
Batched Evaluation of Full-Sharing
Multithreaded Tabling

Miguel Areias and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

{miguel-areias,ricroc}@dcc.fc.up.pt

Abstract. Tabling is a technique that overcomes some limitations of
traditional Prolog systems in dealing with redundant sub-computations
and recursion. When tabling is combined with multithreading, we have
the best of both worlds, since we can exploit the combination of higher
declarative semantics with higher procedural control. To support this
combination, the Yap Prolog system has, at engine level, multiple de-
signs that vary from a No-Sharing design, where each thread allocates
fully private tables, to a Full-Sharing (FS) design, where threads share
the complete table space. In this work, we propose an extension to the
table space data structures, which we named Private Answer Chaining
(PAC), as way to support batched scheduling evaluation with the FS de-
sign. Batched scheduling is one of the most successful tabling scheduling
strategies, known to be useful when a tabled logic program requires an
eager propagation of answers and/or do not requires the complete set of
answers to be found. Experimental results show that PAC is a good first
approach, since with it the FS design remains quite competitive.

Keywords: Logic Programming, Multithreading, Tabling, Scheduling.

1 Introduction

Tabling [5] is a technique that overcomes some limitations of traditional Pro-
log systems in dealing with redundant sub-computations and recursion. Tabling
consists in storing intermediate answers for subgoals in a proper data structure,
called the table space, so that they can be reused when a repeated subgoal ap-
pears during the resolution process. Tabling has become a popular and successful
technique thanks to the ground-breaking work in the XSB Prolog system and
in particular in the SLG-WAM engine [10], the most successful engine of XSB.
Implementations of tabling are now widely available in systems like Yap Prolog,
B-Prolog, ALS-Prolog, Mercury, Ciao Prolog and more recently Picat.

Multithreading in Prolog is the ability to concurrently perform computa-
tions, in which each computation runs independently but shares the program
clauses. When multithreading is combined with tabling, we have the best of
both worlds, since we can exploit the combination of higher procedural con-
trol with higher declarative semantics. To the best of our knowledge, XSB [8]

and Yap [2] are the only Prolog systems that support the combination of mul-
tithreading with tabling. In this work, we will focus on Yap’s implementation,
which follows a SWI-Prolog compatible multithreading library [11]. For tabled
evaluation, a thread views its tables as private but, at the engine level, Yap has
three designs [2], which vary from a No-Sharing (NS) design, where each thread
allocates private tables for each new tabled subgoal call, to a Full-Sharing (FS)
design, where threads share the complete table space.

The decision about the evaluation flow is determined by the scheduling strat-
egy. Different strategies may have a significant impact on performance, and may
lead to a different ordering of solutions to the query goal. Arguably, the two most
successful tabling scheduling strategies are local scheduling and batched schedul-
ing [6]. Local scheduling tries to complete subgoals as soon as possible. When
new answers are found, they are added to the table space and the evaluation
fails. Local scheduling has the advantage of minimizing the size of clusters of
dependent subgoals, however it delays propagation of answers and requires the
complete evaluation of the search space.

Batched scheduling favors forward execution first, backtracking next, and
consuming answers or completion last. It thus tries to delay the need to move
around the search tree by batching the return of answers to repeated subgoals.
When new answers are found for a particular tabled subgoal, they are added
to the table space and the evaluation continues. Batched scheduling can be an
useful strategy in tabled logic programs that require an eager propagation of
answers and/or do not require the complete set of answers to be found.

With the FS design, all tables are shared. Thus, since several threads can
be inserting answers in the same table, when an answer already exists, it is not
possible to determine if the answer is new or repeated for a particular thread
without further support. For local scheduling, this is not a problem since, for
repeated and new answers, local scheduling always fails. The problem is with
batched scheduling that requires that only the repeated answers should fail.
Threads have then to detect, during batched evaluation, whether an answer is
new and must be propagated or whether an answer is repeated and the evaluation
should fail.

In this work, we propose an extension to the table space data structures,
which we named Private Answer Chaining (PAC), as a way to keep track, per
thread and subgoal call, of the answers that were already found and propagated.
We discuss in detail our proposal for extending the FS design with batched
scheduling and we present a performance analysis comparison between local
and batched scheduling. Experimental results show that, despite the extra PAC
data structures required to support batched scheduling with the FS design, the
execution time of the combination is still quite competitive.

The remainder of the paper is organized as follows. First, we briefly intro-
duce some background and related work. Then, we describe our PAC approach
and we discuss the most important implementation details. Finally, we present
experimental results and we end by outlining some conclusions.

2 Background

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for tabled subgoals in an appropriate data space, called the
table space. Repeated calls1 to tabled subgoals are not re-evaluated against the
program clauses, instead they are resolved by consuming the answers already
stored in their table entries. During this process, as further new answers are
found, they are stored in their tables and later returned to all repeated calls.

Subgoal
Frame
call_i

Answer
Trie

Structure

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_j

Answer
Trie

Structure

. . .

Fig. 1. Table space organization

Figure 1 shows Yap’s table space organiza-
tion. At the entry point we have the table entry
data structure. This structure is allocated when
a tabled predicate is being compiled, so that a
pointer to the table entry can be included in its
compiled code. This guarantees that further calls
to the predicate will access the table space start-
ing from the same point. Below the table entry,
we have the subgoal trie structure. Each different
tabled subgoal call to the predicate at hand cor-
responds to a unique path through the subgoal
trie structure, always starting from the table en-
try, passing by several subgoal trie data units,
the subgoal trie nodes, and reaching a leaf data
structure, the subgoal frame. The subgoal frame
stores additional information about the subgoal
and acts like an entry point to the answer trie
structure. Each unique path through the answer trie data units, the answer trie
nodes, corresponds to a different answer to the entry subgoal.

2.1 Yap’s Multithreaded Tabling Support

In Yap, a thread views its tables as private but, at the engine level, it implements
three designs for concurrent tabling support that vary from a No-Sharing (NS)
design, where each thread allocates fully private tables, to a Full-Sharing (FS)
design, where threads share the complete table space. Figure 2 shows Yap’s
multithreaded table space organization for the NS and FS designs, where an
interface layer abstracts the design being used at the engine level. The figure
illustrates the main differences between the two designs for a situation where
several threads are evaluating the same tabled subgoal call call i.

When using the NS design, one can observe that the table entry data struc-
ture still stores the common information for the predicate (such as the arity or
the scheduling strategy), and then each thread t has its own cell Tt inside a
bucket array which points to the private data structures.

1 We are considering variant-based tabling [9]. Two tabled subgoals A and B are vari-
ants if they can be made identical by variable renaming. For example, p(X,1,Y) and
p(Y,1,Z) are variants because both can be transformed into p(VAR0,1,VAR1).

No-Sharing (NS)

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Trie

Structure

Full-Sharing (FS)

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

Thread
T

ABSTRACTION LAYER

Sg_Entry Sg_Entry

. . .
0

Thread
T1

Thread

. . .T0 T1 Tk-2 Tk-1

Table Entry

Answer
Trie

Structure

Subgoal
Frame
call_i

Subgoal
Trie

Structure . . .T0 T1 Tk-2 Tk-1

Subgoal Entry call_i

Tk-2

Thread
Tk-1

Fig. 2. Yap’s multithreaded table space organization for the NS and FS designs

When using the FS design, the subgoal and answer trie structures and part of
the subgoal frame (the subgoal entry data structure in Fig. 2) are shared among
all threads. The previous subgoal frame data structure was split in two: the
subgoal entry stores common information for the subgoal call (such as the pointer
to the shared answer trie structure); the remaining information is kept private
to each thread in the subgoal frame data structure. To support concurrency
within the subgoal/answer tries, the FS design supports lock-based and lock-
free approaches. A comparison between both approaches can be found in [3].

2.2 Scheduling Strategies

Local scheduling evaluates a tabled logic program in a breath-first manner. It fa-
vors backtracking first with completion instead of forward execution, leaving the
consumption of answers for last. Local scheduling only allows a Cluster of De-
pendent Subgoals (CDS) to return answers after a fix-point has been reached [6].
In other words, local scheduling tries to keep a CDS as minimal as possible, thus
creating less complex dependencies between subgoals, which causes a sooner
completion of subgoals.

On the other hand, batched scheduling evaluates a tabled logic program in
a depth-first manner. It favors forward execution first instead of backtracking,
leaving the consumption of answers and completion for last. It thus tries to delay
the need to move around the search tree by batching the return of answers. When
new answers are found for a particular tabled subgoal, they are added to the

table space and the execution continues. For some situations, this results in
creating dependencies to older subgoals, therefore enlarging the current CDS
and delaying the fix-point that guarantees that all dependent subgoals in a CDS
are completely evaluated [10]. Batched scheduling can be an useful strategy in
tabled logic programs that require an eager propagation of answers and/or do
not require the complete set of answers to be found.

3 Extending Full-Sharing with Batched Scheduling

Full-Sharing (FS)

Subgoal
Frame
call_i

Table Entry

Subgoal Trie Structure

Table Entry

Subgoal
Frame
call_i

Answer
Trie

Structure

Sg_Entry Sg_Entry

. . .T0 T1 Tk-2 Tk-1

Subgoal Entry call_i

Answer
Representation

Answer
Propagation

Fig. 3. PAC overview

In this section, we describe our pro-
posal to support the combination of
batched scheduling with the FS de-
sign. In the original FS design, an-
swer propagation and answer repre-
sentation are both stored in the an-
swer trie data structure, thus threads
are unable to distinguish whether they
have or not have propagated an answer
already stored in the table space. To
solve that, we propose an extension to
the table space data structures, which
we named Private Answer Chaining
(PAC), as a way to keep track, per
thread and subgoal call, of the answers
that were already found and propa-
gated to the thread’s repeated calls.
Figure 3 illustrates PAC’s key idea. In
a nutshell, PAC splits answer propaga-
tion from answer representation, and allows the first to be privately stored in the
subgoal frame data structure of each thread, and the second to be kept publicly
shared among threads in the answer trie data structure.

3.1 Our Approach

The PAC procedure works at the subgoal frame level. The key idea is to extend
subgoal frames with an auxiliary private chaining of answers for each subgoal
call, in order to keep track of the answers already found for the call. Later, if a
thread completes a subgoal’s evaluation, i.e, if the subgoal’s table is marked as
complete, its PAC is made public, so that from that point on all threads can use
that chain in complete (only reading) mode. Figure 4 illustrates the new data
structures involved in the implementation of our PAC’s proposal for a situation
where different threads are evaluating the same tabled subgoal call call i.

Figure 4(a) shows then a situation where two threads, T1 and Tk−2, are
sharing the same subgoal entry for a call call i still under evaluation, i.e., still
not yet completed. The current state of the evaluation shows an answer trie with

Subgoal Entry call_i

Answers

. . .T0 T1 Tk-2 Tk-1

Subgoal
Frame
call_i

Subgoal
Frame
call_i

AT

LN3 LN2 LN1

Answers

AN3

AN2

AN1AN1

(a)

Answers

Answer Trie

Subgoal Entry call_i

Answers

. . .T0 T1 Tk-2 Tk-1

Subgoal
Frame
call_i

Subgoal
Frame
call_i

AT

LN3 LN2 LN1

Answers

Answers

Answer Trie

(b)

Fig. 4. PAC’s data structures for (a) private and (b) public chaining

3 answers found for call i. For the sake of simplicity, we are omitting the internal
answer trie nodes and we are only showing the leaf nodes LN1, LN2 and LN3

of each answer.
With PAC support, the leaf nodes are not chained in the answer trie data

structure, as usual. Now, the chaining process is done privately, and for that, we
use the subgoal frame structure of each thread. On the subgoal frame structure
we added a new field, called Answers, to store the answers found within the
execution of the thread. In order to minimize PAC’s impact, each answer node in
the private chaining has only two fields: (i) an entry pointer, which points to the
corresponding leaf node in the answer trie data structure; and (ii) a next pointer
to chain the nodes in the private chaining. To maintain good performance, when

the number of answer nodes exceeds a certain threshold, we use a hash trie
mechanism design similar to the one presented in [4], but without concurrency
support, since this mechanism is private to each thread.

PAC’s data structures in Fig. 4(a) represent then two different situations.
Thread T1 has only found one answer and it is using a direct answer chaining
to access the leaf node LN1. Thread Tk−2 was already found three answers for
call i and it is using the hash trie mechanism within its private chaining. In
the hash trie mechanism, the answer nodes are still chained between themselves,
thus that repeated calls belonging to thread Tk−2 can consume the answers as
in the original mechanism.

Figure 4(b) shows the state of the subgoal call after completion. When a
thread T completes a subgoal call, it frees its private consumer structures, but
before doing that, it checks whether another thread as already marked the sub-
goal as completed. If no other thread has done that, then thread T not only
follows its private chaining mechanism, as it would for freeing its private nodes,
but also follows the pointers to the answer trie leaf nodes in order to create a
chain inside the answer trie. Since this procedure is done inside a critical region,
no more than one thread can be doing this chaining process. Thus, in Fig. 4(b),
we are showing the situation where the subgoal call call i is completed and both
threads T1 and Tk−2 have already chained the leaf nodes inside the answer trie
and removed their private chaining structures.

3.2 Implementations Details

The major difference between local and batched scheduling, at the engine level,
is in the tabled new answer operation, where we decide what to do when a
new answer is found during the evaluation. This operation checks whether a
newly found answer is already in the corresponding answer trie structure and, if
not, inserts it. For local scheduling, it then fails and, for batched scheduling, it
proceeds with forward execution. Algorithm 1 shows how we have extended this
operation to support the FS design with batched scheduling.

The algorithm receives two arguments: the newly found answer during the
evaluation (ANS) and the subgoal frame which corresponds to the call at hand
(SF). The algorithm begins by checking/inserting the given ANS into the answer
trie structure, which will return the leaf node for the path representing ANS (line
1). Then, it checks/inserts the given leaf node into the private chaining for the
current thread, which will return the corresponding answer chain node (line 2).
Next in line 3, it tests whether the answer chain node already existed in the
chain, i.e., if it was inserted or not by the current check/insert operation in
order to return failure (line 4), or it proceeds with marking the answer ANS has
found (line 6). At the end (lines 7 to 10), it returns failure, if local scheduling
is active (line 8), otherwise, batched scheduling is active, and it proceeds by
propagating the answer ANS to the current execution environment (line 10).

Algorithm 1 tabled new answer(answer ANS, subgoal frame SF)
1: leaf ← check insert answer trie(ANS, SF)
2: chain← check insert consumer chain(leaf, SF)
3: if is answer marked as found(chain) then
4: return failure
5: else {the answer is new}
6: mark answer as found(chain)
7: if local scheduling mode(SF) then
8: return failure
9: else {batched scheduling mode}

10: return proceed

4 Experimental Results

We now present experimental results about the usage of PAC in the FS design
with batched scheduling. The environment for our experiments was a machine
with 32-Core AMD Opteron (TM) Processor 6274 (2 sockets with 16 cores each)
with 32GB of main memory, running the Linux kernel 3.16.7-200.fc20.x86 64
with Yap Prolog 6.3.

4.1 Benchmark Programs

For the experiments, we used the TabMalloc memory allocator [1] and five sets
of benchmarks that create worst case scenarios, where we are able to show the
lowest bounds of performance that each design might achieve when applied/used
in other real world applications/programs. The Large Joins and WordNet sets
were obtained from the OpenRuleBench project [7]; the Model Checking set
includes three different specifications and transition relation graphs usually used
in model checking applications; the Path Left and Path Right sets implement
two recursive definitions of the well-known path/2 predicate, that computes the
transitive closure in a graph, using several different configurations of edge/2 facts
(Fig. 5 shows an example for each configuration). We experimented the BTree
configuration with depth 17, the Pyramid and Cycle configurations with depth
2000 and the Grid configuration with depth 35.

In order to have a deeper insight on the behavior of each benchmark, and
therefore clarify some of the results that are presented next, we first characterize
the benchmarks. The columns in Table 1 have the following meaning:

– calls: is the number of different calls to tabled subgoals. It corresponds to
the number of paths in the subgoal tries.

– trie nodes: is the total number of trie nodes allocated in the corresponding
subgoal/answer trie structures.

– trie depth: is the minimum/average/maximum number of trie nodes re-
quired to represent a path in the corresponding subgoal/answer trie struc-
tures. Trie structures with smaller average depth values are more amenable
to higher contention.

Cycle
(depth 4)

Grid
(depth 4)

Pyramid
(depth 4)

BTree
(depth 2)

Fig. 5. Edge configurations for the path benchmarks

– unique: is the number of different tabled answers found. It corresponds to
the number of paths in the answer tries.

– repeated: is the number of redundant tabled answers found.

By observing Table 1, the Mondial benchmark, from the Large Joins set,
and the three Model Checking benchmarks seem to be the benchmarks least
amenable to contention since they are the ones that find less unique answers
and that have the deepest trie structures. In this regard, the Path Left and
Path Right sets correspond to the opposite case. They find a huge number of
answers and have very shallow trie structures. On the other hand, the WordNet
and Path Right sets have the benchmarks with the largest number of different
subgoal calls, which can reduce the probability of contention because answers
can be found for different subgoal calls and therefore be inserted with minimum
overlap. On the opposite side are the Join2 benchmark, from the Large Joins
set, and the Path Left benchmarks, which have only a single tabled subgoal call.

4.2 Performance Analysis

We present now the performance analysis about the usage of PAC in the FS de-
sign with batched scheduling. To support concurrency within the subgoal/answer
tries, the FS design is using the lock-free hash trie design presented in [3]. Since
without PAC the FS design would not be able to be used with batched schedul-
ing, to put PAC’s results in perspective, we will be showing also the results for
local scheduling and for the NS design.

Table 2 shows the overhead ratios for the five sets of benchmarks, when com-
paring against the NS design with 1 thread (running with local scheduling and
without TabMalloc), for the NS and FS designs with 1, 8, 16, 24 and 32 threads,
using local scheduling (column Local) and batched scheduling (column Batched)
strategies with TabMalloc. In order to give a fair weight to each benchmark,
the overhead ratio is calculated as follows. We begin by running 10 times each
benchmark B for each design D with T threads. Then, we calculate the average
of those ten runs and use that value (DBT) to put it in perspective against the
base time, which is the average of 10 runs of the NS design with 1 thread (NSB1).
For that, we use the following formula for the overhead ODBT = DBT /NSB1.

Table 1. Characteristics of the benchmark programs

Bench
Tabled Subgoals Tabled Answers

calls trie nodes trie depth unique repeated trie nodes trie depth

Large Joins
Join2 1 6 5/5/5 2,476,099 0 2,613,660 5/5/5
Mondial 35 42 3/4/4 2,664 2,452,890 14,334 6/7/7

WordNet
Clusters 117,659 235,319 2/2/2 166,877 161,853 284,536 1/1/1
Hypo 117,657 117,659 2/2/2 698,472 20,341 816,129 1/1/1
Holo 117,657 235,315 2/2/2 74,838 54 192,495 1/1/1
Hyper 117,657 235,315 2/2/2 698,472 8,658 816,129 1/1/1
Tropo 117,657 235,315 2/2/2 472 0 118,129 1/1/1
Mero 117,657 117,659 2/2/2 74,838 13 192,495 1/1/1

Model Checking
IProto 1 6 5/5/5 134,361 385,423 1,554,896 4/51/67
Leader 1 5 4/4/4 1,728 574,786 41,788 15/80/97
Sieve 1 7 6/6/6 380 1,386,181 8,624 21/53/58

Path Left
BTree 1 3 2/2/2 1,966,082 0 2,031,618 2/2/2
Pyramid 1 3 2/2/2 3,374,250 1,124,250 3,377,250 2/2/2
Cycle 1 3 2/2/2 4,000,000 2,000 4,002,001 2/2/2
Grid 1 3 2/2/2 1,500,625 4,335,135 1,501,851 2/2/2

Path Right
BTree 131,071 262,143 2/2/2 3,801,094 0 3,997,700 1/2/2
Pyramid 3,000 6,001 2/2/2 6,745,501 2,247,001 6,751,500 1/2/2
Cycle 2,001 4,003 2/2/2 8,000,000 4,000 8,004,001 1/2/2
Grid 1,226 2,453 2/2/2 3,001,250 8,670,270 3,003,701 1/2/2

After calculating all the overheads ODBT for a certain design D and number of
threads T corresponding to the several benchmarks B, we calculate the respec-
tive minimum, average, maximum and standard deviation overhead ratios (rows
Min, Avg, Max and StD in Table 2).

By observing Table 2, we can see that batched scheduling always achieves the
best minimum overhead ratio in the FS design but, for the average and maximum
overhead ratios, the best strategy is always local scheduling. For the average and
maximum overhead ratios, the difference between local and batched scheduling
in the FS design is slightly higher than in the NS design, which can be read as an
indication of the overhead that PAC introduces into the FS design. Recall that
whenever an answer is found during the evaluation, PAC requires that threads
traverse their private consumer data structures to check if the answer was already
found (and propagated).

As we increase the number of threads, for the NS design, both scheduling
strategies show very close minimum, average and maximum overhead ratios.
For the FS design, the differences are slightly higher. However, for the average
overhead ratio, the results between both strategies are quite close, with batched
scheduling being around 10% slower than local scheduling for the FS design.
In summary, our experimental results show that, on average, the PAC strategy

Table 2. Overhead ratios, when compared with the NS design with 1 thread (running
with local scheduling and without TabMalloc) for the NS and FS designs (with Tab-
Malloc) when running 1, 8, 16, 24 and 32 threads with local and batched scheduling
(best ratios by row and design for the Minimum, Average and Maximum are in bold)

Threads
NS FS

Local Batched Local Batched

1

Min 0.53 0.55 1.01 0.95
Avg 0.78 0.82 1.30 1.46
Max 1.06 1.05 1.76 2.33
StD 0.15 0.14 0.22 0.44

8

Min 0.66 0.63 1.16 0.99
Avg 0.85 0.88 1.88 1.95
Max 1.12 1.14 2.82 3.49
StD 0.13 0.14 0.60 0.79

16

Min 0.85 0.75 1.17 1.06
Avg 0.98 1.00 1.97 2.08
Max 1.16 1.31 3.14 3.69
StD 0.09 0.17 0.65 0.83

24

Min 0.91 0.93 1.16 1.09
Avg 1.15 1.16 2.06 2.19
Max 1.72 1.60 3.49 4.08
StD 0.20 0.21 0.70 0.91

32

Min 1.05 1.04 1.33 1.26
Avg 1.51 1.49 2.24 2.41
Max 2.52 2.63 3.71 4.51
StD 0.45 0.45 0.74 1.02

does not seem to have a big impact in the performance, however it still leaves
room for further improvements, since the difference between local and batched
scheduling is higher in the FS design than in the NS design.

5 Conclusions and Further Work

Local and batched scheduling are arguably two of the most well-known tabling
scheduling strategies. The major difference between both is that local scheduling
propagates answers only after all answers are found, while batched scheduling
propagates answers immediately after they are found. Batched scheduling is a
useful strategy in tabled logic programs that require an eager propagation of
answers and/or do not require the complete set of answers to be found. In this
work, we have presented the PAC strategy, which is a simple and novel approach
for combining the FS design with batched scheduling. PAC splits answer rep-
resentation from answer propagation, and allows the first to be publicly shared
among threads while the second to be private to each thread.

Experimental results in worst-case scenarios showed that, on average, the
PAC strategy does not seem to have a big impact in the performance, however

it still leaves room for further improvements specially in the extra structures
required to control the propagated answers. Further work will include the usage
of time-stamped tries to minimize the search for the propagated answers and new
real-world problems that will allow us to improve and consolidate our framework.

Acknowledgments

This work is partially funded by the North Portugal Regional Operational Pro-
gramme (ON.2 – O Novo Norte) and by the National Strategic Reference Frame-
work (NSRF), through the European Regional Development Fund (ERDF) and
the Portuguese Foundation for Science and Technology (FCT), within projects
NORTE-07-0124-FEDER-000059 and UID/EEA/50014/2013.

References

1. Areias, M., Rocha, R.: An Efficient and Scalable Memory Allocator for Multi-
threaded Tabled Evaluation of Logic Programs. In: International Conference on
Parallel and Distributed Systems. pp. 636–643. IEEE Computer Society (2012)

2. Areias, M., Rocha, R.: Towards Multi-Threaded Local Tabling Using a Common
Table Space. Journal of Theory and Practice of Logic Programming 12(4 & 5),
427–443 (2012)

3. Areias, M., Rocha, R.: A Simple and Efficient Lock-Free Hash Trie Design for
Concurrent Tabling. In: Technical Communications of the International Conference
on Logic Programming (2014)

4. Areias, M., Rocha, R.: A lock-free hash trie design for concurrent tabled logic
programs. International Journal of Parallel Programming pp. 1–21 (2015)

5. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1), 20–74 (1996)

6. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic
Programs through Alternative Scheduling Strategies. In: International Symposium
on Programming Language Implementation and Logic Programming. pp. 243–258.
No. 1140 in LNCS, Springer (1996)

7. Liang, S., P.Fodor, Wan, H., M.Kifer: OpenRuleBench: An Analysis of the Per-
formance of Rule Engines. In: Internacional World Wide Web Conference. pp.
601–610. ACM (2009)

8. Marques, R., Swift, T.: Concurrent and Local Evaluation of Normal Programs. In:
International Conference on Logic Programming. pp. 206–222. No. 5366 in LNCS,
Springer (2008)

9. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38(1), 31–
54 (1999)

10. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20(3), 586–634 (1998)

11. Wielemaker, J.: Native Preemptive Threads in SWI-Prolog. In: International Con-
ference on Logic Programming. pp. 331–345. No. 2916 in LNCS, Springer (2003)

