
Estimation-Based Search Space Traversal
in PILP Environments

Joana Côrte-Real, Inês Dutra, and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{jcr,ines,ricroc}@dcc.fc.up.pt

Abstract. Probabilistic Inductive Logic Programming (PILP) systems ex-
tend ILP by allowing the world to be represented using probabilistic facts
and rules, and by learning probabilistic theories that can be used to make
predictions. However, such systems can be inefficient both due to the
large search space inherited from the ILP algorithm and to the probabilis-
tic evaluation needed whenever a new candidate theory is generated. To
address the latter issue, this work introduces probability estimators aimed
at improving the efficiency of PILP systems. An estimator can avoid the
computational cost of probabilistic theory evaluation by providing an es-
timate of the value of the combination of two subtheories. Experiments are
performed on three real-world datasets of different areas (biology, medi-
cal and web-based) and show that, by reducing the number of theories to
be evaluated, the estimators can significantly shorten the execution time
without losing probabilistic accuracy.

1 Introduction

Probabilistic Inductive Logic Programming (PILP) [4] is an extension of the ILP
paradigm that can represent knowledge using probabilistic facts and rules and
which learns, as a result, probabilistic theories that can be used for prediction.
Introducing probabilistic information in ILP to create PILP can be used to (i)
create better logical models that can take uncertainty into account; (ii) implicitly
reduce the theory search space by transforming numerical arguments in anno-
tated probabilistic data; (iii) compress data by representing it as aggregates; or
(iv) add knowledge from the literature in the form of probabilistic information.
PILP can be seen as a Statistical Relational Learning approach (SRL) [4] and,
in this setting, both parameter and structure learning are possible. However,
it is more common for SRL techniques to learn parameters, and only few SRL
methods can learn structure, or both. PILP differs from other SRL techniques
because it focuses primarily on structure learning over relational data that is
already annotated with probabilistic values.

PILP suffers from the same search space traversal efficiency issues as ILP
because similar algorithms are used to generate the logical part of the theories.
Additionally, PILP adds a level of complexity because every new theory gen-
erated needs to be probabilistically evaluated in order to be considered. This



2

work presents a strategy aimed at improving the performance of PILP systems
through the use of estimators that can prune the universe of candidate theo-
ries and, thus, reduce the search space. These estimators were integrated in the
SkILL system [2], but the concepts are general to any PILP engine.

SkILL is a stochastic inductive logic learner which can generate First-Order
Logic (FOL) theories based on a database of probabilistic data. These theories are
expressed as Horn clauses (a subset of FOL) and so they can be used to extract
relational non-trivial knowledge about the dataset where they are inferred from.
SkILL differs from other PILP systems such as ProbFOIL+ [3] or SLIPCOVER [1]
because it introduces an algorithm of polynomially bound complexity on user-
defined parameters, as well as a number of efficient pruning strategies that can
reduce execution time while maintaining prediction quality.

To the best of the authors’ knowledge, the notion of an estimator is a novel
feature in PILP systems. In this work, five estimators that can be incorporated
in the estimation pruning strategy are proposed, namely minimum, maximum,
center, independence and exclusion. To validate this estimation-based search space
traversal approach, a thorough experimental analysis of the impact that each es-
timator has on the execution time and theory quality is presented. Experiments
are performed in three probabilistic datasets, and the models are validated us-
ing hold-out resampling or leave-one-out cross-validation techniques. Results
show that estimators can significantly prune the search space, and thus, re-
duce execution time, while maintaining the same probabilistic accuracy when
compared with using no estimation pruning.

2 Related Work

According to Getoor et al. [8], relational data introduces the machine learning
problem of class-level frequency estimation: building a model that can answer
generic statistical queries about classes of individuals in a database. This is
opposed to instance-level frequency estimation, where one is interested in the
probability of a particular instance. In a first-order logic representation, the first
type of estimation would be described with first-order formulas with variables,
while the second type would be described with first-order formulas with con-
stants (ground terms). There has been a whole body of research on modeling
relational data using various kinds of representations, inference systems, and
learning techniques (parameters and structure) [7].

There are many probabilistic languages that can represent and perform infer-
ence with probabilities, such as SLP [12], BLP [9], CLP(BN) [15], ProbLog [10],
MLN [14], Prism [16], among others (for a recent survey of probabilistic logic
languages see [5]). Probabilistic logic languages have been around for over
20 years [5]. They differ in the way they extend logic to include probabilities
(class-level or instance-level), in their syntax, in the kind of uncertainty that is
represented (probabilities, weights or potential functions), and in their infer-
ence algorithms. However, there are few works in the probabilistic logic field



3

dedicated to learning the structure of classifiers using a human-readable prob-
abilistic representation for knowledge.

An example of a system that uses logic to learn from probabilistic represen-
tations is MLN, where the learning algorithm is ILP-based and uncertainty is
represented as potential functions [11]. Several methods of inference can be used
and the models learnt are first-order logic formulas with potential scores. An-
other ILP-based example is Natarajan et al.’s boosting approach [13], which uses
regression trees to learn the model structure faster. Furthermore, some works
in the literature allow the representation of probabilistic logic using Bayesian
networks. This is the case of Schulte et al.’s PBN (Parametrized Bayesian Net-
works) [17]. PBN is a first-order logic extension of Bayesian networks, where
nodes are represented as a first-order term with a variable.

This work’s focus is on probabilistic inductive logic programming (PILP) sys-
tems. These systems use as basis a probabilistic logic language to learn (prob-
abilistic) theories. This work follows the syntax and inference mechanism of
ProbLog [10], and uses it to represent the datasets and to learn first-order (prob-
abilistic) theories. ProbLog is an extension of Prolog, whose syntax is modified
to take into account class-level and instance-level probabilities, and annotated
disjunctions. Uncertainty is, thus, represented as probabilities.

There are several PILP approaches mentioned in the literature, such as Prob-
FOIL/ProbFOIL+ [3], SLIPCOVER [1] and SkILL [2]. ProbFOIL+ is a PILP system
that can tune the prediction of a theory by finding a weight for each rule in that
theory. ProbFOIL+ algorithm computes the best weight whenever a rule is be-
ing added to the theory and then integrates it in the theory. This can be seen
as a form of boosting, since the importance of each rule in the theory is being
adjusted, even though the possibility for adjustment is limited (the weight must
be between 0 and 1). SLIPCOVER introduces the new ability to perform gener-
ative learning in the search space. SLIPCOVER still requires a target predicate,
but it also gathers a set of good theories which can explain predicates from
the BK other than the target predicate – this process can be viewed as a form
of deep learning, since these intermediate theories will be used to explain the
target predicate. SkILL is a PILP system which introduces an algorithm of poly-
nomially bound complexity on user-defined parameters, as well as a number
of efficient pruning strategies that can reduce execution time while maintaining
prediction quality. A comparison between SkILL, ProbFOIL+ and an ILP system
can be found in [2].

3 Background

PILP extends the ILP setting by introducing Probabilistic Background Knowl-
edge (PBK), where FOL data descriptions can be annotated with a probability
value ranging from 0 to 1, and Probabilistic Examples (PE), no longer positive
or negative, also with a value ranging between 0 and 1. Because PILP theories
are still generated based on the logical information of the data, the ILP language
bias translates directly to PILP. The process of generating theories also mimics



4

ILP, since they are based on the logical clauses in the PBK. Therefore the search
space algorithm of PILP has the same efficiency issues of ILP’s. Furthermore,
PILP adds an extra level of complexity due to the probabilistic evaluation of
theories w.r.t. the examples. The background knowledge can be composed of
(Horn) clauses, which can be facts or definite clauses Definite clauses are com-
posed of a head and a body, and the body represents the explanation for the
head. Facts and definite clauses’ heads are examples of literals that ILP and PILP
use to build rules.

As mentioned before, in this work, probabilities are annotated according to
ProbLog’s syntax [10]. Each clause p j :: c j in the PBK represents an independent
binary random variable in ProbLog, meaning that it can either be true with
probability p j or false with probability 1 − p j. Each set of possible choices over
all clauses of the PBK represents a possible worldωi, whereω+

i is the set of clauses
that are true in that particular world, and ω−i = ωi \ ω+

i is the set of clauses that
are false. Since these clauses have a probabilistic value, a ProbLog program
defining a probabilistic distribution over the possible worlds can be formalized
as shown in Equation 1. A ProbLog query q is said to be true in all worlds wq

where wq
|= q, and false in all other worlds. As such, the success probability of a

query is given by the sum of the probabilities of all worlds where it is found to
be true, as denoted in Equation 2.

P(ωi) =
∏

c j∈ω
+
i

p j

∏
c j∈ω

−

i

(1 − p j) (1) P(q) =
∑
ωi |=q

P(ωi) (2)

One important difference between ILP and PILP lies in the assessment of the
fitness of theories – in PILP the loss function must be able to evaluate probabilistic
inputs. As such, the aim of PILP systems is to find theories which most closely
predict the value of the examples (also ranging between 0 and 1), or rather that
minimize the error between predictions and the examples’ values.

Theories can be formed either by a single rule (clause) or by a set of rules
(where the clauses are mutually disjunctive). The length of a theory is equal to
the number of rules it contains. In SkILL, theories can be combined using either
the AND or the OR operation, which correspond to the logical conjunction
and disjunction of the rules in the theories, respectively. In the case of the
AND operation, only single rules (theories of length one) can be combined,
and the result is another theory of length one (e.g. combining theories t(X):–
p(X) and t(X):– q(X,Y) using the AND operation would result in theory t(X):–
p(X), q(X,Y))1. Conversely, theories of any length can be combined using the OR
operation, and the resulting theory’s length is equal to the sum of the lengths
of the combined theories (e.g. combining theories of length one t(X):– r(X) and
t(X):– s(X,Y) using the OR operation would result in theory t(X):– r(X) ; s(X,Y)
of length 2).

1 The unification of variables between the literals is obtained from the specified language
bias.



5

SkILL’s algorithm is composed of two main steps: (i) building theories of
length one (single rules) using the AND operation, and (ii) building theories
of length greater than one using the OR operation. In step (i), single rules of
increasing number of literals are built from the mode declarations using the
AND operation. Adding literals to a rule in conjunction makes the resulting
rule more specific. Once all possible rules are built and evaluated, the algorithm
proceeds to step (ii) using the OR operation to combine single rules (theories of
length one) into theories of greater length, up to a maximum length. By adding
rules to a theory in disjunction, the resulting theory becomes more general.

In order to assess a theory’s fitness, its exact probabilistic value for each
example must be computed, so that the theory is evaluated exactly. This process
can be very time consuming, since the evaluation process must consider all
possible worlds where the theory may be true. For a small number of facts in
the PBK this is not a problem, but exact computation grows exponentially as
the size of the PBK is increased. Consider the process of evaluating exactly the
theory t(X):– p(X), q(X,Y). ProbLog would need to compute all possible worlds
for this theory in order to assess the overall error of the theory’s predictions
against the examples. Whether the theory is stored for further combinations or
discarded after the evaluation stage, the system has already spent a considerable
amount of time just to evaluate it.

To mitigate this problem, this work introduces the estimation pruning strat-
egy, which can discard theories based on their previously evaluated subparts.
For instance, suppose that theories t(X):– p(X) and t(X):– q(X,Y) had already
been evaluated – in that case, it is possible to make an estimation of the value
of t(X):– p(X), q(X,Y) based on this information. Thus, estimation pruning con-
sists of ruling out theories that have poor estimations and exactly evaluating
theories that have good estimations. In SkILL, the decision on whether a theory
is discarded is made based on one of two criteria: soft pruning or hard pruning.
After the initial step of estimating the values for each example, the estimated
value’s usefulness is assessed according to one of these criteria. Note that the
criteria are directly applicable to the estimated probabilistic values in lieu of the
exact predictions of a theory. The combination is then pruned away if it is found
to be useless. Conversely, if the combination is considered useful, then exact
probabilistic evaluation is performed and the theory and its exact evaluation
are saved for the next iteration.

4 Estimation Pruning

Estimation pruning consists of estimating the predictions of two theories com-
bined based on the individual predictions of each theory. Estimation pruning
excludes combinations of theories whose estimated predictions suggest that the
resulting theory will be too specific (for the AND operation) or too general (for
the OR operation). This process is somehow similar to the evaluation of theo-
ries in ILP. For instance, the more specific theory ts will not cover more positive
examples than a more general theory tg and so it can be discarded.



6

Table 1. Expressions used to calculate estimations

Operation minimum maximum center independence exclusion

AND max(0,A + B − 1) min(A,B) 1
2 (min(A,B) + max(0,A + B − 1)) A × B max(0,A + B − 1)

OR max(A,B) min(A + B, 1) 1
2 (max(A,B) + min(A + B, 1) A + B − A × B min(A + B, 1)

In the PILP setting, the exact probabilistic evaluation of a theory corresponds
to the weighted proportion of worlds where the theory is true. The probabilistic
value for an example e using a theory t is given by determining in how many
worlds (of all possible worlds in the PBK) t(e) is true. The challenge in estimating
the value of a probabilistic evaluation knowing the values of the theories being
combined lies in the fact that the amount of overlapping of the sets of worlds cor-
responding to those two theories is unknown before evaluation. If two theories
are mutually exclusive (or disjoint) w.r.t. the PBK, then their overlap is null. On
the other hand, if a theory is more specific than another, the former will cover
a subset of the worlds covered by the latter. Theories can also be independent,
meaning that the probability that one theory is true in a world does not change
the probability that another theory is also true in that world.

Despite this uncertainty, it is possible to calculate the interval where the
predictions of a combination of two theories will be (this is depicted in Fig. 1 as
a shaded area). The lower and upper bounds of the interval are determined by
the predictions of the theories that are being combined (t1 and t2 in Fig. 1(a)2).
Depending on where the resulting theory t will lie in the interval, the (vertical)
distance between t’s values and the example values (squares in Fig. 1) will vary,
and as t converges to the examples, its prediction quality is improved.

This work presents five estimators that can be used to estimate the value of
theories, namely: minimum, maximum, center, independence and exclusion. These
estimators predict different sets of values inside the estimation interval, based
on different set theory cases. The minimum and maximum estimators correspond
to the lower and upper boundaries of the estimation interval (min and max
estimators in Fig. 1, respectively). The center estimator (ctr in Fig. 1) is the
center of the estimation interval (halfway between minimum and maximum).
The independence estimator (ind in Fig. 1) assumes that theories t1 and t2 are
independent and calculates the values of their combination accordingly. The
exclusion estimator (not depicted in Fig. 1) assumes that the theories t1 and
t2 are as exclusive as possible. In the AND operation, the exclusion estimator is
equal to the minimum estimator, since when two theories are mutually exclusive,
their amount of overlap is minimum. The first row in Table 1 summarizes the
expressions used to calculate these estimations.

After calculating an estimation for the combination of theories t1 and t2, it is
necessary to decide, based on the estimation, whether the combination of theo-
ries should be evaluated. Thus, two pruning criteria can be used: hard pruning
(Fig. 1(c)) or soft pruning (Fig. 1(d)). For the AND operation, the hard pruning
criterion discards theories that are too specific in any of their predictions. This

2 Theories are indexed only for clarity’s sake. They correspond to the same concept to
be learned.



7

e1 e2 e3
0

0.2

0.4

0.6

0.8

1
t1 t2

(a) Theories

e1 e2 e3
0

0.2

0.4

0.6

0.8

1
max ctr
ind min

(b) Estimators

e1 e2 e3
0

0.2

0.4

0.6

0.8

1 max

(c) Hard Pruning

e1 e2 e3
0

0.2

0.4

0.6

0.8

1
max ctr

(d) Soft Pruning

Fig. 1. Estimators in AND operation. The x-axis contains three examples and the y-axis
represents probabilistic values. Examples are depicted as squares, theories t1 and t2 as
circles and estimators min, max, ctr, ind as diamonds.

means that the estimations must be higher than the examples’ values in every
point (in Fig. 1(c) this only happens if the maximum estimator is being used to
estimate the combination). The soft pruning criterion only prunes the theory
away if it is overall more specific than the example values. In Fig. 1(d), the es-
timators that are not discarded are those that are above (maximum) or equally
above and below (center) the examples’ values. Estimator center is kept because
its estimations are just a small distance below two example values but are a large
distance above the first example value, which balances out. Pruning combina-
tions of theories can be extended to the OR operation. Like the AND operation,
this strategy estimates the value of a combination of two theories. In the OR
setting, theories are excluded when they are found to be too general to benefit
from further combination. Based on the expressions presented in Table 1 and fol-
lowing a similar reasoning to the AND operation, the same five estimators can
be defined. Again, the minimum and maximum estimators define the estimation
interval based on t1 and t2. The center estimator is the value halfway between
the lower and upper boundaries of the estimation interval and the independence
estimator assumes theories are independent. In the OR operation, the exclusion
estimator is equal to the maximum estimator, because when the overlap of two
theories is minimum (they are exclusive), the largest area is covered. When the
exclusion estimator is used in both AND and OR operations, the result it pro-



8

duces will be different than it would be using only the maximum or minimum
estimators for both operations. For this reason, it is relevant to consider the
exclusion estimator. The hard and soft pruning criteria can also be extended to
the OR operation. The hard pruning criterion now excludes estimations that are
too general in any point to be of interest. This translates to keeping only estima-
tors whose values are always lower than or equal to the examples’ values. Like
the AND operation, the soft pruning criterion only discards estimators whose
values are overall more general than the examples’ values.

5 Experiments

The experiments presented in this section were run on a machine containing
4 AMD Opteron 6300 processors with 16 cores each and a total of 250GB of
RAM. The metabolism dataset is an adaptation of the dataset originally from
the 2001 KDD Cup Challenge3. The breast cancer dataset contains data from 130
biopsies dating from January 2006 to December 2011, which were prospectively
given a non-definitive diagnosis at radiologic-histologic correlation conferences.
The athletes dataset consists of a subset of facts regarding athletes and the
sports they play collected by the never-ending language learner NELL4. For
the metabolism and athletes datasets, a number of n-times hold-out sets were
made and all measurements were averaged out over the folds. In the breast
cancer dataset, leave-one-out cross-validation was used.

Different combinations of estimation pruning were tested: only pruning the
AND operation, only pruning the OR operation, and pruning both operations.
The pruning settings are reported as a set of two letters: the first letter is the
AND pruning option and the second is the OR pruning option. Pruning options
can be soft pruning (S), hard pruning (H) or no pruning (x). For example, using
this codification, xS stands for no AND pruning and soft OR pruning. For each
configuration, several measurements were recorded for each dataset: execution
time, probabilistic accuracy on the test set, and number of rules and theories
pruned. The probabilistic accuracy metric used in this work is equivalent to the
mean absolute error of predictions calculated against example values, and was
first introduced by De Raedt and Thon in [6].

Tables 2, 3 and 4 present the speedups and ratio of probabilistic accuracy for
the metabolism, breast cancer and athletes datasets, respectively. The speedup
Bt
Pt

is calculated w.r.t. the Bt base case time (no pruning) for different Pt prun-
ing options’ execution time. If there is a slowdown, the inverse speedup Pt

Bt
is

presented as a negative number. The ratio of the probabilistic accuracy Pa
Ba

is cal-
culated for each probabilistic settings Pa w.r.t the probabilistic accuracy of the Ba
base case. Similarly to the speedup, when the probabilistic accuracy decreases,
the inverse of the ratio is given Ba

Pa
as a negative number. Figures 2, 3 and 4 de-

pict the variation in execution time in minutes (left y-axis) and the variation in

3 http://www.cs.wisc.edu/˜dpage/kddcup2001
4 http://rtw.ml.cmu.edu

http://www.cs.wisc.edu/~dpage/kddcup2001
http://rtw.ml.cmu.edu


9

Table 2. Speedup and probabilistic ac-
curacy ratio for metabolism dataset

Speedup
Est Sx Hx xS xH SS HH

min 1.45 1.47 -1.03 1.36 1.47 2.52
max 1.56 1.56 -1.09 1.94 1.61 5.66
ctr 1.57 1.58 1.03 1.95 1.61 5.65
ind 1.35 1.33 -1.23 1.64 1.46 5.37
exc 1.57 1.58 -1.04 1.95 1.58 5.69

Probabilistic Accuracy Ratio
Est Sx Hx xS xH SS HH

min 1.00 1.00 1.00 1.01 1.00 1.00
max 1.00 1.00 1.00 1.00 1.00 -1.01
ctr 1.00 1.00 1.00 1.00 -1.01 -1.01
ind 1.00 1.00 1.00 1.00 1.00 -1.01
exc 1.00 1.00 1.00 1.00 1.00 -1.01

nop min max ctr ind exc
20

25

30

35

40

Ti
m

e
(m

in
)

Time

nop min max ctr ind exc

0.6

0.8

1

PA
cc

ur
ac

y

Time PAccuracy

Fig. 2. Average time (in minutes) and prob-
abilistic accuracy in metabolism dataset,
for the base case (nop) and the five estima-
tors. Values for each estimator are the aver-
age of its result over the pruning options.

Table 3. Speedup and probabilistic ac-
curacy ratio for breast cancer dataset

Speedup
Est Sx Hx xS xH SS HH

min 7.09 7.18 1.42 1.41 22.44 21.46
max 7.16 7.06 1.65 1.63 25.24 23.49
ctr 7.04 6.98 1.63 1.63 25.25 24.80
ind 7.20 7.02 1.42 1.29 22.62 22.84
exc 7.19 7.19 1.63 1.62 25.00 24.80

Probabilistic Accuracy Ratio
Est Sx Hx xS xH SS HH

min 1.09 1.09 1.00 1.00 1.09 1.09
max 1.09 1.09 1.00 1.00 1.09 1.09
ctr 1.09 1.09 1.00 1.00 1.09 1.09
ind 1.09 1.00 1.00 1.00 1.09 1.09
exc 1.09 1.09 1.00 1.00 1.09 1.09

nop min max ctr ind exc
0

2

4

Ti
m

e
(m

in
)

Time

nop min max ctr ind exc

0.6

0.8

1

PA
cc

ur
ac

y

Time PAccuracy

Fig. 3. Average time (in minutes) and prob-
abilistic accuracy in breast cancer dataset,
for the base case (nop) and the five estima-
tors. Values for each estimator are the aver-
age of its result over the pruning options.

probabilistic accuracy (right y-axis) for all estimators in the metabolism, breast
cancer and athletes datasets, respectively. The estimators analysed were the
base case (no estimation pruning performed, or nop), minimum (min), maximum
(max), center (ctr), independence (ind), and exclusion (exc). Each dataset’s results
will be discussed next.

For the metabolism dataset, results in Table 2 show that the greatest reduc-
tion in execution time is achieved by all estimators in the HH pruning setting.
The xS pruning setting shows the slowest execution times with all estimators,
except center, causing a slowdown. There is no significant reduction in proba-



10

bilistic accuracy in any setting. Figure 2 shows that, overall, the probabilistic
accuracy of the theories is unchanged and that the maximum, center and exclusion
estimators can all reduce execution time from 40 to less than 25 minutes.

Results in Table 3 show that, in the breast cancer dataset, the greatest reduc-
tion in execution time can be achieved by using pruning in both the AND and
the OR operations (SS and HH settings). The pruning settings that use only OR
pruning (xS and xH) present more modest reductions of execution time (about
1.5 times) when compared to the settings that use only AND pruning (about
7 times). Although the OR operation has the potential to increase the (prob-
abilistic) accuracy of true positives, it may also increase the accuracy of false
positives. On the other hand, the AND operation, for this domain, works better,
since it maintains the accuracy of true positives while decreasing the accuracy
of false positives, when combining literals in a theory. The predictive accuracy
of the best theory in this dataset never decreases, and in some settings (Sx, Hx,
SS and HH in Table 3) even increases slightly. This effect is due to a reduction
in overfitting caused by the exclusion of some theories that are better on the
training set but perform worse on the test set. Figure 3 shows that, on average,
the maximum, center and exclusion datasets can reduce execution time from over
4 minutes to about 1 minute.

In the athletes dataset, again the HH pruning setting can reduce most ex-
ecution time. However, the reduction using estimators minimum and center is
much less than that of estimators maximum, independence and exclusion, where
the execution is about 50 times faster (Table 4). Estimators minimum and center
are consistently slower in other pruning settings (xS, xH and SS), and the xS
and xH settings present the lowest reduction in execution time in this dataset,
of 2 times on average. Similarly to the other datasets, Table 4 shows that the
probabilistic accuracy in the athletes dataset presents no significant reduction

Table 4. Speedup and probabilistic accu-
racy ratio for athletes dataset

Speedup
Est Sx Hx xS xH SS HH

min 3.34 3.33 1.01 1.66 3.63 9.48
max 3.35 3.35 2.12 2.19 12.40 49.72
ctr 3.20 3.28 1.00 1.80 3.62 19.82
ind 3.33 3.34 2.10 2.17 12.34 50.36
exc 3.31 3.23 2.02 2.11 11.86 48.01

Probabilistic Accuracy Ratio
Est Sx Hx xS xH SS HH

min -1.06 -1.06 1.00 1.00 -1.11 1.00
max -1.06 -1.06 1.00 1.00 -1.15 1.00
ctr -1.06 -1.06 1.00 1.00 -1.08 1.00
ind -1.06 -1.06 1.00 1.00 -1.15 1.00
exc -1.06 -1.06 1.00 1.00 -1.15 1.00

nop min max ctr ind exc
0

5

10

15

20

Ti
m

e
(m

in
)

Time

nop min max ctr ind exc

0.6

0.8

1

PA
cc

ur
ac

y
Time PAccuracy

Fig. 4. Average time (in minutes) and prob-
abilistic accuracy in athletes dataset, for the
base case (nop) and the five estimators. Val-
ues for each estimator are the average of its
result over the pruning options.



11

Table 5. Number of single rules/theories evaluated for the athletes dataset

Est xx Sx Hx xS xH SS HH

min 2414/1989 164/968 164/968 2414/1981 2414/604 164/913 164/361
max 2414/1989 164/968 164/968 2414/69 2414/0 164/243 164/0
ctr 2414/1989 164/968 164/968 2414/1974 2414/381 164/907 164/128
ind 2414/1989 164/968 164/968 2414/69 2414/0 164/243 164/0
exc 2414/1989 164/968 164/968 2414/69 2414/0 164/243 164/0

and, in particular, in the xS, xH and HH settings it is not reduced at all. Estima-
tors maximum, independence and exclusion present the greatest overall reduction
in execution time (Fig. 4), from 20 to about 5 minutes, on average.

Finally, for the athletes dataset, Table 5 presents the number of probabilistic
evaluations performed for each pruning setting and estimator. The first number
corresponds to single rules (theories of length one) evaluated, and thus the
reduction is caused by AND pruning. Similarly, the second number in each cell is
the number of theories of length greater than one, and its reduction is caused by
OR pruning. The greatest reductions correspond to the HH setting (column 8 in
Table 5), and are consistent with the settings in Table 4 that presents the greatest
speedups. Additionally, from Figure 4, the three fastest estimators (in average)
are also the estimators that in Table 5 prune away most theories. In particular,
the number of theories pruned away during OR pruning is significantly lower
for estimators max, ind and exc when compared to estimators min and ctr. The
same trend can be observed in the other datasets but results were omitted due
to lack of space.

6 Conclusion

This work proposed five PILP estimators whose aim is to alleviate the over-
head imposed by the exact evaluation of combinations of candidate probabilis-
tic theories. Because PILP theories can be built using both conjunction (AND
operation) and disjunction (OR operation), the estimators must be adapted ac-
cordingly. The estimators were implemented in the estimation pruning stage of
the SkILL system, but can be generalized to any PILP engine. Results showed
that all estimators resulted in faster execution times when coupled with an H
(hard) pruning setting and, in particular, the HH pruning setting showed the
greatest speedups and also the greatest reduction in the number of probabilistic
evaluations performed. Even though all estimators maintain predictive quality
and reduce execution time, estimators maximum and exclusion are overall faster,
and opting for one of these estimators in lieu of estimators minimum, center or
independence can result in an up to 5 times faster runtime for the same pruning
setting. Future work includes adding an estimator that divides the estimation
interval according to a user-defined distance and dynamically adapting the esti-
mator setting during runtime. It also seems relevant to compare against different
learning systems with a number of probabilistically annotated datasets in order
to assess the quality of the models and execution time.



12

Acknowledgments

Joana Côrte-Real is funded by the FCT grant SFRH/BD/52235/2013. This work is par-
tially funded by the ERDF through the COMPETE 2020 Programme within project
POCI-01-0145-FEDER-006961, by National Funds through the FCT as part of project
UID/EEA/50014/2013, and by the North Portugal Regional Operational Programme, un-
der the PORTUGAL 2020 Partnership Agreement, and through the European Regional
Development Fund as part of project NanoSTIMA (NORTE-01-0145-FEDER-000016).

References

1. E. Bellodi and F. Riguzzi. Structure learning of probabilistic logic programs by
searching the clause space. Theory and Practice of Logic Programming, 15(02).

2. J. Côrte-Real, T. Mantadelis, I. Dutra, R. Rocha, and E. Burnside. SkILL - a Stochastic
Inductive Logic Learner. In Proceedings of the 14th International Conference on Machine
Learning and Applications, pages 555–558. IEEE, 2015.

3. L. De Raedt, A. Dries, I. Thon, G. Van den Broeck, and M. Verbeke. Inducing
Probabilistic Relational Rules from Probabilistic Examples. In International Joint
Conference on Artificial Intelligence, pages 1835–1843. AAAI Press, 2015.

4. L. De Raedt and K. Kersting. Probabilistic inductive logic programming. In Interna-
tional Conference on Algorithmic Learning Theory, pages 19–36. Springer, 2004.

5. L. De Raedt and A. Kimmig. Probabilistic (logic) programming concepts. Machine
Learning, 100(1):5–47, 2015.

6. L. De Raedt and I. Thon. Probabilistic Rule Learning. In Inductive Logic Programming,
pages 47–58. Springer, 2011.

7. L. Getoor. Introduction to Statistical Relational Learning. MIT press, 2007.
8. L. Getoor, B. Taskar, and D. Koller. Selectivity Estimation using Probabilistic Models.

In ACM SIGMOD Record, volume 30, pages 461–472. ACM, 2001.
9. K. Kersting, L. De Raedt, and S. Kramer. Interpreting Bayesian Logic Programs. In

AAAI Workshop on Learning Statistical Models from Relational Data, pages 29–35, 2000.
10. A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, and R. Rocha. On the Imple-

mentation of the Probabilistic Logic Programming Language ProbLog. Theory and
Practice of Logic Programming, 11(2 & 3):235–262, 2011.

11. S. Kok and P. Domingos. Learning the Structure of Markov Logic Networks. In
International Conference on Machine learning, pages 441–448. ACM, 2005.

12. S. Muggleton. Stochastic Logic Programs. Advances in inductive logic programming,
32:254–264, 1996.

13. S. Natarajan, T. Khot, K. Kersting, B. Gutmann, and J. Shavlik. Gradient-based
boosting for statistical relational learning: The relational dependency network case.
Machine Learning, 86(1):25–56, 2012.

14. M. Richardson and P. Domingos. Markov Logic Networks. Machine learning, 62(1-
2):107–136, 2006.

15. V. Santos Costa, D. Page, M. Qazi, and J. Cussens. CLP(BN): Constraint Logic
Programming for Probabilistic Knowledge. In Conference on Uncertainty in Artificial
Intelligence, pages 517–524, 2002.

16. T. Sato and Y. Kameya. PRISM: A language for symbolic-statistical modeling. In
International Joint Conference on Artificial Intelligence, volume 97, pages 1330–1339.
Morgan Kaufmann, 1997.

17. O. Schulte, H. Khosravi, A. Kirkpatrick, T. Gao, and Y. Zhu. Modelling relational
statistics with Bayes Nets. Machine Learning, 94(1):105–125, 2014.


	Estimation-Based Search Space Traversalin PILP Environments

