs and much faster than interpreted lan-
guages such as Python.

1 Introduction

Linear Meld (LM) is a linear logic programming language aimed for the paral-
lel implementation of graph-based algorithms [2]. LM is a high-level declarative
language that offers a concise and expressive framework to define graph based
algorithms that are provably correct. LM has been applied to a wide range of
problems and machine learning algorithms, including: belief propagation [6], be-
lief propagation with residual splash [6], PageRank, graph coloring, N-Queens,
shortest path, diameter estimation, map reduce, quick-sort, neural network train-
ing, minimax, and many others.

Like Datalog, LM is a forward-chaining logic programming language since
computation is driven by a set of inference rules that are used to update a
database of logical facts. In Datalog, programs are monotonic and therefore the
database grows in size as more facts are inferred from the logical rules. In LM,
logical facts are linear and thus can be retracted when a rule is inferred. The use
of linear facts greatly increases the power of the language but also increases the
complexity of the implementation since database facts are retracted often.

In previous work [3], we have described the implementation of the LM virtual
machine, including its data structures and how programs are parallelized. In
this paper, we describe our compilation strategy and how we have refitted the
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runtime system to allow stand-alone compilation of programs by transforming
logical rules into C++ code.

Our goal was to reduce the overhead of executing interpreted byte code and
better understand the effectiveness and limitations of the compilation scheme.
We present an algorithm that compiles logical rules, including comprehensions
and aggregates, into efficient iterator-based C++ code. The compiler supports
rule priorities, allowing the programmer to order rules based on their priority
of inference. To the best of our knowledge, this is the first available compilation
strategy for a linear logic language that supports these 3 features combined.
The contributions of this paper are then three-fold: (1) a novel algorithm to
compile prioritized linear logic rules with aggregates and comprehensions; (2) the
interplay between the database layout and compiled code; and (3) comparison
and analysis of our compilation with hand-written C programs and interpreted
code. Experimental results show that our compiled programs are only 1 to 5
times slower than hand-written C programs.

The remainder of the paper is organized as follows. First, we briefly introduce
the LM language. Next, we present an overview of the runtime support available
to compiled rules and we discuss our contributions which include the algorithm
for compiling rules into efficient iterator-based C++ code, and related work. We
then present experimental results comparing our compiled programs with the
old implementation and with hand-written C programs. The paper finishes with
some conclusions.

2 Linear Meld

LM is a forward-chaining linear logic programming language that allows logical
facts to be asserted and retracted in a structured fashion. A LM program can
be seen as a graph of nodes, where each node contains a database of facts. The
program is written as a set of inference rules that apply over the facts of a node.

LM rules have the form a(X), b(Y) -o c(X, Y) and can be read as follows:
if fact a(X) and fact b(Y) exist in the database then fact c(X, Y) is added to
the database. The expression a(X), b(Y) is called the body of the rule and
c(X, Y) is called the head of the rule. A fact is a predicate, e.g., a, b or c, and
its associated tuple of values, e.g., the concrete values of X and Y. Since LM
uses linear logic as its foundation, we distinguish between linear and persistent
facts. Linear facts are consumed (deleted) during the process of deriving a rule,
while persistent facts are not. Program execution starts by adding the initial
facts (called the axioms) to the database. Next, rules are recursively applied and
the database is updated by adding new facts or deleting facts used during rule
derivation. When no more rules are applicable, the program terminates. Rules
have a defined priority (their position in the source file) and highest priority
rules are fired first. If a new fact is derived and there is a set of applicable rules
to be fired, the higher priority rule is selected before the others.

To make these ideas concrete, Fig. 1 presents a simple example for the single
source shortest path (SSSP) program. The program computes the shortest dis-
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1 type route edge(node, node, int).
2 type linear shortest(node, int, list int).
3 type linear relax(node, int, list int).
4

5 !edge(@1, @2, 3). !edge(@1, @3, 1).
6 !edge(@3, @2, 1). !edge(@3, @4, 5).
7 !edge(@2, @4, 1).
8 shortest(A, +00, []).
9 relax(@1, 0, [@1]).

10

11 shortest(A, D1, P1), D1 > D2, relax(A, D2, P2)
12 -o shortest(A, D2, P2),
13 {B, W | !edge(A, B, W) | relax(B, D2 + W, P2 ++ [B])}.
14

15 shortest(A, D1, P1), D1 <= D2, relax(A, D2, P2)
16 -o shortest(A, D1, P1).

Fig. 1: Single Source Shortest Path program code.

tance from node @1 to all other nodes in the graph. The SSSP program starts
(lines 1-3) with the declaration of the predicates. Predicates specify the facts
used in the program. The first predicate, edge, is a persistent predicate that
describes the relationship between the nodes of the graph, where the third argu-
ment represents the weight of the edge (the route modifier informs the compiler
that the edge predicate determines the structure of the graph). The predicates
shortest and relax are specified as linear facts and thus are deleted when de-
riving new facts. In the example, every node has a shortest fact that can be
improved with new relax facts. Lines 5-9 declare the axioms of the program:
edge facts describe the graph; shortest(A, +00, []) is the initial shortest dis-
tance (infinity) for all nodes; and relax(@1, 0, [@1]) starts the algorithm by
setting the distance from @1 to @1 to be 0.

The first rule of the program (lines 11-13) reads as follows: if the current
shortest path P1 with distance D1 is larger than a new relax path with distance
D2, then replace the current shortest path with D2, delete the new relax and
propagate new paths to the neighbors (line 13) using a comprehension. The
comprehension iterates over the edges of node A and derives a new relax fact
for each node B with the distance D2 + W, where W is the weight of the edge.

The second rule of the program (lines 15-16) is read as follows: if the current
shortest distance D1 is shorter than a new relax distance D2, then delete the
new relax fact and keep the current shortest path. Figure 2 shows a graphical
representation of the application of the SSSP program rules.

2.1 LM Syntax

The abstract syntax for LM programs is presented in Fig. 3. A LM rule is written
as BE ( HE where BE is the body and HE is the head of the rule. The body
may contain linear (L) and persistent (P ) fact expressions and constraints (C).
Fact expressions instantiate facts from the database and contain variables as
arguments that may or may not be bound to concrete values or to other variables.
Variables in the body of the rule can also be used in the head when instantiating
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shortest(@1,0,[@1])

shortest(@2,+00,[])
relax(@2,3,[@1,@2])

shortest(@3,+00,[])
relax(@3,1,[@1,@3])

shortest(@4,+00,[])

3 1

1

1

5

@1

@2 @3

@4

(a)

shortest(@1,0,[@1])

shortest(@2,3,[@1,@2]) shortest(@3,+00,[])
relax(@3,1,[@1,@3])

shortest(@4,+00,[])
relax(@4,4,[@1,@2,@4])

3 1

1

1

5

@1

@2 @3

@4

(b)

shortest(@1,0,[@1])

shortest(@2,2,[@1,@3,@2]) shortest(@3,1,[@1,@3])

shortest(@4,3,[@1,@3,@2,@4])

3 1

1

1

5

@1

@2 @3

@4

(c)

Fig. 2: Graphical representation of the SSSP program: (a) represents the program
after propagating the initial distance at node @1, followed by (b) where the first
rule is applied in node @2 and by (c) that represents the final state of the program,
where all the shortest paths have been computed.

Program Prog ::= Σ,D
List Of Rules Σ ::= · | Σ,R
Database D ::= Γ ;∆
Rule R ::= BE ( HE | ∀x.R
Body Expression BE ::= L | P | C | BE,BE | 1
Head Expression HE ::= L | P | HE,HE | EE | CE | AE | 1
Linear Fact L ::= l(x̂)
Persistent Fact P ::= !p(x̂)
Constraint C ::= c(x̂)
Selector Operation S ::= min | max | random
Comprehension CE ::= { x̂; SB; SH }
Aggregate AE ::= [ A⇒ y; x̂; SB; SH1; SH2 ]
Aggregate Operation A ::= min | max | sum | count | collect
Sub-Body SB ::= L | P | SB, SB | ∃x.SB
Sub-Head SH ::= L | P | SH, SH | 1
Known Linear Facts ∆ ::= · | ∆, l(t̂)
Known Persistent Facts Γ ::= · | Γ, !p(t̂)

Fig. 3: Abstract syntax of LM.

facts. Constraints are essential for matching rules since they represent database
joins and database selects. While selects filter out possible combinations from the
database, body constraints (C) further restrict combinations by acting as guards
using small variables from fact expressions. Constraints use a small functional
language that includes mathematical operations, boolean operations, external
functions and literal values.
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The head of a rule, HE, contains linear (L) and persistent (P ) fact templates
which are uninstantiated facts and will derive new facts. The head can also have
comprehensions (CE) and aggregates (AE). All those expressions may use all
the variables instantiated in the body.

Comprehensions are similar to the functional programming construct of the
same name. Comprehensions are sub-rules that are applied for all possible com-
binations. In a comprehension { x̂; SB; SH }3, x̂ is a list of variables, SB is
the body of the comprehension and SH is the head. The body SB is used to
generate all possible combinations for the head SH, according to the facts in
the database. An example was shown in Fig. 1 (line 13), where !edge(A, B, W)

facts are iterated over in order to derive relax(A, D2 + W, P2 ++ [B]) facts
for each combination.

Aggregates build on top of comprehensions and allow the capture of values
that appear in each combination of the sub-rules. This list of values is then
combined using one operator into a single value and then used to derive a set of
fact expressions. In the abstract syntax [ A ⇒ y; x̂; SB; SH1; SH2 ], A is the
aggregate operation, x̂ is the list of variables introduced in BE and SH1 and y is
the variable in the body SB that represents the values to be aggregated using A.
Like comprehensions, we use x̂ to try all the combinations of SB, but, in addition
to deriving SH1 for each combination, we aggregate the values represented by
y into a new y variable that is used inside the head SH2. LM provides several
aggregate operations, including the min (minimum value), max (maximum value),
sum (add all numbers), count (count combinations) and collect (collect items
into a list). Consider, for example, the following rule:

const P = ... // number of nodes
const damp = ... // probability of random jump to another page (for PageRank computation)

update(A), pagerank(A, OldRank)
-o [sum => V | B | neighbor-pagerank(A, B, V) | neighbor-pagerank(A, B, V) |

pagerank(A, damp/P + (1.0 - damp) * V)].

The rule uses an aggregate to accumulate the sum of the neighbor’s PageRank
into a single value V. This aggregate value is then assigned to a new pagerank fact
via the expression damp/P + (1.0 - damp)*V, where V is the result of adding
all the V values in neighbor-pagerank(A, B, V) facts.

3 Supporting Runtime and Database Data Structures

In this section, we review the supporting runtime that is used by the compiler.
We focus mostly on the structure of the nodes since inference rules are compiled
from the point of view of the node data structure.

Figure 4 presents the layout of the node data structures. Each node of the
graph stores 4 main data structures: (1) the rule matching engine; (2) a fact
buffer for storing incoming and temporary facts; (3) the database of linear facts;
and (4) the database of persistent facts.

3 We substitute ; for | in the abstract syntax to avoid confusion with the grammar
choice operator.
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1 m Linear DB

1 m Persistent DB

Rule Matching Engine

prev prev
next next
f(1) f(9)

prev
next
f(0)

Trie

Doubly Linked List /
Hash Table

Fact Buffer

Fig. 4: Node data structures.

The rule engine maintains a sim-
plified view of the two fact databases
and efficiently decides which rules
need to be executed. For instance, if
a rule r needs facts a and b to be ap-
plied and the database already con-
tains a facts, once a b fact is derived,
the rule engine schedules r to be exe-
cuted. The compiler is responsible for
the code that is executed when a rule
is scheduled. A compiled rule contains
instructions to search and match facts
from the database and to derive new
facts when the body of the rule is
matched.

In this context, the organization of
the database structures is critical be-
cause linear facts can be retracted and
asserted frequently. This means that the database needs to allow fast insertions
and deletions but also needs to have reasonably fast mechanisms for lookup. The
database of facts is partitioned by predicate, therefore, each predicate can have
its own data structure depending on the patterns of access for that particular
predicate. Linear facts are stored using the following data structures:

– Doubly-Linked List Data Structures. Each linear fact is a node of the linked
list. Allows constant O(1) insertion and deletion of facts given the pointer
of the target node. Although lookup operations take linear time, this is not
critical since most predicates tend to have a small number of facts.

– Hash Table Data Structures. For predicates with many facts we use hash ta-
bles. Hash tables are efficient for repetitive lookup operations using a specific
argument (i.e., searching for facts with a concrete value) and build upon lists
by hashing facts using a specific argument and then using separate chaining
with doubly-linked lists for collision resolution. Hash tables are, on average,
O(1) for insertion, deletion and lookup, however they require more memory.

For persistent tuples, we use Trie Data Structures, which are trees where
facts are indexed by a common prefix. Since persistent facts are never deleted,
it’s not expensive to index facts by a common prefix, which also tends to save
memory in the long run.

4 Compiling Rules

In this section, we present the main algorithm of the compiler, that turns in-
ference rules into C++ code, and we discuss the key optimizations for efficient
code execution.
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4.1 Constraints

After an inference rule is compiled, it must respect the fact constraints (facts
must exist in the database) and the join constraints that can be represented by
variable constraints and/or boolean expressions. For instance, consider again the
second rule of the SSSP program presented in Fig. 1:

shortest(A, D1, P1), D1 <= D2, relax(A, D2, P2)
-o shortest(A, D1, P1).

The fact constraints include the facts required to trigger the rule, namely
shortest(A, D1, P1) and relax(A, D2, P2), and the join constraints include
the expression D1 <= D2. However, rules may also have other less obvious join
constraints, such as variable constraints, as in the following rule:

new-neighbor-pagerank(A, B, New),
neighbor-pagerank(A, B, Old)

-o neighbor-pagerank(A, B, New).

where variable B must have the same value in both body facts4.

4.2 Iterators

The data structures for facts presented in Section 3 support the iterator pattern.
For linked lists, the iterator goes through every fact in the list while the hash
table iterator can either iterate through the whole table or iterate through a
single bucket. A bucket iterator is in fact a linked list iterator that starts from a
given argument. For tries, while the default iterator goes through every fact in
the trie, it can be customized with a matching specification in order to reduce
search. A matching specification includes argument assignments (e.g., argument
i = V , where V is a concrete value).

Iterators are heavily used in the compiled code. For instance, the second rule
of the SSSP program presented in Fig. 1 is compiled as follows:

1 for(auto it1(list("shortest").begin()); it1 != list("shortest").end(); ) {
2 fact *f1(*it1);
3 for(auto it2(list("relax").begin()); it2 != list("relax").end(); ) {
4 fact *f2(*it2);
5 if(f1->get_int(1) <= f2->get_int(1)) { // D1 <= D2
6 fact *new_shortest(new fact("shortest"));
7 new_shortest->set_int(1, f1->get_int(1));
8 new_shortest->set_list(2, f1->get_list(2));
9 // new fact was derived

10 list("shortest").push_back(new_shortest);
11 // deleting facts
12 it1 = list("shortest").erase(it1); // remove from list
13 it2 = list("relax").erase(it2);
14 return;
15 }
16 ++it2;
17 }
18 ++it1;
19 }

4 Rule taken from an asynchronous PageRank program.
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The compilation algorithm iterates through the fact expressions in the body
of the rule and creates nested loops to try all the possible combinations of facts.
For this rule, all pairs of shortest and relax facts must be matched until the
constraint D1 <= D2 is true. First, an iterator for shortest is created that will
loop through all shortest facts in the list. Inside the loop, a nested iterator
is created for predicate relax. This inner loop includes a check for the D1 <=

D2 constraint. If the constraint fails, another relax fact is then attempted by
incrementing it2. Likewise, if the current f1 fact fails for all f2 facts, then it1 is
incremented in order to try the next shortest fact. Otherwise, if the constraint
succeeds then the rule matches and a new shortest fact is derived. Additionally,
the two used linear facts are retracted by erasing the iterators from the linked
lists. Note that after the rule is derived, the code must return since there is
a higher priority rule that may be triggered with the new shortest fact (see
Fig. 2). This enforces the priority semantics of the language.

Figure 5 presents the algorithm for compiling rules into C++ code. First, we
split the body of the rule into fact expressions and constraints. Fact expressions
map directly to iterators while fact constraints map to if expressions. A possible
compilation strategy is to first compile all the fact expressions and then compile
the constraints. However, this may require unneeded database lookups since
some constraints may fail early. Therefore, our compiler introduces constraints
as soon as all the variables in the constraint are all included in the already
compiled fact expressions. The order in which fact expressions are selected for
compilation does not interfer with the correctness of the compiled code, thus our
compiler selects the fact expressions (RemoveBestFactExpr) by their potential
to activate constraints, therefore avoiding undesirable database lookups. If two
fact expressions have the same number of new constraints, then the compiler
always picks the persistent fact expression since persistent facts are not deleted.

Derivation of new facts belonging to the local node implies adding the new
fact to the local node data structure. Facts that belong to other nodes are sent
using an appropriate runtime API.

4.3 Persistence Checking

Not all linear facts need to be deleted. For instance, in the compiled rule above,
the fact shortest(A, D1, P1) is re-derived in the head. Our compiler is able
to turn linear loops into persistent loops for linear facts that are retracted and
then asserted. The rule is then compiled as follows:

1 for(auto it1(list("shortest").begin()); it1 != list("shortest").end(); ) {
2 fact *f1(*it1);
3 for(auto it2(list("relax").begin()); it2 != list("relax").end(); ) {
4 fact *f2(*it2);
5 if(f1->get_int(1) <= f2->get_int(1)) {
6 it2 = list("relax").erase(it2);
7 goto next;
8 }
9 ++it2;

10 next: continue;
11 }
12 ++it1;
13 }
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Data: Rule R1, Rules
Result: Compiled Code
FactExprs←− FactExprsFromRule(R1);
Constraints←− ConstraintsFromRule(R1);
Code←− CreateFunctionForRule();
Iterators←− [];
CompiledFacts = [];
while FactExprs not empty do

Fact←− RemoveBestFactExpr(FactExprs);
CompiledFacts.push(Fact);
Iterator ←− Code.InsertIterator(Fact);
Iterators.push(Iterator);
/* Select constraints that are covered by CompiledFacts. */

NextConstraints←− RemoveConstraints(Constraints, CompiledFacts);
Code.InsertConstraints(NextConstraints);

end
HeadFacts = HeadTemplatesFromRule(R1);
while HeadFacts not empty do

Fact←− RemoveFact(HeadFacts);
Code.InsertDerivation(Fact);

end
for Iterator ∈ Iterators do

if IsLinear(Iterator) then
Code.InsertRemove(Iterator);

end

end
/* Enforce rule priorities. */

if FactsDerivedUsedBefore(Head, Program,R1) then
Code.InsertReturn();

else
Code.InsertGoto(FirstLinear(Iterators));

end
return Code

Fig. 5: Compiling LM rules into C++ code.

In this new version of the code, only the relax facts are deleted, while the
shortest facts remain untouched. In the SSSP program, each node has one
shortest fact and this compiled code simply filters out the relax facts with
the distances that are equal or greater than the current best distance. Note that
now we have a goto statement (line 7) that is executed when the rule is fired. In
this case, since no new shortest fact was derived, we avoid returning to enforce
rule priorities and continue to try to fire the rule as many times as possible.

All the rule combinations are attempted in cases where a rule does not derive
any facts or the facts derived do not appear before the rule, that is, the new facts
are only used in lower priority rules. This is specified in the final if statement in
Fig. 5. If the rule does not return, then we always jump to the first loop that
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uses linear facts. We must jump to the first linear loop because we cannot use
the next fact from the deepest loop since we may have constraints between the
first linear loop and the deepest loop that were previously validated using facts
that were deleted in the meantime.

4.4 Updating Facts

Many inference rules retract and then derive the same predicate but with dif-
ferent arguments. The compiler recognizes those cases and instead of retracting
the fact from its linked list or hash table, it updates the fact in-place. As an
example, consider the following rule:

new-neighbor-pagerank(A, B, New),
neighbor-pagerank(A, B, Old)

-o neighbor-pagerank(A, B, New).

Assuming that neighbor-pagerank is stored in a hash table and indexed by
the second argument, the code for the rule above is as follows:

1 for(auto it1(list("new-neighbor-pagerank").begin()); it1 !=
2 list("new-neighbor-pagerank").end(); )
3 {
4 fact *f1(*it1);
5 // hash table for neighbor-pagerank is indexed by the second argument therefore
6 // we search for the bucket using the second argument of new-neighbor-pagerank
7 hash_bucket bucket(hash_table("neighbor-pagerank").find(f1->get_node(1));
8 for(auto it2(bucket.begin()); it2 != bucket.end(); ) {
9 fact *f2(*it2);

10 if(f1->get_node(1) == f2->get_node(1)) {
11 f2->set_float(2, f1->get_float(2)); // update neighbor-pagerank
12 it1 = list("new-neighbor-rank").erase(it1);
13 goto next;
14 }
15 ++it2;
16 }
17 ++it1;
18 next: continue;
19 }

Note that neighbor-pagerank is updated using set float. The rule also
does not return since this is the highest priority rule. If there was a higher
priority rule using neighbor-pagerank, then the code would have to return
since an updated fact represents a new fact.

4.5 Enforcing Linearity

We have already introduced the goto statement as a way to avoid reusing re-
tracted linear facts. However, this is not enough in order to enforce linearity of
facts. Consider the following inference rule:

add(A, N1), add(A, N2) -o add(A, N1 + N2).

Using the standard compilation algorithm, two nested loops are created, one
for each add fact. However, notice that there is an implicit constraint when
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creating the iterator for add(A, N2) since this fact cannot be the same as the
first one. That would invalidate linearity since a single linear fact would be used
to prove two linear facts. This is easily solved by adding a constraint for the
inner loop that ensures that the two facts are different (line 5).

1 for(auto it1(list("add").begin()); it1 != list("add").end(); ) {
2 fact *f1(*it1);
3 for(auto it2(list("add").begin()); it2 != list("add").end(); ) {
4 fact *f2(*it2);
5 if(f1 != f2) {
6 f1->set_int(1, f1->get_int(1) + f2->get_int(1));
7 it2 = list("add").erase(it2);
8 goto next;
9 }

10 ++it2;
11 }
12 ++it1;
13 next: continue;
14 }

Figure 6 presents the steps for executing this rule when the database contains
three facts. Initially, the two iterators point to the first and second facts and the
former is updated while the latter is retracted. The second iterator then moves
to the next fact and the first fact is updated again, now to the value 6, the
expected result.

prev
next

add(1)

prev
next

add(2)

prev
next

add(3)

it1 it2

prev
next

add(3)

prev
next

add(2)

prev
next

add(3)

it1 it2

prev
next

add(6)

prev
next

add(2)

prev
next

add(3)

it1

Fig. 6: Executing the add rule.

4.6 Comprehensions

Comprehensions were initially presented in the first rule of the SSSP program.

shortest(A, D1, P1), D1 > D2, relax(A, D2, P2)
-o shortest(A, D2, P2), {B, W | !edge(A, B, W) | relax(B, D2 + W, P2 ++ [B])}.

The attentive reader will remember that comprehensions are sub-rules, there-
fore they should be compiled like normal rules. However, they do not need to
return due to rule priorities since all the combinations of the comprehension
must be derived. However, the rule itself must return if any of its comprehen-
sions has derived a fact that is used by a higher priority rule. In the case of the
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above example, the rule does not need to return since it has the highest priority
and the relax facts derived in the comprehension are all sent to other nodes.
The code for the rule is shown below:

1 for(auto it1(list("shortest").begin()); it1 != list("shortest").end(); ) {
2 fact *f1(*it1);
3 for(auto it2(list("relax").begin()); it2 != list("relax").end(); ) {
4 fact *f2(*it2);
5 if(f1->get_int(1) > f2->get_int(1)) {
6 // comprehension code
7 for(auto it3(trie("edge").begin()); it3 != trie("edge").end(); ) {
8 fact *f3(*it3);
9 fact *new_relax(new fact("relax"));

10 new_relax->set_int(1, f2->get_int(1) + f3->get_int(2));
11 new_relax->set_list(append(f2->get_list(2), list(f3->get_node(1))));
12 send_fact(new_relax, f3->get_node(1));
13 ++it3;
14 }
15 f1->set_int(1, f2->get_int(1));
16 f1->set_list(2, f2->get_list(2));
17 it2 = list("relax").erase(it2);
18 goto next;
19 }
20 ++it2;
21 }
22 ++it1;
23 next: continue;
24 }

Special care must be taken when the comprehension’s sub-rule uses the same
predicates that are derived by the main rule. Rule inference must be atomic in the
sense that after a rule matches, the comprehensions in the head of the rule can
use the facts that were present before the body of the rule was matched. Consider
a rule with n comprehensions or aggregates, where CBi and CHi are the body
and head of the comprehension/aggregate, respectively, and H represents the
fact templates found in the head of the rule. The formula used by the compiler
to detect conflicts between predicates is the following:

n⋃
i

[CBi ∩H] ∪
n⋃
i

[CBi ∩
n⋃
j

[CHj ]]

If the result of the formula is not empty, then the compiler disables optimiza-
tions for the conflicting predicates and derives the corresponding facts into the
fact buffer that are then added back into the database. Fortunately, most rules
in LM programs do not show conflicts and thus can be fully optimized.

4.7 Aggregates

Aggregates are similar to comprehensions. They are also sub-rules but a value
is accumulated for each combination of the sub-rule. After all the combinations
are inferred, a final head term is derived with the accumulated term. Consider
again the following PageRank rule:

update(A), pagerank(A, OldRank)
-o [sum => V | B | neighbor-pagerank(A, B, V) | neighbor-pagerank(A, B, V) |

pagerank(A, damp/P + (1.0 - damp) * V)].
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The variable V is initialized to 0.0 and sums all the PageRank values of the
neighbors as seen in the code below. The aggregate value is then used to update
the second argument of the initial pagerank fact.

1 for(auto it1(list("pagerank").begin()); it1 != list("pagerank").end(); ) {
2 fact *f1(*it1);
3 for(auto it2(list("update").begin()); it2 != list("update").end(); ) {
4 fact *f2(*it2);
5 double acc(0.0); // aggregate accumulator.
6 for(auto it3(list("neighbor-pagerank").begin()); it3 !=
7 list("neighbor-pagerank").end(); ) {
8 fact *f3(*it3);
9 acc += f3->get_float(2);

10 ++it3; // the sub-rule has no head since neighbor-pagerank is re-derived
11 }
12 // head of the aggregate
13 f1->set_float(1, damp / P + (1.0 - damp) * V);
14 goto next;
15 }
16 ++it1;
17 next: continue;
18 }

5 Related Work

LM shares many similarities [1] with Constraint Handling Rules (CHR) [5]. CHR
is a concurrent committed-choice constraint language used to write constraint
solvers. A CHR program is a set of rules and a set of constraints. The constraint
store can be seen as a database of facts and rules manipulate the constraint store.
Many basic optimizations used in the LM compiler such as join optimizations and
the use of different data structures for indexing facts were inspired in work done
on CHR [7]. Wuille et al. [9] have described a CHR to C compiler that follows
some of the ideas presented here and De Koninck et al. [4] showed how to compile
CHR programs with dynamic priorities into Prolog. Our work distinguishes itself
from these two works by supporting a novel combination of comprehensions,
aggregates and rule priorities. Compilation of LM programs is also novel due to
the implicit parallelism of rules, allowing for programs to be parallelized [2].

6 Experimental Results

This section presents experimental results for our compilation strategy. We com-
pare the execution speed of our new compiled code against hand-written imple-
mentations in C of the same programs. We also compare the results against
interpreted execution in order to help us understand the limitations of the com-
pilation scheme when removing the interpretation overhead.

For our experimental setup, we used a computer with a 24 (4x6) Core AMD
Opteron(tm) Processor 8425 HE @ 800 MHz with 64 GBytes of RAM memory
running the Linux kernel 3.15.10-201.fc20.x86 64. The C++ compiler used is
GCC 4.8.3 (g++) with the flags: -O3 -std=c+0x -march=x86-64. We run all
experiments 3 times and averaged the execution time.

We have implemented 5 different LM programs and their corresponding C
versions. The programs are the following:
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– Shortest Path (SP): a slightly modified version of the program presented in
Fig. 2, where the shortest distance is computed from all nodes to all nodes.

– N-Queens: the classic puzzle for placing queens on a chess board so that no
two queens threaten each other.

– Belief Propagation: a machine learning algorithm to denoise images.
– Heat Transfer: an asynchronous program that performs transfer of heat be-

tween nodes.
– MiniMax: the AI algorithm for selecting the best player move in a Tic-Tac-

Toe game. The initial board was augmented in order to provide a longer
running benchmark.

Table 1 presents experimental results comparing the compiled and interpreted
code versions against the C program versions. Comparisons to other systems
are shown under the Other column. Note that for some programs, we present
different program sizes shown in ascending order.

Program Size C Time (s) Compiled Interpreted Other

Shortest Path
US Airports 0.1 3.9 13.9 13.3 (python)

OCLinks 0.4 5.6 14.2 11.2 (python)
Powergrid 0.9 3.5 11.3 10.6 (python)

N-Queens

11 0.2 1.4 3.9 20.8 (python)
12 1.3 3.2 5.3 24.1 (python)
13 7.8 3.8 6.6 26.0 (python)
14 49 4.5 8.9 28.0 (python)

Belief Propagation

50 2.8 1.3 1.4 1.1 (GL)
200 51 1.3 1.4 1.1 (GL)
300 141 1.3 1.4 1.1 (GL)
400 180 1.3 1.4 1.1 (GL)

Heat Transfer
80 7.3 4.6 9.9 -
120 32 5.3 10.5 -

MiniMax - 7.3 3.2 7.1 9.3 (python)

Table 1: Experimental results comparing different programs against hand-
written versions in C. For the C versions, we show the execution time in seconds
(column C Time (s)). For the other approaches, we show the overhead ratio
compared with the corresponding C version. The overhead numbers (lower is
better) are computed by dividing the execution time of the approach on that
column by the execution time of the similar hand-written version in C.

The Shortest Path program shows good improvements from the interpreted
version, since the run time is reduced between 61% and 72%. The good perfor-
mance results come from the fact that the program performs repeated compar-
isons between integer numbers, which tend to be slower in interpreted code, and
from the fact that the program has only two rules where the shortest distance
fact is updated or kept. The distance facts are also indexed by the source node,
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which helps the code filter through the candidate distances faster. This is helpful
since the program computes the shortest distance between pairs of nodes.

N-Queens presents some scalability issues for our compilation scheme due
to the exponential increase of facts as the problem size increases. The same
behavior can be observed for the Python programs. Regarding the comparison
with the interpreted version, the compiled version reduces the interpreted run
time by almost 50% which indicates that there are more database operations in
N-Queens than in Shortest Path.

The Belief Propagation program is made of many expensive floating point
calculations. The interpreted version used external functions written in C to
implement those operations because otherwise it would be too slow. Therefore,
and since the rules tend to manipulate a small number of facts, the interpreted
and compiled versions perform about the same. This program has also the best
results which proves that the program spends a huge amount of time performing
floating point calculations. For comparison purposes, we used GraphLab [8] (GC
in the table), an efficient machine learning framework for writing parallel graph-
based machine learning algorithms in C++. GraphLab’s version of the algorithm
is slightly slower than the C version.

The Heat Transfer program also performs floating point operations but in a
much smaller scale than Belief Propagation. This is noticiable from the results
since the slowdown is much larger than Belief Propagation. The program also
needs to compute many sum aggregates, which makes the interpreted version
incur in some overhead due to the integer operations.

While all the other programs perform computations on a pre-defined set
of nodes, the MiniMax program creates the nodes of the graph dynamically.
Creating new nodes requires creating new databases which tends to take a con-
siderable fraction of the run time. However, we have seen a good reduction in
run time when compared to the interpreted version, which we think is the result
of low-level optimizations that were applied in the compiled version.

It should be noted that in these programs there is a parallelization overhead
since LM’s supporting runtime is designed to explore parallelism implicitly. For
instance, we measured a 20% overhead for N-Queens, a program that needs to
reference count many lists during run time. Fortunately, if the programmer takes
advantage of the parallel facilities of LM, she will be able to run most of these
programs faster than C by using between 2 and 4 threads.

7 Conclusions

In this paper, we have presented a compilation strategy for linear logic programs
with comprehensions, aggregates and rule priorities. Rule priorities allow the
programmer to assign priorities to rules so that higher priority rules are applied
before lower priority rules, while comprehensions and aggregates allow a more
expressive way for the programmer to iterate through the database to derive new
facts or aggregate data. To the best of our knowledge, our compilation strategy
is the first to consider programs with these three important features and the
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first efficient compilation strategy for forward-chaining linear logic programs.
We have also implemented and described important optimizations such as fact
updates and persistence checking and the importance of choosing the right data
structures for the needs of linear logic programs. Our experimental results show
that LM is competitive when compared to hand-written C programs.
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