Received <day> <Month>, <year>; Revised <day> <Month>, <year>; Accepted <day> <Month>, <year>

DOI: xxx/xxxx

ARTICLE TYPE

Multi-Dimensional Lock-Free Arrays for Multithreaded
Mode-Directed Tabling in Prolog

Miguel Areias' | Ricardo Rocha?

ICRACS & INESC TEC and Faculty of
Sciences, University of Porto, Portugal. Abstract
Email: miguel-areias @dcc.fc.up.pt

2CRACS & INESC TEC and Faculty of This work proposes a new design for the supporting data structures used to implement

Sciences, University of Porto, Portugal. multithreaded tabling in Prolog systems. Tabling is an implementation technique
Email: ricroc@dce.fe.up.pt that improves the expressiveness of traditional Prolog systems in dealing with recur-
Correspondence sion and redundant computations. Mode-directed tabling is an extension to the
Miguel Areias. Department of Computer tabling technique that supports the definition of alternative criteria for specify-

Science — FCUP. Rua do Campo Alegre,
1021/1055, 4169-007 Porto, Portugal.
Email: miguel-areias @dcc.fc.up.pt goal is to dynamically calculate optimal or selective answers. In this work, we

ing how answers are aggregated, being thus very suitable for problems where the

leverage the intrinsic potential that mode-directed tabling has to express dynamic
programming problems, by creating a new design that improves the representation of
multi-dimensional arrays in the context of multithreaded tabling. To do so, we intro-
duce a new mode for indexing arguments in mode-directed tabled evaluations, named
dim, where each dim argument features a uni-dimensional lock-free array. Exper-
imental results using well-known dynamic programming problems on a 32-core
machine show that the new design introduces less overheads and clearly improves

the execution time for sequential and multithreaded tabled evaluations.

KEYWORDS:
Prolog, Tabling, Dynamic Programming, Multithreading, Lock-Freedom.

1 | INTRODUCTION

Dynamic programming [1] is a general recursive strategy that consists in dividing a problem in simple sub-problems that, often,
are the same. The idea behind dynamic programming is to reduce the number of computations: once an answer to a given sub-
problem has been computed, it is memoized and the next time the same answer is needed, it is simply looked up. Dynamic
programming is especially useful when the number of overlapping sub-problems grows exponentially as a function of the size
of the input, but their size is polynomial when viewed as a set.

Tabling (or memoing) [2] is a kind of dynamic programming implementation technique that overcomes some limitations of
traditional Prolog systems in dealing with recursion and redundant sub-computations. Tabling is a refinement of Prolog’s default
resolution that stems from one simple idea: save intermediate answers for current computations in an appropriate data area,
called the table space, so that they can be reused when a similar computation appears during the resolution process. Tabled
evaluation can reduce the search space, avoid looping and have better termination properties than Prolog’s default resolution.
Work on tabling proved its viability for application areas such as deductive databases [3], inductive logic programming [4],
knowledge based systems [3]], model checking [6], program analysis [7]], reasoning in the semantic web [8], among many others.
Currently, the tabling technique is widely available in systems like B-Prolog [9], Ciao Prolog [10], Mercury [11]], Picat [12],

2|

XSB Prolog [13] and YAP Prolog [14]]. Mode-directed tabling [15]] is an extension to the tabling technique that supports the
definition of alternative criteria, or modes, for specifying how answers are inserted into the table space. The key idea is to define
the terms of the arguments that define sub-computations to be considered for variant checking (the index arguments) and define
additionally how variant answers of those sub-computations should be tabled (or stored) regarding the remaining arguments
(the output arguments) [[15]]. Two terms are considered to be variant if they are the same up to variable renaming. Mode-directed
tabling is thus suitable for problems where the goal is to dynamically calculate optimal or selective answers as new results arrive.

Multithreading in Prolog is the ability to concurrently perform computations, in which each computation runs independently
but shares the program clauses. When multithreading is combined with tabling, we have the best of both worlds, since we can
exploit the combination of higher procedural control with higher declarative semantics. However, combining threads and tabling
in a Prolog system introduces several new challenges at the underlying engine. For example, in a multithreaded tabling system,
we have the extra problem of ensuring the correctness and completeness of the concurrent answers found and stored in the
tables. To the best of our knowledge, XSB Prolog [[16] and YAP Prolog [17, 18] are the only Prolog systems that support the
combination of multithreading with tabling.

In this work, we leverage the intrinsic potential that mode-directed tabling has to express dynamic programming problems,
by creating a new design that improves the representation of multi-dimensional arrays in the context of multithreaded tabling.
To do so, we introduce a new mode for indexing arguments in mode-directed tabling, named dim, where each dim argument
features a uni-dimensional lock-free array. This functionality allows users to explicitly define arguments specially aimed for a
fast evaluation of dynamic programming problems with single solutions for multiple integer dimensions, like the ones which
calculate the maximum/minimum value of a sub-computation. Our focus on multi-dimensional arrays emerged because several
of the proposals, that can be found in the literature to parallelize dynamic programming problems, are based on the usage of
multi-dimensional arrays as the supporting data structure for memoization [[19].

To the best of our knowledge, this is the first work on multithreaded tabling that offers such a design. We will focus our discus-
sion on YAP’s specific implementatiorﬂ but our proposal can be generalized and applied to other tabling systems. Experimental
results, on a 32-core AMD machine, show that our proposal is able to improve greatly the execution time of well-known dynamic
programming problems by taking advantage of the new multi-dimensional and lock-free design. The new design introduces less
overheads and clearly improves the execution time for sequential and multithreaded execution. In particular, for multithreaded
execution up to 32 threads, the new design showed to be able to maintain or achieve slightly better speedups despite its base
execution times (with one thread) be 1.5 to 2.5 times faster than the previous design. With the results obtained, we expect that
multithreaded tabling can be seen as a relevant member within the general ecosystem of concurrent/parallel environments for
the evaluation of dynamic programming problems.

The remainder of the paper is organized as follows. First, we briefly introduce some background about tabling in Prolog
systems, mode-directed tabling and multithreaded tabling. Next, we introduce our new table space design. Then, we describe in
detail the key algorithms that support the implementation and discuss their correctness. Finally, we present experimental results
and we end by outlining some conclusions.

2 | BACKGROUND

Dynamic programming can be implemented using either a bottom-up or a top-down approach. Bottom-up approaches start from
the base sub-problems and recursively compute the next level sub-problems until reaching the answer to the given problem.
On the other hand, top-down approaches start from the given problem and use recursion to subdivide a problem into sub-
problems until reaching the base sub-problems. Answers to previously computed sub-problems are reused rather than being
recomputed. An advantage of the top-down approach is that it might not need to compute all possible sub-problems. However,
dynamic programming has some limitations, such as, the curse of dimensionality [1] which might occur in problems with high-
dimensional spaces (often with hundreds or thousands of dimensions) where the volume of space is so high that the available data
becomes sparse, thus preventing common data organization strategies from being efficient. In this work, we focus on problems
with low-dimensional integer spaces, such as the Knapsack and the Longest Common Subsequence (LCS) problems.

! Available at https://github.com/miar/yap-6.3,

https://github.com/miar/yap-6.3

2.1 | Tabling in Prolog Systems

The key idea of tabling is to have a special type of call, named tabled call, which is used to minimize the evaluation of the search
space in the same fashion as the standard dynamic programming techniques. To do so, tabling uses an auxiliary space, called
the table space, to keep track of the subgoal calls in evaluation and store, for each subgoal, the set of answers which are found
during program’s evaluation. Whenever a similar subgoal call appears, it is resolved by consuming answers from table space
instead of executing the program clauses. During this process, as further new answers are found, they are added to their tables
and later returned to all similar calls. Figure[I| shows the evaluation of a tabled program.

- table path/2.

0. path(a,2)

path(X, 2Z) :- path(XY), edge(Y,2Z2).
path(X 2Z) :- edge(X 2).

edge(a, b). 1 h Y Z 2. edge(a, 2)
edge(b. a). . path(a,Y), edge(Y,2)
Tabl e Space 3. Z=b
4. edge(b, 2) 6. edge(a, 2)
subgoal s answer s
3. VARl=b
0. path(a, VARL) 5 VARl=a 5 7-a 7. 7=p
(fail)

FIGURE 1 An example of a tabled evaluation

The top left corner of the figure shows the program code and the bottom left corner shows the final state of the table space.
The program defines a relation of reachability, represented by a path predicate with arity 2 (or path/2 for short), with a small
directed graph, represented by two edge/2 facts. The table directive at the top declares that predicate path/2 is to be tabled.
The right part of the figure shows the evaluation sequence (starting at step 0 and ending at step 7) for the query goal path(a, Z).
Note that traditional Prolog would immediately enter an infinite loop because the first clause of path/2 leads to a similar call
(path(a, Y) at step 1).

First calls to tabled subgoals correspond to generator nodes
(depicted by white oval boxes) and, for generators, a new entry, Tagrfpdi IF;fded(i:OCda; e
representing the subgoal call, is added to the table space with the
variables in the call replaced by distinct VARi identifiers [20].

The subgoal call path(a,Z) is thus added to the table space as v

path(a, VARI) (step 0). Next, path(a, Z) is resolved against the é _

first path /2 clause calling, in the continuation, path(a, Y) (step Subgoal Trie Structure

1). Since path(a, Y) is a similar call to path(a, Z) (notice that both *

calls are represented as path(a, VARI) in the table space), the

tabling engine does not evaluate similar tabled calls against the Subgoal Subgoal Subgoal
- - - Franme Frane Frame

program clauses, instead it tries to consume answers from the call a call & call on

table space. Such nodes are called consumer nodes (depicted by
black oval boxes). However, at this point, the table does not have

answers for this call, so the computation is suspended (step 1). Ansver Answver Ansver
. A Trie Trie Trie
The only possible move after suspending is to backtrack and try Structure Structure Co Structure

the second clause for path/2 (step 2). This generates the answer
{Z = b}, which is then stored in the table space as {VARI = b}
(step 3). At this point, the computation at node 1 can be resumed
with the newly found answer (step 4), giving rise to one more answer, {Z = a} (step 5). This second answer is then also inserted
in the table space and propagated to the consumer node (step 6), which generates the answer {Z = b} (step 7). This answer had
already been found at step 3. Tabling does not store duplicate answers in the table space and, instead, repeated answers fail. This

FIGURE 2 YAP’s default table space organization

4

is how tabling avoids unnecessary computations, and even looping in some cases. Since there are no more answers to consume
nor more clauses left to try, the evaluation ends and the table entry for {path(a, VARI)} can be marked as completed.

With these requirements, the design of the table space is critical to achieve an efficient implementation. YAP uses tries which
is regarded as a very efficient data structure to implement the table space [21]]. Tries are trees in which common prefixes are
represented only once. YAP implements tables using two levels of tries. The first level, named subgoal trie, stores the tabled
subgoal calls and the second level, named answer trie, stores the answers for the calls. Figure Q] shows YAP’s default table
space organization. At the entry point we have the fable entry data structure. This structure is allocated when the Prolog code
is being compiled by YAP, thus guaranteeing that all calls to the predicate will access the table space starting from the same
point. Below the table entry, we have the subgoal trie structure. Each different tabled call corresponds to a unique path through
the subgoal trie structure, always starting from the table entry, passing by several subgoal trie data units, the subgoal trie nodes,
and reaching a leaf data structure, the subgoal frame. The subgoal frame stores additional information about the subgoal and
acts like an entry point to the answer trie structure. Each unique path through the answer trie data units, the answer trie nodes,
corresponds to a different tabled answer to the entry subgoal. At the engine level, generator and consumer nodes access the table
space by keeping a reference to the corresponding subgoal frame.

2.2 | Mode-Directed Tabling

In traditional tabling, all the arguments of a tabled subgoal call are considered when storing answers into the table space. When
anew answer is not a variant of any answer that is already in the table space, then it is always considered for insertion. Therefore,
traditional tabling is very good for problems that require storing all answers. However, with dynamic programming, usually, the
goal is to dynamically calculate optimal or selective answers as new results arrive.

Mode-directed tabling [[15] is an extension to the tabling technique that supports the definition of modes for specifying how
answers are inserted into the table space. Within mode-directed tabling, tabled predicates are declared using statements of
the form ‘table p(m,, ..., m,)’, where the m,’s are mode operators for the arguments. The idea is to define the arguments to be
considered for similarity checking (the index arguments) and how variant answers should be tabled regarding the remaining
arguments (the output arguments). Implementations of mode-directed tabling are currently available in B-Prolog [22]] and YAP
Prolog [23]]. A restricted form of mode-directed tabling can also be reproduced in XSB Prolog by using answer subsumption [24].
In YAP, index arguments are represented with mode index, while arguments with modes first, last, min, max, sum and all
represent output arguments. When an answer is generated, the system tables the answer only if it is preferable, accordingly to
the meaning of the output arguments, than some existing variant answer.

4 mode-directed tabling declaration
:- table ks(index, index, max).

/4 base case
ks (0, Capacity, 0).
/4 exclude item N from the knapsack
ks (N, Capacity, Profit) :-
N >0, M is N - 1, ks(M, Capacity, Profit).
4 include item N in the knapsack
ks (N, Capacity, Profit) :-
N > 0, item(N, Weight_N, Profit_N),
Capacity_M is Capacity - Weight_N, Capacity_ M >= 0, M is N - 1,
ks (M, Capacity_M, Profit_M), Profit is Profit_N + Profit_M.

FIGURE 3 The Knapsack problem with mode-directed tabling

Figure[3|shows the Prolog code that implements a generic version of the Knapsack problem using mode-directed tabling. The
table directive declares that predicate ks/3 is to be tabled using modes (index, index, max), meaning that the third argument (the

| s

profit) should store only the maximal answers for the first two arguments (the index of the number of items being considered
and the knapsack’s capacity). The code that follows implements a recursive top-down definition of the Knapsack problem. The
first clause is the base case and defines that the empty set is a solution with profit 0. The second clause excludes the current
item from the solution set and the third includes the current item in the solution if its inclusion does not overcome the current
capacity of the knapsack.

2.3 | Multithreaded Tabling

YAP follows a SWI-Prolog compatible multithreading implementation [25]], where each Prolog thread is an operating system
native thread running a Prolog engine. After being started from a goal, a thread evaluates the goal just like a regular Prolog
evaluation. At the engine level, each thread has its own execution stacks, with generator and consumer nodes, and only shares
the code area where predicates, records, flags and other global data are stored.

For a tabled evaluation, a thread views its tables as private
but, at the engine level, parts of the table space can be shared Shared Subgoal Trie Structure
among threads [[1'7,|18]. One such approach is the subgoal shar-
ing with shared completed answers design [26]. The idea is as
follows. The subgoal trie structures are shared among all threads
and the leaf data structures representing each tabled subgoal Ogg};lgggled Tngegaodall TSthegaodalk
call C;, instead of pointing to a single subgoal frame, point to Frame Frame [= ™| Frame
a chain of private subgoal frames, one per thread that is eval- call @ call @ call @
uating the call C;. To support concurrency within the shared * *
subgoal trie structures, the design uses the lock-free hash tries _
data structure proposed in [27]], which showed to effectively Ans?,\r:rr eTEjri o Ans\r,\;\r’atT?i o
reduce the execution time and scale better than the original lock- Structure Structure
based designs [[17,|18]. For each thread evaluating a call C;, the
answers are then stored in an answer trie structure private to the
thread.

Later, when the first subgoal frame is completed, i.e., when a thread has found the full set of answers for it, the subgoal frame
is marked as completed and put in the beginning of the chain of private subgoal frames. Figure []illustrates this scenario in the
context of a tabled subgoal call C;. Whenever a thread calls a new tabled subgoal call, first it searches the table space looking
if any other thread has already computed the full set of answers for that call, i.e., it looks for a completed subgoal frame in
the beginning of the chain. If so, it reuses the available answers, thus avoiding recomputing them from scratch. Otherwise, it
computes the call itself privately. Several threads can work on the same subgoal call simultaneously. The first thread completing
a call shares the answers by making them publicly available.

Private
Answer Trie

Structure

FIGURE 4 Subgoal sharing with shared completed answers

3 | MULTI-DIMENSIONAL LOCK-FREE TABLE SPACE DESIGN

In this work, we propose a new table space design which supports the efficient handling of multi-dimensional arrays in the
context of multithreaded mode-directed tabling. The new design replaces the usage of the subgoal and answer trie data structures
with uniquely identifiable bucket entries. In the new design, the multi-dimensional array represents the set of possible different
calls for the tabled predicate at hand and each bucket entry in the array represents a particular subgoal call SC. Each bucket
entry includes two fields: (i) one field stores the entry point for the chain of subgoal frames for SC (one frame per thread that is
evaluating SC); and (ii) a second field stores the answer which represents the current aggregated answer for SC. In the current
version, we support the aggregator modes min, max and sum.

To take advantage of the new design, we propose a new mode for indexing arguments in mode-directed tabled evaluations,
named dim, where each dim mode features one dimension in the multi-dimensional array representing the tabled predicate. The
dim mode has an argument representing the size of the dimension, i.e., something like dim(N), where N represents the interval
of integer values (between 0 and N — /) which can appear in the calls to the predicate during evaluation. Thus, when indexing an
argument with dim mode, users must know beforehand the size of the dimensions they will use during the evaluation (similarly

6 |

to the allocation of static arrays in a low-level language). If such a predicate is called with a value which is not within the interval,
the evaluation fails with an appropriate error.

Figure[3]illustrates the new design in the context of predicate ks/3 from Fig. 3] but now adapted to take advantage of the dim
mode declarations. In the example, predicate ks/3 is assumed to have been declared as table ks(dim(X), dim(Y), max), where X
and Y are specific integer values. As the previous design, the entry point is the table entry data structure, which for mode-directed
tabling includes a ModeArgumentsRef pointer to a modes data structure storing the modes declared for the predicate. Since
ks/3 was declared using two dim modes, the table entry then points to a two-dimensional array with X * Y bucket entries. Each
bucket entry includes a SubgoalFrameRef field, which points to the first subgoal frame in the chain, and a Answer field, which
stores the current best answer for the bucket entry. Figure[S]illustrates a configuration where two subgoal calls are in evaluation,
ks(0,Y — 1, VAR,) and ks(X — 1,Y — I, VAR,)) with the aggregated answers Ans; and Ans,, respectively. The former subgoal call
has already a completed subgoal frame, which is in the beginning of the chain, and a second subgoal frame being evaluated
by thread 1 (thread 1 started the evaluation before the subgoal call have been completed by another thread). The latter subgoal
call is still under evaluation by threads 1 and 2. All subgoal frames include a BucketEntryRef back-pointer to the corresponding
bucket entry and a NextRef field is used to chain the subgoal frames belonging to an incomplete subgoal call.

Table Entry ModeAr gunent sRef
Predi cate ks/3 > di m(X) [di m(v)| max

0 Y-1
Subgoal Fr aneRef
0 (nul 1) [> Conpl et ed Thread 1
(none) Co Ans1 < Subgoal Frane Subgoal Frane
........ Bucket Ent r yRef
' 1 ks(0, Y-1, VARO) ks(0, Y-1, VARO)
1 1
]] I
]]
1 1
1 1
]]
------- '\bxt Ref
%1 (nul'l) [> Thread 2 EEE— Thread 1
(none) S Ans2 Subgoal Frane Subgoal Frane
ks(X-1,Y-1, VARO) ks(X-1, Y-1, VARO)

FIGURE 5 The new multi-dimensional lock-free table space design

When comparing the previous design with the one in Fig. [5] one can easily observe that for the Knapsack problem the new
design has the following advantages: (i) requires less memory since it does not use a data structure based on trie nodes; (ii) at the
subgoal representation level, it leads to less cache misses since, with a simple calculation, threads are able to access the bucket
entry corresponding to the chain of subgoal frames, while in the previous design threads have to traverse at least one trie level
to access such a chain; and (iii) at the answer representation level, a single field is enough to store the aggregated answer. Note
however that allocating a multi-dimensional array at once, instead of only the entries that are needed as new answers are found,
may be an issue for problems where the multi-dimensional array is used sparingly.

To support concurrency within the new table space design, we took advantage of the CAS (Compare-And-Swap) instruction,
that nowadays can be widely found on many common architectures. The CAS operation is a fine-grained and fully synchronized
operation that dates back to the IBM System 370 and it is still available on many modern processors including Intel /A-64 (x86) and
Sun SPARC architectures. Processors like the IBM PowerPC, which do not implement the CAS operation, often support a Load-
Linked and Store-Conditional operation instead, which can be used to implement the CAS operation [28]. At the implementation
level, the CAS operation is an atomic instruction that compares the contents of a memory location to a given value and, if they
are the same, updates the contents of that memory location to a given new value. The atomicity guarantees that the new value
is calculated based on up-to-date information, i.e., if the value had been updated by another thread in the meantime, the write
would fail. Besides reducing the granularity of the synchronization, the CAS operation is at the heart of many lock-free data
structures [29]. Lock-free data structures offer several advantages over their blocking counterparts, such as being immune to

| 7

deadlocks, tolerant to priority inversion and convoying, kill-tolerant availability and preemption-tolerant [28]. As we will show
in the next sections, our proposal was designed from scratch to be lock-free.

4 | ALGORITHMS

In this section, we discuss in more detail the key algorithms that implement the new table space design. We start with Alg. [T]
showing the pseudo-code for the process of obtaining the subgoal frame corresponding to a table entry 7E and a subgoal call
SC, given a thread identifier TID. The algorithm begins by getting the mode arguments (MA) and the bucket entry (BE) for
the subgoal call SC (lines 1-2). Next, it tries to find a suitable subgoal frame sf (line 3), i.e., a completed subgoal frame or its
own subgoal frame (allocated by a previous generator call to this procedure), in which case the algorithm ends by returning it
(lines 4-5). Otherwise, no suitable subgoal frame was found, thus a new temporary subgoal frame nsf is allocated with the state
incomplete for the thread TID (line 7).

Algorithm 1 CheckInsertSubgoalFrame(table entry TE, call SC, thread TID)

1: MA <« ModeArgumentsRef (TE)

2: BE <« GetBucketEntry(TE,SC, MA)

3. sf « FindCompletedOrThreadSubgoalFrame(BE, TID)

4: if sf then > a completed subgoal frame or the thread’s subgoal frame was found
5: return sf

6: else > no suitable subgoal frame was found
7: nsf <« InitNewSubgoalFrame(TID)

8: repeat > get a completed subgoal frame or insert a new subgoal frame
9: first_sg < SubgoalFrameRef (BE)
10: if IsCompleted(first_sg) then > completed subgoal frame found
11: ReleaseSubgoalFrame(nsf)
12: return first_sg
13: else
14: NextRef (SF) « first_sg
15: until CAS(SubgoalFrameRef (BE), first_sg, nsf)
16: return nsf

In the continuation, the algorithm tries to insert nsf in the chain of subgoal frames. To do that, it enters in a loop trying to insert
the new subgoal frame in the beginning of the chain. Since, at the same time, another thread can be completing its own subgoal
frame and moving it to the beginning of the chain, we need to guarantee synchronization between both operations. Therefore,
the algorithm starts by obtaining the reference first_sg to the first subgoal frame in the chain (line 9) and rechecks if it refers a
completed frame (that could have been completed in the meantime), in which case it releases the previously allocated frame and
ends by returning the reference to the completed frame (lines 10—12). Otherwise, the algorithm tries to insert nsf in the chain of
subgoal frames. For that, it updates its NextRef () field to point to the current frame on the beginning of the chain (line 14) and
then tries to insert nsf in the head of the chain. This is done using a CAS operation which tries to update the reference to the first
subgoal frame in the chain from first_sg to nsf (line 15). If the CAS operation succeeds, then nsf becomes a permanent frame
and the algorithm ends by returning it (line 16). Otherwise, if the CAS fails, that means that another thread has updated the head
of the chain in the meantime. In this case, the algorithm reads the new head reference first_sg and the process is restarted.

Upon completion of a particular subgoal call, which happens when all answers for it are computed, a thread calls Alg. [2[to
update the corresponding subgoal frame SF to the completed state. Algorithm 2]begins by making a copy of SF to a new frame
(nsf) and by marking SF to be removed from the chain of subgoal frames for the call at hand (lines 1-2). Next, nsf is marked
as complete and its next chain reference is updated to Null (lines 3—4). If successfully inserted in the chain for the call at hand,
nsf will be the entry point of the chain to indicate that the subgoal call is completed. In the continuation, the algorithm gets the
bucket entry BE from SF' (line 5) and enters in a CAS loop (lines 6-11). The CAS loop will end in one of two situations: (i)

5|

another completed subgoal frame, inserted in the meantime by another thread, is found in the beginning of the chain (line 8-10);
(ii) the subgoal frame nsf is successfully inserted in the head of the chain (line 11). In situation (i), nsf becomes useless and is
thus released (line 9). In situation (ii), nsf becomes the single permanent subgoal frame since its next reference was previously
set to Null.

Algorithm 2 MoveToCompleted(subgoal frame SF)

: nsf < CopySubgoalFrame(SF)

: MarkForRemovalSubgoalFrame(SF)

: MarkAsCompleted(nsf)

: NextRef (nsf) < Null

: BE < BucketEntryRef (SF)

: repeat > trying to move the subgoal frame to the head of the chain

first_sg < SubgoalFrameRef (BE)

if IsCompleted(first_sg) then > a completed subgoal frame already exists
ReleaseSubgoalFrame(nsf)

10: return

11: until CAS(BucketEntryRef (BE), first_sg, nsf)

12: return

R - S S

Our implementation uses a copying technique to ensure the constraint that the completed frame is stored in the beginning
of the chain. A problematic situation occurs when the subgoal frame SF being updated to completed is already the first on the
chain and, concurrently, a second thread U executing Alg.[I]is trying to insert another frame SF, in the beginning of the chain. If
we simply try to update SF to completed (without the copying technique), it might happen that SF), is inserted in the beginning
of the chain just before SF be updated to completed, which would violate the constraint. In more detail, thread U might have
seen SF still as not completed (line 10 in Alg. [T) and then successfully insert SF, in the beginning of the chain using the CAS
operation in line 15 of Alg.[I]

Next, we describe the algorithms used to generate and consume answers to/from a subgoal call. Algorithm[3|shows the pseudo-
code for the process of updating the table space when a new answer ANS is found for a generator node N. The algorithm begins
by obtaining the corresponding subgoal frame SF and bucket entry BE for the generator N (lines 1-2). Next, it checks if this
is the first answer for SF and, if it is, it tries to insert ANS using a CAS operation and returns (lines 3—-5). The first answer is
always a correct answer for any aggregator mode. Otherwise, if it is not the first answer or if the CAS failed, then at least one
answer already exists. Thus, the algorithm gets the mode aggregator for SF' (line 6) and proceeds by computing the new answer
according with the mode at hand. For simplicity of presentation, we only show the case of the max mode aggregator (lines 7—
13). The other modes are treated similarly. For the max mode, the algorithm then tries to update BE with ANS if it is greater than
the current answer in BE. To do so, it repeats a CAS operation until it succeeds (lines 8—12) or until it finds a better (maximal)
answer, case where it simply returns such answer (lines 10-11).

Finally, Alg.[d presents the pseudo-code for the process of loading an answer to a consumer node N. As for Alg. [3] it begins
by obtaining the corresponding subgoal frame SF and bucket entry BE for the consumer node N (lines 1-2). Next, it checks
if the last consumed answer in N is different from the one stored in the table space from the call at hand, i.e., if new answers
were found since the last consumed answer marked in the field LastConsumedAnswer() (line 3). If this is the case, then the
LastConsumedAnswer() field is updated accordingly and the new answer returned to the consumer node N (lines 4-5). Otherwise,
if no new answers exist, it simply returns a Null reference. It is important to note that the answer being returned is the one in the
field LastConsumedAnswer() of N and not the one in the Answer() field of BE. This is because it might happen that the answer
in BE could have been updated, in the meantime, by another thread between the instant that it was read (line 4) and the instant
that the return operation was executed (line 5), causing the current executing thread to, eventually, consume the same answer
later on when checking again for more unconsumed answers.

Algorithm 3 CheckInsertAnswer(answer ANS, generator N)

: SF « SubgoalFrameRef (N)

BE < BucketEntryRef (SF)

. if HasNoAnswer(BE) then > first answer

if CAS(Answer(BE), Null, ANS) then > answer inserted
return ANS

. aggregator < GetAggregatorMode(SF)

. if aggregator = AGGREGATOR_MAX then

repeat > try to insert the answer if greater than the current one
current_ans < Answer(BE)

10 if ANS < current_ans then

11: return current_ans

12: until CAS(Answer(BE), current_ans, ANS)

13: return ANS

14: else if aggregator = ... then > remaining aggregator modes

R e A A A

Algorithm 4 CheckConsumeAnswer(consumer N)

: SF « SubgoalFrameRef (N)

: BE « BucketEntryRef (SF)

if LastConsumedAnswer(N) # Answer(BE) then > new (unconsumed) answer
LastConsumedAnswer(N) < Answer(BE)
return LastConsumedAnswer(N)

else > N0 New answers
return Null

A ol S

S | CORRECTNESS AND LOCK-FREE PROGRESS

In this section, we discuss the correctness of our proposal. Its full proof consists in two parts: first prove that the proposal is
correct and then prove that progress occurs in a lock-free fashion.

5.1 | Correctness

Linearizability is an important correctness condition for the implementation of concurrent data structures [30]. Linearizability
ensures the correctness of concurrent data structures by proving that semantically consistent (non-interfering) operations may
execute concurrently. An operation is linearizable if it appears to take effect instantaneously at some instant of time /; , between
its invocation and response. The literature often refers to I;, as a linearization point and, for lock-free implementations, a
linearization point is typically a single instant where its effects become visible to all the remaining operations. Linearizability
guarantees that if all operations individually preserve an invariant, the system as a whole also will. Thus, linearizability is a local
property, and is therefore independent of any underlying scheduling policy or interaction between objects. Locality improves
the portability and modularity of large concurrent systems, and can simplify reasoning about concurrent data structures.

Next, we describe the linearization points of our proposal, the set of invariants and parts of the proof that show that the
linearization points preserve the set of invariants.

The linearization points in the algorithms shown are:

LP, CheckinsertSubgoalFrame() is linearizable at the CAS operation in line /5.
LP, MoveToCompleted() is linearizable at the MarkForRemovalSubgoalFrame() procedure in line 2.

LP; MoveToCompleted() is linearizable at the CAS operation in line /1.

10|

LP, ChecklnsertAnswer() is linearizable at the CAS operation in line 4.

LP; CheckinsertAnswer() is linearizable at the CAS operation in line /2.
The set of invariants that must be preserved on every state are:

Inv; A chain of subgoal frames always ends in a Null reference.

Inv, The reference to the next in chain of a subgoal frame SF, corresponding to a subgoal call SC, must always refer to: (i)
Null; (ii) another subgoal frame SF, also corresponding to SC.

Inv; The accessibility of a subgoal frame SF, corresponding to a subgoal call SC, must comply with the following semantics:
(i) the initial state is accessible to all threads, when SF is inserted in the chain for SC; (ii) the final state is accessible to
all threads, when marked as completed and moved to the beginning of the chain of SC, or accessible to a single thread,
when removed from the chain of SC.

Inv, The state of a subgoal frame SF must comply with the following semantics: (i) the initial state is incomplete; (ii) the final
state is complete.

Invs A subgoal call SC in evaluation has at least one subgoal frame SF in its chain.
Invg A subgoal call SC fully evaluated has a single subgoal frame SF in its chain which is necessarily marked as completed.

Inv, Given a mode aggregator MA and a sequence S of answers for a subgoal call SC, the answer stored for SC is always the
answer corresponding to the application of MA to S.

Invg Given a mode aggregator MA and a subgoal call SC, then an aggregated answer A; is only stored once for SC, i.e., once
A, is replaced by another answer A,, then A; is never again the aggregated answer for SC.

Invy Given a mode aggregator MA, a subgoal call SC and the sequence S of all answers for SC, then the final aggregated answer
for SC is always consumed by all consumer nodes.

Finally, we show the proof on how two of the linearization points, namely LP; and LP,, preserve the set of invariants. The
remaining linearization points follow a similar proof strategy.

Lemma 1. Linearization point LP, preserves the set of invariants.

Proof. This linearization point refers to the insertion of a new subgoal frame nsf in the bucket entry of a subgoal call SC.
Previous to the execution of the CAS in line 15, nsf is: (i) in an incomplete state (by Inv,); and (ii) referring to first_sg (line
14) which is Null or another subgoal frame (by Inv; and Inv,). After the successful execution of the CAS operation, Inv,,
Inv, and Inv, hold, because the reference and the state of nsf remain unchanged. Inv; and Invs also hold because with the
insertion of nsf in the chain of subgoal frames for SC, nsf becomes accessible to all threads evaluating SC.

Finally, we prove that Invs also holds. To do so, we must ensure that if the execution of the CAS operation at line 15
succeeds, first_sg is not marked as completed. Assume that thread TID has just set first_sg in line 9 and is prepared to
execute line 10. If first_sg is complete then TID would execute lines 11-12 and return (and would not have been able to
reach the CAS operation). Otherwise, if first_sg is not complete in line 10 then it will never be the completed subgoal frame
in the beginning of the chain. This is true because in Alg. 2| we specifically create a new complete subgoal frame and use it
in linearization point LP;, whenever the subgoal call SC is complete. Thus, up to the execution of the CAS operation either
(i) SC has a complete subgoal frame in the beginning of the chain and since it is necessarily different from first_sg, the CAS
fails; or (ii) first_sg is still in the beginning of the chain and it is not complete. In both scenarios, Invs holds. The remaining
invariants are not affected. O

Lemma 2. Linearization point LP, preserves the set of invariants.

Proof. This linearization point refers to the insertion of the first answer in a bucket entry BE. Previous to the execution of
the CAS in line 4, BE does not have any answer. After the successful execution of the CAS operation, Inv, and Invg hold,
because the answer ANS is a valid answer, since it was found during the evaluation of the subgoal call at hand, and any
mode aggregator applied to a single answer ANS results in the insertion of ANS in the table. The remaining invariants are
not affected. O

11

Theorem 1. The table space design is linearizable.

5.2 | Lock-Free Progress

Lock-freedom guarantees that, whenever a thread executes some finite number of steps on a data structure, at least one operation
on the data structure by some thread must have made progress during the execution of these steps. In the work [31]], Herlihy and
Shavit presented a grand unified explanation for the progress properties. Progress is seen as the number of steps that threads
take to complete methods within a concurrent object, i.e., the number of steps that threads take to execute methods between
their invocation and their response. The execution of a concurrent object is then modeled by a history H, a finite sequence of
method invocation and response events, a subhistory of H is a sub-sequence of the events of H and an inferval is a subhistory
consisting of contiguous events. Progress conditions are placed in a two-dimensional periodical table, where one of the axis
defines the assumptions of the operating system (OS) scheduler, which might be scheduler independent or scheduler dependent,
and the other axis defines the maximal progress and minimal progress provided by a method in a history H. Figure[6]shows the
periodic table of progress conditions defined by Herlihy and Shavit [31]].

Dependency on the operating system schedul er

Depecgency Non- Bl ocki ng Non- Bl ocki ng Bl ocki ng
Progr ess | ndependent Dependent Dependent
Every thread .) _

Level I makes progr ess Wi t - Free Obstruction-Free| Starvation-Free Maxi mal
of Vs
Progress Sone t hread M ni nal

') -
nmake progress ! Deadl ock- Free
Dependent Bl ocki ng
VS VS
I ndependent Non- Bl ocki ng

FIGURE 6 The periodic table of progress conditions

For the assumptions about the OS scheduler, a scheduler independent assumption, guarantees progress as long as threads are
scheduled and no matter how they are scheduled. A scheduler dependent assumption, means that the progress of threads relies on
the OS scheduler to satisfy certain properties. For example, the deadlock-free (threads cannot delay each other perpetually) and
starvation-free (a critical region cannot be denied to a thread perpetually) properties guarantee progress, however, they depend
on the assumption that the OS scheduler will allow each thread within a critical region to be able to run a sufficient amount of
time, so that it can leave the critical section (blocking dependent). The obstruction-free property [32]] (a thread runs within a
critical region in a bounded number of steps) requires the OS scheduler to allow each thread to run in isolation for a sufficient
amount of time (non-blocking dependent).

Herlihy and Shavit also defined the progress conditions as the level of progress provided by methods within objects. A method
provides the minimal progress in H, if in every suffix of H, some pending active invocation has a matching response. In other
words, there is no point in the history where all threads that called the method take an infinite number of concrete steps without
returning. An abstract method provides maximal progress in a history H if in every suffix of H, every pending active invocation
has a matching response. In other words, there is no point in the history where a thread that calls the abstract method takes an
infinite number of concrete steps without returning. The lock-free data structures are mapped in the periodical table as scheduler
independent and providing minimal progress.

For the proof of the lock-free progress of our proposal, we discuss the progress inside and outside the linearization points
presented above. For the lock-free progress inside the linearization points, Lemmas @] and 3] show that the operations defined by
the linearization points lead to progress of the table space.

1z |

Lemma 3. The operations defined by the linearization points LP;, LP;, LP, and LP lead to progress of the table space.

Proof. All four linearization points correspond to CAS operations on a given memory location M trying to update an initial
reference R; to a new reference R,. Assuming that I, is the instant of time where a thread T first reads R; from M and that
I; is the instant of time where T executes the CAS operation trying to update M to R,, then a successful CAS execution
leads to progress in the data structure that holds M, once M was updated to R,. Otherwise, if the CAS operation fails, then
it means that between instants I; and If, the reference on M was changed, which means that at least another thread has
changed M between the instants of time 1; and I;, thus leading to progress in the state of the data structure that holds M,
and consequently leading to progress of the table space. O

Lemma 4. The operation defined by the linearization point LP, leads to progress of the table space.

Proof. The linearization point LP, corresponds to a write operation that marks a subgoal frame SF to be removed. Since this
write operation is unconditional, the state of SF will be necessarily updated, thus leading to progress of the table space. [

Corollary 1. When a thread executes one of the linearization points LP; to LPs then, due to Lemmas || and [3| the
configuration of the table space has made progress.

Finally, we show the proof for the lock-free progress outside the linearization points. In what follows, Lemma [5] shows that
progress occurs in a non-blocking fashion for the CheckInsertAnswer() algorithm, i.e., threads still progress whenever they find
non-better answersﬂ The remaining algorithms follow a similar proof strategy.

Lemma 5. Given an answer A, if A is a non-better answer, then a thread using algorithm CheckinsertAnswer() is able to
discard the answer A.

Proof. Assume that the algorithm is using the AGGREGATOR_MAX aggregator. If A is a non-better answer, then a better
answer B exists in the table space, thus the CAS at linearization point LP, fails. The algorithm follows to line 10, where the
condition succeeds and the thread returns the current best (maximal) answer B. Consequently, the answer A is discarded. [

Theorem 2. The table space design is lock-free.

6 | PERFORMANCE ANALYSIS

In this section, we present a performance analysis of our new multi-dimensional lock-free table space design. The environment
of our experiments was a machine with 32-core AMD Opteron (tm) Processor 6274 @ 2.2 GHz with 32 GBytes of main
memory and running the Linux kernel 3.18.6-100.fc20.x86_64 and YAP Prolog 6.3.2. We focused on two well-known dynamic
programming problems, the Knapsack and the Longest Common Subsequence (LCS) problems. For the Knapsack problem, we
fixed the number of items and capacity, respectively, 1,600 and 3,200. For the LCS problem, we used sequences with a fixed
size of 3,200 symbols. Then, for each problem, we implemented either fop-down (TD) and bottom-up (BU) approaches. For
the top-down approaches, we tested both problems without randomization (TD,,,) and with randomization using Stivala et al.’s
approach [33]] with an extra random displacement clause (TD,,;). We also created three different datasets for each approach,
D;y, D;, and D, meaning that the values for the weights/profits for the Knapsack problem and the symbols for the LCS problem
were randomly generated in an interval between 1 and 10%, 30% and 50% of the total number of items/symbols, respectivelyﬂ

Table |I| shows the execution time for the sequential (T,,,) and multithreaded version with one thread (T,) for the several
configurations of the Knapsack and LCS problems using YAP with the previous subgoal sharing design (SS in what follows)
and with the new multi-dimensional lock-free design (MD in what follows). All execution times are the average of 10 runs.
For T,,,, YAP was compiled without multithreaded support and ran without multithreaded code. Columns T,/T,,, show the
overhead of the multithreaded version over the sequential version and column SS; /MD;, compares the execution times for the
multithreaded versions of both designs.

By analyzing the results on Table[I] we can observe that the new MD design clearly outperforms the previous SS design either
for the sequential execution and the multithreaded execution with one thread. On average, the MD design is between 2.08 to 2.37

2Given a mode aggregator MA and a sequence S of answers, A € S is a non-better answer if A is not the answer corresponding to the application of MA to S.
3Datasets available at https://github.com/miar/yap-6.3/tree/master/parallel_dynamic_programming|

https://github.com/miar/yap-6.3/tree/master/parallel_dynamic_programming

| 13

TABLE 1 Execution time, in milliseconds, for the sequential version (T,,,) and the multithreaded version with one thread (T)
and the corresponding ratio between the two versions (T,/T,,) for the top-down and bottom-up approaches of the Knapsack
and LCS problems using YAP with the subgoal sharing with shared completed answers design (SS) and using YAP with the

new multi-dimensional lock-free table space design (MD)

Approach Subgoal Sharing (SS) Multi-Dimensional (MD) SS vs MD
& Time Ratio Time Ratio Ratio
Dataset T,, T, T,/T,, T,, T, T,/Ty, || SS;/MDy,
Knapsack Problem
D, 9,508 12,415 1.31 4275 5,241 1.23 2.37
TD,, Dy, 9,246 12,177 1.32 4,196 5,336 1.27 2.28
Ds, 9,480 12,589 1.33 4,275 5,457 1.28 2.31
D,, || 19,667 24,444 1.24 10,462 11,740 1.12 2.08
TD,,, D, || 19,847 25,609 1.29 10,508 11,959 1.14 2.14
Ds, || 19,985 25,429 1.27 10,805 11,982 1.11 2.12
D,, || 12,614 17,940 1.42 7,001 7,668 1.10 2.34
BU D;, || 12,364 17,856 1.44 7,005 7,786 1.11 2.29
Dy, || 12,653 17,499 1.38 6,775 7,637 1.13 2.29
LCS Problem
D,, || 21,191 26,225 1.24 16,202 18,046 1.11 1.45
TD,, D;, || 20,809 26,146 1.26 16,006 18,067 1.13 1.45
Dy, || 20,775 26,028 1.25 16,259 18,195 1.12 1.43
D,, || 34,565 44371 1.28 21,525 23,635 1.10 1.88
TD,,, Dy, || 34284 44,191 1.29 21,512 24,055 1.12 1.84
Ds, || 33,989 44,158 1.30 21,477 23,736 1.11 1.86
D,, || 20,799 28,909 1.39 11,453 14,017 1.22 2.06
BU D;, || 21,174 28,904 1.37 11,218 14,189 1.26 2.04
Ds, || 21,166 28,857 1.36 11,139 13,982 1.26 2.06

times faster for the Knapsack problem and between 1.43 to 2.06 times faster for the LCS problem than the SS design (results on
column SS; /MD;). Additionally, the overheads introduced by the multithreaded version over the sequential version also seem
to be less relevant in the MD design than in the SS design. On average, the overheads introduced by the MD design are around
10% to 20%, while the overheads for the SS design are around 30% to 40% (results on columns T /T,). In summary, the results
in Table[I|show that the new MD design introduces less overheads than the SS design and clearly improves the execution time
for sequential and multithreaded execution with one thread.

Table 2]and Table [3]show results for the execution with multiple threads for the top-down and bottom-up approaches, respec-
tively for the Knapsack and LCS problems. Column T, repeats the results for the execution time with one thread and columns
T,/T, show the corresponding speedup for the execution with 8, 16, 24 and 32 threads. For each configuration, the results in
bold highlight the column with the best execution time and the last column (T,,,,) presents such result in milliseconds.

Analyzing the general picture in both tables, one can observe that the TD,,; top-down and BU bottom-up approaches have
the best results with excellent speedups for 8, 16, 24 and 32 threads. In particular, with 32 threads, they obtain speedups between
18 and 22, for both problems and designs. Columns T),,,, also show that, for a particular problem and design, the BU approach
running with 32 threads obtains the best execution times of all configurations. The speedup results for the TD,, approach were
not considered (n.c.) since without randomization this approach is unable to take advantage of our framework (all threads would
replicate the same evaluation sequence and, thus, they would not be able to reuse the answers from the other threads).

Comparing now the results for both designs, we can observe that, in general, the MD design keeps the same speedups ratios
despite its base execution times (with one thread) being 1.43 to 2.37 times faster than the SS design, as the results on Table]|
show. For the TD,,; and BU approaches, the speedup results are slightly better in favor of the MD design. For the execution
times, the MD design is clearly better by far. If we consider the Knapsack problem with the BU approach and the D5, dataset
with 32 threads, one can observe that the MD design takes 348 milliseconds, while the SS design requires 804 milliseconds, i.e.,

4|

TABLE 2 Execution time, in milliseconds, for one thread (T ;) and corresponding speedups (T 1/Tp) for the execution with 8, 16,
24 and 32 threads, for the top-down and bottom-up approaches of the Knapsack problem using YAP with the subgoal sharing
with shared completed answers design (SS) and using YAP with the new multi-dimensional lock-free table space design (MD)

Approach # Threads (p) Best
& Time (T) Speedup (T I/Tp) Time
Dataset 1 8 16 24 32 (T,
Subgoal Sharing (SS)
D, 12,415 | nc. nc. n.c. n.c. 12,415
TD,, D;, 12,177 | n.c. n.c. n.c. n.c. 12,177
D, 12,589 | nc. nc. n.c. n.c. 12,589
D, 24,444 | 6.78 1235 1544 18.19 1,344
TD,,, D3 25,609 | 7.15 13.83 17.37 2047 1,251
D, 25,429 | 7.27 13770 17.35 20.62 1,233
D, 17,940 | 7.17 1397 1831 22.15 810
BU Dy, 17,856 | 7.23 1378 18.26 21.94 814
Dy, 17,499 | 725 14.01 1834 21.76 804
Multi-Dimensional (MD)
D, 5241 | nc. nc n.c. n.c. 5,241
TD,, Dy, 5,336 | nc. nc. n.c. n.c. 5,336
D;, 5,457 | nc. nc n.c. n.c. 5,457
D, 11,740 | 6.90 1290 16.22 19.09 615
TD,,, Dy 11,959 | 7.31 14.04 18.01 21.59 554
D, 11,982 | 736 14.03 17.96 21.63 554
D, 7,668 | 7.24 13.77 1755 21.42 358
BU Dy, 7,786 | 740 14.13 18.02 22.18 351
D, 7,637 | 7.37 1396 18.10 21.95 348

more than a half reduction in the absolute execution time. The same happens in the LCS problem with the BU approach and the
Ds, dataset with 32 threads, where the MD design runs in 620 milliseconds, while the SS design runs in 1,406 milliseconds.

To better understand these results, we have collected also internal statistics regarding both designs. According to those statis-
tics, the better performance results of the MD design are mainly due to three reasons. The first reason is because the MD design
implements lock-freedom on the complete table space, while the SS design implements lock-freedom only within the subgoal
tries. Lock-free techniques are known to achieve very good performances in highly concurrent environments. In our new design,
this means that threads are able to access subgoal frames and read answers without any locking mechanism, while insertions
are all done using the CAS low-level instruction. The second reason is because the answers found for subgoal calls are imme-
diately shared by all threads during the evaluation, while in the SS design, the answers are only shared after the subgoal call is
complete. The third and last reason is the very efficient and compact representation of the table space. To support this claim, we
have collected the memory footprint of the SS and MD designs, on both the Knapsack and LCS problems, when using the D5,
dataset with the top-down and bottom-up parallelization strategies.

The memory footprint was collected after the complete evaluation of all subgoal calls, so that the complete table space size
could be the same for any number of threads launched. For the SS design, the memory used on the subgoal and answer tries was
704, 695 and 695 MBytes on the Knapsack problem, and 1,407, 1,406 and 1,407 MBytes on the LCS problem, for the TD,,
TD,,, and BU approaches, respectively. Through experimentation, we observed that to store the same tables, the MD design
used about 9 times less memory on all approaches on both Knapsack and Longest Common Subsequence (LCS) problems.
Consequently, in the MDD design, threads access less data structures and memory positions, while in the SS design, threads have
to traverse the trie data structures for both tabled calls and answers, leading also to a high ratio of penalties due to potential
cache misses and page faults. Thus, one can conclude that our proposal can be quite useful when the users know beforehand the
size of the dimensions that they will use during the evaluation.

| 15

TABLE 3 Execution time, in milliseconds, for one thread (T,) and corresponding speedups (T,/T,,) for the execution with 8,
16, 24 and 32 threads, for the top-down and bottom-up approaches of the LCS problem using YAP with the subgoal sharing
with shared completed answers design (SS) and using YAP with the new multi-dimensional lock-free table space design (MD)

Approach # Threads (p) Best

& Time (T)) | Speedup (T,/T,) Time

Dataset 1 8 16 24 32 (T,

Subgoal Sharing (SS)

D, 26,225 | nc. n.c. n.c. n.c. 26,225

TD,, D;, 26,146 | nc. n.c. n.c. n.c. 26,146

D, 26,028 | nc. n.c. n.c. n.c. 26,028

D, 44371 | 7.23 1323 1645 19.74 2,248

TD,,, D3 44,191 | 712 13.09 1652 19.77 2,235

Ds, 44,158 | 7.06 13.30 1649 19.58 2,255

D, 28,909 | 6.47 1221 16.48 20.32 1,423

BU D, 28,904 | 6.94 1261 16.63 20.40 1,417

Ds, 28,857 | 6.44 1231 1644 20.52 1,406
Multi-Dimensional (MD)

D,, 18,046 | n.c. n.c. n.c. n.c. 18,046

TD,, Dy, 18,067 | nc. nc. n.c. n.c. 18,067

D;, 18,195 | nc. nc. n.c. n.c. 18,195

D, 23,635 | 7.31 13.60 17.57 21.25 1,112

TD,., D3 24,055 | 746 14.03 1799 2140 1,124

D, 23,736 | 7.33 13.76 17.78 21.23 1,118

D, 14,017 | 6.90 12.14 16.89 22.21 631

BU Dy, 14,189 | 6.88 13.10 17.01 22.49 631

D, 13982 | 6.87 13.06 16.85 22.55 620

7 | CONCLUSIONS AND FURTHER WORK

The key contribution of this work is a new design at the underlying tabling engine specially aimed to support the efficient handling
of multi-dimensional arrays. We propose a new mode for indexing arguments in mode-directed tabled evaluations, named dim,
where each dim argument features a uni-dimensional lock-free concurrent array. This allows users to explicitly define which
tabled predicates could benefit from a more compact design when aggregating solutions for multiple integer dimensions.

To show the potential of the new design, we used two well-known dynamic programming problems and discussed how we
were able to reduce their execution times and scale the execution, using either top-down and bottom-up techniques. Experimental
results, on a 32-core AMD machine, showed that the new design introduces less overheads than the previous design and clearly
improves the execution time for sequential and multithreaded execution. In particular, for multithreaded execution up to 32
threads, the new design showed to be able to maintain or achieve slightly better speedups despite its base execution times (with
one thread) be 1.43 to 2.37 times faster than the previous design.

As further work, we intend to apply the new design to other dynamic programming problems and explore its impact in other
application domains. We also plan to extend our approach to support the full set of YAP’s aggregator modes, which includes
the first, last and all modes. The current design supports the aggregator modes min, max and sum. Extending it for the first and
last modes should be straightforward since these modes also store only an answer at a time (for instance, we can use the Answer
field to store the pointer to the beginning of the trie representing the answer). For the all aggregator mode, we can still keep
a pointer to the beginning of the trie representing all answers, but then we need to guarantee order and synchronization when
inserting new answers. This can be done using a strategy similar to the full sharing strategy described in [17].

16|

ACKNOWLEDGMENTS

This work was funded by the ERDF (European Regional Development Fund) through Project 9471 — Reforcar a Investigacdo, o
Desenvolvimento Tecnolégico e a Inovagdo (Projeto 9471-RIDTI) — and through the COMPETE 2020 Programme within project
POCI-01-0145-FEDER-006961, and by National Funds through the FCT (Portuguese Foundation for Science and Technology)
as part of project UID/EEA/50014/2013. Miguel Areias was funded by the FCT grant SFRH/BPD/108018/2015.

References

[1] Bellman R. Dynamic Programming. Princeton University Press; 1957.

[2] Chen W, Warren DS. Tabled Evaluation with Delaying for General Logic Programs. Journal of the ACM. 1996;43(1):20—
74.

[3] Sagonas K, Swift T, Warren DS. XSB as an Efficient Deductive Database Engine. In: ACM International Conference on
the Management of Data. ACM; 1994. p. 442-453.

[4] Rocha R, Fonseca NA, Santos Costa V. On Applying Tabling to Inductive Logic Programming. In: European Conference
on Machine Learning. No. 3720 in LNAI Springer; 2005. p. 707-714.

[5] Yang G, Kifer M. Flora: Implementing an Efficient DOOD System using a Tabling Logic Engine. In: Computational
Logic. No. 1861 in LNCS. Springer; 2000. p. 1078-1093.

[6] Ramakrishna YS, Ramakrishnan CR, Ramakrishnan I'V, Smolka SA, Swift T, Warren DS. Efficient Model Checking Using
Tabled Resolution. In: Computer Aided Verification. No. 1254 in LNCS. Springer; 1997. p. 143-154.

[7] Dawson S, Ramakrishnan CR, Warren DS. Practical Program Analysis Using General Purpose Logic Programming Sys-
tems — A Case Study. In: ACM Conference on Programming Language Design and Implementation. ACM; 1996. p.
117-126.

[8] Zou Y, Finin TW, Chen H. F-OWL: An Inference Engine for Semantic Web. In: International Workshop on Formal
Approaches to Agent-Based Systems. vol. 3228 of LNCS. Springer; 2004. p. 238-248.

[9] Zhou NF. The Language Features and Architecture of B-Prolog. Journal of Theory and Practice of Logic Programming.
2012;12(1 & 2):189-218.

[10] de Guzmén PC, Carro M, Hermenegildo MV. Towards a Complete Scheme for Tabled Execution Based on Program
Transformation. In: International Symposium on Practical Aspects of Declarative Languages. No. 5418 in LNCS. Springer;
2009. p. 224-238.

[11] Somogyi Z, Sagonas K. Tabling in Mercury: Design and Implementation. In: International Symposium on Practical
Aspects of Declarative Languages. No. 3819 in LNCS. Springer; 2006. p. 150-167.

[12] Zhou NF, Kjellerstrand H, Fruhman J. Constraint Solving and Planning with Picat. No. 1 in SpringerBriefs in Intelligent
Systems. Springer; 2015.

[13] Swift T, Warren DS. XSB: Extending Prolog with Tabled Logic Programming. Theory and Practice of Logic Programming.
2012;12(1 & 2):157-187.

[14] Santos Costa V, Rocha R, Damas L. The YAP Prolog System. Journal of Theory and Practice of Logic Programming.
2012;12(1 & 2):5-34.

[15] Guo HF, Gupta G. Simplifying Dynamic Programming via Mode-directed Tabling. Software Practice and Experience.
2008;38(1):75-94.

[16] Marques R, Swift T. Concurrent and Local Evaluation of Normal Programs. In: International Conference on Logic
Programming. No. 5366 in LNCS. Springer; 2008. p. 206-222.

| 17

[17] Areias M, Rocha R. Towards Multi-Threaded Local Tabling Using a Common Table Space. Journal of Theory and Practice
of Logic Programming. 2012;12(4 & 5):427-443.

[18] Areias M. Multithreaded Tabling for Logic Programming [PhD Thesis]. University of Porto. Portugal; 2015.

[19] Rytter W. On Efficient Parallel Computations for Some Dynamic Programming Problems. Theoretical Computer Science.
1988;59(3):297- 307.

[20] Bachmair L, Chen T, Ramakrishnan IV. Associative Commutative Discrimination Nets. In: International Joint Conference
on Theory and Practice of Software Development. No. 668 in LNCS. Springer; 1993. p. 61-74.

[21] Ramakrishnan IV, Rao P, Sagonas K, Swift T, Warren DS. Efficient Access Mechanisms for Tabled Logic Programs.
Journal of Logic Programming. 1999;38(1):31-54.

[22] Zhou NF, Kameya Y, Sato T. Mode-Directed Tabling for Dynamic Programming, Machine Learning, and Constraint
Solving. In: IEEE International Conference on Tools with Artificial Intelligence. vol. 2. IEEE Computer Society; 2010. p.
213-218.

[23] Santos J, Rocha R. On the Efficient Implementation of Mode-Directed Tabling. In: International Symposium on Practical
Aspects of Declarative Languages. No. 7752 in LNCS. Springer; 2013. p. 141-156.

[24] Swift T, Warren DS. Tabling with Answer Subsumption: Implementation, Applications and Performance. In: European
Conference on Logics in Artificial Intelligence. No. 6341 in LNAI. Springer; 2010. p. 300-312.

[25] Wielemaker J. Native Preemptive Threads in SWI-Prolog. In: International Conference on Logic Programming. No. 2916
in LNCS. Springer; 2003. p. 331-345.

[26] Areias M, Rocha R. On Scaling Dynamic Programming Problems with a Multithreaded Tabling System. Journal of
Systems and Software. 2017;125:417-426.

[27] Areias M, Rocha R. A Lock-Free Hash Trie Design for Concurrent Tabled Logic Programs. International Journal of
Parallel Programming. 2016;44:386—406.

[28] Michael MM. Scalable Lock-free Dynamic Memory Allocation. ACM SIGPLAN Notices. 2004;39(6):35—46.

[29] Herlihy M, Wing JM. Axioms for Concurrent Objects. In: ACM Symposium on Principles of Programming Languages.
ACM; 1987. p. 13-26.

[30] Herlihy M, Wing JM. Linearizability: a correctness condition for concurrent objects. ACM Transactions on Programming
Languages and Systems. 1990;12(3):463-492.

[31] Herlihy M, Shavit N. On the Nature of Progress. In: Principles of Distributed Systems. vol. 7109 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg; 2011. p. 313-328.

[32] Herlihy M, Luchangco V, Moir M. Obstruction-Free Synchronization: Double-Ended Queues As an Example. In:
International Conference on Distributed Computing Systems. Washington, DC, USA: IEEE Computer Society; 2003. .

[33] Stivala A, Stuckey P, de la Banda MG, Hermenegildo M, Wirth A. Lock-Free Parallel Dynamic Programming. Journal of
Parallel and Distributed Computing. 2010;70(8):839—-848.

[

	Multi-Dimensional Lock-Free Arrays for Multithreaded Mode-Directed Tabling in Prolog
	Abstract
	Introduction
	Background
	Tabling in Prolog Systems
	Mode-Directed Tabling
	Multithreaded Tabling

	Multi-Dimensional Lock-Free Table Space Design
	Algorithms
	Correctness and Lock-Free Progress
	Correctness
	Lock-Free Progress

	Performance Analysis
	Conclusions and Further Work
	Acknowledgments
	References

