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Abstract This work proposes a new design for the supporting data structures
used to implement multithreaded tabling in Prolog systems. Tabling is a im-
plementation technique that improves the expressiveness of traditional Prolog
systems in dealing with recursion and redundant computations. Mode-directed
tabling is an extension to the tabling technique that supports the definition of
alternative criteria for specifying how answers are aggregated, being thus very
suitable for problems where the goal is to dynamically calculate optimal or
selective answers. In this work, we leverage the intrinsic potential that mode-
directed tabling has to express dynamic programming problems, by creating
a new design that improves the representation of multi-dimensional arrays in
the context of multithreaded tabling. To do so, we introduce a new mode for
indexing arguments in mode-directed tabled evaluations, named dim, where
each dim argument features a uni-dimensional lock-free array. Experimental
results using well-known dynamic programming problems on a 32-core ma-
chine show that the new design introduces less overheads and clearly improves
the execution time for sequential and multithreaded tabled evaluations.
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1 Introduction

Dynamic programming [3] is a general recursive strategy that consists in di-
viding a problem in simple sub-problems that, often, are the same. The idea
behind dynamic programming is to reduce the number of computations: once
an answer to a given sub-problem has been computed, it is memoized and the
next time the same answer is needed, it is simply looked up. Dynamic pro-
gramming is especially useful when the number of overlapping sub-problems
grows exponentially as a function of the size of the input, but their size is
polynomial when viewed as a set.

Tabling (or memoing) [4] is a kind of dynamic programming implementa-
tion technique that overcomes some limitations of traditional Prolog systems
in dealing with recursion and redundant sub-computations. Tabling is a re-
finement of Prolog’s default resolution that stems from one simple idea: save
intermediate answers for current computations in an appropriate data area,
called the table space, so that they can be reused when a similar computation
appears during the resolution process. Tabled evaluation can reduce the search
space, avoid looping and have better termination properties than Prolog’s de-
fault resolution. Work on tabling proved its viability for application areas such
as deductive databases [16], inductive logic programming [14], knowledge based
systems [21], model checking [12], parsing [8], program analysis [5], reasoning
in the semantic Web [23], among many others. Currently, the tabling technique
is widely available in systems like B-Prolog, Ciao, Mercury, Picat, SWI-Prolog,
XSB Prolog and YAP Prolog. Mode-directed tabling [6] is an extension to the
tabling technique that supports the definition of alternative criteria, or modes,
for specifying how answers are inserted into the table space. The key idea is
to define the terms of the arguments that define sub-computations to be con-
sidered for similarity1 checking (the index arguments) and define additionally
how variant answers of those sub-computations should be tabled (or stored) re-
garding the remaining arguments (the output arguments) [6]. Mode-directed
tabling is thus very suitable for problems where the goal is to dynamically
calculate optimal or selective answers as new results arrive.

Multithreading in Prolog is the ability to concurrently perform computa-
tions, in which each computation runs independently but shares the program
clauses. When multithreading is combined with tabling, we have the best of
both worlds, since we can exploit the combination of higher procedural con-
trol with higher declarative semantics. In a multithreaded tabling system, we
have the extra problem of ensuring the correctness and completeness of the
concurrent answers found and stored in the tables. Thus, despite the avail-
ability of threads and tabling in a Prolog system, supporting both features
simultaneously implies complex ties to the underlying engine. To the best of
our knowledge, XSB Prolog [10] and YAP Prolog [1] are the only systems that
support the combination of tabling with multithreading.

1 Two terms are considered to be similar if they are the same up to variable renaming.
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In this work, we leverage the intrinsic potential that mode-directed tabling
has to express dynamic programming problems, by creating a new design that
improves the representation of multi-dimensional arrays in the context of mul-
tithreaded tabling. To do so, we introduce a new mode for indexing arguments
in mode-directed tabling, named dim, where each dim argument features a
uni-dimensional lock-free array. This functionality allows users to explicitly
define arguments specially aimed for a fast evaluation of dynamic program-
ming problems with single solutions for multiple integer dimensions, like the
ones which calculate the maximum/minimum value of a sub-computation. Our
focus on multi-dimensional arrays emerged because, several of the proposals
that can be found in the literature to parallelize dynamic programming prob-
lems, are based on a careful analysis of the sequential algorithm, in order to
find the best way to minimize the data dependencies in the supporting data
structure for memoization, often a multi-dimensional array [15,9].

To the best of our knowledge, this is the first work on multithreaded tabling
that offers such a design. We will focus our discussion on YAP’s specific imple-
mentation2, but our proposal can be generalized and applied to other tabling
systems. Experimental results, on a 32-core AMD machine, show that our
proposal is able to improve greatly the execution time of well-known dynamic
programming problems by taking advantage of the new multi-dimensional and
lock-free design. The new design introduces less overheads and clearly improves
the execution time for sequential and multithreaded execution. In particular,
for multithreaded execution up to 32 threads, the new design showed to be
able to maintain or achieve slightly better speedups despite its base execution
times (with one thread) be 1.5 to 2.5 times faster than the previous design.
With the results obtained, we expect that multithreaded tabling can be seen
as a relevant member within the general ecosystem of concurrent/parallel en-
vironments for the evaluation of dynamic programming problems.

The remainder of the paper is organized as follows. First, we briefly intro-
duce some background about tabling in Prolog systems, mode-directed tabling
and multithreaded tabling. Next, we introduce our new table space design.
Then, we describe in detail the key algorithms that support the implemen-
tation and discuss their correctness. Finally, we present experimental results
and we end by outlining some conclusions.

2 Background

Dynamic programming can be implemented using either a bottom-up or a top-
down approach. Bottom-up approaches start from the base sub-problems and
recursively compute the next level sub-problems until reaching the answer to
the given problem. On the other hand, top-down approaches start from the
given problem and use recursion to subdivide a problem into sub-problems
until reaching the base sub-problems. Answers to previously computed sub-

2 Available at https://github.com/miar/yap-6.3.
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problems are reused rather than being recomputed. An advantage of the top-
down approach is that it might not need to compute all possible sub-problems.
However, dynamic programming has some limitations, such as, the curse of
dimensionality [3] which might occur in problems with high-dimensional spaces
(often with hundreds or thousands of dimensions) where the volume of space is
so high that the available data becomes sparse, thus preventing common data
organization strategies from being efficient. In this work, we focus on problems
with low-dimensional integer spaces, such as the Knapsack and the Longest
Common Subsequence (LCS) problems.

2.1 Tabling in Prolog Systems

The key idea of tabling is to have a special type of call, named tabled call,
which is used to minimize the evaluation of the search space in the same fash-
ion as the standard dynamic programming techniques. To do so, tabling uses
an auxiliary data space, called the table space, to keep track of the subgoal
calls in evaluation and store, for each subgoal, the set of answers which are
found during program’s evaluation. Whenever a similar subgoal call appears,
it is resolved by consuming answers from table space instead of executing the
program clauses. During this process, as further new answers are found, they
are added to their tables and later returned to all similar calls. To control the
execution flow, tabling uses two types of special data structures: (i) generator
nodes, which correspond to first calls to a tabled subgoal, are used to generate
the answers for the call; and (ii) consumer nodes, which correspond to simi-
lar calls to a tabled subgoal, are used to consume the answers found for the
corresponding generator call.

Tabled Predicate
Compiled Code

Table Entry

Subgoal
Frame
Call C1

Subgoal Trie Structure

Answer
Trie

Structure

Subgoal
Frame

Call C2

Answer
Trie

Structure

Subgoal
Frame
Call Cn

Answer
Trie

Structure

. . .

. . .

Fig. 1 YAP’s default table space organization

With these requirements,
the design of the table
space is critical to achieve
an efficient implementation.
YAP uses tries which is re-
garded as a very efficient
way to implement the table
space [13]. Tries are trees
in which common prefixes
are represented only once.
YAP implements tables us-
ing two levels of tries. The
first level, named subgoal
trie, stores the tabled sub-
goal calls and the second
level, named answer trie,
stores the answers for the
calls. Figure 1 shows YAP’s default table space organization. At the entry
point we have the table entry data structure. This structure is allocated when
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a predicate is being compiled, thus guaranteeing that all calls to the predicate
will access the table space starting from the same point. Below the table entry,
we have the subgoal trie structure. Each different tabled call corresponds to a
unique path through the subgoal trie structure, always starting from the table
entry, passing by several subgoal trie data units, the subgoal trie nodes, and
reaching a leaf data structure, the subgoal frame. The subgoal frame stores
additional information about the subgoal and acts like an entry point to the
answer trie structure. Each unique path through the answer trie data units,
the answer trie nodes, corresponds to a different tabled answer to the entry
subgoal. At the engine level, generator and consumer nodes access the table
space by keeping a reference to the corresponding subgoal frame.

2.2 Mode-Directed Tabling

In traditional tabling, all the arguments of a tabled subgoal call are considered
when storing answers into the table space. When a new answer is not a variant
of any answer that is already in the table space, then it is always considered for
insertion. Therefore, traditional tabling is very good for problems that require
storing all answers. However, with dynamic programming, usually, the goal is
to dynamically calculate optimal or selective answers as new results arrive.

Mode-directed tabling [6] is an extension to the tabling technique that
supports the definition of modes for specifying how answers are inserted into
the table space. Within mode-directed tabling, tabled predicates are declared
using statements of the form ‘table p(m1, ...,mn)’, where the mi’s are mode op-
erators for the arguments. The idea is to define the arguments to be considered
for similarity checking (the index arguments) and how variant answers should
be tabled regarding the remaining arguments (the output arguments). Imple-
mentations of mode-directed tabling are currently available in B-Prolog [22]
and YAP Prolog [17]. A restricted form of mode-directed tabling can also be
reproduced in XSB Prolog by using answer subsumption [19]. In YAP, index
arguments are represented with mode index, while arguments with modes first,
last, min, max, sum and all represent output arguments. When an answer is
generated, the system tables the answer only if it is preferable, accordingly to
the meaning of the output arguments, than some existing variant answer.

Figure 2 shows the Prolog code that implements a generic version of the
Knapsack problem using mode-directed tabling. The table directive declares
that predicate ks with arity 3 (or ks/3 for short) is to be tabled using modes
(index, index,max), meaning that the third argument (the profit) should store
only the maximal answers for the first two arguments (the index of the number
of items being considered and the knapsack’s capacity). The code that follows
implements a recursive top-down definition of the Knapsack problem. The
first clause is the base case and defines that the empty set is a solution with
profit 0. The second clause excludes the current item from the solution set
and the third includes the current item in the solution if its inclusion does not
overcome the current capacity of the knapsack.
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% table declaration

:- table ks(index , index , max).

% base case

ks(0, Capacity , 0).

% exclude item N from the knapsack

ks(N, Capacity , Profit) :-

N > 0, M is N - 1, ks(M, Capacity , Profit ).

% include item N in the knapsack

ks(N, Capacity , Profit) :-

N > 0, item(N, Weight_N , Profit_N),

Capacity_M is Capacity - Weight_N , Capacity_M >= 0, M is N - 1,

ks(M, Capacity_M , Profit_M), Profit is Profit_N + Profit_M.

Fig. 2 The Knapsack problem with mode-directed tabling

2.3 Multithreaded Tabling

YAP follows a SWI-Prolog compatible multithreading implementation [20],
where each Prolog thread is an operating system native thread running a
Prolog engine. After being started from a goal, a thread evaluates the goal
just like a regular Prolog evaluation. At the engine level, each thread has its
own execution stacks, with generator and consumer nodes, and only shares the
code area where predicates, records, flags and other global data are stored.

Thread 1
Subgoal
Frame

Call Ci

Shared Subgoal Trie Structure

Private
Answer Trie
Structure

Completed
Subgoal
Frame
Call Ci

Shared
Answer Trie
Structure

Thread k
Subgoal
Frame
Call Ci

Private
Answer Trie
Structure

. . .

Fig. 3 Subgoal sharing design with shared answers of
completed subgoals

For tabled evaluation,
a thread views its tables
as private but, at the en-
gine level, parts of the table
space can be shared among
threads. One such approach
is the subgoal sharing design
with shared answers of com-
pleted subgoals [2]. The idea
is as follows. The subgoal
trie structures are shared
among all threads and the
leaf data structures repre-
senting each tabled subgoal
call Ci, instead of pointing
to a single subgoal frame, point to a chain of private subgoal frames, one per
thread that is evaluating the call Ci. The answers for call Ci for each thread
are then also stored in an answer trie structure private to each thread. Later,
when the first subgoal frame is completed, i.e., when a thread has found the
full set of answers for it, the subgoal frame is marked as completed and put
in the beginning of the chain of private subgoal frames.

Figure 3 illustrates this scenario in the context of a tabled subgoal call Ci.
Whenever a thread calls a new tabled subgoal call, first it searches the table
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space looking if any other thread has already computed the full set of answers
for that call, i.e., it looks for a completed subgoal frame in the beginning of
the chain. If so, it reuses the available answers, thus avoiding recomputing
them from scratch. Otherwise, it computes the call itself in a private fashion.
Several threads can work on the same subgoal call simultaneously. The first
thread completing a call shares the results by making them publicly available.

3 Multi-Dimensional Lock-Free Table Space Design

In this work, we propose a new table space design which supports the efficient
handling of multi-dimensional arrays in the context of multithreaded mode-
directed tabling. The new design replaces the usage of the subgoal and answer
trie data structures with uniquely identifiable bucket entries. In the new design,
the multi-dimensional array represents the set of possible different calls for
the tabled predicate at hand and each bucket entry in the array represents a
particular subgoal call SC. Each bucket entry includes two fields: (i) one field
stores the entry point for the chain of subgoal frames for SC (one frame per
thread that is evaluating SC); and (ii) a second field stores the answer which
represents the current aggregated answer for SC. In the current version, we
support the aggregator modes min, max and sum.

To take advantage of the new design, we propose a new mode for indexing
arguments in mode-directed tabled evaluations, named dim, where each dim
mode features one dimension in the multi-dimensional array representing the
tabled predicate at hand. The dim mode should be used with an argument
representing the size of the dimension, i.e., something like dim(N), where N
represents the interval of integer numbers (between 0 and N − 1) which can
appear in the calls to the predicate during evaluation.

Figure 4 illustrates the new design in the context of predicate ks/3 from
Fig. 2, but now adapted to take advantage of the dim mode declarations.
In the example, predicate ks/3 is assumed to have been declared as table
ks(dim(X),dim(Y),max), where X and Y are specific integer values. As the
previous design, the entry point is the table entry data structure, which for
mode-directed tabling includes a pointer to a modes data structure storing
the modes declared for the predicate. Since ks/3 was declared using two dim
modes, the table entry then points to a two-dimensional array with X ∗ Y
bucket entries. Additionally, Fig. 4 illustrates a configuration where two sub-
goal calls are in evaluation, ks(0, Y − 1, V AR0) and ks(X − 1, Y − 1, V AR0)
with the aggregated answers Ans1 and Ans2, respectively. The former sub-
goal call has already a completed subgoal frame, which is in the beginning of
the chain, and a second subgoal frame being evaluated by thread 1 (thread 1
started the evaluation before the subgoal call have been completed by another
thread). The latter subgoal call is still under evaluation by threads 1 and 2.

When comparing the previous design with the one in Fig. 4, one can easily
observe that the new design has the following advantages: (i) requires less
memory since it does not use a data structure based on trie nodes; (ii) at
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Table Entry
Predicate ks/3

Modes

dim(X) dim(Y) max

0

0

X-1

Y-1

Ans1

Completed
Subgoal Frame

ks(0,Y-1,VAR0)

Ans2

. . .

. . .

.
 
.
 
.

.
 
.
 
.

(none)

(none)

Thread 2
Subgoal Frame

ks(X-1,Y-1,VAR0)

Thread 1
Subgoal Frame

ks(0,Y-1,VAR0)

(null)

(null)

Thread 1
Subgoal Frame

ks(X-1,Y-1,VAR0)

Fig. 4 The new multi-dimensional lock-free table space design

the subgoal representation level, it leads to less cache misses since, with a
simple calculation, threads are able to access the bucket entry corresponding
to the chain of subgoal frames, while in the previous design threads have to
traverse at least one trie level to access such a chain; and (iii) at the answer
representation level, a single field is enough to store the aggregated answer.

To support concurrency within the new table space design, we took ad-
vantage of the CAS (Compare-And-Swap) instruction, that nowadays can be
widely found on many common architectures. The CAS operation is an atomic
instruction that compares the contents of a memory location to a given value
and, if they are the same, updates the contents of that memory location to
a given new value. The atomicity guarantees that the new value is calculated
based on up-to-date information, i.e., if the value had been updated by another
thread in the meantime, the write would fail. Besides reducing the granularity
of the synchronization, the CAS operation is at the heart of many lock-free
data structures [7]. Lock-free data structures offer several advantages over their
blocking counterparts, such as being immune to deadlocks, tolerant to priority
inversion and convoying, kill-tolerant availability and preemption-tolerant [11].
As we will show next, our proposal was designed from scratch to be lock-free.

4 Algorithms

In this section, we discuss in more detail the key algorithms that implement
the new table space design.

Algorithm 1 shows the pseudo-code for the process of obtaining the subgoal
frame corresponding to a table entry TE and a subgoal call SC, given a thread
identifier TID. The algorithm begins by getting the mode arguments (MA)
and the bucket entry (BE) for the subgoal call SC (lines 1–2). Next, it tries to
find a suitable subgoal frame sf (line 3), i.e., a completed subgoal frame or its
own subgoal frame (allocated by a previous generator call to this procedure),
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Algorithm 1 CheckInsertSubgoalFrame(table entry TE, call SC, thread TID)

1: MA← GetModeArguments(TE)
2: BE ← GetBucketEntry(TE, SC,MA)
3: sf ← FindCompletedOrThreadSubgoalFrame(BE, TID)
4: if sf then {a completed subgoal frame or the thread’s subgoal frame was found}
5: return sf
6: else {no suitable subgoal frame was found}
7: nsf ← InitNewSubgoalFrame(TID)
8: repeat {get a completed subgoal frame or insert a new subgoal frame}
9: first sg ← SubgoalFrameRef(BE)

10: if IsCompleted(first sg) then {completed subgoal frame found}
11: ReleaseSubgoalFrame(nsf)
12: return first sg
13: else
14: NextRef(SF )← first sg
15: until CAS(SubgoalFrameRef(BE), first sg, nsf)
16: return nsf

in which case the algorithm ends by returning it (lines 4–5). Otherwise, no
suitable subgoal frame was found, thus a new temporary subgoal frame nsf is
allocated and initialized with state incomplete for thread TID (line 7).

In the continuation, the algorithm tries to insert nsf in the chain of subgoal
frames. To do that, it enters in a loop trying to insert the new subgoal frame
in the beginning of the chain. Since, at the same time, another thread can be
completing its own subgoal frame and moving it to the beginning of the chain,
we need to guarantee synchronization between both operations. Therefore, the
algorithm starts by obtaining the reference first sg to the first subgoal frame
in the chain (line 9) and rechecks if it refers a completed frame (that could
have been completed in the meantime), in which case it releases the previously
allocated frame and ends by returning the reference to the completed frame
(lines 10–12). Otherwise, the algorithm tries to insert nsf in the chain of
subgoal frames. For that, it updates its NextRef() field to point to the current
frame on the beginning of the chain (line 14) and then tries to insert nsf in the
head of the chain by using a CAS operation (line 15). If the CAS operation
succeeds, then nsf becomes a permanent frame and the algorithm ends by
returning it (line 16). Otherwise, if the CAS fails, that means that another
thread has updated the head of the chain in the meantime. In this case, the
algorithm reads the new head reference first sg and the process is restarted.

Upon completion of a particular subgoal call, which happens when all an-
swers are computed, a thread calls Alg. 2 to update the corresponding subgoal
frame SF to the completed state. Algorithm 2 begins by making a copy of SF
to a new frame (nsf) and by marking SF to be removed from the chain of
subgoal frames for the call at hand (lines 1–2). Next, nsf is marked as com-
plete and its next chain reference is updated to Null (lines 3–4). If successfully
inserted in the chain for the call at hand, nsf will be the entry point of the
chain to indicate that the subgoal call is completed. In the continuation, the
algorithm gets the bucket entry BE from SF (line 5) and enters in a CAS
loop (lines 6–11). The CAS loop will end in one of two situations: (i) another
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Algorithm 2 MoveToCompleted(subgoal frame SF)

1: nsf ← CopySubgoalFrame(SF )
2: MarkForRemovalSubgoalFrame(SF )
3: MarkAsCompleted(nsf)
4: NextRef(nsf)← Null
5: BE ← GetBucketEntry(SF )
6: repeat {trying to move the subgoal frame to the head of the chain}
7: first sg ← SubgoalFrameRef(BE)
8: if IsCompleted(first sg) then {a completed subgoal frame already exists}
9: ReleaseSubgoalFrame(nsf)

10: return
11: until CAS(EntryRef(BE), first sg, nsf)
12: return

completed subgoal frame, inserted in the meantime by another thread, is found
in the beginning of the chain (line 8–10); (ii) the subgoal frame nsf is success-
fully inserted in the head of the chain (line 11). In situation (i), nsf becomes
useless and is thus released (line 9). In situation (ii), nsf becomes the single
permanent subgoal frame since its next reference was previously set to Null.

Our implementation uses a copying technique to ensure that the completed
frame is stored in the beginning of the chain since, otherwise, this constraint
cannot be guaranteed. A problematic situation occurs when the subgoal frame
SF being updated to completed is already the first on the chain and, concur-
rently, a second thread U executing Alg. 1 is trying to insert another frame
SF2 in the beginning of the chain. If we simply try to update SF to completed
(without the copying technique), it might happen that SF2 is inserted in the
beginning of the chain just before SF be updated to completed, which violates
the constraint of having the completed frame in the beginning of the chain. In
more detail, thread U might have seen SF still as not completed (line 10 in
Alg. 1) and then successfully insert SF2 in the beginning of the chain using
the CAS operation in line 15 of Alg. 1.

Next, we describe the algorithms used to generate and consume answers
to/from a subgoal call. Algorithm 3 shows the pseudo-code for the process of
updating the table space when a new answer ANS is found for a generator
node N . The algorithm begins by obtaining the corresponding subgoal frame
SF and bucket entry BE for the generator N (lines 1–2). Next, it checks if
this is the first answer for SF and, if it is, it tries to insert ANS using a
CAS operation and returns (lines 3–5). The first answer is always a correct
answer for any aggregator mode. Otherwise, if it is not the first answer or if
the CAS failed, then at least one answer already exists. Thus, the algorithm
gets the mode aggregator for SF (line 6) and proceeds by computing the new
answer according with the mode at hand. For simplicity of presentation, we
only show the case of the max mode aggregator (lines 7–13). The other modes
are treated similarly. For the max mode, the algorithm then tries to update
BE with ANS if it is greater than the current answer in BE. To do so, it
repeats a CAS operation until it succeeds (lines 8–12) or until it finds a better
(maximal) answer, case where it simply returns such answer (lines 10–11).



Multi-Dimensional Lock-Free Arrays for Multithreaded Mode-Directed Tabling 11

Algorithm 3 CheckInsertAnswer(answer ANS, generator N)

1: SF ← GetSubgoalFrame(N)
2: BE ← GetBucketEntry(SF )
3: if HasNoAnswer(BE) then {first answer}
4: if CAS(Answer(BE), Null, ANS) then {answer inserted}
5: return ANS
6: aggregator ← GetAggregatorMode(SF )
7: if aggregator = AGGREGATOR MAX then
8: repeat {try to insert the answer if greater than the current one}
9: current ans← Answer(BE)

10: if ANS ≤ current ans then
11: return current ans
12: until CAS(Answer(BE), current ans,ANS)
13: return ANS
14: else if aggregator = ... then {remaining aggregator modes}
15: ...

Finally, Alg. 4 presents the pseudo-code for the process of loading an answer
to a consumer node N . As for Alg. 3, it begins by obtaining the corresponding
subgoal frame SF and bucket entry BE for the consumer node N (lines 1–2).
Next, it checks if the last consumed answer in N is different from the one
stored in the table space from the call at hand, i.e., if new answers were found
since the last consumed answer marked in the field LastConsumedAnswer()
(line 3). If this is the case, then the LastConsumedAnswer() field is updated
accordingly and the new answer returned to the consumer node N (lines 4–
5). Otherwise, if no new answers exist, it simply returns a Null reference. It
is important to note that the answer being returned is the one in the field
LastConsumedAnswer() of N and not the one in the Answer() field of BE.
This is because it might happen that the answer in BE could be updated, in
the meantime, by another thread between the instant that it was read (line 4)
and the instant that the return operation was executed (line 5), causing the
current executing thread to miss the consumption of an answer.

Algorithm 4 CheckConsumeAnswer(consumer N)

1: SF ← GetSubgoalFrame(N)
2: BE ← GetBucketEntry(SF )
3: if LastConsumedAnswer(N) 6= Answer(BE) then {new (unconsumed) answer}
4: LastConsumedAnswer(N)← Answer(BE)
5: return LastConsumedAnswer(N)
6: else {no new answers}
7: return Null

5 Correctness

In this section, we discuss the correctness of our proposal. Its full proof consists
in two parts: first prove that the proposal is linearizable and then prove that
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progress occurs in a lock-free fashion. Due to the lack of space, we focus on the
linearization proof and we describe the linearization points of the proposal, the
set of invariants and parts of the proof that the linearization points preserve
the set of invariants. The linearization points in the algorithms shown are:

LP1 CheckInsertSubgoalFrame() is linearizable at the CAS operation in line 15.
LP2 MoveToCompleted() is linearizable at the MarkForRemovalSubgoalFrame()

procedure in line 2.
LP3 MoveToCompleted() is linearizable at the CAS operation in line 11.
LP4 CheckInsertAnswer() is linearizable at the CAS operation in line 4.
LP5 CheckInsertAnswer() is linearizable at the CAS operation in line 12.

The set of invariants that must be preserved on every state are:

Inv1 A chain of subgoal frames always ends in a Null reference.
Inv2 The reference to the next in chain of a subgoal frame SF1, corresponding

to a subgoal call SC, must always refer to: (i) Null; (ii) another subgoal
frame SF2 also corresponding to SC.

Inv3 The allocation of a subgoal frame SF must comply with the follow-
ing semantics: (i) the initial state is temporary; (ii) the follower state is
permanent if SF is inserted in a chain; (iii) the final state is released.

Inv4 The visibility of a subgoal frame SF must comply with the following
semantics: (i) the initial state is visible to a single thread; (ii) the follower
state is visible to all threads if SF is inserted in a chain; (iii) the final state
is invisible if SF does not belong to any chain.

Inv5 The state of a subgoal frame SF must comply with the following se-
mantics: (i) the initial state is incomplete; (ii) the final state is complete.

Inv6 A subgoal call SC in evaluation has at least one subgoal frame SF in
its chain.

Inv7 A subgoal call SC fully evaluated has at least one completed subgoal
frame SF in its chain.

Inv8 A subgoal frame SF marked as completed and allocated as permanent
is always in the beginning of the chain and visible to all threads.

Inv9 Given a mode aggregator MA and a sequence S of answers for a subgoal
call SC, the answer stored for SC is always the answer corresponding to
the application of MA to S.

Inv10 Given a mode aggregator MA and a subgoal call SC, then an aggre-
gated answer A1 is only stored once for SC, i.e., once A1 is replaced by
another answer A2, then A1 is never again the aggregated answer for SC.

Inv11 Given a mode aggregator MA, a subgoal call SC and the sequence S
of all answers for SC, then the final aggregated answer for SC is always
consumed by all consumer nodes.

Finally, we show the proof on how two of the linearization points, namely
LP1 and LP4, preserve the set of invariants. As mentioned before, due to the
lack of space, we cannot show the proof for the remaining linearization points,
but they follow a similar proof strategy.
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Lemma 1 Linearization point LP1 preserves the set of invariants.

Proof This linearization point refers to the insertion of a new subgoal frame
nsf in the bucket entry of a subgoal call SC. Previous to the execution of the
CAS in line 15, nsf is: (i) in a incomplete state (by Inv5); and (ii) referring to
first sg (line 14) which is Null or another subgoal frame (by Inv1 and Inv2).
After the successful execution of the CAS operation, Inv1, Inv2 and Inv5 hold,
because the reference and the state of nsf remain unchanged. Inv3, Inv4 and
Inv6 also hold because with the insertion of nsf in the chain of subgoal frames
for SC, nsf passes from a temporary state (only visible to thread TID) to
a permanent state visible to all threads, meaning that at least one subgoal
frame is in the chain of subgoal frames for SC.

Finally, we prove that Inv8 also holds. To do so, we must ensure that
first sg is not complete up to the successful execution of the CAS operation.
Assume that thread TID has just set first sg in line 9 and is prepared to
execute line 10. If first sg is complete then TID would execute lines 11–
12 and return (and would not have been able to reach the CAS operation).
Otherwise, if first sg is not complete in line 10 then it will never be the
completed subgoal frame in the beginning of the chain. This is true because
in Alg. 2 we specifically create a new complete subgoal frame and use it in
linearization point LP3, whenever the subgoal call SC is complete. Thus, up
to the execution of the CAS operation either (i) SC has a complete subgoal
frame in the beginning of the chain and since it is necessarily different from
first sg, the CAS fails; or (ii) first sg is still in the beginning of the chain
and it is not complete. In both scenarios, Inv8 holds. The remaining invariants
are not affected. ut

Lemma 2 Linearization point LP4 preserves the set of invariants.

Proof This linearization point refers to the insertion of the first answer in a
bucket entry BE. Previous to the execution of the CAS in line 4, BE does not
have any answer. After the successful execution of the CAS operation, Inv9
and Inv10 hold, because the answer ANS is a valid answer, since it was found
during the evaluation of the subgoal call at hand, and any mode aggregator
applied to a single answer ANS results in the insertion of ANS in the table.
The remaining invariants are not affected. ut

6 Performance Analysis

In this section, we present a performance analysis of our new multi-dimensional
lock-free table space design. The environment of our experiments was a ma-
chine with 32-core AMD Opteron (tm) Processor 6274 @ 2.2 GHz with 32
GBytes of main memory and running the Linux kernel 3.18.6-100.fc20.x86 64
and YAP Prolog 6.3.2. We focused on two well-known dynamic programming
problems, the Knapsack and the Longest Common Subsequence (LCS) prob-
lems. For the Knapsack problem, we fixed the number of items and capacity,
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Table 1 Execution time, in milliseconds, for the sequential version (Tseq) and the multi-
threaded version with one thread (T1) and the corresponding ratio between the two versions
(T1/Tseq) for the top-down and bottom-up approaches of the Knapsack and LCS problems
using YAP with the subgoal sharing design with shared answers of completed subgoals (SS)
and using YAP with the new multi-dimensional lock-free table space design (MD)

Approach Subgoal Sharing (SS) Multi-Dimensional (MD) SS vs MD
& Time Ratio Time Ratio Ratio

Dataset Tseq T1 T1/Tseq Tseq T1 T1/Tseq SST1/MDT1

Knapsack Problem

TDno

D10 9,508 12,415 1.31 4,275 5,241 1.23 2.37
D30 9,246 12,177 1.32 4,196 5,336 1.27 2.28
D50 9,480 12,589 1.33 4,275 5,457 1.28 2.31

TDrnd

D10 19,667 24,444 1.24 10,462 11,740 1.12 2.08
D30 19,847 25,609 1.29 10,508 11,959 1.14 2.14
D50 19,985 25,429 1.27 10,805 11,982 1.11 2.12

BU
D10 12,614 17,940 1.42 7,001 7,668 1.10 2.34
D30 12,364 17,856 1.44 7,005 7,786 1.11 2.29
D50 12,653 17,499 1.38 6,775 7,637 1.13 2.29

LCS Problem

TDno

D10 21,191 26,225 1.24 16,202 18,046 1.11 1.45
D30 20,809 26,146 1.26 16,006 18,067 1.13 1.45
D50 20,775 26,028 1.25 16,259 18,195 1.12 1.43

TDrnd

D10 34,565 44,371 1.28 21,525 23,635 1.10 1.88
D30 34,284 44,191 1.29 21,512 24,055 1.12 1.84
D50 33,989 44,158 1.30 21,477 23,736 1.11 1.86

BU
D10 20,799 28,909 1.39 11,453 14,017 1.22 2.06
D30 21,174 28,904 1.37 11,218 14,189 1.26 2.04
D50 21,166 28,857 1.36 11,139 13,982 1.26 2.06

respectively, 1,600 and 3,200. For the LCS problem, we used sequences with a
fixed size of 3,200 symbols. Then, for each problem, we implemented either top-
down (TD) and bottom-up (BU) approaches. For the top-down approaches,
we tested both problems without randomization (TDno) and with random-
ization using Stivala et al.’s approach [18] with an extra random displacement
clause (TDrnd). We also created three different datasets for each approach,
D10, D30 and D50, meaning that the values for the weights/profits for the
Knapsack problem and the symbols for the LCS problem were randomly gen-
erated in an interval between 1 and 10%, 30% and 50% of the total number of
items/symbols, respectively3.

Table 1 shows the execution time for the sequential (Tseq) and multi-
threaded version with one thread (T1) for the several configurations of the
Knapsack and LCS problems using YAP with the subgoal sharing design (SS
in what follows) and with the new multi-dimensional lock-free design (MD in
what follows). All execution times are the average of 10 runs. For Tseq, YAP
was compiled without multithreaded support and ran without multithreaded
code. Columns T1/Tseq show the overhead of the multithreaded version over
the sequential version and column SST1

/MDT1
compares the execution times

for the multithreaded versions of both designs.

By analyzing the results on Table 1, we can observe that the new MD
design clearly outperforms the previous SS design either for the sequential

3 Datasets available at https://github.com/miar/yap-6.3/tree/master/parallel_

dynamic_programming.
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Table 2 Execution time, in milliseconds, for one thread (T1) and corresponding speedups
(T1/Tp) for the execution with 8, 16, 24 and 32 threads, for the top-down and bottom-
up approaches of the Knapsack problem using YAP with the subgoal sharing design with
shared answers of completed subgoals (SS) and using YAP with the new multi-dimensional
lock-free table space design (MD)

Approach # Threads (p) Best
& Time (T1) Speedup (T1/Tp) Time

Dataset 1 8 16 24 32 (Tbest)
Subgoal Sharing (SS)

TDno

D10 12,415 n.c. n.c. n.c. n.c. 12,415
D30 12,177 n.c. n.c. n.c. n.c. 12,177
D50 12,589 n.c. n.c. n.c. n.c. 12,589

TDrnd

D10 24,444 6.78 12.35 15.44 18.19 1,344
D30 25,609 7.15 13.83 17.37 20.47 1,251
D50 25,429 7.27 13.70 17.35 20.62 1,233

BU
D10 17,940 7.17 13.97 18.31 22.15 0,810
D30 17,856 7.23 13.78 18.26 21.94 0,814
D50 17,499 7.25 14.01 18.34 21.76 0,804

Multi-Dimensional (MD)

TDno

D10 5,241 n.c. n.c. n.c. n.c. 5,241
D30 5,336 n.c. n.c. n.c. n.c. 5,336
D50 5,457 n.c. n.c. n.c. n.c. 5,457

TDrnd

D10 11,740 6.90 12.90 16.22 19.09 0,615
D30 11,959 7.31 14.04 18.01 21.59 0,554
D50 11,982 7.36 14.03 17.96 21.63 0,554

BU
D10 7,668 7.24 13.77 17.55 21.42 0,358
D30 7,786 7.40 14.13 18.02 22.18 0,351
D50 7,637 7.37 13.96 18.10 21.95 0,348

execution and the multithreaded execution with one thread. On average, the
MD design is around 2 to 2.5 times faster for the Knapsack problem and
around 1.5 to 2.0 times faster for the LCS problem than the SS design (re-
sults on column SST1/MDT1). Additionally, the overheads introduced by the
multithreaded version over the sequential version also seem to be less relevant
in the MD design than in the SS design. On average, the overheads intro-
duced by the MD design are around 10% to 20%, while the overheads for the
SS design are around 30% to 40% (results on columns T1/Tseq). In summary,
the results in Table 1 show that the new MD design introduces less overheads
than the SS design and clearly improves the execution time for sequential and
multithreaded execution with one thread.

Table 2 and Table 3 then show results for the execution with multiple
threads for the top-down and bottom-up approaches, respectively for the
Knapsack and LCS problems. Column T1 repeats the results for the execution
time with one thread and columns T1/Tp show the corresponding speedup for
the execution with 8, 16, 24 and 32 threads. For each configuration, the results
in bold highlight the column where the best execution time was obtained and
the last column (Tbest) presents such result in milliseconds.

Analyzing the general picture in both tables, one can observe that the
TDrnd top-down and BU bottom-up approaches have the best results with
excellent speedups for 8, 16, 24 and 32 threads. In particular, with 32 threads,
they obtain speedups between 18 and 22, for both problems and designs.
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Table 3 Execution time, in milliseconds, for one thread (T1) and corresponding speedups
(T1/Tp) for the execution with 8, 16, 24 and 32 threads, for the top-down and bottom-
up approaches of the LCS problem using YAP with the subgoal sharing design with shared
answers of completed subgoals (SS) and using YAP with the new multi-dimensional lock-free
table space design (MD)

Approach # Threads (p) Best
& Time (T1) Speedup (T1/Tp) Time

Dataset 1 8 16 24 32 (Tbest)
Subgoal Sharing (SS)

TDno

D10 26,225 n.c. n.c. n.c. n.c. 26,225
D30 26,146 n.c. n.c. n.c. n.c. 26,146
D50 26,028 n.c. n.c. n.c. n.c. 26,028

TDrnd

D10 44,371 7.23 13.23 16.45 19.74 2,248
D30 44,191 7.12 13.09 16.52 19.77 2,235
D50 44,158 7.06 13.30 16.49 19.58 2,255

BU
D10 28,909 6.47 12.21 16.48 20.32 1,423
D30 28,904 6.94 12.61 16.63 20.40 1,417
D50 28,857 6.44 12.31 16.44 20.52 1,406

Multi-Dimensional (MD)

TDno

D10 18,046 n.c. n.c. n.c. n.c. 18,046
D30 18,067 n.c. n.c. n.c. n.c. 18,067
D50 18,195 n.c. n.c. n.c. n.c. 18,195

TDrnd

D10 23,635 7.31 13.60 17.57 21.25 1,112
D30 24,055 7.46 14.03 17.99 21.40 1,124
D50 23,736 7.33 13.76 17.78 21.23 1,118

BU
D10 14,017 6.90 12.14 16.89 22.21 0,631
D30 14,189 6.88 13.10 17.01 22.49 0,631
D50 13,982 6.87 13.06 16.85 22.55 0,620

Columns Tbest also show that, for a particular problem and design, the BU
approach running with 32 threads obtains the best execution times of all con-
figurations. The speedup results for the TDno approach were not considered
(n.c.) since without randomization this approach is unable to take advantage
of our framework (all threads would replicate the same evaluation sequence
and, thus, they would not be able to reuse the answers from the other threads).

Comparing now the results for both designs, we can observe that, in gen-
eral, the MD design keeps the same speedups ratios despite its base execution
times (with one thread) being 1.5 to 2.5 times faster than the SS design, as
the results on Table 1 show. In particular, for the TDrnd and BU approaches,
the speedup results are slightly better in favor of the MD design. For the
execution times, the MD design is clearly better by far. For example, consider
the Knapsack problem with the BU approach and the D50 dataset with 32
threads, one can observe that the MD design takes 0,348 milliseconds, while
the SS design requires 0,804 milliseconds, i.e., more than a half reduction in
the absolute execution time. The same situation occurs in the LCS problem
with the BU approach and the D50 dataset with 32 threads, where the MD
design runs in 620 milliseconds, while the SS design runs in 1,406 milliseconds.

To understand better these results, we have also collected internal statistics
regarding both designs. According to those statistics, the better performance
results of the MD design are mainly due to three reasons. The first reason is
because the MD design implements lock-freedom on the complete table space,
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while the SS design implements lock-freedom only within the subgoal tries.
Lock-free techniques are known to achieve very good performances in highly
concurrent environments. In our new design, this means that threads are able
to access subgoal frames and read answers without any locking mechanism,
while insertions are all done using the CAS low-level instruction. The second
reason is because the answers found for subgoal calls are immediately shared
by all threads during the evaluation, while in the SS design, the answers are
only shared after the subgoal call is complete. The third and last reason is the
very efficient and compact representation of the table space. To support this
claim, we have collected the memory footprint of the SS and MD designs, on
both the Knapsack and LCS problems, when using the D50 dataset with the
top-down and bottom-up parallelization strategies. The memory footprint was
collected after the complete evaluation of all subgoal calls, so that the complete
table space size could be the same for any number of threads launched. For
the SS design, the memory used on the subgoal and answer tries was 704, 695
and 695 MBytes on the Knapsack problem, and 1407, 1406 and 1407 MBytes
on the LCS problem, for the TDno, TDrnd and BU approaches, respectively.
To store the same tables, the MD design used about 9 times less memory
on all approaches. Consequently, in the MD design, threads access less data
structures and memory positions, while in the SS design, threads have to
traverse the trie data structures for both tabled calls and answers, leading
also to a high ratio of penalties due to potential cache misses and page faults.

7 Conclusions and Further Work

The key contribution of this work is a new design at the underlying tabling en-
gine specially aimed to support the efficient handling of multi-dimensional ar-
rays. We propose a new mode for indexing arguments in mode-directed tabled
evaluations, named dim, where each dim argument features a uni-dimensional
lock-free concurrent array. This allows users to explicitly define which tabled
predicates could benefit from a more compact design when aggregating solu-
tions for multiple integer dimensions.

To show the potential of the new design, we used two well-known dynamic
programming problems and we discussed how we were able to reduce their ex-
ecution times and scale the execution, using either top-down and bottom-up
techniques. Experimental results, on a 32-core AMD machine, showed that the
new design introduces less overheads than the previous design and clearly im-
proves the execution time for sequential and multithreaded execution. In par-
ticular, for multithreaded execution up to 32 threads, the new design showed
to be able to maintain or achieve slightly better speedups despite its base ex-
ecution times (with one thread) be 1.5 to 2.5 times faster than the previous
design. As further work, we pretend to apply the new design to other dynamic
programming problems and explore its impact in other application domains.
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