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Abstract
Declarative programming has been hailed as a promising approach
to parallel programming since it makes it easier to reason about
programs while hiding the implementation details of parallelism
from the programmer. However, its advantage is also its disadvan-
tage as it leaves the programmer with no straightforward way to
optimize programs for performance. In this paper, we introduce
Coordinated Linear Meld (CLM), a concurrent forward-chaining
linear logic programming language, with a declarative way to coor-
dinate the execution of parallel programs allowing the programmer
to specify arbitrary scheduling and data partitioning policies. Our
approach allows the programmer to write graph-based declarative
programs and then optionally to use coordination to fine-tune par-
allel performance. In this paper we specify the set of coordination
facts, discuss their implementation in a parallel virtual machine,
and show—through example—how they can be used to optimize
parallel execution. We compare the execution of CLM programs
against the original uncoordinated Linear Meld and several other
frameworks.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent Programming—Parallel Program-
ming; D.3.4 [PROCESSORS]: Run-time environments

General Terms Design, Languages, Performance

Keywords Parallel Programming, Linear Logic

1. Introduction
Parallel programming is hard mainly because manipulating shared
data may result in undesirable race conditions. Typically, such is-
sues are handled with low level constructs such as locks, semaphores
and/or condition variables, all of which require a fair amount of ef-
fort to get right. Declarative programming has been hailed as an
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alternative solution to this issue, since the problem of implement-
ing the details of parallelism is moved from the programmer to
the compiler and runtime environment. The programmer writes
code without having to deal with parallel programming constructs
and the compiler automatically parallelizes the program in order to
take advantage of multiple threads of execution. This programming
paradigm has been adopted with huge success in domain specific
languages such as SQL and MapReduce [13]. Although general
declarative languages have yet to be as successful, the future looks
promising for this particular approach.

The main problem with declarative programming is that it gives
the programmer little or no control over how execution is scheduled
or how data is laid out, making it hard to improve efficiency. This
introduces performance issues because even if the runtime system
is able to reasonably parallelize the program using a general algo-
rithm, there is a lack of specific information that a compiler can-
not easily deduce. Such information could make execution better
in terms of run time, memory usage, or scalability.

In this paper, we introduce Coordinated Linear Meld (CLM), a
data-centric declarative language that extends the Linear Meld (LM)
language [11, 12] with coordination to give the programmer con-
trol over scheduling and data placement. LM is a programming
language designed for programs that operate on graphs and with
support for structured manipulation of mutable state through the
use of linear logic [16]. A program is composed of logical rules
and computation happens through inference. LM’s model of com-
putation is to assign, in the abstract, a thread of control to each node
in the graph being operated on. The computation on each node can
proceed independently from all others, but nodes can communicate
with each other. Thus, the logical rules may be applied - in parallel
and asynchronously - to each node in the graph.

The CLM language features two kinds of coordination primi-
tives that can be used in the same way as any other primitive, i.e.,
they are specified with a similar syntax and semantics as the rest
of the language, modulo some restrictions discussed in Section 4.
These coordination primitives can be used to improve program exe-
cution based on the state of the program and the state and structure
of the underlying machine. The first kind of coordination primitives
are called sensing facts and are used to sense information about the
system the program is running on, e.g., scheduling and node place-
ment on threads. The second kind of coordination primitives are
called action facts and can be used to apply scheduling and par-
titioning decisions during execution. Coordination facts allow the
programmer to write logical rules that depend on the current state
of the program and then prioritize node computation or node place-
ment in different threads.

CLM is a declarative programming language that gives the pro-
grammer the ability to control execution while staying declarative
and without resorting to meta-language constructs. The declarative



coordination in CLM exposes the state of the underlying runtime
system in order to allow the programmer to write rules that un-
derstand how the program is executed on a concrete machine. In
this way, non-deterministic transitions of the parallel machine are
modeled using linear logic rules, which allows the implementation
of logical rules that optimize scheduling and partitioning. Further-
more, coordination in CLM is first-class which allows program-
mers to easily reason about and integrate how scheduling and parti-
tioning interact with their algorithm. The result is that programmers
can optimize their programs while still retaining the conciseness
and clarity of expression of their original unoptimized programs.

Our contributions are four-fold: (i) we introduce a small set of
coordination primitives and explain their interaction with the un-
derlying programming model and parallel machine; (ii) we show
how coordination is implemented in a logic-based parallel virtual
machine that runs CLM programs; (iii) we present several linear
logic programs and describe how coordination allows small modi-
fications to lead to better scheduling and partitioning; (iv) we mea-
sure and compare the performance of CLM programs against their
uncoordinated versions and against other state-of the art systems
such as Ligra [37] and GraphLab [23]. We find that CLM allows
the writing of higher-level, declarative, graph-based programs that
are more concise than competitive systems and yet yields competi-
tive scalable parallel performance. The introduction of coordination
facts enables the programmer to fine-tune programs without losing
the positive aspects of declarative programming.

2. Related Work
Declarative Languages Programming paradigms such as logic
and functional programming have been extensively exploited for
their implicit parallelism. In logic languages such as Prolog, re-
searchers took advantage of the non-determinism in proof-search to
evaluate subgoals in parallel. In functional languages, the stateless
computation allows multiple expressions to safely evaluate in paral-
lel. This has been explored in several languages such as NESL [6],
Id [28], and more recently Data Parallel Haskell [7]. NESL often
obtains good performance, but is limited to nested lists. CLM lim-
its the application space to graphs, but also gives the programmer a
declarative way to coordinate computation.

Linear Logic and Logic Programming Linear logic has deep
connections with concurrency and programming.

Linear logic has been used as a basis for logic-based program-
ming languages [25], including forward-chaining and backwards-
chaining programming languages. Lolli [18], for instance, is a pro-
gramming language based on a fragment of intuitionistic linear
logic that proves goals by lazily managing the context of linear
resources during top-down proof search. For concurrent program-
ming, linear logic has also been used to model interacting computa-
tional agents using the formulas-as-agents equivalence [35]. It has
also been shown that concurrent models based on linear logic have
connections with the π-calculus, a powerful model for concurrent
computation [30].

Data Centric Languages Recently, there has been increasing
interest in declarative data-centric languages. MapReduce [13],
for instance, is a popular programming model that is optimized
for large clusters. Intrinsic to its popularity is the simplicity of
its scheduling and data sharing model. In order to facilitate the
writing of programs over large datasets, SQL-like languages such
as PigLatin [29] have been developed. PigLatin builds on top of
MapReduce and allows the programmer to write complex data-
flow graphs, raising the abstraction and ease of programmability
of MapReduce programs. An alternative to PigLatin/MapReduce is
Dryad [20] that allows programmers to design arbitrary computa-
tion patterns using DAG abstractions. It combines computational

vertices with communication channels (edges) that are automati-
cally scheduled to run on multiple computers/cores.

Graph Of Nodes The idea of partitioning computation along the
nodes of the graph is not new and has been realized before in sev-
eral parallel programming models. For instance, in the partitioned
global address space (PGAS) model, there is a global address space
that is partitioned among processes in order to increase locality and
each process contains one or more activities that operate on local
data. The PGAS model has been realized in X10 [8], a program-
ming language that builds on top of object oriented programming.
In logic programming, the concept of locations was first proposed
in P2 [22], a system designed for declarative networking, where the
nodes of the network graph represent real machines. P2 introduced
a compiler that localizes rules so that computation is performed
locally. But crucially, each node in the graph was a separate and
concrete processor.

The original LM language was inspired by Meld [3], a Datalog-
like language for programming distributed ensembles of modular
robots. Meld also introduced the idea of sensing and action facts in
order to sense and act on the outside world, respectively.

Galois [32] is a parallel programming model optimized for
graphs, trees and sets. A Galois parallel algorithm is viewed as a
parallel application of an operator over an irregular data structure
which generate activities on the data structure. Such operators may,
for instance, be applied to a graph’s node in order to change its data
or change the structure of its neighborhood, allowing for data struc-
ture changes. Nodes with computation are called active elements
and the set of nodes required to apply an operator is called the
neighborhood. An ordering dictates the order in which operators
are applied to active elements and required neighborhood. From
the point of view of the programmer, the active elements are rep-
resented in a work-list, while operators can be implemented on top
of iterators of the work-list.

Ligra [37] is a lightweight framework for large scale graph pro-
cessing that exploits the fact that most huge graph datasets avail-
able today can be made to fit in the main memory of commodity
servers. Ligra is a simple framework that exposes two main inter-
faces: EdgeMap and VertexMap. The former applies a function
to a subset of edges of the graph, while the latter applies a func-
tion to a subset of vertices. The functions passed as arguments are
applied to either a single edge or a single vertex and the user must
ensure that the function can be executed in parallel.

Another interesting system is GraphLab [23], a C++ frame-
work for developing graph-based parallel machine learning algo-
rithms. GraphLab allows nodes to have read/write access to differ-
ent scopes through different concurrent access models in order to
balance performance and data consistency. GraphLab also provides
different schedulers that dictate the order in which nodes are com-
puted, allowing the programmer to optimize the program. Later in
this paper, we will show how one GraphLab scheduler can be im-
plemented in CLM through the use of coordination facts. Another,
more restrictive, graph-based system is Pregel [24], where graph
algorithms must be executed as a sequence of iterations of compu-
tation and message passing.

Galois, Ligra, GraphLab, and Pregel are not declarative pro-
gramming languages, but they tend to provide better performance
than CLM at the cost of a steeper learning curve. In particular,
Pregel and Ligra are much more suited for processing large scale
graphs than CLM. However, we argue that CLM programs are more
amenable to reasoning than the programs written for the systems
above due to CLM’s logic programming foundations.

Coordination Languages and Systems Many programming lan-
guages and systems follow the so-called coordination paradigm [31],
a form of distributed programming that divides execution in two



parts: computation, where the actual computation is performed,
and coordination, which deals with communication and coopera-
tion between processing units. This paradigm attempts to clearly
distinguish between these two parts by providing abstractions for
coordination in an attempt to provide architecture and system-
independent forms of communication.

Linda [1] is considered a pioneer coordination model and im-
plements a data-driven coordination model featuring a tuple space
that is manipulated using input/output operations. Linda is limited
in the sense that the programmer can only coordinate the schedul-
ing of processing units, while the placement of data is left to the
implementation.

The Reo [2] system allows composition and coordination of
concurrent processes using channels. Reo has connections with in-
tuitionistic temporal linear logic [9], a powerful logic that can nat-
urally model coordination patterns. Another programming model
with connections with temporal linear logic is Timed Concurrent
Constraint Programming (TCCP) [21, 36], a framework directed at
modeling reactive systems which interprets computation as deduc-
tion in a fragment of temporal linear logic. The original LM lan-
guage already allows the kind of coordination seen in both Reo and
TCCP since it is possible to compose arbitrary, but less structured,
communication patterns between nodes of LM graphs. The goal of
CLM is to allow a kind of meta-coordination that acts on the real
computation units, realized as computation threads, with the goal
of improving efficiency.

Galois [32] allows the use of custom scheduling strategies for
coordinating parallel execution. First, there is compile-time coor-
dination, where the scheduling is computed during compilation.
Secondly, there is runtime coordination, where the order of non-
conflicting activities is computed during execution and computa-
tion proceeds in rounds. In a third strategy, just-in-time coordina-
tion, the order of activities is defined by the underlying data struc-
ture where the operator is applied (for instance, computing on a
graph may depend on its topology). Nguyen et al. [27] expanded
the concept of runtime coordination with the introduction of a flex-
ible approach to specify scheduling policies for Galois programs.
This approach was motivated by the fact that some algorithms run
faster using different scheduling strategies. The scheduling lan-
guage specifies 3 basic main scheduler types: First-In First-Out,
Last-In First-Out and Ordered-By-Metric. These schedulers can
then be composed and synthesized without requiring users to write
complex concurrent code. When compared to Galois, CLM allows
a more general approach to coordination by allowing the specifica-
tion of arbitrarily complex coordination patterns using the provided
facts.

Elixir [33] is a domain specific language that builds on top of
Nguyen’s work and allows easy specification of scheduling strate-
gies. The main idea behind Elixir is that the user should be able
to specify how operator application is scheduled and the frame-
work will compile this high level specification to low level code
using the provided scheduling specification. One of the motivating
examples is the Single Source Shortest Path program that can be
specified using multiple scheduling specifications, generating dif-
ferent well-known shortest path algorithms such as the Dijkstra or
Bellman-Ford algorithm.

Halide [34] is a language and compiler for image processing
pipelines with the goal of optimizing parallelism, locality and re-
computation. Halide decouples the algorithm definition from its
execution strategy, allowing the compiler to find which execution
strategy may be the best optimization for locality and parallelism.
The language permits the specification of the scheduling strategy,
allowing the programmer to decide the order of computations, what
intermediate results need to be stored, how to split the data among
processing units, and how to use vectorization and the well-known

sliding window mechanism. The compiler is able to use stochastic
search to automatically find good schedules for Halide pipelines
that are sometimes better than hand-written code.

Sequoia [15] and Legion [5] are programming languages de-
signed for coordinating computation on hardware with deep com-
plex memory hierarchies. Programs are written as sets of tasks and
the programmer controls how tasks are laid out in memory. Legion
supports both regular and irregular algorithms, while Sequoia re-
quires extensions [4] in order to support irregular algorithms.

In contrast to the previous systems, CLM stands alone in mak-
ing coordination (both scheduling and partitioning) a first-class
programming construct and semantically equivalent to computa-
tion. Furthermore, CLM distinguishes itself by supporting data-
driven dynamic coordination, particularly for irregular data struc-
tures. Elixir and Galois do not support coordination for data par-
titioning and, in Elixir, the coordination specification is separated
from computation, limiting the programmability of coordination.
Compared to CLM, Halide is targeted for regular applications and
therefore only supports compile time coordination.

3. The LM Programming Language
LM [11] is a concurrent programming language designed for pro-
grams that operates on graphs. CLM is an extension of LM that
introduces coordination facts to allow declarative partitioning and
scheduling. In order to understand how CLM works, we review the
basic ideas of LM.

LM programs consist of a set of rules and a database of facts.
Rules have the form a(N), b(N, M) -o c(M, N) and can be
read as follows: if fact a(N) and fact b(N, M) exist in the database
then c(M, N) is added to the database. The expression a(N),
b(N, M) is called the body of the rule and c(M, N) is the head
of the rule. A fact is a predicate, e.g., a, b or c, and its associated
tuple of values, e.g., the concrete values of N and M. Since LM
uses linear logic as its foundation, we distinguish between linear
and persistent facts. Linear facts are deleted during the process of
deriving a rule, while persistent facts are not. Program execution
starts by adding the axioms (the initial facts) to the database. Next,
rules are recursively applied and the database is updated by adding
new facts and deleting facts used during rule derivation. When no
more rules are applicable, the program terminates.

LM was designed for writing programs that operate on graphs.
To achieve concurrency, LM partitions the database by using the
first argument of each fact. The first argument has type node and
represents a node in the graph being operated on. For example, the
fact f(@1, 2) is stored in node @1, while fact p(@2) is stored
in node @2. LM restricts the body of every rule to facts with the
same node so that nodes can derive rules independently. The head
of the rule may refer to any node as long as that node is referred
to somewhere in the body. This allows communication between
nodes during rule derivation, since a node may send a fact to
another node. Rule restrictions in turn make LM implicitly parallel
because nodes are able to compute independently. This makes LM
non-deterministic since nodes can be picked to run in any order,
affecting which rules are applied and which facts are deleted or
derived.

To make these ideas concrete, Fig. 1 presents a program to solve
the single source shortest path (SSSP) problem. Later in the paper,
we add coordination facts to improve the execution of this program.

The SSSP program starts with the declaration of the predi-
cates (lines 1-3). Predicates specify the facts used in the program.
The first predicate, edge, is a persistent predicate that describes
the relationship between the nodes of the graph, where the third
argument represents the weight of the edge. The route modi-
fier informs the compiler that the edge predicate determines the
structure of the graph, which, in this case, does not change. The



1 type route edge(node, node, int).
2 type linear shortest(node, int, list int).
3 type linear relax(node, int, list int).
4

5 !edge(@1, @2, 3). !edge(@1, @3, 1).
6 !edge(@3, @2, 1). !edge(@3, @4, 5).
7 !edge(@2, @4, 1).
8 shortest(A, +00, []).
9 relax(@1, 0, [@1]).

10

11 shortest(A, D1, P1), relax(A, D2, P2), D1 > D2
12 -o shortest(A, D2, P2),
13 {B, W | !edge(A, B, W) |
14 relax(B, D2 + W, P2 ++ [B])}.
15

16 shortest(A, D1, P1), relax(A, D2, P2), D1 <= D2
17 -o shortest(A, D1, P1).

Figure 1: Single Source Shortest Path program code.

predicates shortest and relax are specified as linear facts and
thus are deleted when deriving new facts. The algorithm com-
putes the shortest distance from node @1 to all other nodes in the
graph. Every node has a shortest fact that can be improved with
new relax facts. Lines 5-9 declare the axioms of the program:
edge facts describe the graph; shortest(A, +00, []) is the ini-
tial shortest distance (infinity) for all nodes; and relax(@1, 0,
[@1]) starts the algorithm by setting the distance from @1 to @1 to
be 0.

The first rule of the program (lines 11-14) reads as follows: if
the current shortest path P1 with distance D1 is larger than a new
path relax with distance D2, then replace the current shortest path
with D2, delete the new relax path and propagate new paths to the
neighbors (lines 13-14) using a comprehension. A comprehension
in LM has three components separated by the | symbol: the list of
variables introduced in the scope of the comprehension, the body of
the comprehension and the head of the comprehension. While the
body and head can be understood as a sub-rule, the comprehension
construct is special since it is applied as often as the database allows
and for all possible combinations. In this particular case, for each
edge fact available at node A, a new relax fact is derived at each
neighbor B. The new relax fact indicates that a new path with
distance D2 + W is available, which is the path P2 extended with
the edge to B. For example, in Fig. 2(a) we apply rule 1 on node @1
where two new relax facts are derived at node @2 and @3. Fig. 2(b)
is the result after applying the same rule, but at node @2.

The second rule of the program (lines 16-17) is read as follow-
ing: if the current shortest path D1 is shorter than the new path D2
then delete the new relax fact and keep the current shortest path.

There are many opportunities for concurrency in the SSSP pro-
gram. For instance, after applying rule 1 in Fig. 2(a), it is possible
to apply rules in either node @2 or node @3. This depends largely
on implementation factors such as node partitioning and the num-
ber of threads in the system. Still, it is easy to prove that no matter
what schedule is used, the final result, as presented in Fig. 2(c), is
achieved.

4. Coordination
The SSSP program is concise and declarative but its performance
depends on the order in which nodes are executed. If nodes with
greater distances are prioritized over other nodes, the program will
generate more relax facts since it will take longer to reach the
shortest distances. From Fig. 2, it is clear that the best scheduling
is the following: @1, @3, @2 and then @4, where only four relax
facts are generated. If we had decided to process nodes in order
@1, @2, @4, @3, @4, @2, then six relax facts would have been
generated. The optimal solution for SSSP is to schedule the node
with the shortest distance, which is essentially the Dijkstra shortest
path algorithm [14]. Note how it is possible to change the nature of

the algorithm by simply changing the order of node computation,
but still retain the declarative nature of the program.

CLM extends LM with coordination facts which allow the pro-
grammer to change how the runtime schedules nodes and how it
partitions the nodes among threads of execution. Coordination facts
can be used in either the body of the rule, the head of the rule, or
both. This allows scheduling and partition decisions to be made
based on the state of the program and the state of the underlying
machine. In this fashion, we keep the language declarative because
we reason logically about the state of execution, without the need
to introduce extra-logical operators into the language that would in-
troduce significant issues when proving properties about programs.
It can be proven that, in fact, programs that employ only action
facts will obtain the same results as the programs without any co-
ordination [10] because even though scheduling and partitioning
is done differently, it does not change the results of the program
because the proof of correctness for the uncoordinated program
already takes into account all possible schedulings. For programs
which use sensing facts and complex scheduling policies, a proof
needs to take into account the semantics of coordination and how
the virtual machine transitions from one state to another using built-
in linear logical rules [10].

Coordination facts are classified into sensing and action facts. A
sensing fact represents a part of the state of the underlying virtual
machine and can be used in the body of rules or comprehensions
similarly to how a normal fact is used with two exceptions. First,
sensing facts cannot be deleted nor derived more than once. This
maintains the consistency between the database of facts and the
state of the virtual machine. Second, sensing facts are not restricted
by the first argument. Note that when sensing facts are used in a
rule, they need to be re-derived automatically1.

Action facts are used in the head of rules or comprehensions
in order to apply an action on the virtual machine, i.e., to change
the state of the virtual machine. Semantically, action facts are con-
sumed by a built-in logical rule that may or may not consume a
sensing fact, forcing the virtual machine to change its state accord-
ingly. Action facts can also be used in the body of rules, however, a
rule with an action fact in its body would never be applied because
the built-in rule would be used first.

4.1 Scheduling Facts
To support different scheduling strategies, we introduce the concept
of node priority by assigning a priority value to every node in
the program and by introducing coordination facts that manipulate
these priority values. Initially, all nodes have a default priority of
−∞, meaning that, theoretically, nodes can be picked in any order.
In practice, our implementation uses a FIFO approach since older
nodes tend to have a higher number of unexamined facts, from
which to derive subsequent new facts.

The sensing fact priority(node A, float P) is used to
retrieve the current priority P of node A. The current priority, P,
will be the node’s default priority unless it has been changed by
the set-priority action fact to a temporary priority. Once a
node is processed by a thread of control, its priority is reset to
its default priority. In the virtual machine, each node is either
running (deriving rules) or idle (waiting to be selected by a thread
of control). This information is represented using linear facts and
corresponding logical rules which update the priority fact to the
default priority.

The following list presents the scheduling action facts available
in CLM:

1 In fact, all coordination facts are linear and the system creates the neces-
sary code to re-derive them without requiring programmer interaction.



shortest(@1,0,[@1])

shortest(@2,+00,[])
relax(@2,3,[@1,@2])

shortest(@3,+00,[])
relax(@3,1,[@1,@3])

shortest(@4,+00,[])

3

1

1

1

5

@1

@2

@3

@4

(a)

shortest(@1,0,[@1])

shortest(@2,3,[@1,@2])

shortest(@3,+00,[])
relax(@3,1,[@1,@3])

shortest(@4,+00,[])
relax(@4,4,[@1,@2,@4])

3

1

1

1

5

@1

@2

@3

@4

(b)

shortest(@1,0,[@1])

shortest(@2,2,[@1,@3,@2])

shortest(@3,1,[@1,@3])

shortest(@4,3,[@1,@3,@2,@4])

3

1

1

1

5

@1

@2

@3

@4

(c)

Figure 2: Graphical representation of the SSSP program: (a) represents the program after propagating initial distance at node @1, followed
by (b) where the first rule is applied in node @2 and by (c), where all the shortest paths have been computed (final program state).

• set-default-priority(node A, float F): sets the de-
fault priority of node A to F.
• set-priority(node A, float F): sets the temporary pri-

ority of node A to F if F is better than the current priority (either
default or temporary). The programmer can decide if priorities
are to be ordered in ascending or descending order.
• add-priority(node A, float F): increases, temporarily,

the priority of node A by F.
• remove-priority(node A): removes the temporary priority

from node A.
• schedule-next(node A): changes the temporary priority of

node A to be +∞.

4.2 Partitioning facts
CLM also provides several coordination facts to influence node
partitioning among the running threads. We introduce the type
thread to refer to threads that are running on separate processors.
In terms of action facts, we have the following:
• set-thread(node A, thread T): places node A in thread
T until the program terminates or a set-moving(A) fact is
derived.
• set-affinity(node A, node B): places node B in the

thread of node A until the program terminates or a set-moving(B)
fact is derived.
• set-moving(node A): allows node A to move freely between

threads.
In terms of sensing facts, we have the following:

• thread-id(node A, thread T): linear fact that maps node
A to thread T which A belongs to. Action fact set-thread
implicitly updates fact thread-id.
• is-moving(node A): fact available at node A if A is allowed

to move between threads.
• is-static(node A, thread T): fact available at node A if
A is not allowed to move between threads and is currently placed
in thread T.

5. Implementation
The implementation of CLM extends the original LM implementa-
tion with an updated compiler and virtual machine (VM) to support
coordination. The implementation of LM is described in [12] and
supports parallel execution and scheduling of programs using sup-
porting data structures to manage the database of facts.

5.1 Compilation
We updated the original LM compiler to translate each rule to a
C++ procedure. This made the implementation more efficient and
competitive with other systems. The resulting C++ procedures are
compiled using a C++ compiler and then linked together with the

virtual machine library. Each rule procedure loops over all possi-
ble combinations of the rule, retrieving facts from the database,
performing join operations and then consuming and deriving facts.
The compiler implements join optimizations (to support efficient
rule filtering) and fact updates (to reduce allocations).

Coordination directives are compiled in two different ways, de-
pending on whether they appear in the body or in the head of the
rule. Coordination facts in the body are compiled into VM API
calls that inspect the state of the virtual machine. For example, the
priority fact inspects the target node and retrieves the current
priority. Coordination facts in the head of the rule are also imple-
mented as VM API calls, but they perform some action, instead
of being added to the database as facts. Semantically, action facts
are like any other fact. However, since they are immediately used
by the machine, there is no need to store them in the database,
therefore avoiding unnecessary allocations and deallocations. For
optimization purposes, we implemented coordination coalescing
so that facts such as set-priority and add-priority are
buffered before being applied. We first fully process the node by
deriving candidate rules using newly available facts and then apply
any scheduling decisions inferred by the rules. This allows us to
reduce inter-thread communication and contention.

5.2 Execution
The virtual machine is implemented in C++11 and uses the thread-
ing system from the standard library to implement multi-threading.

Threads To support coordination, each thread has two pairs of
queues: a pair of doubly linked lists known as the standard queue
and a pair of min/max heaps known as the priority queue. The
standard queue contains nodes without priorities and supports push
into tail, remove node from the head, remove arbitrary node, and
remove first half of nodes. The priority queue contains nodes with
priorities and is implemented as a binary heap array. It supports
the following operations: push into the heap, remove the min node,
remove an arbitrary node, remove half of the nodes (horizontal
split of the binary heap tree), and priority update. Operations for
removing half of the queue are implemented in order to support
node stealing, while operations to remove arbitrary nodes or update
priority allows threads to change the priority of nodes. The four
local queues are also partitioned into the movable queue (1 priority
queue and 1 standard queue) for nodes that may move between
threads and the static queue (1 priority queue and 1 standard queue)
for nodes that cannot be moved.

Nodes The implementation of CLM retains the node and thread
data structure of LM. A node data structure is represented as a
collection of facts (per predicate) and an indexing structure that
keeps track of the available facts and potential candidate rules.
Furthermore, each thread, represented by a thread data structure,
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Figure 3: The node state machine as represented by the state vari-
able. During the lifetime of a program, each node goes through
different states as specified by the state machine.

is responsible for executing a subset of active nodes. A node is
active if it has unexamined facts. After a node is processed, it
becomes inactive until a new fact is derived for it, i.e., added to
its database. When a new fact is derived for an inactive node,
the node is activated and placed on the appropriate queue of the
thread responsible for processing that node. Threads do useful
work by processing active nodes from their queues. Whenever a
thread does not have nodes to process, it attempts to steal nodes
from a random thread. If unsuccessful, the thread becomes idle
and waits for program termination while periodically attempting
to steal nodes.

In order to implement coordination, we added a state variable
to the node data structure. The state machine in Fig. 3 represents
the valid state transitions of a node:
• working: the node is executing.
• inactive: the node is inactive, i.e., it has no new facts and is not

in any queue for processing.
• queue: the node is active with new facts and is in some queue

waiting to be processed.
• stealing: the node has just been stolen and is in the process of

being moved to another thread.
• coordinating: the node is being scheduled or moved to another

thread.
We also added a static owner field that points to the thread

where the node is currently placed and from which it cannot be
moved. If static owner is NULL then the node can be stolen from
a thread’s queue.

Each node is protected by a spin-lock that allows threads to
update state and other node attributes such as: incoming facts,
owner thread and static owner.

Whenever a node has an empty database and no references from
other nodes, it is deleted from the graph. The virtual machine uses
reference counting to detect such cases.

Computation The main loop of each thread proceeds as follows.
First, one active node, called the current node, is fetched from one
of the thread’s queues. Next, the candidate rules of the current node
are computed and applied, resulting in new facts for the current
node and other nodes. Finally, The current node becomes inactive
and the loop is repeated again, until all active nodes are processed.

Nodes are picked by first inspecting the two priority queues in
order to fetch the highest priority node, and then the two standard
queues, in cases where priorities are not being used. The thread
continues processing facts for the current node until there are no
new facts generated for it. If all queues of the thread are empty, then
the thread will try to steal work (i.e., active nodes in the movable
queue) from another thread.

To minimize inter-thread communication, node priorities are
implemented at the thread level. Thus, when a thread picks the

highest priority node from the priority queue, it is only the highest
priority with respect to the set of nodes owned by the thread and
not the highest priority node in the whole program.

As an optimization, the next and prev pointers of the standard
queue are part of the node structure in order to save space. These
pointers are also used as the index and current priority for the
priority queue, respectively.

Communication Threads synchronize with each other using mu-
tual exclusion. We use a spin-lock in each queue to protect queue
operations. For coordination, given threads T1 and T2, if T1 needs
to perform coordination operations to a node in T2, it needs to
synchronize with T2 during priority updates in order to move
the node in T2’s queues. Likewise, when using set-thread or
set-affinity, the target thread’s queues also need to be locked
when moving from T1 to T2.

Coordination overhead We measured the impact of our imple-
mentation changes on unmodified LM programs and our experi-
ments indicate that there is little to no impact on the overall perfor-
mance of these programs.

6. Applications
To better understand how coordination facts are used, we present
some programs that take advantage of them. In our experimental
setup, we used a machine with a 32 Core AMD Opteron(tm) Pro-
cessor 6274 HE @ 1400 MHz with 32 GBytes of RAM memory
running the Linux Kernel 3.18.6-100.fc20.x86 64. We compiled
our virtual machine using GCC 4.8.3 (g++) with the flags -O3
-std=c++11 -march=x86-64 2.

For comparison purposes, we wrote sequential versions of the
CLM programs in the C++ programming language. We also com-
pare some programs against the Ligra [37] and GraphLab frame-
works [23]. In the plots shown next, the left axis represents the run
time of programs using a logarithmic scale and the right axis rep-
resents the speedup of the B version using the A baseline which is
calculated as A(1)/B(t).

6.1 Single Source Shortest Path
We start by adding coordination to the SSSP program described
before in Fig. 1. The coordinated version of the SSSP (Fig. 4) uses
a global program directive to order priorities in ascending order
(line 5) and the coordination fact set-priority (line 14).

When run on one thread, the algorithm behaves like Dijkstra’s
shortest path algorithm. When using multiple threads, each thread
will pick the shortest distance from their subset of nodes. While
this does not yield the optimal program with relation to 1 thread, it
allows for parallel execution and locally avoids unnecessary work.
The result scales well and it is close to Dijkstra’s algorithm.

The most interesting property of the SSSP program presented
in Fig. 4 is that the code remains declarative and provably correct,
although it applies rules using a smarter ordering. Since the proof of
correctness considers that, eventually, the shortest path is computed
at all nodes of the graph, the use of set-priority does not change
the proof at all.

Figure 5 shows experimental results for the SSSP when run with
3 different graphs3. The C++ version uses the Dijkstra algorithm
to compute the distances from the source nodes, while the Ligra
version uses the BellmanFord program provided in the Ligra source
code. To make the comparison fairer, the Ligra execution time also
includes the time required for loading the graph into memory (both
CLM and C++ execution times also include loading times).

2 Implementation, example programs and program proofs available in
http://github.com/flavioc/meld
3 Datasets retrieved from http://snap.stanford.edu/data/

http://github.com/flavioc/meld
http://snap.stanford.edu/data/


1 type route edge(node, node, int).
2 type linear shortest(node, int, list int).
3 type linear relax(node, int, list int).
4

5 priority @order asc.
6

7 shortest(A, +00, []).
8 relax(@1, 0, [@1]).
9

10 shortest(A, D1, P1), relax(A, D2, P2), D1 > D2
11 -o shortest(A, D2, P2),
12 {B, W | !edge(A, B, W) |
13 relax(B, D2 + W, P2 ++ [B]),
14 set-priority(B, float(D2 + W))}.
15

16 shortest(A, D1, P1), relax(A, D2, P2), D1 <= D2
17 -o shortest(A, D1, P1).

Figure 4: Coordination code for the SSSP program. Underlined
portions are the only changes from Fig. 1.

The coordinated version of SSSP produces between 40% to
80% fewer facts than the regular version due to pruning of re-
dundant distances. Consequently, coordinated code performs better
than the regular version for all the three datasets. For instance, in
the Orkut dataset, the coordinated version sees a 12-fold speedup
for 32 threads, while the regular version enjoys only a 6-fold
speedup. In the coordinated version, there are some situations
where unnecessary facts are propagated because the shortest dis-
tance that is selected locally may not be the shortest distance glob-
ally. Thus, sub-optimal distances may be propagated because many
SSSP distances are computed at the same time. Fortunately, this
is not an issue even in datasets such as the US Powergrid dataset,
where 4941 source nodes are used.

Overall, CLM performs well against C++ and needs only 4
threads to beat the C++ version. When compared to Ligra, CLM
is not as competitive since Ligra is 3 (Orkut) and 10 (Live Journal)
times faster (on average) than CLM. We analyzed the behavior of
Ligra with these datasets and found that Ligra has the best cache
behavior (fewer hits and fewer misses). However, Ligra does not
perform well when computing the shortest distance from multiple
sources (such as in US Powergrid). We found Ligra primitives
unsuitable for simultaneous computation of shortest distances and
it would have been better to write a program from scratch using a
simple task-parallel approach (also note that Ligra does not store
the computed shortest distances, but CLM does).

6.2 MiniMax
The MiniMax algorithm is a decision rule algorithm for minimizing
the possible loss for a worst case (maximum loss) scenario in a
zero sum game for 2 (or more) players who play in turns. With this
program, we show that CLM also enables coordination of programs
with dynamic graphs using both scheduling and partitioning.

The algorithm builds a game tree, where each tree node rep-
resents a game state and the children represent the possible game
moves that can be made by either player 1 or player 2. An evalu-
ation function is used to compute the score of the board for each
leaf of the tree. A node is a leaf when the game state can no longer
be expanded. Finally, the algorithm recursively minimizes or max-
imizes the scores of each node. To select the best move for player
1, the algorithm picks the move maximized at the root node.

In CLM, the program starts with a root node (with the initial
game state) which is expanded with the available moves at each
level. The graph of the program is dynamic since nodes are created
and then deleted once they are no longer needed. The latter happens
when the leaf scores are computed or when a node fully minimizes
or maximizes the children scores. When the program ends, only the
root node has facts in its database.

(a) Orkut network. SSSP computed for 2 nodes on a graph with
3072441 nodes and 117185083 edges.

(b) Live Journal network. SSSP computed for 2 nodes on a graph
with 4847571 nodes and 68993773 edges.

(c) US Powergrid network. SSSP computed for all nodes on
a graph with 4941 nodes and 13188 edges (around 25 million
shortest distances computed).

Figure 5: Experimental results for SSSP: execution time and
speedup.

The code in Fig. 6 shows the tree expansion process. The first
three rules (lines 1-10) deal with the case where no children nodes
are created and the last three rules (12-29) deal with the cases that
create new nodes. In particular, the two rules in lines 12-26 generate
new nodes using the exists language construct, which creates a
child node B. We link B with its parent (parent(B, A)) and kick-
start the expansion of that node B by adding a play fact.



1 expand(A, Board, [], 0, P, Depth)
2 -o leaf(A, Board).
3

4 expand(A, Board, [], N, P, Depth),
5 N > 0, P = player1
6 -o maximize(A, N, -00, 0).
7

8 expand(A, Board, [], N, P, Depth),
9 N > 0, P = player2

10 -o minimize(A, N, +00, 0).
11

12 expand(A, Board, [0 | Xs], N, P, Depth),
13 Depth >= 5
14 -o exists B. (set-affinity(A, B),
15 set-default-priority(B, float(Depth + 1)),

16 play(B, Board ++ [P | Xs], next(P), Depth + 1),
17 expand(A, Board ++ [0], Xs, N + 1, P, Depth),
18 parent(B, A)).
19

20 expand(A, Board, [0 | Xs], N, P, Depth),
21 Depth < 5
22 -o exists B. (
23 set-default-priority(B, float(Depth + 1)),

24 play(B, Board ++ [P | Xs], next(P), Depth + 1),
25 expand(A, Board ++ [0], Xs, N + 1, P, Depth),
26 parent(B, A)).
27

28 expand(A, Board, [C | Xs], N, P, Depth) C <> 0
29 -o expand(A, Board ++ [C], Xs, N, P, Depth).

Figure 6: Coordination code for the MiniMax program.

Figure 7: Experimental results for MiniMax: execution time and
speedup.

As noted in Sect. 4.1, the default scheduler is breadth-first,
which in this case leads to the complete expansion of the tree
before computing the scores at any of the leaves. This results in
an impractical program which uses O(n) memory, where n is the
number of nodes in the tree.

With coordination, we set the priority of a node to be its depth
(lines 15 and 23) so that the tree is expanded in a depth-first fash-
ion, leading to a memory complexity ofO(dt), where d is the depth
of the tree and t is the number of threads. Since threads prioritize
deeper nodes, the scores of the first leaves are immediately com-
puted and then sent to the parent node. At this point, the leaves are
deleted and reused for other nodes in the tree, resulting in minimal
memory usage.

We also take advantage of memory locality by using set-affinity
(line 14), so that nodes generated beyond a certain level are not
stolen by other threads. While this is not critical for performance in
shared memory systems where node stealing is fairly efficient, we
expect that such coordination decisions to be critical in distributed
systems.

1 new-heat(A, New, Old),
2 Delta = fabs(New - Old),
3 Delta > epsilon
4 -o {B | !edge(A, B) |
5 new-neighbor-heat(B, A, New),
6 update(B), add-priority(B, Delta)}.
7

8 new-heat(A, New, Old)
9 fabs(New - Old) <= epsilon

10 -o {B | !edge(A, B) |
11 new-neighbor-heat(B, A, New)}.

Figure 8: Coordination code for the Heat Transfer program.

In Table 1 we compare the memory usage of the regular and co-
ordinated MiniMax program versions. The Average columns show
the average memory used by the program, while the Final columns
show the final memory used by the program. The coordinated ver-
sion uses, on average, significantly less memory (at most 44KB for
32 threads) than the regular version (around 222.7MB). The scala-
bility results, presented in Fig. 7, show that the coordinated version
running on 32 threads is more than 4 times faster than the sequential
C++ program, while the regular version is only slightly faster than
the same C++ program. Note that the C++ program uses a simple
recursive function to compute the MiniMax score.

Threads Average Final
Regular Coord Regular Coord

1 13.5GB 62KB 30KB 31KB
2 6.7GB 54KB 60KB 61KB
4 2.4GB 52KB 119KB 121KB
8 1545.6MB 50KB 236KB 240KB

16 624.2MB 47KB 472KB 479KB
24 400.5MB 45KB 707KB 717KB
32 222.7MB 44KB 942KB 955KB

Table 1: Memory statistics for the MiniMax program.

6.3 Heat Transfer
In the Heat Transfer (HT) program, we have a graph where heat
values are exchanged between nodes. The program stops when
the heat values of all the nodes of the graph converge to their
true solution, that is, when the difference δ in heat between step
i and step i1 is smaller than a small value ε, as follows: δ =
|Hi −Hi−1| ≤ ε. The algorithm works asynchronously, i.e., heat
values are updated using information as it arrives from neighboring
nodes in a sequence of steps 0, · · · , i. This increases concurrency
since nodes do not need to synchronize between steps since not all
nodes require the same number of steps.

Fig. 8 shows the HT rules that send new heat values to neigh-
bor nodes. In the first rule we added add-priority to increase
the priority of the neighbor nodes if the current node has a
large δ. The idea is to prioritize the computation of nodes (using
update) that have a neighbor that changed significantly. Multi-
ple add-priority facts will increase the priority of a node so
that nodes with many neighbors with large deltas will have more
priority.

To improve locality, we split the second rule to avoid sending
small δ values if the target node is in another thread (Fig. 9). This
new rule increases the scalability of the program, but comes at the
price of increased errors in the heat values since heat values are
computed using less accurate information. It is possible to write
more complicated rules where nodes could accumulate incoming
heat values and then compute and propagate new heat values when
appropriate. This would also increase locality but without increas-
ing the statistical error.

In Fig. 10 we present the results for the Regular (no coordina-
tion), the Coordinated (with add-priority), and the Local ver-



1 new-heat(A, New, Old)
2 fabs(New - Old) <= epsilon
3 thread-id(A, C)
4 -o {B, D | !edge(A, B), thread-id(B, D), D = C
5 | new-neighbor-heat(B, A, New),
6 thread-id(B, D)},
7 thread-id(A, C).

Figure 9: To improve locality, we add an extra constraint to the
second rule to avoid sending small δ values if the target node is in
another thread.

Figure 10: Experimental results for Heat Transfer: execution time
and speedup.

sion (using thread-id). The dataset used is a square grid of size
120x120 with an inner square which is initialized to be very hot.
When comparing the Coordinated version with the Regular ver-
sion, for 1 thread there is a 50% reduction in run time, while for 32
threads there is, on average, a 25% reduction. The Local version
sees even further run time reductions, with a 35% reduction for 32
threads. When compared to the C++ version, the Local version us-
ing 32 threads is 3 times faster than the sequential C++ code.

As we have seen for this program, the improvements from
coordination are smaller when using more threads. This is ex-
pected since a large number of threads will perform more compu-
tation since each thread only picks the highest priority node from
a smaller subset of nodes. It would be possible to add another kind
of coordination fact, for instance, set-global-priority, that
would define a priority which could be selected from all the exe-
cuting threads. Since coordination is a first class construct in the
language, CLM can be easily extended with new facts that allow
the programmer to take advantage of different scheduling and par-
titioning semantics. Furthermore, this is achieved without modifi-
cations to the core semantics of the language.

6.4 N Queens
The N-Queens puzzle is a program which places N queens on an
NxN chessboard so that no pair of queens attack each other [19].
The challenge of finding all the distinct solutions is a well-known
benchmark in designing parallel algorithms. While this problem
does not have a straightforward implementation in CLM, it shows
that CLM can be used in a wide range of applications and is not
limited to programs that only map naturally to graphs.

The CLM solution considers the squares of the chess board as
a graph of nodes which exchange valid configurations with each
other. Initially every square in the first row of the board gets the
empty state. Then, each square adds its own position to the state and
sends the state down, to the next row. Once a square receives new
configurations, it attempts to add its position to the configurations.

Figure 11: Experimental results for 14 Queens: execution time and
speedup.

If valid, that configuration is then sent, recursively, to the next row,
until all rows are traversed. At the end of the program, the squares
at the bottom row will have all the valid configurations.

The N Queens program incrementally builds and shares lists
representing valid board states that are transmitted from top to bot-
tom. Since computation goes from the top row to the bottom row,
not all placements of nodes to threads will perform equally. This is
especially true because the bottom rows tend to perform the most
work. A potential placement is to split the board vertically with
axiom set-thread(A, vertical(X, Y)) so each thread gets
the same number of columns, where X and Y are the coordinates
of a particular square. Since set-thread pins nodes to threads, it
is expected that such a configuration will improve memory locality.
Threads also need to manipulate board states that share a significant
number of elements since each board state needs to be iterated over
before being extended with a new position. To accomplish this, we
may use the coordination fact set-default-priority(A, X)
so that lower rows have a higher priority.

Experimental results are presented in Fig. 11. In these figures
we use the configuration Bottom Static to represent the N Queens
version using both set-thread and set-default-priority.
It is clear that the Bottom Static configuration is worse for the
most part when compared to Regular, however, it outperforms the
Regular version when using 14 threads. We also see the best results
for 13 threads in the 13 Queens program. This corresponds to the
configuration where the columns of the chess board are perfectly
partitioned among threads. Interestingly, this configuration also
outperforms the Regular version with 32 threads with less than
half the number of threads. Valgrind’s CacheGrind tool also shows
that the Bottom Static program version has the smallest number of
cache misses. This indicates that it is helpful to match the problem
to the number of available CPUs in the system in order to increase
memory locality and also shows the power of having a correct data
partitioning and scheduling policies through the use of coordination
facts.

We experimented with three other configurations, namely, Top
(upper rows have higher priority), Top Static, and Bottom, how-
ever, we did not see any improvements over the Regular version.

6.5 Splash Belief Propagation
Randomized and approximation algorithms can obtain significant
benefits from coordination directives because their inherent non-
determinism can be harnessed to evaluate rules in different orders.
A good example is the Loopy Belief Propagation (LBP) program.
LBP [26] is an approximate inference algorithm used in graphi-
cal models with cycles. In a nutshell, LBP is a sum-product mes-



sage passing algorithm where nodes exchange messages with their
neighbors and apply computations to the messages received.

LBP maps very well to the graph based model of CLM. In its
original form, the belief values of nodes are computed by syn-
chronous iterations. LBP offers more concurrency when belief val-
ues are computed asynchronously leading to faster convergence.
For this, every node keeps track of all messages sent/received
and recomputes the belief using partial information from neighbor
nodes. It is then possible to prioritize the computation of beliefs
when a neighbor’s belief changes significantly.

The asynchronous approach proves to be a nice improvement
over the synchronous version. Still, it is possible to do even better.
Gonzalez et al. [17] developed an optimal algorithm, named Splash
Belief Propagation (SBP), that first builds a tree and then updates
the beliefs of each node twice, first from the leaves to the root and
then from the root to the leaves. The root of this tree is the node with
the highest priority (based on belief) while the rest of the tree must
have a positive priority. Note that the priorities are updated when a
neighbor updates its belief. These splash trees are built iteratively
until we reach convergence.

The code in Fig. 12 presents the SBP coordination code for
LBP. Please note that we just appended the code in Fig. 12 to a
working but uncoordinated version of the algorithm, every other
rule remains the same. We added new rules that coordinate the
creation and execution of the splash trees:

Tree building : Each node has an inactive fact that is used to start
the tree building process. When the highest priority node is
picked, an expand-tree fact is created in order to create a new
splash tree. In lines 18-24, we use an aggregate [11] to gather
all the neighbor nodes that have a positive priority (due to a new
belief update) and are in the same thread. Nodes are collected
into list L and appended to list Next (line 24).

First phase : When the number of nodes in the tree reaches a certain
limit, a first-phase (lines 13-14) is generated to update the
beliefs of all nodes in the tree. As the nodes are updated, starting
from the leaves and ending at the root, an update fact is derived
to update the belief values (line 36).

Second phase : The computation of beliefs is performed from the
root to the leaves and the belief values are updated a second
time (line 49).

The set-thread action fact is used in line 2 to (1) force nodes
to stay in the thread and (2) partition nodes as a grid of threads.
This sets up areas of nodes for threads to build splash trees on.

In this program, coordination assumes a far more important role
than we have seen before. Coordination rules drive the behavior of
the algorithm and while the result of the algorithm is statistically
identical to the original algorithm, SBP works very differently
than LBP. SBP is also implemented in GraphLab [23], a C++
framework for writing machine algorithms. GraphLab provides the
splash scheduler as part of its framework. It includes 350 lines of
C++ code. With our coordination facts, it is possible to create the
necessary scheduling with only 50 lines of code.

We measured the behavior of LBP and SBP for both CLM and
GraphLab. Figure 13 and 14 show that both systems have very
similar behavior when using a variable number of threads. In terms
of absolute performance, CLM’s BP program is, on average, 1.4
times slower than GraphLab, although the CLM program code
is much easier to understand. The reason for this low slowdown
ration is because LBP/SBP spends most of run time performing
mathematical computations, which are optimized when compiling
CLM rules into C++ code. For SBP, the overhead ratio of CLM
over GraphLab is two-fold since CLM now performs more fact
derivations and manipulations by building splash trees. Still, CLM
is as scalable as GraphLab.

1 !coord(A, X, Y), start(A)
2 -o set-thread(A, grid(X, Y)).
3

4 // Keep expanding the tree.
5 inactive(A), tree(A, All, Next)
6 -o expand-tree(A, All, Next).
7 // Start tree by picking node with the highest
8 // priority.
9 inactive(A), priority(A, P), P > 0.0

10 -o expand-tree(A, [A], [A]), priority(A, P).
11

12 // Tree has finished expanding: start first phase.
13 expand-tree(A, All, Next), len(All) >= max
14 -o first-phase(A, All, reverse(All)).
15 // Expand tree.
16 expand-tree(A, All, [A | Next]), len(Next) < max-1,
17 thread-id(A, Id1)
18 -o [collect => L | Side | !edge(A, L, Side),
19 0 = count(All, L), // L is not in All
20 0 = count(Next, L), // L is not in Next
21 priority(L, P), P > 0.0,

22 thread-id(L, Id2), Id1 = Id2 |
23 priority(L, P), thread-id(L, Id2) |
24 send-tree(A, All, Next ++ L)],
25 thread-id(A, Id1).
26

27 send-tree(A, All, [])
28 -o first-phase(A, All, reverse(All)).
29 send-tree(A, All, [B | Next])
30 -o schedule-next(B),
31 tree(B, All ++ [B], [B | Next]).
32

33 // First phase: process nodes from leaves to root.
34 first-phase(A, [A], [A]) -o second-phase(A, [], A).
35 first-phase(A, [A, B | Next], [A])
36 -o update(A), schedule-next(B),
37 second-phase(B, [B | Next], A).
38 first-phase(A, All, [A, B | Next])
39 -o update(A), schedule-next(B),
40 first-phase(B, All, [B | Next]).
41

42 // Second phase: process nodes from root to leaves.
43 second-phase(A, [], _)
44 -o remove-priority(A), inactive(A), update(A).
45 second-phase(A, [A], Back)
46 -o update(A), inactive(Back),
47 inactive(A), remove-priority(A).

48 second-phase(A, [A, B | Next], Back)
49 -o update(A), inactive(Back), schedule-next(B),
50 second-phase(B, [B | Next], A).

Figure 12: Coordination code for the SBP program.

7. Costs of Coordination
Coordination support introduces overhead in two different ways.
First, by manipulating the priority queues which require operations
on a min heap. Second, by requiring more lock operations as we
move nodes between queues and within queues.

As can be seen in Table 2, except for N Queens, most coordi-
nated programs require significantly more queue operations. The
data for this table comes from recording the number of queue oper-
ations and facts derived. Queue operations represent the number
of normal queue operations executed (each costs one unit) plus
the number of percolate-up/percolate-down operations executed
for each manipulation of the priority queue. As expected, in all
cases, coordination adds a significant number of total queue op-
erations, but the resulting overhead is more than compensated for
by an improved schedule and a reduction in number of facts pro-
duced. Alternatively, for MiniMax and N Queens, the number of
facts derived is the same for all configurations, which means that
the performance seen for those programs arises from reduced mem-
ory usage and improved memory locality.



Figure 13: Experimental results for LBP: comparing CLM and
GraphLab.

Figure 14: Experimental results for SBP: comparing CLM and
GraphLab.

Program Queue Operations
1 4 8 16

SSSP (Regular) 92.0M 384.9M 454.3M 411.1M
SSSP (Coordinated) 300.4M 875.7M 880.0M 993.8M
HT (Regular) 93.8M 141.4M 145.9M 146.5M
HT (Coordinated) 135.5M 179.1M 212.3M 220.0M
HT (Local) 135.5M 180.1M 198.7M 179.3M
LBP 15.7M 16.0M 11.3M 8.5M
SBP 97.2M 90.0M 84.3M 79.2M
MiniMax (Regular) 16.4M 19.0M 18.8M 20.4M
MiniMax (Coordinated) 52.0M 52.0M 52.0M 52.0M
N Queens (Regular) 10.5K 15.3K 15.2K 20.8K
N Queens (Bottom S.) 3.7K 5.7K 11.1K 18.3K

Table 2: Total number of queue operations per program. The SSSP
program uses the Live Journal dataset.

8. Conclusions
We have presented a novel way of adding coordination to a declar-
ative language without changing the nature of the language or in-
troducing non-declarative constructs. We took advantage of the fact
that CLM uses linear logic, which allows us to derive coordination
facts that can be deleted in order to perform actions on the underly-
ing runtime system. Sensing facts allow the programmer to reason
about data locality and scheduling of computation in a data-driven
fashion. Action facts are then used to affect how the program runs
on the underlying system. Our experimental results show that coor-
dination improves execution time, memory usage and scalability of
programs. This allows programs to be first written without taking

performance into account and then optimized through the judicious
use of coordination facts.

Our work makes CLM the ideal framework for rapid develop-
ment of irregular graph algorithms since CLM programs are short
and declarative. CLM not only provides decent performance when
compared to other competing frameworks, but it also allows the
programmer to experiment with custom scheduling policies that
can be later implemented in more efficient frameworks. As further
work, we would like to explore CLM’s coordination principles in
distributed systems, where data locality is far more important than
in shared memory systems.
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