
A Modern and Competitive
Lock-Free Dynamic Memory Allocator

Ricardo Leite and Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{rleite,ricroc}@dcc.fc.up.pt

Abstract. This paper presents LRMalloc, a lock-free memory allocator
that leverages lessons of modern memory allocators and combines them
with a lock-free scheme. Current state-of-the-art memory allocators pos-
sess good performance but lack desirable lock-free properties, such as,
priority inversion tolerance, kill-tolerance availability, and/or deadlock
and livelock immunity. LRMalloc’s purpose is to show the feasibility
of lock-free memory management algorithms, without sacrificing com-
petitiveness in comparison to commonly used state-of-the-art memory
allocators, especially for concurrent multithreaded applications.

Keywords: Memory Allocator · Lock-Freedom · Implementation.

1 Introduction

Dynamic memory allocation is an important component of most applications.
Nowadays, due to the use of thread-level parallelism by applications, an impor-
tant requirement in a memory allocator implementation is the ability to be mul-
tithreading safe (or MT-safe). To guarantee MT-safety, current state-of-the-art
memory allocators use lock-based data structures. The use of locks has implica-
tions in terms of program performance, availability, robustness and flexibility.
As such, current memory allocators attempt to minimize the effects of locking
by using fine-grained locks, or by providing synchronization-free allocations as
much as possible through the use of thread-specific caches.

However, even with only infrequent and fine-grained locking, lock-based mem-
ory allocators are still subject to a number of disadvantages. They are vulnerable
to deadlocks and livelocks, prune to priority inversion and delays due to preemp-
tion during locking, and incapable of dealing with unexpected thread termina-
tion. A more challenging but desirable alternative to ensure MT-safety is to use
lock-free synchronization. Lock-freedom guarantees system-wide progress when-
ever a thread executes some finite amount of steps, whether by the thread itself
or by some other thread in the process. By definition, lock-free synchronization
uses no locks and does not obtain mutual exclusive access to a resource at any
point. It is therefore immune to deadlocks and livelocks. Without locks, prior-
ity inversion and delays due to preemption during locking cannot occur, and
unexpected thread termination is also not problematic.

2 R. Leite and R. Rocha

More importantly, a truly lock-free data structure or algorithm that needs
to dynamically allocate memory cannot be built on top of a lock-based memory
allocator without compromising the lock-freedom property. This is particularly
relevant for lock-free data structures or algorithms that use memory reclamation
techniques such as epochs or hazard pointers [6].

In this work, we present the design and implementation of LRMalloc, a lock-
free dynamic memory allocator that leverages lessons of modern allocators to
show the feasibility of lock-free memory management, without sacrificing per-
formance in comparison to commonly used state-of-the-art allocators.

The remainder of the paper is organized as follows. First, we introduce some
background and related work. Next, we describe the key data structures and
algorithms that support the implementation of LRMalloc. Then, we show exper-
imental results comparing LRMalloc against other modern and relevant memory
allocators. We end by outlining conclusions and discussing further work.

2 Background & Related Work

Memory allocation as a research topic has a rich history. Starting with the 1960s,
and motivated by the exorbitant cost of main memory, researchers poured effort
into the design of allocator strategies and algorithms that minimized memory
fragmentation – a fundamental problem in memory management that implies
needing more memory to satisfy a sequence of memory requests than the sum
of the memory required for those memory requests. In this regard, numerous
strategies and algorithms were proposed and developed to reduce memory frag-
mentation. Other fundamental concepts, such as size classes (e.g., segregated
storage), also appeared in this time period, and are still used in state-of-the-
art memory allocators. For an excellent survey, that summarizes most memory
allocation research prior to 1995, please see Wilson et al. [12].

More recently, with the decrease in cost of main memory and the appear-
ance of computer systems with higher and higher core counts, memory allocation
research has taken a different path. Focus has shifted into memory allocator per-
formance and scalability, often in detriment of fragmentation. Problems specific
to concurrent memory allocation, such as false sharing and blowup, have also
received attention, being first noted and solved by Berger et al. in the Hoard
memory allocator [1].

Instead of mutual exclusion, lock-free algorithms use atomic instructions pro-
vided by the underlying architecture to guarantee consistency in multithreaded
execution. The most relevant atomic instruction is CAS (Compare-and-Swap),
which is widely supported in just about every modern architecture either di-
rectly or by efficient emulation by using Linked Load and Store Conditional
instructions. Listing 1.1 shows the pseudo-code for the CAS instruction.

Lock-free data structures and algorithms that aim to be widely portable
should be CAS-based. However CAS-based designs are vulnerable to the ABA
problem – a fundamental and challenging problem which complicates the imple-
mentation and design of lock-free data structures and algorithms [2].

A Modern and Competitive Lock-Free Dynamic Memory Allocator 3

Listing 1.1. Compare-and-Swap
1 bool CAS(int* address , int expected , int desired) {
2 if (* address == expected) {
3 *address = desired;
4 return true;
5 }
6 return false;
7 }

The first lock-free segregated fit mechanism was introduced by Michael [11].
Michael’s allocator is particularly relevant because it only makes use of the
widely available and portable CAS operation for lock-free synchronization. How-
ever, as our experimental results will show (in Section 4), compared to modern
alternatives, Michael’s allocator is slow as it uses several atomic operations per
allocation and deallocation, operations which are expensive in today’s computer
architectures. In order to succeed, lock-free memory allocators must amortize the
cost of an atomic operation through several allocation and deallocation requests.

Despite the relatively large number of memory allocators developed over the
years, there are only a few that are widely used. The most commonly used
memory allocator is by far Ptmalloc2 [5], the standard memory allocator dis-
tributed with glibc. It is a modified version of Doug Lea’s memory allocator [8], a
fragmentation-focused memory allocator that uses a deferred coalescing scheme.
Ptmalloc2 has been updated over time with features to improve its multithreaded
performance, such as the use of arenas (several independent allocators that can
be used simultaneously thus reducing thread contention) and thread caches for
small block sizes. Applications that are focused on multithreaded performance
usually take note of the performance degradation of the standard C lib allocator
and change to a different allocator, such as Jemalloc [3] or TCMalloc [4].

Jemalloc is a state-of-the-art memory allocator that focuses on fragmentation
avoidance and scalable concurrency support. It is the default memory allocator
on the FreeBSD operating system, and is widely used in numerous multithreaded
applications. At process start, it creates a number of arenas equal to 4 times the
number of CPUs in the system in an effort to minimize lock contention. Threads
are assigned to the arena with the lowest number of assigned threads. Like other
memory allocators, Jemalloc uses thread caches and defines size classes for allo-
cations, but also uses coalescing strategies in an effort to decrease fragmentation.

TCMalloc is a memory allocator which focuses on thread-caching. Unlike
other allocators, it does not use arenas to decrease contention on shared data
structures. It instead uses fine-grained locks and implements a number of novel
cache management algorithms [9] to improve average-case latency, scalability
and decrease cache-provoked fragmentation.

3 LRMalloc

This section describes LRMalloc in more detail. We assume implementation on
a 64-bit system architecture (e.g., x86-64) and, for the sake of brevity, we only
show C-like code for the key implementation routines1.

1 Source code is available in https://github.com/ricleite/lrmalloc.

4 R. Leite and R. Rocha

3.1 High-Level Overview

From a high-level perspective, LRMalloc is divided into three main components:
(i) the thread caches, one per thread; (ii) the heap; and (iii) the pagemap. Figure 1
shows the relationship between these three components, the user’s application
and the operating system.

User Application

Operating System

malloc()
free()

mmap()
munmap()

Thread
Cache

Pagemap

Heap

CacheFill()
CacheFlush()

Fig. 1. LRMalloc’s overview

Similarly to other memory allocators, the
thread caches are a synchronization-free com-
ponent which uses a stack implemented as a
singly-linked list to store (a finite number of)
blocks that are available for use. A separate
stack is kept for each size class. Each thread
cache is meant to handle the common alloca-
tion case, where a malloc() becomes a single
stack pop and a free() is a stack push using
the appropriate size class. When the cache is
empty, a new list of blocks is fetched from
the heap. When the cache is full, blocks are
flushed back to the heap. This simple and
speed-efficient common case is essential for
a competitive memory allocator. In LRMal-
loc, size classes are generated according to
the following series (series also adopted by
Jemalloc [3]):

1. 2X

2. 2X + 2(X−2)

3. 2X + 2(X−1)

4. 2X + 2(X−1) + 2(X−2)

5. 2(X+1) (repeat, same as first case)

Note that not all values generated by the series are valid due to alignment
requirements on the C standard, and thus those are removed. Without those
cases, the above series limits internal fragmentation (unused space inside a block
given to the application) to a maximum of 25% of the allocated memory.

The heap and the pagemap are lock-free components. The heap manages
superblocks from which it carves blocks to be used by thread caches. Superblocks
are continuous set of pages, which may either be used to carve up blocks of the
same size class or for a single large allocation. Similarly to other allocators, in
LRMalloc, large allocations are allocations larger than the largest size class. The
pagemap stores metadata for pages used by superblocks. Its raison d’être is to
find out metadata of a given block, such as the size class and superblock the block
belongs to. Therefore, the pagemap is merely a bookkeeping component, kept up
to date by the heap. The pagemap stores metadata on a per-page basis instead
of a per-block basis, which reduces the amount of memory used for bookkeeping
and increases the locality of blocks provided to the application.

A Modern and Competitive Lock-Free Dynamic Memory Allocator 5

Listing 1.2 shows the malloc() and free() high-level routines. Memory allo-
cation starts by computing the size class corresponding to the requested size. In
an effort to decrease internal fragmentation, there are only size classes for small
allocations. LRMalloc’s size classes go up to 16KB (4 pages). Allocations that
are larger than the largest size class are treated as large allocations, and han-
dled differently. For large allocations, LRMalloc creates a superblock with the
appropriate size in number of pages through mmap(). When a large allocation
is free()’d, the corresponding superblock is munmap() and thus returned to
the operating system. Large allocations are identified with a size class equal to 0.
If the allocation isn’t large, the cache corresponding to the size class is accessed
and checked. In the common case, the cache will not be empty and thus a block
will be fetched from the cache with a pop operation. In the uncommon case, the
cache is empty and thus it must be filled with CacheFill().

Listing 1.2. High-level allocation and deallocation routines
1 void* malloc(size_t size) {
2 size_t scIdx = ComputeSizeClass(size);
3 if (scIdx == 0) // large allocation
4 return AllocateLargeBlock ();
5 Cache* cache = GetCache(scIdx);
6 if (CacheIsEmpty(cache))
7 CacheFill(scIdx , cache);
8 return CachePopBlock(cache);
9 }

10
11 void free(void* ptr) {
12 size_t scIdx = GetSizeClassFromPageMap(ptr); // get metadata
13 if (scIdx == 0) // large allocation
14 return DeallocateLargeBlock ();
15 Cache* cache = GetCache(scIdx);
16 if (CacheIsFull(cache))
17 CacheFlush(scIdx , cache);
18 CachePushBlock(cache , ptr);
19 }

Memory deallocation also starts by finding out the size class of the provided
allocation. This is the step where the pagemap component becomes relevant, as it
keeps metadata about all allocated pages. As before, large allocations are handled
differently, and for small allocations the corresponding cache is accessed. In the
common case, the cache will not be full and thus the allocation will just be added
to the cache. In the uncommon case, the cache is full and thus CacheFlush()
must be called to reduce the number of blocks in the cache.

Caches are thread-specific objects, and thus all operations using the cache
are synchronization-free. In the allocation and deallocation algorithms, only the
CacheFill() and CacheFlush() routines require synchronization. Both rou-
tines are described in more detail next. For the sake of brevity, we will omit
the GetCache(), CacheIsEmpty(), CacheIsFull(), CachePopBlock() and
CachePushBlock() subroutines, which are trivially implemented.

3.2 Heap

Due to its lock-free nature, the LRMalloc’s heap component is by far the most
complex component of the allocator. It is based on Michael’s lock-free memory

6 R. Leite and R. Rocha

allocation algorithm [11] but adapted with a number of improvements to work
with the presence of thread caches. The heap manages superblocks through de-
scriptors. Descriptors are unreclaimable but reusable objects used by the heap to
track superblocks. Descriptors contain the superblock’s metadata, such as, where
the superblock begins, the size class of its blocks, and the number of blocks it
contains. It also includes an anchor, an inner structure that describes the su-
perblock’s state and is small enough to fit inside a single word to be atomically
updated with CAS instructions. Listing 1.3 presents the anchor and descriptor
struct definitions. The Anchor.avail field refers to the first available block in
the superblock. A free block then points to the next free block on the chain.
The exact number of bits used by the Anchor.avail and Anchor.count fields
(31 in the current implementation) are implementation independent and can be
adjusted to how large superblocks can be and to how many blocks at most they
can have. In our proposal, and unlike Michael’s original algorithm, the anchor
does not need a ABA prevention tag.

Listing 1.3. Anchor and descriptor structures
1 struct Anchor {
2 size_t state : 2; // may be EMPTY = 0, PARTIAL = 1 or FULL = 2
3 size_t avail : 31; // index of first free block
4 size_t count : 31; // number of free blocks
5 };
6
7 struct Descriptor {
8 Anchor anchor;
9 char* superblock; // pointer to superblock

10 size_t blocksize; // size of each block in superblock
11 size_t maxcount; // number of blocks
12 size_t scIdx; // size class of blocks in superblock
13 };

Listing 1.4 describes the CacheFill() algorithm. By default, the algorithm
tries to reuse a partially free superblock by calling CacheFillFromPartialSB(),
which corresponds to start by trying to get a descriptor from a lock-free stack
(HeapGetPartialSB() in line 10). If there is such a descriptor, it may point
to a superblock where all blocks have been freed, in which case the superblock
has been returned to the operating system and is no longer usable. In this case,
the descriptor is put into a global recycle list (DescriptorRetire() in line 17)
and the algorithm is repeated. Otherwise, all available blocks in the superblock
are reserved, with a CAS that updates the anchor (line 23), and then added to
the thread’s cache (lines 24–29). No ABA-prevention tag is needed on this CAS,
because the only change that can happen to the underlying superblock is that
more blocks become available, thus updating Anchor.avail, which would fail
the CAS. This is opposed to Michael’s original algorithm, where blocks could
concurrently become available and unavailable due to active superblocks.

If there are no available partial superblocks for the size class at hand, a
new superblock must allocated and initialized. This is done in CacheFillFrom-
NewSB(), which allocates a new superblock from the operating system and
assigns a descriptor to it. The assigned descriptor is provided by DescriptorAl-
loc(), which accesses a global lock-free list of recycled descriptors. All blocks in
the newly allocated superblock are then added to the thread’s cache (lines 42–45

A Modern and Competitive Lock-Free Dynamic Memory Allocator 7

in Listing 1.4). Note that in low-concurrency scenarios, only a few CAS instruc-
tions are required to transfer a potentially large number of blocks to the cache.
The exact number of CAS depends on which lock-free data structures are being
used to track partial superblocks.

Listing 1.4. CacheFill routines

1 void CacheFill(size_t scIdx , Cache* cache) {
2 // try to fill cache from a single partial superblock ...
3 bool res = CacheFillFromPartialSB(scIdx , cache);
4 // ... and if that fails , create a new superblock
5 if (!res)
6 CacheFillFromNewSB(scIdx , cache);
7 }
8
9 bool CacheFillFromPartialSB(size_t scIdx , Cache* cache) {

10 Descriptor* desc = HeapGetPartialSB(scIdx);
11 if (!desc) // no partial superblock available
12 return false;
13 Anchor newAnc , oldAnc;
14 do {
15 oldAnc = desc ->anchor;
16 if (oldAnc.state == EMPTY) {
17 DescriptorRetire(desc);
18 return CacheFillFromPartialSB(scIdx , cache); // retry
19 }
20 newAnc.state = FULL;
21 newAnc.avail = desc ->maxcount;
22 newAnc.count = 0;
23 } while (!CAS(&desc ->anchor , oldAnc , newAnc));
24 char* block = desc ->superblock + oldAnc.avail * desc ->blockSize;
25 size_t blockCount = oldAnc.count;
26 while (blockCount -- > 0) {
27 CachePushBlock(cache , block);
28 block = *(char **) block;
29 }
30 return true;
31 }
32
33 void CacheFillFromNewSB(size_t scIdx , Cache* cache) {
34 Descriptor* desc = DescriptorAlloc ();
35 DescriptorInit(desc , scIdx); // initialize with size class info
36 Anchor anc;
37 anc.state = FULL;
38 anc.avail = desc ->maxcount;
39 anc.count = 0;
40 desc ->anchor = anc;
41 desc ->superblock = mmap (...);
42 for (size_t idx = 0; idx < desc ->maxcount; ++idx) {
43 char* block = desc ->superblock + idx * desc ->blockSize;
44 CachePushBlock(cache , block);
45 }
46 PageMapRegisterDescriptor(desc); // update pagemap
47 }

Flushing a cache is a less straightforward procedure. When a cache is full,
several blocks must be returned to their respective superblocks, which requires
updating the superblocks’ associated descriptors. If each block was to be returned
individually, a number of CAS instructions equal to the number of blocks to be
removed would be required, which could be too inefficient and a source of con-
tention. Instead, it is best to group up blocks according to descriptor as best as
possible, in order to be able to return several blocks back to the same superblock
in a single CAS. Listing 1.5 shows LRMalloc’s cache flushing algorithm.

8 R. Leite and R. Rocha

Listing 1.5. CacheFlush routine
1 void CacheFlush(size_t scIdx , Cache* cache) {
2 while (! CacheIsEmpty(cache)) {
3 // form a list of blocks to return to a common superblock
4 char* head , tail;
5 head = tail = CachePopBlock(cache);
6 Descriptor* desc = PageMapGetDescriptor(head);
7 size_t blockCount = 1;
8 while (! CacheIsEmpty(cache)) {
9 char* block = CachePeekBlock(cache);

10 if (PageMapGetDescriptor(block) != desc)
11 break;
12 CachePopBlock(cache);
13 ++ blockCount;
14 *(char **) tail = block;
15 tail = block;
16 }
17
18 // add list to descriptor and update anchor
19 char* superblock = desc ->superblock;
20 size_t idx = ComputeIdx(superblock , head);
21 Anchor oldAnc , newAnc;
22 do {
23 newAnc = oldAnc = desc ->anchor;
24 *(char **) tail = superblock + oldAnc.avail * desc ->blockSize;
25 newAnc.state = PARTIAL;
26 newAnc.avail = idx;
27 newAnc.count += blockCount;
28 if (newAnc.count == desc ->maxcount) // can free superblock
29 newAnc.state = EMPTY;
30 } while (!CAS(&desc , oldAnc , newAnc));
31
32 if (oldAnc.state == FULL)
33 HeapPutPartialSB(desc);
34 else if (newAnc.state == EMPTY) {
35 // unregister metadata from pagemap ...
36 PageMapUnregisterDescriptor(superblock , scIdx);
37 // ... and release superblock back to OS
38 munmap(superblock , ...);
39 }
40 }
41 }

CacheFlush() starts by popping a block from the cache and by forming
an ad-hoc singly-linked list with all next blocks in cache that belong to the
same superblock (lines 4 –16). Recall that blocks that belong to the same su-
perblock share the same descriptor. We use CachePeekBlock() to inspect the
first block in the cache without popping it. The ad-hoc list is then added to the
corresponding superblock’s available block list and the anchor updated accord-
ingly (lines 19–30). At this stage, the CAS only fails if other blocks are being
simultaneously flushed from other caches. At the end, if these are the first blocks
to be freed, the superblock is added to the lock-free stack of partial superblocks
(line 33). Otherwise, if all blocks are made free, the pagemap is updated to reflect
the change and the superblock returned to the operating system (lines 35–38).

Note that a descriptor cannot be returned to the operating system since
other threads can be potentially holding a reference to it. Moreover, it cannot
be recycled also as there may still be a reference to it in the list of partial
superblocks, and guaranteeing its correct removal is a non-trivial task. In our
approach, a descriptor is only recycled when a thread removes it from the list of
partial superblocks (line 17 in algorithm CacheFillFromPartialSB()).

A Modern and Competitive Lock-Free Dynamic Memory Allocator 9

3.3 Pagemap

The pagemap component stores allocation metadata per page based on the ob-
servation that most allocations are much smaller than a page, and that blocks
in the same page share the same size class and descriptor. Storing metadata per
page instead of per allocation has several advantages. First, it is more mem-
ory efficient. Second, it helps separating allocation metadata from user memory,
which improves locality, as allocator and user memory are no longer interleaved.

The pagemap can be implemented in a number of different ways. With an
operating system that allows memory overcommitting, it can be a simple array,
where the size depends on the size of the valid address space and how much
memory is needed for each page’s metadata. For example, assuming that a single
word of memory is enough for metadata, and that the address space can only
have 248 bytes (common for 64 bit architectures) then this array requires 248−12

words, or about 512GB. Of course, the actual physical memory is bounded by
the number of pages required for user applications. LRMalloc uses this type of
implementation. A cheaper solution in terms of virtual memory would be to use
a lock-free radix tree, at the cost of some performance and additional complexity.

4 Experimental Results

The environment for our experiments was a dedicated x86-64 multiprocessor
system with four AMD SixCore Opteron TM 8425 HE @ 2.1 GHz (24 cores in
total) and 128 GBytes of main memory, running Ubuntu 16.04 with kernel 4.4.0-
104 64 bits. We used standard benchmarks commonly used in the literature [1,
11], namely the Linux scalability [10], Threadtest and Larson [7] benchmarks.

Linux scalability is a benchmark used to measure memory allocator latency
and scalability. It launches a given number of independent threads, each of which
runs a batch of 10 million malloc() requests allocating 16-byte blocks followed
by a batch of identical free() requests.

Threadtest is similar to Linux scalability with a slightly different allocation
profile. It also launches a given number of independent threads, each of which
runs batchs of 100 thousand malloc() requests followed by 100 thousand free()
requests. Each thread runs 100 batches in total.

Larson simulates the behavior of a long-running server process. It repeatedly
creates threads that work on a slice of a shared array. Each thread runs a batch
of 10 million malloc() requests between 16 and 128 bytes and the resulting
allocations are stored in random slots in the corresponding slice of the shared
array (each thread’s slice includes 1000 slots). When a slot is occupied, a free()
request is first done to release it. At any given time, there is a maximum limit of
threads running simultaneously, i.e., only one thread has access to a given slice
of the shared array, and slices are recycled as threads are destroyed and created.

To put our proposal in perspective, we compared LRMalloc against other
memory allocators, such as, Michael’s allocator [11], Hoard [1], Ptmalloc2 [5],
Jemalloc-5.0 [3] and TCMalloc [4]. Figure 2 presents experimental results for the

10 R. Leite and R. Rocha

benchmarks described above when using the different memory allocators with
configurations from 1 to 32 threads. The results presented are the average of 5
runs.

Figure 2(a) shows the execution time, in seconds (log scale), for running
the Linux scalability benchmark. In general, the results show that LRMalloc is
very competitive, being only overtaken by Jemalloc as the number of threads
increases. Jemalloc’s behavior can be explained by the fact that it creates a
number of arenas equal to four times the number of cores in the system. Multiple
threads may be mapped to the same arena but, with so many arenas, collisions
are unlikely and thus little contention happens on shared data structures. On
the other hand, LRMalloc’s heap has no arena-like multiplexing, and thus there
is a greater potential for contention as the number of threads increases.

Figure 2(b) shows the execution time, in seconds (log scale), for running the
Threadtest benchmark. Again, the results show that LRMalloc is very competi-
tive and only surpassed by Jemalloc by a small margin. In particular, for a small
number of threads, LRMalloc is slightly faster than Jemalloc and, as the number
of threads increases, LRMalloc keeps an identical tendency as Jemalloc.

Figure 2(c) shows the number of operations per second (log scale), for running
the Larson benchmark. In general, LRMalloc performs similarly to all the other
allocators, with a small performance degradation as the number of threads in-
creases. This happens due to the cache flushing mechanism triggered every-time
a thread exits. This lowers memory fragmentation but, for the kind of programs
which create a huge number of threads during its lifetime, it can incur in some
extra overhead. This could be improved by recycling cache structures when a
thread exits, in order to allow them to be reused by new spawning threads.

5 Conclusions and Further Work

We have presented LRMalloc, a lock-free memory allocator designed to fulfill
important and desirable properties in a memory allocator, such as, being immune
to deadlocks and livelocks, and tolerant to arbitrary thread termination and
priority inversion. It is our belief that future progress in memory allocators would
involve the adoption of lock-free strategies as a way to provide these behavior
properties to user applications.

Our experiments showed that LRMalloc’s current implementation is already
quite competitive and comparable to other modern state-of-the-art memory al-
locators. Nonetheless, there are a number of possible extensions that we plan to
study which could further improve LRMalloc’s performance. A first example is
the support for multiple arenas as a way to reduce allocation contention as the
number of threads increases, thus improving scalability. Another good example
is the usage of improved cache management algorithms, as the ones implemented
by TCMalloc [9], as a way to reduce the average memory allocator latency.

LRMalloc’s current implementation uses a lock-free segregated storage scheme
which relies on the operating system to provide continuous pages of memory,
which we use to represent the superblocks. Another improvement we plan to

A Modern and Competitive Lock-Free Dynamic Memory Allocator 11

(a) Linux scalability

(b) Threadtest

(c) Larson

Fig. 2. Experimental results comparing Michael’s allocator [11], Hoard [1], Ptmal-
loc2 [5], Jemalloc-5.0 [3] and TCMalloc [4] for the Linux scalability, Threadtest and
Larson benchmarks with configurations from 1 to 32 threads

12 R. Leite and R. Rocha

study is to have an additional lock-free component which handles these mem-
ory requests and is capable of general coalescing and splitting memory blocks
representing the superblocks. To the best of our knowledge, no lock-free scheme
exists that supports general coalescing and splitting. We believe that the results
of such research could lead to relevant contributions able to be incorporated also
into the operating system memory allocation system calls as a way to extend its
lock-free properties.

Acknowledgements

We would like to thank the anonymous reviewers for their feedback and sugges-
tions. Special thanks to Pedro Moreno for helpful technical discussion and ideas
provided during the development of this research. This work is financed by the
ERDF (European Regional Development Fund) through the Operational Pro-
gramme for Competitiveness and Internationalisation - COMPETE 2020 Pro-
gramme and by National Funds through the Portuguese funding agency, FCT
(Portuguese Foundation for Science and Technology) within project POCI-01-
0145-FEDER-016844.

References

1. Berger, E.D., McKinley, K.S., Blumofe, R.D., Wilson, P.R.: Hoard: A Scalable
Memory Allocator for Multithreaded Applications. In: ACM SIGARCH Computer
Architecture News. vol. 28, pp. 117–128. ACM (2000)

2. Dechev, D., Pirkelbauer, P., Stroustrup, B.: Understanding and Effectively Pre-
venting the ABA Problem in Descriptor-based Lock-free Designs. In: 13th IEEE
International Symposium on Object/Component/Service-Oriented Real-Time Dis-
tributed Computing. pp. 185–192. IEEE (2010)

3. Evans, J.: A scalable concurrent malloc (3) implementation for FreeBSD. In: BS-
DCan Conference. Ottawa, Canada (2006)

4. Ghemawat, S., Menage, P.: Tcmalloc: Thread-caching malloc (2009), http://

goog-perftools.sourceforge.net/doc/tcmalloc.html (read on June 14, 2018).
5. Gloger, W.: Ptmalloc (2006), http://www.malloc.de/en (read on June 14, 2018).
6. Hart, T.E., McKenney, P.E., Brown, A.D., Walpole, J.: Performance of memory

reclamation for lockless synchronization. Journal of Parallel and Distributed Com-
puting 67(12), 1270–1285 (2007)

7. Larson, P.Å., Krishnan, M.: Memory Allocation for Long-Running Server Appli-
cations. ACM SIGPLAN Notices 34(3), 176–185 (1998)

8. Lea, D.: A Memory Allocator Called Doug Lea’s Malloc or dlmalloc for Short
(1996), http://g.oswego.edu/dl/html/malloc.html (read on June 14, 2018).

9. Lee, S., Johnson, T., Raman, E.: Feedback Directed Optimization of TCMalloc. In:
Workshop on Memory Systems Performance and Correctness. p. 3. ACM (2014)

10. Lever, C., Boreham, D.: malloc() Performance in a Multithreaded Linux Environ-
ment. In: USENIX Annual Technical Conference. pp. 301–311. USENIX (2000)

11. Michael, M.M.: Scalable Lock-Free Dynamic Memory Allocation. ACM Sigplan
Notices 39(6), 35–46 (2004)

12. Wilson, P.R., Johnstone, M.S., Neely, M., Boles, D.: Dynamic Storage Allocation: A
Survey and Critical Review. In: Memory Management, pp. 1–116. Springer (1995)

