
Proceedings of the 13th International

Symposium on High-Level

Parallel Programming and Applications

Porto, Portugal

July 9–10, 2020

Miguel Areias Inês Dutra Ricardo Rocha

(Eds.)

Preface

This volume contains the proceedings of the 13th edition of HLPP, the

International Symposium on High-Level Parallel Programming and Applica-

tions, initially planned to take place in the Department of Computer Science,

Faculty of Sciences, University of Porto, Portugal, during July 9–10, 2020.

Due to the Coronavirus disease (COVID-19) outbreak and following the rec-

ommendations/guidelines from the World Health Organization and the Eu-

ropean Centre for Disease Prevention and Control, the event was made fully

virtual, with synchronous/asynchronous online activities, but maintaining the

regular publication and presentation activities.

Since 2001, the HLPP series of workshops/symposia has been a forum

for researchers developing state-of-the-art concepts, tools and applications for

high-level parallel programming. The general emphasis is on software quality,

programming productivity and high-level performance models. Contributions

to HLPP are sought in all topics in high-level parallel programming, its tools

and applications, including:

– High-level programming and performance models (BSP, CGM, LogP, MPM,

etc) and tools

– Declarative parallel programming methodologies

– Algorithmic skeletons and constructive methods

– Declarative parallel programming languages and libraries: semantics and

implementation

– Verification of declarative parallel and distributed programs

– Software synthesis, automatic code generation for parallel programming

– Model-driven software engineering with parallel programs

– High-level programming models for heterogeneous/hierarchical platforms

– High-level parallel methods for large structured and semi-structured datasets

– Applications of parallel systems using high-level languages and tools

– Formal models of timing and real-time verification for parallel systems

This year, we received 17 paper submissions. Each paper was reviewed

by at least three referees who provided detailed written evaluations. At the

end, 9 papers were selected for publication in this volume and presentation at

the symposium. The set of selected papers present a variety of contributions

and were divided into three sessions for presentation at the symposium. After

the symposium, the authors of the selected papers will have the opportunity

to revise their papers, taking into account the comments and remarks of the

i

referees, and submit them to the HLPP 2020 Special Issue to be published by

Springer in the International Journal of Parallel Programming (IJPP).

We would like to thank our generous sponsors – the Department of Com-

puter Science at Faculty of Sciences, University of Porto (FCUP); the CRACS

& INESCTEC research unit; and Huawei – and the EasyChair conference man-

agement system for making the life of the Program Chairs easier. We would

also like to thank the staff of the Núcleo de Tecnologias Educativas at FCUP

and the Zoom and Slack platforms for making the online event possible.

We want also to express our gratitude to the Steering Committee mem-

bers, for giving us the opportunity to organize the event, and to the Program

Committee members and external reviewers, as the symposium would not have

been possible without their knowledge, dedicated time and enthusiastic work.

Finally, thanks should go also to the authors of all submitted papers for their

contribution and interest in the symposium and to the participants for mak-

ing the event a meeting point for a fruitful exchange of ideas and feedback on

recent developments. Thank you all for your contribution to HLPP 2020.

July 2020,

Miguel Areias

Inês Dutra

Ricardo Rocha

ii

Organization

Steering Committee

Alexander Tiskin University of Warwick, UK

Clemens Grelck Universiteit van Amsterdam, Netherlands

Frederic Loulergue Northern Arizona University, USA

Gaétan Hains Huawei Technologies Paris, France

Kiminori Matsuzaki Kochi University of Technology, Japan

Quentin Miller Somerville College Oxford, UK

Program Chairs

Miguel Areias University of Porto, Portugal

Inês Dutra University of Porto, Portugal

Ricardo Rocha University of Porto, Portugal

Publicity Chair

Carlos Ferreira Polytechnic Institute of Porto, Portugal

Program Committee

Agostino Dovier University of Udine, Italy

Aleksandar Prokopec Ecole Polytechnique Fédérale de Lausanne, Switzerland

Ana Lucia Varbanescu University of Amsterdam, Netherlands

Christoph Kessler Linköping University, Sweden

Clemens Grelck University of Amsterdam, Netherlands

Dalvan Griebler PUCRS/SETREM, Brasil

Frank Pfenning Carnegie Mellon University, USA

Frederic Loulergue Northern Arizona University, USA

Frédéric Dabrowski LIFO - Université d’Orléans, France

Gaetan Hains Huawei Paris Research Center, France

Herbert Kuchen University of Münster, Germany

Joel Falcou Univeristé Paris Sud, France

Kiminori Matsuzaki Kochi University of Technology, Japan

Kostis Sagonas Uppsala University, Sweden

Marco Aldinucci University of Torino, Italy

Massimo Torquati University of Pisa, Italy

Michel Steuwer University of Glasgow, UK

Murray Cole The University of Edinburgh, UK

Peter Kilpatrick Queen’s University Belfast, UK

iii

External Reviewers

Alberto Riccardo Martinelli, Arvid Jakobsson, Breno Menezes,

Iacopo Colonnelli, Nina Herrmann, and Thibaut Tachon

Web Page

https://hlpp2020.dcc.fc.up.pt

Sponsors

iv

Table of Contents

Bounds Checking on GPU 1

Troels Henriksen

SkePU 3: Portable High-Level Programming of Heterogeneous Systems and HPC Clusters 18

August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula and Christoph Kessler

Integrating Node-Level Parallelism Abstractions into the PGAS Model 38

Pascal Jungblut and Karl Fürlinger

On Single-Valuedness in Textually Aligned SPMD Programs 57

Frédéric Dabrowski

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 76

Millán A. Mart́ınez, Basilio B. Fraguela and José C. Cabaleiro

High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons 96

Breno A. de Melo Menezes, Nina Herrmann, Herbert Kuchen and Fernando Buarque de Lima Neto

OpenACC unified programming environment for GPU and FPGA multi-hybrid acceleration 114

Ryuta Tsunashima, Ryohei Kobayashi, Norihisa Fujita, Taisuke Boku, Seyong Lee, Jeffrey Vetter,

Hitoshi Murai, Masahiro Nakao and Mitsuhisa Sato

Restoration of Legacy Parallelism in C and C++ Applications 134

Vladimir Janjic, Christopher Brown and Adam Barwell

Fortress Abstractions in X10 Framework 154

Anshu S. Anand, Kartik Sayani and R. K. Shyamasundar

v

13th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2020)
Porto, Portugal
July 9-10, 2020

Bounds Checking on GPU

Troels Henriksen

Abstract We present a simple compilation strategy for safety-checking array
indexing in high-level languages on GPUs. Our technique does not depend on
hardware support for abnormal termination, and is designed to be efficient in
the non-failing case. We rely on certain properties of array languages, namely
the absence of arbitrary cross-thread communication, to ensure well-defined
execution in the presence of failures. We have implemented our technique in
the compiler for the functional array language Futhark, and an empirical eval-
uation on 19 benchmarks shows that the geometric mean overhead of checking
array indexes is respectively 4% and 6% on two different GPUs.

Keywords GPU · functional programming · compilers

1 Introduction

Programming languages can be divided roughly into two categories: unsafe
languages, where programming errors can lead to unpredictable results at run-
time; and safe languages, where all risky operations are guarded by run-time
checks. Consider array indexing, where an invalid index will lead an unsafe lan-
guage to read from an invalid memory address. At best, the operating system
will stop the program, but at worst, the program will silently produce invalid
results. A safe language will perform bounds checking to verify that the array
index is within the bounds of the array, and if not, signal that something is
amiss. Some languages perform an abnormal termination of the program and
print an error message pointing to the offending program statement. Other
languages throw an exception, allowing the problem to be handled by the pro-
gram itself. The crucial property is that the resulting behaviour is well-defined.
We use array indexing as the motivating example, but we are concerned with

Troels Henriksen
University of Copenhagen
E-mail: athas@sigkill.dk

2 Troels Henriksen

all safety checks that can be condensed to a single boolean expression; for
example integer division by zero.

Users of unsafe languages are often wary of the run-time overhead of per-
forming safety checks. However, it has been known since even the early days of
high-level languages that bounds errors are easy to make and can have disas-
trous consequences [15], and hence most languages provide at least the option
of automatically checking risky operations. In this paper we distinguish fail-
ures from errors. A failure is a checked operation that fails in some controlled
manner. For example an array index that is discovered to be out-of-bounds.
An error is a misuse of some low-level API or language construct that causes
undefined behaviour. For example, writing to an invalid address. A safe pro-
gramming language must ensure that anything that would be an error will
instead become a failure.1

GPUs have long been popular for general-purpose parallel programming,
and several high-level languages support compilation to GPU, including Ac-
celerate [5], Lift [19], Julia [4], X10 [7], Harlan [16], APL [17, 12], and SaC [11].
As these are all high-level languages, most of them provide at least the option
of performing bounds checking when running on a CPU, but none of them
can perform bounds checking in generated GPU code. One important reason
is that the most popular GPGPU APIs (OpenCL and CUDA) do not provide
good support for abnormal termination of a running GPU kernel.

For example, CUDA provides an assert() macro that, if it fails, will termi-
nate the calling kernel. However, it will also invalidate the entire CUDA driver
context, meaning that memory that has been copied to the GPU by the cur-
rent process becomes unavailable. Further, the error message will be printed
to the standard error stream, which may be difficult to capture and propagate
(e.g. by throwing an exception on the CPU). This means failures cannot be
handled in any way other than completely scrubbing the entire GPU state,
including even data that was not available to the failing kernel, and restarting
from scratch, which is often not acceptable. While a single GPU thread can
always terminate itself, this can introduce deadlocks (see section 2.3), which
is an error. OpenCL is similar, except there is no way for a GPU thread to
abnormally terminate an entire running kernel.

Functional array languages [3], where programs consist primarily of bulk
operations such as map, reduce, and rank-polymorphic “vectorised” opera-
tors, do not contain indexing errors, as such operations are guaranteed to
be in-bounds. However, some algorithms do still require ad hoc indexing, in
particular when we use arrays to encode more complicated structures, such
as graphs. In particular, parallel “gather” and “scatter” operations have all
the same risks as traditional scalar array indexing, and should therefore be
checked at run-time. Fortunately, as we shall see, array languages based on
bulk operations have certain properties that enable a particularly efficient im-
plementation of run-time safety checks.

1 The error/failure nomenclature is more or less arbitrary and not standard or common,
but the distinction is important for this paper. In C, the term undefined behaviour is a close
(but not exact) analogue to what we call errors.

Bounds Checking on GPU 3

The contribution of this paper is a compilation strategy for inserting safety
checks in GPU code generated by compilers for high-level parallel languages,
without relying on support for abnormal termination or error reporting in the
GPU API or hardware itself. Our design goals are the following:

Completeness: all possible safety checks that are expressible as a boolean
expression can be handled.

Efficiency: overhead must be low, as programmers are quick to turn off safety
checks that they believe are detrimental to performance. However, we focus
only on performance of the non-failing case, as we assume failures are rare
and exceptional situations.

Robustness: the GPU driver context must remain operational even in the
presence of safety check failures—errors must not occur, as far as the GPU
programming API is concerned.

Quality of reporting: we must be able to produce accurate information
about the source of the failure, phrased in terms of original high-level lan-
guage (e.g. the failing expression and index) rather than low-level details
(e.g. the invalid address).

Note that we are not claiming to safety-check GPU kernels hand-written
in low-level languages such as CUDA and OpenCL. Our strategy depends on
properties that are straightforward to guarantee in code generated by com-
pilers for deterministic parallel programming languages, but which would not
hold for languages that support programmer-written low-level communication
between threads.

1.1 Prior Work

Several tools for detecting invalid memory accesses have been implemented
for GPUs. Oclgrind [18] presents itself as an OpenCL platform which runs
all kernels in an interpreter and reports accesses to invalid memory locations.
However, Oclgrind is primarily a debugging tool, as it runs far slower than real
hardware. NVIDIA provides the similar tool cuda-memcheck, which detects
invalid memory accesses, but as the instrumented kernels run with a significant
run-time overhead, it is also a debugging tool, and not intended for code
running in production.

A more efficient (and less precise) tool is the vendor-agnostic clARMOR [9],
which surrounds every allocation with an area of unique canary values. If at
any point any of these values have been changed, then it must be because of an
out-of-bounds write. The overhead is minor (10% on average), but clARMOR
can detect only invalid writes, not reads, and cannot identify exactly when the
invalid access occurred.

All these tools are low-level and concerned with the semantics of OpenCL or
CUDA kernel code, and so are not suitable for implementing bounds checking
for a high-level language. In particular, they would not be able to live up to
our expectations for error messages. Further, all such tools run the risk of false

4 Troels Henriksen

negatives, where a bounds failure ends up corrupting memory at an address
that is valid, but unintended. This cannot be detected by tools that merely
verify addresses.

There is also the option of using entirely static techniques to perform
bounds checking, such as dependent types [21], which demand that the pro-
grammer provides a proof that all indexing is safe before the type checker
accepts the program. No checking is then needed at run-time. However, depen-
dently typed programming languages are still an active research topic with re-
gards to both programming ergonomics and run-time performance, and so are
not necessarily a good choice in the near future for performance-oriented lan-
guages. In either case, such techniques are complimentary to run-time check-
ing: where the programmer is willing to invest the time to provide a proof of
safety, we can turn off run-time checks, while keeping checks in the unverified
parts of the program.

A closely related problem is de-optimisation in the context of JIT compila-
tion, where an assumption made by the JIT compiler may turn out to be false
at run-time, and execution must be rolled back in order run a slower inter-
preted version of the code. Prior work on JIT compiling R to GPU code [10]
uses a technique similar to the approach we will be discussing in section 2,
but without the optimisations of section 2.2 and section 3, and of course also
without error messages.

1.2 Nomenclature and Technicalities

We use OpenCL terminology for GPU concepts. Despite the naming differences
with CUDA, the concepts are identical, and our approach works just as well
with CUDA as with OpenCL. An OpenCL work-group corresponds to what
CUDA calls a thread block, and is a collection of threads that executes together
and may communicate with each other. OpenCL local memory corresponds to
CUDA shared memory.

We are assuming a particularly simple and conventional GPU model, with
the GPU operating as a co-processor that merely receives commands and data
from the CPU. In particular, we assume a kernel cannot enqueue new kernels,
and cannot allocate or free memory. Some real GPUs do have these capabil-
ities, but they have significant performance caveats, are not crucial to GPU
programming, and in particular are not used in the code generated by any of
the previously mentioned high-level languages.

2 Design and Implementation

As currently popular GPGPU APIs (e.g. OpenCL and CUDA) do not permit
abnormal termination of GPU kernels, we need to turn failing executions into
normal kernel termination, and somehow communicate the failure back to the
CPU. It is important that we do not at any point execute errors, such as
reading from invalid memory addresses.

Bounds Checking on GPU 5

A simple solution is to allocate a single 32-bit integer in GPU memory,
which we call global_failure, and which we use to track failures. We use the
convention that a value of −1 means “no failure”, and other values indicate
that a failure has occurred. When a failure occurs, the failing GPU thread
writes a non-negative integer to global_failure and immediately returns, which
stops the thread. After every kernel execution, we can then copy the value of
global_failure back the CPU, and if it contains a non-negative value, propagate
the failure using conventional CPU mechanisms, such as throwing an exception
or printing an error message. This idea is the foundation of our approach, but
in this simple form it has significant problems:

1. It is uninformative, because simply knowing that the program failed is not
enough to provide a good error message. For an array indexing failure, we
usually wish to provide the expression that failed, the attempted index,
and the size of the array.

2. It is slow, because it requires a global synchronisation after every kernel
execution, to verify whether it is safe to execute the next kernel. GPUs
perform well when given a large queue of work to process at their own
pace, not when they constantly stop to transfer 32 bits back to the CPU
for inspection, and have to wait for a go-ahead before proceeding.

3. It is wrong, because GPU threads are not isolated, but may communicate
through barriers or other synchronisation mechanisms. In particular, it is
undefined behaviour for a barrier to be executed by at least one but not
all threads. We cannot in general abort the execution of a single thread
without risking errors.

We will now explain at a high level how to address these problems, accom-
panied by a sketch of a concrete OpenCL implementation.

2.1 Better Failure Information

Treating failure as a boolean state, without revealing the source of the failure,
is not very user-friendly. Our solution is to assign each distinct failure point
in the program a unique number: a failure code. A failure point is a program
location where a safety check is performed. If the check fails, the correspond-
ing failure code is written to global_failure. The write is done with atomic
compare-and-swap to ensure that any existing failure code is not clobbered.
The distinguished value −1 indicates that no failure has yet occurred. We use
compare-and-swap to ensure that at most one thread can change global_failure

from −1 to a failure code. This implies that if multiple threads contain fail-
ures, it is not deterministic which of them get to report it. We can only report
a single failure to the user, and multiple runs of the same failing program may
produce different error messages. During compilation of the original program,
we construct a table that maps failure codes to the original source code lo-
cations. When we check global_failure at run-time on the CPU, we can then
identify the exact expression that gave rise to the failure.

6 Troels Henriksen

To provide human-readable error messages, we associate each failure point
with a printf()-style format string such as the following:

"index %d out of bounds for array of size %d"

For simplicity we assume that %d is the only format specifier that can oc-
cur, but each distinct format string can contain a different number of format
specifiers. We then pre-allocate an int array global_failure_args in GPU mem-
ory that is big enough to hold all parameters for the largest format string.
When a thread changes global_failure, it also writes to global_failure_args the
integers corresponding to the format string arguments. When the CPU de-
tects the failure after reading global_failure, it uses the failure code to look
up the corresponding format string and instantiates it with arguments from
global_failure_args. Note that the CPU only accesses global_failure_args when
a failure has occurred, so performance of the non-failing case is not affected.

For a non-recursive language, each failure point can be reached through
a finite number of different call paths, and stack traces can be provided by
generating a distinct format string for each possible path. The recursive case is
more difficult, and outside the scope of this paper, but can possibly be handled
by simply deciding on a maximum backtrace length, and then representing a
failure point as an entire array of source locations, rather than a single one.

2.2 Asynchronous Failure Checking

It is expensive to check global_failure on the CPU after every kernel execution.
We should do so only when we are, for other reasons, required to synchronise
with the GPU. This is typically whenever we need to copy data from GPU to
CPU, such as when making control flow decisions based on GPU results, or
when we need the final program result.

Simply delaying the check is not safe, as kernel i+1 may contain unchecked
operations that are safe if and only if the preceding kernel i completed suc-
cessfully. To address this, we add a prelude to every GPU kernel body where
each thread checks global_failure. If global_failure contains a failure code, that
must mean one of the preceding kernels has encountered a failure, and so the all
threads of the current kernel terminate immediately. This is an improvement,
because checking global_failure on the GPU is much faster than checking it on
the CPU, and does not involve any CPU/GPU synchronisation. The overhead
is a single easily cached global memory read for every thread, which is in most
cases negligible, and section 3.5 shows cases where even this can be elided.

This technique means that an arbitrary (but finite) amount of time can pass
from the time that a GPU kernel writes to global_failure, to the time that the
failure is reported to the CPU. Specifically, the time is bounded in the worst
case by the time it would have taken the program to finish successfully. We
consider this an easy price to pay in return for improving the performance of
the non-failing case.

Bounds Checking on GPU 7

1 kernel sum

2 (int *global_failure ,

3 int n, int *js,

4 int m, int *vs,

5 ...) {

6 local int sums[GROUP_SIZE];

7 int gtid = get_global_id (0);

8 int ltid = get_local_id (0);

9 int k = get_global_size (0);

10 int acc = 0;

11 for (int i = gtid;

12 i < n;

13 i += k) {

14 int j = js[i];

15 if (j < 0 || j >= m) {

16 *global_failure = 1;

17 return;

18 }

19 acc += vs[j];

20 }

21
22 sums[ltid] = acc;

23
24
25 barrier ();

26
27
28
29
30
31 // Perform parallel

32 // reduction of sums ...

33 }

(a) Incorrect failure handling.

kernel sum

(int *global_failure ,

int n, int *js,

int m, int *vs,

...) {

local int sums[GROUP_SIZE];

int gtid = get_global_id (0);

int ltid = get_local_id (0);

int k = get_global_size (0);

int acc = 0;

for (int i = gtid;

i < n;

i += k) {

int j = js[i];

if (j < 0 || j >= m) {

*global_failure = 1;

goto sync;

}

acc += vs[j];

}

sums[ltid] = acc;

sync:

barrier ();

if (* global_failure != -1) {

return;

}

barrier ();

// Perform parallel

// reduction of sums ...

}

(b) Correct failure handling.

Fig. 1: OpenCL-like pseudo-code for kernel that sums an indirectly indexed
array of integers.

2.3 Cross-thread Communication

In general, a GPU thread cannot safely terminate its own execution, as other
threads may be waiting for it in a barrier. Consider fig. 1a, which shows a
typical OpenCL summation kernel, where each thread performs a sequential
summation of a chunk of the input, followed by by a parallel summation of
the per-thread results within the GPU work-group. This requires a barrier
(line 25) to ensure that all threads have written their result to the shared
sums array before the parallel reduction takes place.

In this kernel, the sequential part involves indirect indexing, where the
array js contains values used to index vs. These indexes can be out-of-bounds,
which on fig. 1a is handled by setting global_failure and terminating the thread

8 Troels Henriksen

A
...

looping?

B
...

failure point!
...

C
...

branch?

D
...

barrier()

...

E
...

barrier()

...

F
...

Fig. 2: Control flow graph where the failure point in node B cannot know the
location of the next barrier.

with return. But this is risky, as other threads may already be waiting at the
barrier, which will never be reached by the failing thread.

The solution, shown on fig. 1b, identifies the location of the next bar-
rier in the code, places a distinct label just before it (line 24), and then
goto that label instead of immediately terminating. We call this label/barrier
pair a synchronisation point. Immediately after the synchronisation point, all
threads in the work-group check whether any of them have failed, by inspecting
global_failure, and terminate if so. The barrier implies a memory fence, so the
threads within the work-group will have a consistent view of the global_failure

variable. We also need a barrier immediately after this check, because other
failure points may occur in the remainder of the kernel, and these would also
set global_failure. A kernel may have multiple synchronisation points, each
identified with a distinct label. We must ensure that all kernels end with a
final synchronisation point, such that there is always a place to jump from a
failure point.

Viewed as a control flow graph, the kernel code must have the property
that every node that controls a failure point has a postdominator that con-
tains a synchronisation point, and that there are no barriers on the path to
the synchronisation point. It is crucial that this is a postdominator, because
even non-failing executions must reach it. This property does not hold for
arbitrary GPU kernels, but it is straightforward to ensure it when compiling
array languages, because all cross-thread communication (and hence, barriers)
is implicit in the source program and controlled by the compiler. For example,
consider the control flow graph on fig. 2. If a failure occurs in node B, where
should we jump? The choice of the next barrier is not decided until node C.
The compiler must insert a synchronisation point in C to ensure that there is
an unambiguous location to which the failure point can jump.

GPU programmers usually view goto with scepticism. Apart from the usual
problems [8], unrestricted use of goto can cause irreducible control flow, which
is in general highly inefficient and sometimes unsupported on SIMT archi-

Bounds Checking on GPU 9

tectures. However, our use of goto to jump to postdominators does not cause
irreducible control flow, and as we shall see in section 4, performance on con-
temporary GPUs is good.

3 Further Optimisations

This section shows additional optimisations and implementation hints that
reduce the overhead of failure checking. The sum impact of these optimisations
is shown in section 4.

3.1 Avoiding Global Memory Accesses

Some GPU kernels contain significant cross-thread communication within each
work-group, which must be interleaved with checking the global_failure vari-
able before every barrier. This can be a bottleneck, as global_failure is stored
in global memory, and the kernel may otherwise use mostly the much faster
local memory. To address this, we introduce a boolean variable local_failure,
stored in local memory, that indicates whether a failure has occurred within
the current work-group. When a thread fails, we set both global_failure and
local_failure, but synchronisation points check only the latter. This is suffi-
cient to ensure safety, as GPU work-groups cannot communicate with each
other, and hence cannot be affected by a failure in another work-group. The
final code emitted for a failure point is shown on fig. 3c, and the code for a
synchronisation point on fig. 3d

3.2 Avoiding Unnecessary Failure Checking

As we discussed in section 2.2, threads in a running kernel initially check
global_failure for whether a failure has occurred in a previous kernel. This
requires multiple barriers to ensure that threads in the current kernel do not
run ahead, fail, and set global_failure before all other threads have had a
chance to read its initial value. While barriers are relatively cheap, we have
observed that this initial checking still has a cost for very simple kernels. In
many cases, we have run-time knowledge that no kernels with failure points
have been enqueued since the last time we checked global_failure, and hence
checking it is wasteful.

We address this by adding to every kernel another int-typed parameter,
failure_is_an_option, that indicates whether *global_failure is potentially set.
The value for this parameter is provided by the CPU when the kernel is en-
queued.

The full prelude added to OpenCL kernels for failure checking is shown on
fig. 3b, and the pertinent kernel parameters on fig. 3a. Note that we still need
a barrier to ensure local_failure is properly initialised.

10 Troels Henriksen

int *global failure

If pointed-to value is non-negative, the program is in a failing state.
int failure is an option

Whether *global_failure is potentially non-negative.
int *global failure args

An array of values indicating precisely the failure that has occurred, e.g. the invalid
index that was attempted. Never read from a kernel, but only written to.

(a) Parameters added to every kernel. Arguments for global_failure and
global_failure_args are set on the host when the kernel is first created, but
failure_is_an_option must be set whenever the kernel is enqueued.

volatile __local bool local_failure;

if (failure_is_an_option) {

if (get_local_id (0) == 0) {

local_failure = *global_failure >= 0;

}

barrier(CLK_LOCAL_MEM_FENCE);

if (local_failure) {

return;

}

} else {

local_failure = false;

}

barrier(CLK_LOCAL_MEM_FENCE);

(b) The failure handling prelude added to generated OpenCL kernels. See fig. 3a for the
meaning of the kernel parameters used.

local_failure = true;

if (atomic_cmpxchg(global_failure , -1, k) < 0) {

// write to global_failure_args ...

}

goto sync;

(c) The code emitted whenever a failure occurs inside a kernel, where k is a unique non-
negative integer identifying the failure, and sync a label identifying the next failure syn-
chronisation point (see fig. 3d).

sync:
barrier(CLK_LOCAL_MEM_FENCE);

if (local_failure) {

return;

}

(d) Code for a synchronisation point, where sync is a distinct label referenced in preceding
goto statements (see fig. 3c).

Fig. 3: Essential code fragments for our implementation of GPU bounds check-
ing. This lists kernel parameters and code only.

Bounds Checking on GPU 11

The failure_is_an_option parameter corresponds to an ordinary variable
maintained by the CPU. It is initially zero, and set whenever we enqueue a
kernel that contains failure points. Whenever the CPU synchronises with the
GPU, and would normally copy global_failure back to the CPU to check its
value, we first check failure_is_an_option. If zero, that means there is no reason
to check global_failure. Our motivation is avoiding the latency of initiating a
transfer, as copying a single 32-bit word of course takes very little bandwidth.
After any CPU–GPU synchronisation where global_failure is checked, we reset
failure_is_an_option to zero.

3.3 Avoiding Synchronisation Points

Many kernels, particularly those corresponding to a map, contain no communi-
cation between threads, and hence no barriers. For these kernels, failure points
can simply return.

3.4 Non-Failing Kernels

Many kernels contain no failure points, and are guaranteed to execute success-
fully. These kernels must still check global_failure when they start, because this
guarantee may be predicated on the successful execution of previous kernels,
but they do not need the failure_is_an_option or global_failure_args parame-
ters, and their kernel prelude can be simplified to the following:

if (* global_failure >= 0) { return; }

3.5 Failure-Tolerant Kernels

Some particularly simple kernels are able to execute safely (i.e. error-free)
even when previous kernels have failed, typically because they merely copy or
replicate memory, possibly with an index transformation. Matrix transposition
is an example of such a kernel. For these kernels we can eliminate all failure
checking entirely. This is because failures cannot result in memory becoming
inaccessible; it can only result in the values stored being wrong, and these
simple kernels are not sensitive to the values they are copying.

4 Experiments

We have implemented the presented technique in the compiler for Futhark [14],
a functional array language that can be compiled to OpenCL and CUDA.
Apart from checking array indexes, we also check for integer division by zero,
as well as arbitrary programmer-provided assertions. These can be handled
using the same approach as bounds checking. Futhark is a purely functional

12 Troels Henriksen

language, and so is not suitable for writing full applications. Instead, a com-
piled Futhark program presents a C API, with Futhark entry points exposed
as C functions, which are then called by programs written in other program-
ming languages. Futhark does not support exceptions or similar error handling
mechanisms, so in the event of a failure, the error message is simply propa-
gated to the return value of the C API, where it is made available for the
caller to do with as they wish. One option is of course to print the message to
the console and then terminate the entire process, but the GPU and Futhark
state remains intact, including the data that was passed to the Futhark entry
point, so it is also possible to continue execution with other data.

To investigate the efficiency of our implementation technique, we have mea-
sured the run-time of a range of Futhark programs compiled with and without
bounds checking enabled. The full Futhark benchmark suite2 contains 41 pro-
grams ported from Accelerate [5], FinPar [2], Rodinia [6], and Parboil [20].
Of these, 19 benchmarks require bounds checks in GPU kernels, and are the
ones we use in our experiments. See table 1 for a table of the benchmarks
and workloads. Since our focus is the relative cost of bounds checking, we
do not compare our performance with the original hand-written benchmark
implementations. Prior work has shown that Futhark’s objective performance
is generally good [13], so we consider our results representative of the cost of
adding bounds checking to already well-performing code.

4.1 Methodology

Each benchmark program is compiled and benchmarked with four different
ways of handling bounds checks:

Without any checking: our baseline.
Checked: full bounds checking.
Unoptimised: excludes the optimisations from section 3.
Synchronous: clFinish() after every kernel enqueuing.

For the latter three we report the relative slowdown compared to the base-
line. Our experiments are run on two systems: an AMD Vega 64 GPU where
we use Futhark’s OpenCL backend, and an NVIDIA RTX 2080 Ti GPU where
we use Futhark’s CUDA backend. We use the futhark bench tool to perform
the timing, and the OpenCL backend for code generation. The timing does
not include GPU driver setup and teardown, nor does it include copying the
initial input data to the GPU, nor the final results from the GPU. All other
CPU–GPU communication is counted. We report the average runtime of 10
runs for each benchmark.

Bounds Checking on GPU 13

LocVolCalib
OptionPricing

canny
fft

fluid
hashcat

pagerank
stencil

tpacf
backprop

bfs
cfd

hotspot
lavaMD

lud
nw

myocyte
particlefilter

srad

1

2

3

4

5

S
lo

w
d

ow
n

Checked Unoptimised Synchronous

(a) Benchmark results on an AMD Vega 64 GPU with OpenCL. The geometric mean of
slowdowns is 1.06 (checked), 1.11 (unoptimised), and 1.61 (synchronous).

LocVolCalib
OptionPricing

canny
fft

fluid
hashcat

pagerank
stencil

tpacf
backprop

bfs
cfd

hotspot
lavaMD

lud
nw

myocyte
particlefilter

srad

1

2

3

4

5

S
lo

w
d

ow
n

Checked Unoptimised Synchronous

(b) Benchmark results on an NVIDIA RTX2080 Ti GPU with CUDA. The geometric mean
of slowdowns is 1.04 (checked), 1.07 (unoptimised), and 1.66 (synchronous).

Fig. 4: Runtime slowdown of performing bounds checking compared to not per-
forming bounds checking. See table 1 for the benchmark workloads. Checked is
the full implementation with the optimisations listed in section 3. Unoptimised
is without the optimisations. Synchronous is with GPU synchronisation after
every kernel enqueuing.

4.2 Results

The results are shown on fig. 4. The most obvious conclusion is that syn-
chronous execution can have ruinous overhead; exceeding 5 × for the nw
benchmark, and exceeding 2 × on five other benchmarks on the RTX2080.
The most affected benchmarks are structured as a rapid sequence of kernels
that each run for at most a few dozen microseconds. Halting the GPU after
every kernel, rather than letting it process the queue on its own, adds a sig-
nificant constant cost to every kernel, which slows down these benchmarks
significantly. On the other hand, those benchmarks that run just a few large
kernels, such as OptionPricing, are not significantly affected. The Vega 64 is
slightly less hampered than the RTX 2080 Ti, which is likely because the Vega
64 is relatively slower, so the kernels run for longer on average.

2 https://github.com/diku-dk/futhark-benchmarks

14 Troels Henriksen

Benchmark Dataset

FinPar
LocVolCalib large
OptionPricing large

Accelerate
canny 512× 512
fft 1024× 1024
fluid medium
hashcat rockyou
pagerank small

Parboil
stencil default
tpacf large

Benchmark Dataset

Rodinia
backprop medium
bfs graph1MW 6
cfd fbcorr.domn.193K
hotspot 1024
lavaMD 10 boxes
lud 2048
nw large
myocyte medium
particlefilter 128× 128× 10 image,

400000 particles
srad 502× 458 image

Table 1: Benchmarks and datasets used for the measurements on fig. 4. The
names of datasets are from the original benchmark sources (hence the incon-
sistent naming), and have been chosen to be the largest available.

The section 3 optimisations have a relatively small impact on most bench-
marks. The largest impact is on particlefilter on the Vega 64, where the op-
timisations reduce overhead from almost 1.6× to essentially nothing. The bfs
benchmark is an excellent demonstration of bounds checking, as it implements
a graph algorithm by representing the graph as several arrays containing in-
dexes into each other. A compiler would have to be sufficiently smart to a very
high degree to statically verify these index operations. At the same time, most
of the GPU kernels are map or scatter-like operations with no communication
between threads, so the section 3.4 optimisation applies readily. The srad and
stencil benchmarks suffer significantly under bounds checking on the RTX
2080 Ti. Both of these are stencil nine-point stencil computations, and are
written in a way that prevents the Futhark compiler from statically resolving
eight of the nine bounds checks that are needed for each output element.

5 Conclusions

We have demonstrated an implementation technique for implementing check-
ing of array indexing and similar safety checks in GPU kernels generated from
high-level array languages, even when the GPU programming API does not
support abnormal termination.

Implementing the technique in a mature GPU-targeting compiler took only
moderate effort, and our experiments show that the overhead of bounds check-
ing has a geometric average of a relatively modest 6%, counting only those
programs where checking is necessary in the first place. This is comparable
to other work on bounds-checking C programs [1], although this comparison
is admittedly not entirely fair, as a functional array language need not check
indexing that arises from operations such as map and reduce. Nevertheless,
our results suggest that bounds checking can be performed by default even in
high-performance array languages.

Bounds Checking on GPU 15

Acknowledgements This research has been partially supported by a grant from the In-
dependent Research Fund Denmark, under the research project FUTHARK: Functional
Technology for High-performance Architectures.

References

1. Akritidis P, Costa M, Castro M, Hand S (2009) Baggy bounds check-
ing: An efficient and backwards-compatible defense against out-of-bounds
errors. In: Proceedings of the 18th Conference on USENIX Security Sym-
posium, USENIX Association, USA, SSYM09, p 5166

2. Andreetta C, Bégot V, Berthold J, Elsman M, Henglein F, Henriksen T,
Nordfang MB, Oancea CE (2016) Finpar: A parallel financial benchmark.
ACM Trans Archit Code Optim 13(2):18:1–18:27

3. Bernecky R, Scholz SB (2015) Abstract expressionism for parallel perfor-
mance. In: Proceedings of the 2nd ACM SIGPLAN International Work-
shop on Libraries, Languages, and Compilers for Array Programming, pp
54–59

4. Besard T, Foket C, De Sutter B (2019) Effective extensible programming:
Unleashing julia on gpus. IEEE Transactions on Parallel and Distributed
Systems 30(4):827–841

5. Chakravarty MM, Keller G, Lee S, McDonell TL, Grover V (2011) Ac-
celerating haskell array codes with multicore gpus. In: Proceedings of
the Sixth Workshop on Declarative Aspects of Multicore Programming,
Association for Computing Machinery, New York, NY, USA, DAMP 11,
p 314, DOI 10.1145/1926354.1926358, URL https://doi.org/10.1145/

1926354.1926358

6. Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Lee SH, Skadron K (2009)
Rodinia: A benchmark suite for heterogeneous computing. In: 2009 IEEE
international symposium on workload characterization (IISWC), Ieee, pp
44–54

7. Cunningham D, Bordawekar R, Saraswat V (2011) Gpu programming in
a high level language: Compiling x10 to cuda. In: Proceedings of the 2011
ACM SIGPLAN X10 Workshop, Association for Computing Machinery,
New York, NY, USA, X10 11, DOI 10.1145/2212736.2212744, URL https:

//doi.org/10.1145/2212736.2212744

8. Dijkstra E (1979) Go to Statement Considered Harmful, Yourdon Press,
USA, p 2733

9. Erb C, Greathouse JL (2018) Clarmor: A dynamic buffer overflow detec-
tor for opencl kernels. In: Proceedings of the International Workshop on
OpenCL, Association for Computing Machinery, New York, NY, USA,
IWOCL 18, DOI 10.1145/3204919.3204934, URL https://doi.org/10.

1145/3204919.3204934

10. Fumero JJ, Steuwer M, Stadler L, Dubach C (2017) Just-in-time GPU
compilation for interpreted languages with partial evaluation. In: Pro-
ceedings of the 13th ACM SIGPLAN/SIGOPS International Conference

16 Troels Henriksen

on Virtual Execution Environments, VEE 2017, Xi’an, China, April 8-
9, 2017, ACM, pp 60–73, DOI 10.1145/3050748.3050761, URL https:

//doi.org/10.1145/3050748.3050761

11. Guo J, Thiyagalingam J, Scholz SB (2011) Breaking the gpu program-
ming barrier with the auto-parallelising sac compiler. In: Proceedings of
the Sixth Workshop on Declarative Aspects of Multicore Programming,
Association for Computing Machinery, New York, NY, USA, DAMP 11, p
1524, DOI 10.1145/1926354.1926359, URL https://doi.org/10.1145/

1926354.1926359

12. Henriksen T, Dybdal M, Urms H, Kiehn AS, Gavin D, Abelskov H, Elsman
M, Oancea C (2016) Apl on gpus: A tail from the past, scribbled in futhark.
In: Proceedings of the 5th International Workshop on Functional High-
Performance Computing, ACM, New York, NY, USA, FHPC 2016, pp 38–
43, DOI 10.1145/2975991.2975997, URL http://doi.acm.org/10.1145/

2975991.2975997

13. Henriksen T, Serup NGW, Elsman M, Henglein F, Oancea CE (2017)
Futhark: Purely functional gpu-programming with nested parallelism and
in-place array updates. In: Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, ACM,
New York, NY, USA, PLDI 2017, pp 556–571, DOI 10.1145/3062341.
3062354, URL http://doi.acm.org/10.1145/3062341.3062354

14. Henriksen T, Thorøe F, Elsman M, Oancea C (2019) Incremental flatten-
ing for nested data parallelism. In: Proceedings of the 24th Symposium
on Principles and Practice of Parallel Programming, ACM, New York,
NY, USA, PPoPP ’19, pp 53–67, DOI 10.1145/3293883.3295707, URL
http://doi.acm.org/10.1145/3293883.3295707

15. Hoare CAR (1981) The emperors old clothes. Commun ACM 24(2):7583,
DOI 10.1145/358549.358561, URL https://doi.org/10.1145/358549.

358561

16. Holk E, Newton R, Siek J, Lumsdaine A (2014) Region-based memory
management for gpu programming languages: Enabling rich data struc-
tures on a spartan host. SIGPLAN Not 49(10):141155, DOI 10.1145/
2714064.2660244, URL https://doi.org/10.1145/2714064.2660244

17. Hsu AW (2019) A data parallel compiler hosted on the gpu. PhD thesis,
Indiana University

18. Price J, McIntosh-Smith S (2015) Oclgrind: An extensible opencl de-
vice simulator. In: Proceedings of the 3rd International Workshop on
OpenCL, Association for Computing Machinery, New York, NY, USA,
IWOCL 15, DOI 10.1145/2791321.2791333, URL https://doi.org/10.

1145/2791321.2791333

19. Steuwer M, Remmelg T, Dubach C (2017) Lift: A functional data-parallel
ir for high-performance gpu code generation. In: Proceedings of the 2017
International Symposium on Code Generation and Optimization, IEEE
Press, CGO 17, p 7485

20. Stratton JA, Rodrigues C, Sung IJ, Obeid N, Chang LW, Anssari N, Liu
GD, Hwu WmW (2012) Parboil: A revised benchmark suite for scientific

Bounds Checking on GPU 17

and commercial throughput computing. Center for Reliable and High-
Performance Computing 127

21. Xi H (2007) Dependent ml an approach to practical program-
ming with dependent types. J Funct Program 17(2):215286, DOI
10.1017/S0956796806006216, URL https://doi.org/10.1017/

S0956796806006216

13th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2020)
Porto, Portugal
July 9-10, 2020

SkePU 3: Portable High-Level Programming of
Heterogeneous Systems and HPC Clusters

August Ernstsson · Johan Ahlqvist ·
Stavroula Zouzoula · Christoph Kessler

Abstract We present the third generation of the C++ based open-source
skeleton programming framework SkePU. Its main new features include new
skeletons, new data container types, support for returning multiple objects
from skeleton instances and user functions, support for specifying alterna-
tive platform-specific user functions to exploit e.g. custom SIMD instructions,
generalized scheduling variants for the multicore CPU backends, and a new
cluster-backend targeting the custom MPI interface provided by the StarPU
task-based runtime system. We have also revised the smart data containers’
memory consistency model for automatic data sharing between main and de-
vice memory. The new features are the result of a two-year co-design effort
collecting feedback from HPC application partners in the EU H2020 project
EXA2PRO (2018–2021), and target especially the HPC application domain
and HPC platforms. We evaluate the performance effects of the new features
on high-end multicore CPU and GPU systems and on HPC clusters.

Keywords High-level parallel programming · Heterogeneous computing ·
Skeleton programming · Co-design approach · Cluster computing

1 Introduction

The recently started slowdown of Moore’s Law implies, for the foreseeable fu-
ture, that further performance growth in high-performance computing (HPC)
critically depends on efficiently utilizing hardware resources, leveraging even
more heterogeneity in the form of accelerators such as GPUs and scaling up to
even higher degrees of cluster-level parallelism. This leads to programmabil-
ity and portability issues on the software side. High-level programming using
algorithmic skeletons is a promising approach to bridge this widening gap.

August Ernstsson · Johan Ahlqvist · Stavroula Zouzoula · Christoph Kessler
PELAB, Dept. of Computer and Information Science
Linköping University
E-mail: <firstname>.<lastname>@liu.se

SkePU 3 19

SkePU is a C++ based open-source skeleton programming framework for
heterogeneous parallel systems. Based on an already modern and type-safe
programming interface, we have redesigned SkePU to especially target the
HPC application domain. The resulting third generation of SkePU presented
in this paper is the result of a two-year co-design effort taking into account the
feedback from HPC application partners in the EU H2020 project EXA2PRO
(2018–2021), and aims at striking a good balance between improved pro-
grammability for HPC applications and decent performance and scalability
on HPC platforms while keeping the strict portability approach of SkePU.
The main new features include new skeletons, new data container types for
multi-dimensional data and scalable data movement at distributed execution,
support for returning multiple objects from skeleton instances and user func-
tions, support for specifying optional, also platform-specific variants of user
functions to exploit e.g. custom SIMD instructions, generalized scheduling
variants for the multicore CPU backends, and a new cluster-backend targeting
the custom MPI interface provided by the StarPU task-based runtime system.
We have also revised the smart data containers’ memory consistency model
for automatic data sharing between main and device memory. We evaluate the
performance effects of the new features on high-end multicore CPU and GPU
systems and on HPC clusters.

The remainder of this paper is organized as follows. Section 2 introduces
the main concepts in SkePU (as already available in SkePU 2), surveys the
extensions, and sketches the main steps leading towards SkePU 3. Section 3
presents the new skeletons added in SkePU 3, as well as new features and
modernized interfaces of existing ones. Section 4 presents new container types
in SkePU 3. Section 5 explains the new coherence model of SkePU 3, and
Section 6 presents the principles for execution on clusters. Section 7 contains
preliminary results. Related work is discussed in Section 8, and Section 9
concludes.

2 Towards SkePU 3

2.1 Skeleton Programming Fundamentals

(Algorithmic) Skeletons [5, 6] are generic high-level programming constructs
based on higher-order functions such as map, reduce, scan etc. that can be
instantiated by plugging in sequential problem-specific code parameters, so-
called user functions and that implement a frequently occurring, often domain-
specific, characteristic pattern of control and data dependence for a possibly
parallel, distributed or heterogeneous target platform. Especially in the context
of heterogeneous systems, it is common that a skeleton comes with multiple
implementations (called back-ends) for different target platforms, such as back-
ends for sequential, multi-threaded, message-passing or accelerator execution.
Skeletons can be realized as libraries or as (often, embedded) domain-specific
languages (DSLs) atop a sequential programming language, where C++ is

20 August Ernstsson et al.

most common today, see also Section 8 for an overview of further skeleton
programming environments.

Skeleton instances are thus the result of composing multiple software arti-
facts (a skeleton and one or several user functions), but can be used (invoked)
in the same way as traditional hand-written functions.

While skeletons are high-level abstractions of computation, they usually
also work on high-level abstractions for collections of operand data, often in the
form of STL-like data containers that encapsulate and transparently manage
their elements internally [9].

The foremost objective of skeleton programming is improved programmer
productivity compared to explicit parallel programming, i.e., to make writ-
ing programs for parallel, distributed and heterogeneous systems as easy as
well-structured sequential programming—where the available set of skeletons
fits. Portability at a high level of abstraction is also important, especially
in the context of heterogeneous computing systems, where an obvious tun-
ing possibility is the automated selection of the fastest backend depending on
the execution context [8]. The price of abstraction might be a certain loss in
efficiency compared to explicitly parallel code written by system experts, how-
ever the abstraction might even lead to higher performance where the better
structuring and the knowledge of dependence patterns can enable automated
optimizations.

2.2 A Short History of SkePU

SkePU (1) was introduced in 2010 [11] as a skeleton programming library for
heterogeneous single-node but multi-accelerator systems, from the beginning
designed for portability to include single- and multi-GPU backends for the
C-based OpenCL and for CUDA (which then only partly supported C++),
and had thus been technically based on C++03 and on C preprocessor macros
as the interface to user functions.

SkePU 2, introduced in 2016 [15], was a major revision of the SkePU [11]
library, ushering in modern C++ to the skeleton programming landscape.
Rebuilding the interface from the ground up, the skeleton set was updated to
be variadic, leaving the old fixed-arity skeletons from SkePU 1 behind. Variadic
skeleton signatures was the first main motivator of SkePU 2: flexible skeleton
programming.

This rewrite also took the opportunity to integrate patched-on function-
ality in SkePU 1 into the core design of the programming model. One such
example is the absorption of SkePU 1 MapArray into the basic SkePU 2 Map.
MapArray was a dedicated skeleton in SkePU 1 created as a clone of Map

with the ability to accept an auxiliary, random-accessible array operand into
the user function, allowing deviations from the strictly functional map-style
patterns when demanded by the target application. This was one of the first
lessons from practical experience [21] that skeleton patterns are not always
perfectly suited to algorithms in real-world application code.

SkePU 3 21

Table 1: Overview of SkePU Features

SkePU 1 (2010) [11] SkePU 2 (2016) [15] SkePU 3 (2020)

API based C, C++ (pre-2011), C++11, C++11,
on C preprocessor Precompiler (clang) Precompiler (clang, mcxx)
Skeletons Map, Reduce, Scan, Map, Reduce, Scan, Map, Reduce, Scan,

MapReduce, MapArray, MapReduce, MapReduce, MapOverlap,
MapOverlap, Generate MapOverlap, Call MapPairs/–Reduce, Call

User func- C preprocessor macros Restricted C++ Restr. C++ functions, plus
tions as functions multi-variant user functions

Not type-safe Type-safe Type-safe
Containers Vector<>, Matrix<> Vector<>, Matrix<> Vector<>, Matrix<>,

Tensor3<>, Tensor4<>,
MatRow<>

Platforms CPU (C, OpenMP), CPU (C++, OpenMP), CPU, GPU, hybrid CPU/
supported GPU (CUDA, OpenCL) GPU (CUDA, OpenCL) GPU, StarPU-MPI, ...
Scheduling Static Static Static, Dynamic
(OpenMP)
Memory Sequential consistency Sequential consistency Weak consistency (default),
model optionally sequential cons.

SkePU 2 also introduced the pre-compiler, lifting SkePU from its humble
origins as a pure template include-library into a full-fledged compiler frame-
work. This, together with the effort to push the C++ type system farther than
most, if not all, comparable frameworks enabled the second main motivator of
SkePU 2: type-safe skeleton programming.

Table 1 gives a synopsis of the different features of SkePU versions.

2.3 SkePU 3 Overview

SkePU provides data-parallel skeletons, all of which are of arbitrary arity and
polymorphic in the operand container shape and element type. Skeleton in-
stances accept operands that are statically grouped (by a template parameter)
into element-wise accessible and random-accessible parameters [15]. The Map

skeleton computes every result container element by element-wise application
of a user function f to the corresponding (for element-wise accessed operands)
or possibly any (for other operands) elements; MapOverlap applies a stencil
function in one or several dimensions of an element-wise accessed operand
that can also access elements in a limited neighborhood of the corresponding
operand container element(s); Reduce applies reduction for a binary associa-
tive user function; MapReduce provides a combination of Map and Reduce;
Scan computes generic prefix-sums for the provided binary associative user
function; and Call simply calls the user function for each position of the out-
put container; in combination with multi-variant user functions it also provides
a portable escape mechanism to invoke explicitly parallelized code where the
available skeletons do not fit (well) [14]. The new skeletons added or general-
ized in SkePU 3 (cf. Tab. 1) are described in Section 3.

22 August Ernstsson et al.

Fig. 1: MapPairs computes a Cartesian mapping of 1D vectors into a 2D space.

SkePU allows to select the backend for each skeleton instance call statically
or dynamically. A tuning mechanism allows for automated backend selection
depending on a call’s operand sizes and locations. Hence, it might be statically
unknown where a skeleton call will execute.

Operands to skeleton instances are to be passed in data containers, which
are STL-like, generic collection abstract data types like Vector and Matrix

that encapsulate C++ array-type data. We call them smart containers [9]
because they transparently perform data transfer and memory management
for their elements in (heterogeneous) systems with distributed memory, as well
as global optimizations for data locality [13]. Using C++ iterators, skeleton
instance calls may also operate on a proper subset of a container’s elements
only. New containers in SkePU 3 (see Tab. 1) are described in Section 4.

3 Skeleton Set and Interface Extensions

This section covers all major changes to the skeleton API in SkePU 3, except
for the multi-variant user function feature which is already detailed in [14].
We begin with MapPairs and MapPairsReduce, which are variants of Map

resp. MapReduce on a 2D domain that are explicit about the access pattern of
lower-dimensional (1D) operands.

3.1 MapPairs

The MapPairs skeleton, added as an additional top-level skeleton in SkePU
3, applies a Cartesian product-style pattern from two Vector<T> sets (note
that the templated type may differ across these vectors). Each vector set may
contain an arbitrary number of vector containers, similar to the variadicity of

SkePU 3 23

Map. All of the vectors in a set are expected to be of the same size. Each Carte-
sian combination of vector set indices generates one user function invocation,
the result of which is an element in a Matrix. As in Map, there is an optional
Index2D parameter in the user function signature to access this index. An
example is shown in Listing 1.

Listing 1: Using the MapPairs skeleton.

1 // MapPairs user function
2 int mult(int a, int b) { return a * b }
3
4 // MapPairs skeleton instantiation and usage
5 // size_t Vsize , Hsize defined here
6 auto outerproduct = skepu:: MapPairs(mult);
7
8 skepu::Vector <int > v1(Vsize , 3), h1(Hsize , 7);
9 skepu::Matrix <int > res(Vsize , Hsize);

10 outerproduct(res , v1 , h1);

Advanced and more flexible use of MapPairs can be carried out similarly
to other SkePU skeletons. For instance, it retains flexibility of Map with regard
to variadicity (5-way variadic, compared to Map being 4-way variadic): (1) re-
sulting outputs (see Sect. 3.3), (2) element-wise-V (”vertical”, column-aligned)
input arguments, (3) element-wise-H (”horizontal”, row-aligned) input argu-
ments, (4) random-access input arguments, and (5) uniform input arguments.

A MapPairs instance of higher order would look like in the example below:

auto pairs = skepu::MapPairs<3, 2>(...);

This instance will accept three vertical and two horizontal input vectors.

3.2 MapPairsReduce

MapPairsReduce is the combination of a MapPairs followed by a row-wise or
column-wise reduction over the generated matrix elements. Like MapPairs it
supports arbitrary arities of the vertical and horizontal input Vector groups
(<0,0> and up). It returns a Vector containing the row-wise or column-wise
sums, where the summing dimension is specified as in 2D Reduce.

As a small example, we use the force calculation phase of Nbody simulation
using this new skeleton. In SkePU 2, using the more general Map skeleton, it
could be written as shown in Listing 2.

Listing 2: Nbody simulation code using Map.

1 auto nbody_init = skepu ::Map <0>(init);
2 auto nbody_simulate_step = skepu ::Map <1>(move);
3
4 nbody_init(particles , np);
5
6 for (size_t i = 0; i < iterations; i += 2)
7 {
8 nbody_simulate_step(doublebuffer , particles , particles);
9 nbody_simulate_step(particles , doublebuffer , doublebuffer);

10 }

24 August Ernstsson et al.

In SkePU 3 (Listing 3), the use of MapPairsReduce eliminates the explicit
loop required in the user function (move, omitted here for space). Moreover,
this formulation intrinsically avoids the double-buffering requirement for the
existing approach, and hence memory pressure is reduced.

Listing 3: Nbody simulation code using MapPairsReduce in SkePU 3.

1 auto nbody_init = skepu ::Map <0>(init);
2 auto nbody_influence = skepu:: MapPairsReduce <1, 1>(influence , sum);
3 auto nbody_update = skepu::Map <2>(update);
4
5 nbody_init(particles , np);
6
7 for (size_t i = 0; i < iterations; ++i)
8 {
9 nbody_influence(accel , particles , particles);

10 nbody_update(particles , particles , accel);
11 }

The total number of user-function calls is now quadratic in the number of
particles np (an inherent property of MapPairs), compared to linear before, so
good performance is even more reliant on compiler optimization, in particular,
user function inlining.

Due to different ways of computing the reductions in the two versions,
the outputs are not exactly identical but match to about 4-5 significant deci-
mal digits. This is expected due to the use of (single-precision) floating point
numbers.

3.3 Multi-valued Return in Map Skeletons

SkePU 3 introduces tuple-like return functionality for cases where a single
skeleton instance requires multiple (element-wise) output containers. This way,
multiple return values can be computed by the same user function, operating
on the inputs in one sequence, potentially improving data locality compared
to two separate skeleton invocations after each other. Although the values are
returned in a tuple-like manner, the output containers are completely separate
objects (see Fig. 2). This distinguishes this new feature from the existing use
of custom structs as (inputs or) return values, as those are stored in array-
of-records format. To use this feature, we specify the return type in the user
function signature as skepu::multiple<[basic type, ...]>, i.e., analogous
to std::tuple. Then, at the site of the return statement, we construct this
compound object by skepu::ret([expression, ...]).

Listing 4 shows an example of a user function utilizing this:

Listing 4: User function with multi-valued return.

1 skepu::multiple <int , float >
2 multi_f(skepu :: Index1D index , int a, int b, skepu::Vec <float > c, int d)
3 {
4 return skepu ::ret(a * b, (float)a / b);
5 }

SkePU 3 25

Fig. 2: Difference in return value storage between using multi-valued return
(left) and single-value (by manually managed array-of-struct) return (right).

The skeleton instance declaration and invocation follow the syntax of ordi-
nary Map, but instead of supplying one output container as the first argument,
specify several of the correct types and order. Listing 5 gives an example.

Listing 5: Using multi-valued return with Map in SkePU 3.

1 skepu::Vector <int > v1(size), v2(size), r1(size);
2 skepu::Vector <float > e(1);
3
4 auto multi = skepu ::Map <2>(multi_f);
5
6 multi(r1, r2, v1 , v2 , e, 10);

Multi-valued return statements are available in the skeletons which follow
the typical map pattern: Map, MapPairs, and MapOverlap .

3.4 Dynamic Scheduling with OpenMP Backends

In SkePU 2, all skeletons, in particular the Map based skeletons, assumed an
equal load distribution of the user function executions over the entire range of
input container elements. Some applications may however exhibit an irregu-
lar workload distribution instead, especially in CPU-affine computations and
sometimes even in combination with very short input vectors.

For these cases, SkePU 3 adds in all skeletons (except Scan and Call) an
option for dynamic scheduling in the OpenMP backend.

spec.setSchedulingMode(skepu::Backend::Scheduling::Dynamic);

Other supported Scheduling modes in the OpenMP backends are ::Guided
(for guided self-scheduling), ::Auto (for auto-tuned scheduling as implemented
in the used OpenMP compiler), and of course ::Static which remains the de-
fault scheduling mode.

In addition, a chunk size locally overriding the default chunk size (defined
for each scheduling mode as in OpenMP) can be set:

spec.setCPUChunkSize(8);

Performance evaluation results for three load balancing / nondeterministic-
time benchmarks are given in Section 7 and show in each case some im-
provement over the static SkePU 2, in spite of some overhead for the dy-
namic scheduling modes; speedups for unbalanced workloads up to 60% (for
Mandelbrot-set computation) have been observed.

26 August Ernstsson et al.

3.5 Revised Syntax for MapOverlap

Experiences from SkePU users, and in particular the application of SkePU in
teaching, has showed that the syntax for MapOverlap user functions is one of
the more challenging aspects of SkePU. In SkePU 2, a stencil operator was
specified as in the following example (here, for a rectangular 2oi+ 1× 2oj + 1
stencil implemented by 2 nested loops):

Listing 6: A MapOverlap user function in SkePU 2.

1 float over_2d(int oi, int oj, size_t stride , const float *r,
2 const skepu::Mat <float > stencil)
3 {
4 float res = 0;
5 for (int i = -oi; i <= oi; ++i)
6 for (int j = -oj; j <= oj; ++j)
7 res += r[y*(int)stride+x] * stencil.data[(i+oi)*ox + (j+oj)];
8 return res;
9 }

For SkePU 3 we have redesigned and simplified the programming interface
for specifying stencil operators. The above stencil computation looks as follows
in SkePU 3:

Listing 7: New syntax for MapOverlap user function in SkePU 3.

1 float over_2d(skepu::Region2D <float > r, const skepu::Mat <float > stencil)
2 {
3 float res = 0;
4 for (int i = -r.oi; i <= r.oi; ++i)
5 for (int j = -r.oj; j <= r.oj; ++j)
6 res += r(i, j) * stencil(i + r.oi , j + r.oj);
7 return res;
8 }

4 New Data-Containers

The availability of smart containers, previously restricted to vector and ma-
trix types, has a significant effect on the usability of a skeleton programming
framework. Even though a basic one-dimensional data set can be used to
emulate more complex data representations, doing so at a framework level
rather than on the user level provides more information to the implementa-
tion about access patterns, thus bringing increasing opportunities for optimiz-
ing communication- and memory access patterns; while also providing a more
intuitive user interface and reduced application code size for users.

In SkePU 3 this is recognized on two levels: new multi-dimensional tensor
containers, as well as a new ”proxy” container in user functions for accessing
a single row from a matrix.

4.1 Tensors

The SkePU container set is extended with tensors, which are higher-dimensio-
nality containers. In SkePU 3 there are tensors of three and four dimensions,

SkePU 3 27

Fig. 3: Element accessibility for MatRow vs. Mat parameters in a user function.

complementing the existing 1D ”vector” and 2D ”matrix”. Smart container
dimensionality in SkePU 3 is therefore fixed by the framework, though their
sizes in each dimension is user-defined.

The interfaces for these containers are virtually identical to those of the
other containers, differing in the obvious ways of naming and element access
as detailed below. The full set of smart containers in SkePU 3 now covers up
to four-dimensional structures; see Listing 8 for their definitions.

Listing 8: Smart container set in SkePU 3.

1 skepu::Vector <float > v(dim1);
2 skepu::Matrix <float > m(dim1 , dim2);
3 skepu::Tensor3 <float > t3(dim1 , dim2 , dim3);
4 skepu::Tensor4 <float > t4(dim1 , dim2 , dim3 , dim4);

The set of Index object types in SkePU, usable in e.g. user function sig-
natures to identify the index of the element being operated on, is likewise
extended with 3D and 4D equivalents (Listing 9):

Listing 9: Index types corresponding to each smart container.

1 struct Index1D { size_t i; };
2 struct Index2D { size_t row , col; }; // note!
3 struct Index3D { size_t i, j, k; };
4 struct Index4D { size_t i, j, k, l; };

Tensors are available in the skeleton API as element-wise inputs to Map,
Reduce, MapReduce, Scan, and MapOverlap. They are also accessible freely user
functions as proxy objects, where applicable. In some skeleton configurations
the dimensionality of element-wise inputs is irrelevant by design, though in
Map-based skeletons it can be accessed by using Index parameters.

4.2 MatRow Container Proxy

SkePU has since version 2 offered flexible parameter lists for user functions, in-
cluding random-access containers (implemented as lightweight proxy objects)

28 August Ernstsson et al.

in addition to the default element-wise inputs. While this allows for power-
ful expressivity, very little about the access patterns of these random-access
containers is known to SkePU, and performance may thus not always be ideal.

One very common pattern when using Matrix as a random-access container
parameter is that each user function invocation is only interested in one row
of the matrix. This pattern is seen in matrix-vector multiplication and similar
multi-reduction-style computations. To improve SkePU performance in these
cases, SkePU 3 introduces a new proxy object, MatRow<T>. Bridging the gap
between element-wise mapped and random-access container arguments, this
proxy type when used in a Map skeleton instance that maps over vectors (i.e.,
the result container(s) of the skeleton are Vector), makes available one single
row of the argument matrix container to the user function, see Fig. 3.

As an example, matrix-vector multiplication using MatRow<T> may be im-
plemented as in Listing 10:

Listing 10: Matrix-vector multiply using MatRow in SkePU 3.

1 template <typename T>
2 T arr(const skepu::MatRow <T> mr , const skepu::Vec <T> v)
3 {
4 T res = 0;
5 for (size_t i = 0; i < v.size; ++i)
6 res += mr.data[i] * v.data[i];
7 return res;
8 }

Compared to the closest corresponding SkePU 2 implementation below
(still valid in SkePU 3), which only offers the more generic Mat proxy container,
the code is more succinct and there is more information about the access
pattern available to SkePU.

Listing 11: Matrix-vector multiply in the SkePU 2 style.

1 template <typename T>
2 T arr(skepu:: Index1D row , const skepu::Mat <T> m, const skepu::Vec <T> v)
3 {
4 T res = 0;
5 for (size_t i = 0; i < v.size; ++i)
6 res += m.data[row.i * m.cols + i] * v.data[i];
7 return res;
8 }

There is no change in syntax of skeleton instantiation or skeleton invocation
needed for this feature to apply.

The performance benefit of using MatRow (where applicable) instead of the
more general Mat container proxy comes from significantly reduced operand
data transfer volume when executing over distributed memory scenarios, both
in multi-GPU execution and in cluster execution: the communication pattern
with MatRow is a scatter operation, while with Mat it is a broadcast.

Matrix-row user function proxy containers are available in user functions
for Map, MapReduce, and MapOverlap skeleton instances that satisfy the above
requirements.

SkePU 3 29

5 Consistency Model

Experiences from users of SkePU 2 demonstrated that the dual-mode model of
SkePU can be a bit challenging to adapt to. Like for instance GPU program-
ming models, SkePU programs execute code in one of two modes, in GPU
programming parlance ”host” and ”kernel” mode. In SkePU, these are rep-
resented by being either outside or inside of the dynamic scope of a skeleton
user function. While syntactically highly similar, the capabilities in each mode
are very different. Host SkePU code is effectively like any C++ environment,
as it is the goal of the framework to be possible to embed in existing C++
applications. This means that the programmer can use any C++ constructs
and idioms such as classes, dynamically allocated structures, etc.

Inside a user function, however, the environment is effectively a single-
threaded, no-side-effects, C-like land1.

These differences also mean that the memory (coherency) models are dif-
ferent in the two views. SkePU handles memory consistency at the boundary—
during entry and exit of a skeleton invocation and the user function evaluation.
Inside the user function, side effects are not allowed and therefore random
memory reads are disabled, and the coherency model is straightforward.

SkePU 3 deprecates the angle bracket []-notation for smart container ele-
ment read/write access outside user functions.2 This is part of a simplification
of the coherency mechanisms for manual element access from the host (CPU)
side. Instead, the programmer should flush the whole container instead before
doing single-element accesses of user function data, see below.

Instead of angle brackets, the parentheses ()-notation is extended to
higher dimensionality. This syntax accepts one index argument for each di-
mension of the underlying container. The indices count must equal container
dimensionality, otherwise there is a compile-time error. Formally, the access
syntax is container(i,[j, [k, [l]]]) [= value];

Hence, there is no longer a coherency-satisfying single-element access mech-
anism to SkePU smart containers except inside user function proxy objects
(Vec<T>, Mat<T>, etc). However, optional runtime checks outside user func-
tions can be (re-)activated for parenthesis accesses by setting a compiler flag,
e.g., for debugging purposes or for backwards compatibility with code written
for SkePU 2.

A common pattern in SkePU applications is that smart containers are
used for a computationally intensive part of the application, and the data is
then either handed over to a non-SkePUized section, or serialized e.g. to disk.
To accommodate this pattern, it is important that there is a way to ensure

1 The reason for this is to preserve compatibility with as many accelerator environments
as possible, such as OpenCL C or even FPGAs.

2 In SkePU 2 (and SkePU 1), the bracket operator is a protected container access, which
outside user functions checks for the accessed element’s state in the data container’s meta-
data (updated or invalid) and, if necessary, triggers a (bulk) data movement to update the
container’s copy in host memory from a currently valid device copy. All bracket accesses
thus incur runtime overhead for the check.

30 August Ernstsson et al.

consistency of the local container contents. SkePU 3 provides this through the
flush operation to complete the new consistency model.

Flushing smart container data can be performed on smart container in-
stances or collectively by a variadic free function. Either approach accepts a
flush mode enum argument providing options, e.g. if the remote data buffers
should be cleaned up or not, as seen in Listing 12.

Listing 12: Examples of using the flush operation.

1 skepu::Vector <int > v1(n), v2(n);
2 skepu::Matrix <int > m1(n, n), m2(n, n);
3
4 v1.flush (); // FlushMode :: Default
5 m1.flush (); // FlushMode :: Default
6
7 skepu::flush(v2 , m2); // FlushMode :: Default
8
9 v1.flush(skepu:: FlushMode :: Dealloc);

10 m1.flush(skepu:: FlushMode :: Dealloc);
11 skepu::flush <skepu:: FlushMode ::Dealloc >(v2 , m2);

The flush (member) functions are known symbols to the precompiler, so
the presence or absence of flush operations in SkePU source code is subject to
static analysis and optimization.

6 Cluster Backend

SkePU 3 provides two different modes of using cluster resources:

– Outer MPI mode: the application code already contains explicit MPI code
for cluster-level parallel execution, using SkePU only locally on each node
for execution of skeletons on multicore CPU and/or accelerators.

– Inner MPI mode: The application does not contain any MPI (nor other
parallelization) code. If an environment for MPI parallel execution is avail-
able (usually, multiple nodes on a cluster), then skeletons can transparently
execute in parallel across these nodes if selecting the MPI backend.

Outer and Inner MPI mode are mutually exclusive, i.e., for applications
that are pre-parallelized using explicit MPI code the MPI backends of all
skeletons are disabled.

The implementation of inner MPI parallelism is technically based on gen-
erating StarPU task code using the MPI interface of the StarPU runtime
system [3], which detaches each node’s generated send and receive operations
into special CPU ”codelets” that are exposed to StarPU as separate tasks
for dynamic scheduling [2]. Distributed variants of the smart data-containers
(Vector, Matrix etc.) with the same interface as the node-local counterparts
come with default distributions, and each cluster node runs one copy of the
SkePU executable atop a local instance of StarPU in SPMD style. Execution
over distributed container operands follows the “owner computes rule”, stating
that each node only executes those operations that calculate (write) elements
it owns (i.e., are part of its local partition of the result container).

SkePU 3 31

For using inner MPI parallelism, no syntactic changes in SkePU code are
required, thus following SkePU’s strict portability principle. The illusion of
a single SkePU process performing all the work on a single node even with
the MPI backend is maintained by implementing the Reduce skeleton by an
MPI Allreduce operation so that the reduction result is available on each of the
SPMD processes. The weak memory consistency model of SkePU 3 (cf. Sect. 5)
applies also to distributed containers: the programmer must explicitly flush

(i.e., gather) them back to the master (i.e., the rank 0 process) before the most
recent values of elements of remote partitions can be accessed by a read access
on the master, or after a write access by the master.

The only remaining issue in SPMD execution is that I/O operations need
be protected from being executed everywhere. To make sure that such code
is executed only by the SPMD master process (and distributed data to be
output is automatically flushed and gathered/scattered to/from before/after
the access, respectively), such code should be guarded by the new construct

skepu::external (

[skepu::read(rdcontlist),] [&]() {
...
} [, skepu::write(wrcontlist)]

);

where the optional arguments skepu::read() and skepu::write() list con-
tainer objects that may be read from resp. written to main memory in the
framed code block (...). This semi-automatic solution with an explicit fram-
ing construct allows to not depend on static analysis by the precompiler, which
may not be feasible in the context of separate compilation and using libraries.

7 Performance evaluation

Figure 4 shows SkePU 3 performance results for an embedded ODE solver
from the Libsolve library3 [17], solving the Brusselator 2D-MIX problem with
7 stage vectors for four different system sizes (N = 250, 500, 750, 1000 rows)
on a server with 12 cores Xeon(R) CPU E5-2630L and a K20c GPU, with
pre-selected single-node CPU and GPU backends respectively. The solver core
uses 9 different skeleton instances (of Map, Reduce and MapReduce) with an
average of 63 calls to skeleton instances per time step; it iterates over 1976
time steps in total for the largest scenario in Fig. 4, for which it performs
124,532 calls to skeleton instances in total.

Figure 5 shows performance results for the Nbody scenario of Section 3.2
using the OpenMP backend, taken on the same server. There is a slight in-
crease in execution time, although too small to account for an inlining issue
(discussed in Section 3.2). A likely explanation for the slowdown is due to the
change in memory access pattern. Depending on the environment, the more

3 Libsolve repository: https://github.com/UBT-AI2/rk

32 August Ernstsson et al.

Fig. 4: Execution times (seconds) of the SkePU 3 port of Variant A of the
Embedded Runge-Kutta ODE solver implementation in the Libsolve library
[17], solving the Brusselator 2D-MIX problem for 4 different system sizes.

Mandelbrot image generation 
1024 x 1024 px 

OpenMP chunksize = 16-1

CPU OMP Static OMP Dynamic OMP Guided OpenCL

Mandelbrot 0,111791 0,0531935 0,0298476 0,0415839 0,0028756

Reduction 0,0320322 0,0211651 0,0546672 0,0164508 0,0096268

Primecount 0,0648205 0,0291432 0,0248841 0,0246034 0,16723

Mandelbrot 1 0,475829896861107 0,266994659677434 0,371978960739237 0,0257230009571432

Lex. reduction 1 0,660744500846024 1,70663270084477 0,51357071946354 0,30053508656914

Primecount 1 0,449598506645274 0,383892441434423 0,379562021274134 2,57989370646632

Ti
m

e
[s

]

0

0,625

1,25

1,875

2,5

CPU OMP Static OMP Dynamic OMP Guided OpenCL

Mandelbrot Lex. reduction Primecount

0

0,75

1,5

2,25

3

Mandelbrot Lex. reduction Primecount

CPU OMP Static OMP Dynamic
OMP Guided OpenCL

Tabell 1

Time Memory

Nbody Map 0,522192 56000

Nbody
MapPairsReduce

0,543345 40000

Nbody Map 1 1

Nbody
MapPairsReduce

1,04050808897877 0,714285714285714

Ti
m

e
M

em
or

y

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1

Nbody Map Nbody MapPairsReduce

1

Fig. 5: Normalized execution time and memory footprint for two variants of
Nbody: the Map variant (Listing 2) and MapPairsReduce variant (Listing 3).

significant improvement in memory footprint might be enough to prefer the
MapPairsReduce variant.

Execution time results for SkePU 3 ports of PARSEC benchmarks Blacksc-
holes and Streamcluster on the same server can be found in Figures 6 and 7.
The results show that the SkePU abstraction overhead compared to the hand-
multithreaded PARSEC code is small (Blackscholes) or very small (Stream-
cluster), and that SkePU provides further targets for free (here, OpenCL for
Blackscholes). The Streamcluster benchmark also exhibits a common problem
encountered in SkePU-izing legacy C/C++ code: arrays containing a pointer-
based data structure (e.g., a directed graph), if packaged e.g. in a Vector

container, work very well with the OpenMP backend but are not portable to
execution on e.g. a GPU with a different address space, as host addresses are
not portable to device memory. For such cases, more advanced container types
(e.g., directed graphs) would be required, which is left for future work.

SkePU 3 33

Fig. 6: Execution time (ms) of the SkePU 3 port of the PARSEC benchmark
Blackscholes on its largest input set. Left: Time with serial, OpenMP, OpenCL
backends in SkePU and for manually multithreaded code in PARSEC. Right:
Time and speedup with the StarPU-MPI backend on the cluster of Figure 9.

Fig. 7: Execution times of the SkePU 3 port of the PARSEC benchmark
Streamcluster on 106 data points.

For the same machine, Figure 8 shows the positive performance effect of us-
ing dynamic scheduling in three data-parallel benchmarks with irregular work-
load, in spite of the runtime overhead of dynamic scheduling: (1) Generating a
1024×1024 Mandelbrot image using the SkePU 3 Map OpenMP backend with
different scheduling modes. Dynamic scheduling (chunksize 16) outperforms
the static default mode. (2) Lexicographic reduction finding the maximum
among 108 date/time tuples. Guided dynamic scheduling (chunksize 8) outper-
forms the static default mode. (3) Counting prime numbers using MapReduce

where dynamic scheduling performs best. Results for the sequential CPU and
OpenCL backends are provided as reference.

Figure 9 shows the scaling behavior of the SkePU 3 port of a brain simula-
tion mini-application [19] performing 200 time steps with 90000 neurons and
dense synapse connectivity using up to 32 nodes (each node having two Xeon
Gold 6130 with 16 cores each) of the Tetralith cluster at NSC Linköping. The
version that uses the MatRow container proxy benefits from more scalable
communication compared to using the default Mat container. For comparison,

34 August Ernstsson et al.

Mandelbrot image generation 
1024 x 1024 px 

OpenMP chunksize = 16-1

CPU OMP Static

Mandelbrot 0,111791 0,0531935

Reduction 0,0320322 0,0211651

Primecount 0,0648205 0,0291432

Mandelbrot 1 0,475829896861107

Lex. reduction 1 0,660744500846024

Primecount 1 0,449598506645274

Ti
m

e
[s

]

0

0,625

1,25

1,875

2,5

CPU OMP Static OMP Dynamic OMP Guided

Mandelbrot Lex. reduction Primecount

0

0,75

1,5

2,25

3

Mandelbrot Lex. reduction Primecount

CPU OMP Static OMP Dynamic
OMP Guided OpenCL

1

Fig. 8: Execution time (normalized to the sequential CPU backend time) for
three irregular-load benchmarks.

Fig. 9: Execution time (in seconds, logarithmic scale) of the SkePU 3 port of
a brain simulation mini-application [19] performing 200 time steps with 90000
neurons using up to 32 nodes (each with 32 cores) of the Tetralith cluster.
”Outer MPI” refers to a manual MPI parallelization using plain MPI, the two
”Inner-MPI” versions use SkePU’s StarPU-MPI backend instead.

Table 2: Microbenchmark results of vector initialization, seconds.

With GPU backends Without GPU backends

Sequential consistency v[i] 0.899 0.308
Weak consistency v(i) 0.313 0.310

the diagram also shows a manual MPI parallelization of the SkePU code (i.e.,
outer-MPI SkePU) where the communication structure corresponds to that of
the MatRow version. While the SkePU version of MatRow scales and performs
best for larger numbers of MPI ranks, we also see that there is an execution
time overhead of using SkePU with the StarPU-MPI based backend of up to
a factor of 2 as long as running on a single cluster node (≤32 MPI ranks).

To illustrate the motivation behind the change of consistency model for
SkePU smart containers (Sect. 5), we have measured the execution time through

SkePU 3 35

a microbenchmark. Allocating and initializing the elements of a SkePU vec-
tor using a simple for-loop results in the numbers in Table 2. If the SkePU
application is compiled without either GPU or CUDA backends there is no
appreciable overhead, but as soon as those device copies are present it is ap-
proximately 3x faster to use non-managed access operators.

8 Related work

The skeleton approach to high-level programming of parallel systems has been
introduced by Cole in 1989 [5,6]. Since then, many academic skeleton program-
ming frameworks have been presented, and the concept also increasingly found
its way into commercial/industrial-strength programming environments, such
as Intel TBB for multi-core CPU parallelism, Nvidia Thrust or Khronos SYCL
for GPU parallelism, or Google MapReduce and Apache Spark for cluster-level
parallelism over huge data sets in distributed files.

While early skeleton programming environments attempted to define and
implement their own programming language, library-based and DSL-based ap-
proaches have, by and large, been more successful, due to fewer dependencies
and lower implementation effort. Frameworks for skeleton programming be-
came practically most effective in combination with (modern) C++ as base
language. Moreover, the approach was fueled by the increasing diversity of
processing hardware with upcoming multi-core and heterogeneous parallelism
since about 2005.

Among the C++ based skeleton programming environments for heteroge-
neous systems, we find mostly library-based ones, e.g. SkePU 1 [11], SkeTo [18],
SkelCL [23], GrPPI [10] or pre-compiler based, such as SkePU 2 [15] and Mus-
ket [20]. FastFlow [7], originally designed for multicore CPU execution, added
support for GPU and distributed execution [1] later. SkelCL targeted OpenCL
for single- and multi-GPU systems with explicit data distribution. Muesli [4]
initially supported MPI cluster execution and added support for GPU execu-
tion later [12]. MPI execution of skeletons is also supported e.g. in Musket.

The Allpairs skeleton [22] in SkelCL can be considered as a variant of
MapPairs that accepts matrix operands only; any reduction needs be im-
plemented as part of the user function in Allpairs (i.e., by nesting), while
we provide the combination MapPairsReduce (i.e., chaining). MapPairs and
MapPairsReduce specifically support multiple separate 1D vector operands
in both dimensions, as requested for use with the MetalWalls application by
EXA2PRO project partner CNRS.

Multiple return values of skeletons and user functions is inspired by Python
and was also found useful in SkePU-izing MetalWalls to avoid duplicated
work resulting from using multiple skeleton calls for different result containers.
We are not aware of any other skeleton programming framework supporting
multiple return values from skeletons and user functions where parameters are
passed explicitly. Musket [20], which also uses a precompiler, requires (except
for the this object) using global container variables in user functions.

36 August Ernstsson et al.

9 Conclusions and future work

We have presented the design of the third generation of the SkePU skeleton
programming framework for heterogeneous systems and HPC clusters. The
new features are the result of a co-design effort together with HPC applica-
tion partners in the EXA2PRO project, and are geared towards improving
programmability, flexibility, better performance, or several of these aspects,
while keeping SkePU source code strictly portable and compatible with se-
quential C++11. We provide an early evaluation of the new features w.r.t.
performance; further results will be reported in the final version.

Future work will, beyond performance improvements in the implementa-
tion, conduct performance studies on the four main EXA2PRO applications
being ported to SkePU 3, and further extend the set of SkePU 3 example
programs. A survey of how SkePU 3 embeds in the EXA2PRO high-level
programming model can be found in [16]. SkePU 3 has already been made in-
teroperable with multi-variant functions (”components”) [16], which provide
a flexible escape mechanism for expressing parallelizations of computations
where no skeleton fits (well) or for using accelerator types for which no appro-
priate SkePU backend is available (yet). Moreover, the new alternative pre-
compiler being developed for SkePU 3 (which is technically based on the BSC
Mercurium compiler) will allow for static transformations of skeleton groups,
which is for now only supported to a limited degree as a runtime optimization
for special skeleton sequences [13].

The SkePU 3 source code (with the clang-based precompiler) is publically
available under a modified 4-clause BSD license at https://skepu.github.io.

Acknowledgements This work has been partly funded by EU H2020 project EXA2PRO
(801015) and by the Swedish National Graduate School in Computer Science (CUGS). We
thank all project partners in EXA2PRO for feedback that led to the design of SkePU 3. We
also thank the National Supercomputing Centre (NSC) and SNIC for access to their HPC
computing resources (SNIC 2016/5-6).

References

1. Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick, and Massimo
Torquati. Targeting distributed systems in FastFlow. In Euro-Par 2012: Parallel Pro-
cessing Workshops, LNCS 7640, pages 47–56. Springer, 2013.

2. Cédric Augonnet, Olivier Aumage, Nathalie Furmento, Raymond Namyst, and Samuel
Thibault. StarPU-MPI: Task programming over clusters of machines enhanced with
accelerators. In Jesper Larsson Träff, Siegfried Benkner, and Jack J. Dongarra, editors,
Recent Advances in the Message Passing Interface, pages 298–299. Springer, 2012.

3. Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
StarPU: a unified platform for task scheduling on heterogeneous multicore architectures.
Concurrency and Computation: Practice and Experience, 23(2):187–198, 2011.

4. Philipp Ciechanowicz, Michael Poldner, and Herbert Kuchen. The Münster skeleton
library Muesli - a comprehensive overview, 2009. ERCIS Working Paper No. 7.

5. Murray Cole. Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Parallel computing, 30(3):389–406, 2004.

SkePU 3 37

6. Murray I. Cole. Algorithmic skeletons: Structured management of parallel computation.
Pitman and MIT Press, Cambridge, Mass., 1989.

7. Marco Danelutto and Massimo Torquati. Structured parallel programming with ”core”
FastFlow. In Central European Functional Programming School, volume 8606 of LNCS,
pages 29–75. Springer, 2015.

8. Usman Dastgeer, Johan Enmyren, and Christoph W Kessler. Auto-tuning SkePU: A
multi-backend skeleton programming framework for multi-GPU systems. In Proc. 4th
International Workshop on Multicore Software Engineering, pages 25–32. ACM, 2011.

9. Usman Dastgeer and Christoph Kessler. Smart containers and skeleton programming
for GPU-based systems. Intern. Journal of Parallel Programming, 44(3):506–530, 2016.

10. David del Rio Astorga, Manuel F. Dolz, Javier Fernández, and J. Daniel Garćıa. A
generic parallel pattern interface for stream and data processing. Concurrency and
Computation: Practice and Experience, 29(24):e4175, 2017.

11. Johan Enmyren and Christoph W Kessler. SkePU: A multi-backend skeleton program-
ming library for multi-GPU systems. In Proceedings of the fourth international work-
shop on High-level parallel programming and applications, pages 5–14. ACM, 2010.

12. Steffen Ernsting and Herbert Kuchen. Algorithmic skeletons for multi-core, multi-GPU
systems and clusters. Int. J. of High Perf. Computing and Networking, 7:129–138, 2012.

13. August Ernstsson and Christoph Kessler. Extending smart containers for data locality-
aware skeleton programming. Concurrency and Computation: Practice and Experience,
31(5):e5003, 2019. e5003 cpe.5003.

14. August Ernstsson and Christoph Kessler. Multi-variant user functions for platform-
aware skeleton programming. In Proc. of ParCo-2019 conference, Prague, Sep. 2019,
in: I. Foster et al. (Eds.), Parallel Computing: Technology Trends, series: Advances in
Parallel Computing, vol. 36, IOS press, pages 475–484, March 2020.

15. August Ernstsson, Lu Li, and Christoph Kessler. SkePU 2: Flexible and type-safe
skeleton programming for heterogeneous parallel systems. International Journal of
Parallel Programming, pages 1–19, 2017.

16. Christoph Kessler, August Ernstsson, Suejb Memeti, and Johan Ahlqvist. Embracing
heterogeneity for exascale computing: The EXA2PRO high-level programming model.
Proc. Work-in-progress session at PDP’20 conference, Väster̊as, Sweden, Report SEA-
SR-55-4, Johannes-Kepler Univ. Linz, Austria, March 2020. ISBN 978-3-902457-55-4.

17. Matthias Korch and Thomas Rauber. Optimizing locality and scalability of embedded
Runge-Kutta solvers using block-based pipelining. J. Parallel Distributed Comput.,
66(3):444–468, 2006.

18. Kiminori Matsuzaki and Kento Emoto. Implementing fusion-equipped parallel skele-
tons by expression templates. In Marco T. Morazán and Sven-Bodo Scholz, editors,
Implementation and Application of Functional Languages, pages 72–89. Springer, 2010.

19. Sotirios Panagiotou, August Ernstsson, Johan Ahlqvist, Lazaros Papadopoulos,
Christoph Kessler, and Dimitrios Soudris. Portable exploitation of parallel and het-
erogeneous HPC architectures in neural simulation using SkePU. In Proc. SCOPES’20.
ACM, May 2020.

20. Christoph Rieger, Fabian Wrede, and Herbert Kuchen. Musket: a domain-specific lan-
guage for high-level parallel programming with algorithmic skeletons. In Proc. Sympo-
sium on Applied Computing (SAC’19), pages 1534–1543. ACM, 2019.

21. Oskar Sjöström, Soon-Heum Ko, Usman Dastgeer, Lu Li, and Christoph Kessler.
Portable parallelization of the EDGE CFD application for GPU-based systems using
the SkePU skeleton programming library. In Gerhard R. Joubert, Hugh Leather, Mark
Parsons, Frans Peters, and Mark Sawyer, editors, Advances in Parallel Computing, Vol-
ume 27: Parallel Computing: On the Road to Exascale. Proc. of ParCo-2015 conference,
Edinburgh, UK, Sep. 2015., pages 135–144. IOS Press, April 2016.

22. Michel Steuwer, Malte Friese, Sebastian Albers, and Sergei Gorlatch. Introducing and
implementing the AllPairs skeleton for programming multi-GPU systems. International
Journal of Parallel Programming, 42(4):601–618, 2013.

23. Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. SkelCL–a portable skeleton li-
brary for high-level GPU programming. In 16th International Workshop on High-Level
Parallel Programming Models and Supportive Environments (HIPS’11), 2011.

13th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2020)
Porto, Portugal
July 9-10, 2020

Integrating Node-Level Parallelism Abstractions into
the PGAS Model

Pascal Jungblut · Karl Fürlinger

Abstract The Partitioned Global Address Space (PGAS) programming model
brings intuitive shared memory semantics to distributed memory systems. Even
with an abstract and unifying virtual global address space it is, however, chal-
lenging to use the full potential of different systems. Without explicit support
by the implementation node-local operations have to be optimized manually for
each architecture. A goal of this work is to offer a user-friendly programming
model that provides portable performance across systems. In this paper we
present an approach to integrate node-level programming abstractions with
the PGAS programming model. We describe the hierarchical data distribution
with local patterns and our implementation, MEPHISTO, in C++ using two
existing projects. The evaluation of MEPHISTO on HPC systems shows that
our approach achieves competitive scalability on the evaluated systems while
requiring only minimal changes to port it from a CPU-based system to a
GPU-based one using a CUDA back-end.

Keywords PGAS · Parallel Computing · Programming Models

1 Introduction

Porting performance critical software to new architectures is a challenging task.
Programming abstractions like OpenMP provide means to decouple algorithms
from implementation details to ease the transition. Yet, the many combinations
of system configurations, back-ends and implementations force programmers
to modify their code for acceptable performance. In this paper we present the
integration of abstractions for node-level parallelism into the Partitioned Global

MNM-Team
Ludwig-Maximilians-Universität (LMU) München
Computer Science Department
Oettingenstr. 67, 80538 Munich, Germany
E-mail: pascal.jungblut@nm.ifi.lmu.de
E-mail: karl.fuerlinger@nm.ifi.lmu.de

Integrating Node-Level Parallelism Abstractions into the PGAS Model 39

Address Space (PGAS) programming model. We describe the challenges of
locality, load distribution, data movement and configuration and our methods
to overcome them. We evaluate the approach on a range of platforms and
configurations.

First we briefly describe PGAS and the need for abstractions of node-level
parallelism in a distributed system. Then we go over the challenges of such an
integration and present our approach. We implemented our approach using
the DASH PGAS library and Alpaka for node-level parallelism. Afterwards we
present details of an implementation and evaluation results.

1.1 Partitioned Global Address Space

In PGAS each process dedicates a part of its memory to a virtual, global
address space. In this global space, all processes may access memory locations
on remote locations. Each object in the global space is owned by one process
or more general a rank on which it is stored. An object is globally addressable
unit. Although all global memory is accessible from all nodes, it is desirable to
operate only on the local data. This is called the owner-computes execution
pattern and stems from higher latency and possibly lower bandwidth for remote
accesses compared to local ones. Note that remote accesses may also refer to
other NUMA-domains on the same node.

There exist several PGAS implementations, both as dedicated programming
languages like Unified Parallel C (UPC), Coarray Fortran and Chapel or as a
library for existing languages like Global Arrays or Hierarchically Tiled Arrays
(HTA). Although PGAS does not dictate how remote objects are accessed,
many libraries use one-sided message passing. One-sided implies that only one
of the communicating partners is active, i.e. it initiates the transfer, passes all
necessary parameters and monitors the progress. These one-sided operations
are often implemented using Remote Direct Memory Access (RDMA) so the
target of an operation can be truly passive. Hence the semantics are often
similar to shared memory programming where threads may read and write
arbitrary shared memory at any time.

Figure 1 shows a distribution of an array across nodes. It also includes
node-local private memory that cannot be read from other processes. Here,
node 2 holds a private integer.

Libraries as well as programming languages provide data structures and
algorithms that are designed to perform well within a PGAS context. This often
includes the maximization of local accesses and resorting to topology-aware
strategies.

1.2 Abstractions for Node-level parallelism

PGAS processes can be mapped to nodes, NUMA-domains, cores, or SMT
threads. It can be beneficial to assign processes to NUMA-domains and use

40 Pascal Jungblut, Karl Fürlinger

Interconnect

Global
Node-private

Node 1 Node 2 Node 3 Node 4 Node 5

arr[0] arr[1] arr[2] arr[3] arr[4]

int priv

Fig. 1: An array of 5 elements distributed across 5 nodes using the PGAS
model.

shared memory parallelism inside these to avoid costly cross-NUMA accesses.
If we take this idea one step further the algorithms may use the hierarchical
structure of the hardware to maximize locality. This is, however, not natively
supported by all implementations. For example UPC only supports the concept
of processes (called “threads”) whereas HTA supports data placement that
reflects the system’s hierarchical hardware structure.

Programming for accelerators like GPUs and more specialized devices
like TPUs or FPGAs often requires either low-level and/or vendor-specific
languages and libraries like CUDA or OpenCL. These give programmers a
high level of control, are often tailored to the requirements of the hardware
and thus offer a lot room for optimization. However, the portability is limited:
even for languages that are not vendor specific, executing the same code on
other hardware necessitates a compatible implementation. Higher-level models
like SYCL and Alpaka build on top of these but hide the specific back-end.
This potentially allows users to migrate code more easily from one to another
platform. Even on the same hardware this can be useful, because it allows a
fast evaluation of all supported back-ends. As a side-effect these abstractions
use a single-source model. This means that the whole program, including the
kernels, are written in one programming language, e.g. C++.

We introduce the combination of abstractions for node-level parallelism
and the PGAS programming model. This approach offers flexibility for porting
codes to new distributed memory architectures. Our main contributions are:

1. A unified, hierarchical system for data placement across nodes and compute
units

2. A flexible distribution of the workload
3. An interface to integrate shared memory parallelism with the PGAS model

To have fine grained control over threads and accelerators, programmers
often have to resort to manually extending the PGAS environment, similar to
an MPI+X approach that is employed in message passing solutions. We want
to provide a usable, flexible and abstract integration of the aforementioned
abstractions. For that we allow the implementations to dynamically transfer
the ownership of data to an accelerator or other processing elements. The
details of this idea are described in Section 2.3 and 2.4.

Integrating Node-Level Parallelism Abstractions into the PGAS Model 41

We first detail our approach. In Section 3 we describe the C++ implementa-
tion using two existing libraries along with an evaluation in Section 4. Related
approaches are discussed in Section 5 and finally we conclude this paper and
offer an outlook for future work.

2 Approach

To integrate node-level parallelism kernel acceleration into the PGAS program-
ming model, we extended the latter to allow the distribution of local work
to accelerators. Supported algorithms can hand over the control along with a
task to executors that will gain ownership of (some part of) the data. During
this phase it is prohibited for any other entity than the executor to access
the data, so data that is needed outside of an executor must be copied before.
Accelerators then work asynchronously on the tasks. If an accelerator and
the host do not share the same memory space, data must be moved to the
accelerator’s memory before the execution starts. Conversely the results from
the execution must eventually be copied back to the host. However, skipping
redundant copies from accelerator to host or vice-versa is an optimization
available in case a coherent shared memory space is available.

2.1 Definitions

Within one node there can be several types of processing elements (PE). We
define that two PEs have the same type if they have the same computational
capabilities and memory space, e.g. two cores on the same CPU have the same
type while a CPU-core and a GPU-thread have different ones. Performance
differences from manufacturing or changes in frequency are not considered
in this paper. These could nonetheless be included if the focus was more on
load balancing. Processing elements or groups of the same type of processing
elements on a node l are called entities El. Entities can be freely defined as
long as the constraints above are honored. For example it might be useful to
define the PEs of CPU socket, a NUMA-domain or simply a group of cores as
one entity. Each PE of an entity E is called an instance ei.

2.2 Requirements

Both the PGAS implementation as well as the node-level abstraction need to
fulfill some requirements for our approach to work. This is the case for most
of the widely used software. We go over some of it in Section 5. The PGAS
implementation needs to support two features:

– Persistent and predictable data layout: the runtime is not allowed to
move allocated memory from one process to another. The software may
support policies for the global data layout or let the user specify it manually.

42 Pascal Jungblut, Karl Fürlinger

– Explicit synchronization: the interoperability of the local and global
part requires support for synchronization between processes.

On the node-level the requirements are:

– Non-blocking memory management and kernel invocation: our
approach assumes that kernel invocation and memory movement may both
be non-blocking. To our knowledge this is supported natively by all widely
used implementations.

– Separate memory space or coherence with PGAS: the node-level
abstraction must either support memory spaces per device or we expect the
memory to be coherent with the global memory view, e.g. CUDA-aware
MPI.

The requirements for the PGAS implementation are motivated by the
support of unaware local implementations: if the data was moved during the
execution of the local framework, this would lead to race conditions. On the
node we must assume a symmetric situation where the two systems (local
and global) are unaware of each other. Thus, it is required to either have
explicit support for separate memory spaces or to provide a coherent view of
the node-local memory to the PGAS library.

2.3 Data placement

A crucial part of the interaction between the node-level back-end and the PGAS
environment is the strategy for data placement. How inter-node and intra-
node distribution of data is configured has a large influence on the achievable
performance and compatibility. The owner-computes model already motivates
the usage of favorable layouts for many hardware topologies. The strategy to
avoid costly remote accesses implies that data locality is a priority.

PGAS implementations let the user specify data placement configurations
to varying degrees. Some like UPC derive the data distribution from the number
of elements and the number of nodes. Others allow more fine grained control up
to Hierarchically Tiled Arrays where each hierarchy level represents a hardware
level. DASH implements the pattern concept which lets the user map each
element of a container to an arbitrary location in global memory. We extend
this pattern concept to work with entities instead of processes (i.e. MPI ranks).
As a basis we use the pattern concept as described in previous work [7]. The
mapping of data onto global memory location is a three-step process: first,
each element in a container is assigned to a location in the global index space.
Second the index space is divided into blocks which are finally distributed across
units. This approach is suited best for a one-to-one mapping from processes to
accelerators, but is not flexible enough for more complicated setups. Current
HPC-systems may have two or three accelerators per CPU-socket.

We extended the (global) patterns that describe the mapping from the
global domain space to global indices by local patterns. A local pattern Pl

Integrating Node-Level Parallelism Abstractions into the PGAS Model 43

nn− 1 n + 1
OMPEntity

CUDAEntity

execute
execute and prefetch

Fig. 2: 2-dimensional local blocks of memory on node n are executed on different
entities. The local pattern describes the exact assignment (indicated by color)
to entities. Depending on the memory spaces the blocks will be prefetched or
copied to the entities memory. Here, two instances of CUDAEntity exist which
represent two distinct GPUs.

maps node-local blocks Bn as defined by the global pattern P onto entities:
Pl : Bn 7→ E. Note that the local patterns only consider node-local blocks so
this mapping is independent from the global memory layout. Additionally, the
mapping of a block does not imply any data movement. Only when the data
is requested to be owned by an algorithm, data may be moved to an entity’s
memory space.

The motivation for this hierarchical approach is two-fold. First each unit
n may define a different pattern for its blocks Bn. This could be due to a
heterogeneous architecture or for algorithmic optimizations. Second, for the
same blocks multiple local patterns may be defined, because no data movement
takes place. This is especially useful to balance the load individually per
algorithm. For example, if there are bl = |Bn| local blocks, one local pattern
may assign wCP U · bl blocks to the CPU and wGP U · bl blocks to the system’s
GPUs and change wCP U and wGP U between invocations. A pattern may define
an arbitrary amount of blocks bl for a container.

Local blocks that are assigned to an entity with a separate memory space
must be copied before usage; either explicitly by issuing an appropriate call or
implicitly by allocating memory in a compatible memory space. For example
all recent CUDA-enabled devices support unified memory to transparently
migrate pages from the host memory space to the CUDA-device’s space. If
this is not available or wanted, for example due to limitations of the PGAS
implementation, it is possible to track local blocks that were already copied to an
entity’s memory space. The runtime may then eliminate redundant migrations.
Unified memory may have a negative performance impact, since some runtime
has to keep track of page faults and migrate memory pages on demand. To
counter this, we can use prefetching when an entity requests ownership of a
block, e.g. using cudaMemPrefetchAsync. However, the evaluation shows that
excessive prefetching may have a negative impact on the scalability due to
congestion on the memory bus.

Figure 2 shows a local pattern of a 2-dimensional array on node n. It
contains 4× 4 contiguous blocks of memory. The top-left ones are mapped to

44 Pascal Jungblut, Karl Fürlinger

the OMPEntity while the bottom and right blocks are mapped to two separate
instances of the CUDAEntity (i.e. two CUDA-enabled GPUs). Exemplary the
seven blocks assigned to CUDAEntity will be prefetched before the kernel
execution is started.

For the evaluation we implemented a flexible local pattern. Here bi denotes
the i-th local block of a node-local process with index p and t the total number
of instances of the mapped entity E. The local pattern maps bi to ek ∈ E.

– An identity-pattern with k = i. This is only valid if |bl| = t.
– A round-robin-pattern with k = i−tb i

tc. Trivially, if |bl| = t this is equivalent
to the identity pattern.

– An x-per-process-pattern with k = i− xb i
xc+ px.

The x-per-process-pattern is useful for cases where the number of node-local
processes is less than the available entities. It distributes x consecutive local
blocks to each entity. The evaluation in Section 4 contains an example with
the DGX-1 system where the total runtime is optimal for four processes per
node with eight GPUs.

2.4 Computation

The definition of a local pattern does not imply any data movement. Transfers
only happen when an algorithm schedules work on local blocks. The execution
of an algorithm is split into three phases:

1. Initialization: Allocate memory, copy missing blocks to the desired mem-
ory space and initialize local variables.

2. Computation: Pass ownership to assigned entities and execute kernels
using the executors.

3. Finalization: Copy the result buffers to the host memory space and release
ownership of the local blocks.

During the computation phase, accesses to non-owned blocks are only
allowed if the owning entity does not use the same memory space, i.e. there
exists a separate copy on the device memory of the mapped entity. For all
other accesses the memory must be copied beforehand. Algorithm 1 shows how
the execution is scheduled in more detail. This strategy is also employed in
pure PGAS applications, e.g. by copying the ghost cells in a stencil application
in chunks to avoid the latencies for element-wise remote accesses.

The loops over the entities and the blocks mapped to them may be executed
concurrently to avoid unnecessary blocking.

3 Implementation

To test our approach we implemented it using two already existing libraries. The
PGAS library used here is DASH. For the compute-intensive kernel operations,

Integrating Node-Level Parallelism Abstractions into the PGAS Model 45

Algorithm 1 Execution of local blocks on their assigned entities
Initialize
entities← El

for all entity ← entities do
be ← BlocksF orEntity(entity)
for all ben ← be do

Block until entity gets ownership over ben

if entity shares memory space with ben then
Prefetch ben to entity

else if Block ben currently not in entity’s memory then
Copy ben to entity

else
Do nothing

end if
Execute kernel on entity with ben

Release ownership of ben

end for
end for

we chose Alpaka. Both are pure C++ libraries that require a C++14 compatible
compiler. We will briefly describe both frameworks in the following section and
how we integrated them as MEPHISTO1.

3.1 DASH

DASH is a C++14 PGAS library that implements distributed data structures
and optimized algorithms similar to the Standard Template Library (STL).
It is build on top the DASH run time (DART) which supports a range of
distributed memory abstractions like one-sided MPI, OpenSHMEM or GASPI.
The containers like dash::array and dash::map are compatible with their STL
counterparts, so they can be used with STL algorithms. However, the STL is
not optimized for the PGAS environment: DASH algorithms minimize remote
access and may employ low-level implementations for better performance.
For example dash::transform_reduce will use the reduce implementation of the
underlying technology, e.g. MPI_Reduce. Listing 1 shows a simple program using a
DASH array and two algorithms to generate a sorted array of random numbers.

1 dash :: Pattern <2> blocked (8, 12, dash :: BLOCKED , dash :: NONE)
2 auto array = dash :: array <double >(blocked);
3 dash :: generate (array . begin () , array .end () , random_gen);
4 dash :: sort(array . begin () , array .end () , array . begin ());

Listing 1: A DASH array with 8 × 12 elements is created where the first
dimension is specified as blocked. The distributed array is filled with random
numbers and sorted using PGAS-aware algorithms.

The data placement is specified with the DASH patterns which map the
global index space to processes. Listing 1 shows how a distributed array is

1 https://github.com/pascalj/mephisto

46 Pascal Jungblut, Karl Fürlinger

allocated with the data layout defined by the 2-dimensional dash::Pattern.
It is then filled with random numbers using dash::generate algorithm and
finally sorted by dash::sort.

3.2 Alpaka

The Abstraction Library for Parallel Kernel Acceleration (Alpaka) [15] is a
C++14 header only meta-programming library for node-level parallelism. It
supports several back ends like C++ std::thread, OpenMP, Boost Fiber or
CUDA. Alpaka relies heavily on compile-time configuration with types: it offers
a consistent interface across all back-ends. It is possible to switch the back-end,
e.g. from std::thread to CUDA RT, by changing one C++ type.

The programming model is similar to the one CUDA offers, i.e. the work is
split up into multiple threads per block and blocks per grid. There are some
conceptual extensions to support different platforms: a kernel executed on a
CPU thread typically yields the best performance when it operates on many
contiguous memory locations, negating the overhead of thread management.
In contrast the programming model for GPUs encourages a mapping of one
element per thread. Alpaka offers an additional execution layer that allows
looping over elements. For a GPU-based back-end the loop-size would typically
be one and, since it can be set at compile time, the loop is optimized out or
expresses vectorization. Listing 2 shows a simple kernel invoked by Alpaka. To
switch to an execution on a CUDA-based GPU only AccCpuSerial has to be
changed to AccGpuCudaRt and the work division, i.e. the number of elements
per thread and threads per block, should be adapted. Alpaka’s blocks do not
correspond to local blocks as described in Section 2.1 but to the concept known
from CUDA.

1 using Dim = alpaka :: dim :: DimInt <3 >;
2 using Acc = alpaka :: acc :: AccCpuSerial <Dim , size_t >;
3 // ...
4 // MyKernel is a C++ functor
5 MyKernel kernel ;
6 alpaka :: kernel :: exec <Acc >(queue , workDiv , kernel);

Listing 2: Invocation of an Alpaka kernel. Type of accelerator is set at compile
time using only types. Here workDiv configures the decomposition into grids,
blocks and thread-elements.

Alpaka provides queues that are conceptually similar to CUDA streams.
A queue belongs to one accelerator, i.e. one particular device, and schedules
kernels to execute. Both blocking and non-blocking queues are provided. In this
integration we exclusively use the non-blocking queues so the synchronization
can be managed by MEPHISTO.

Integrating Node-Level Parallelism Abstractions into the PGAS Model 47

3.3 Integration

This work aims to integrate PGAS with node-level abstractions for portable
performance between system configurations. As a prototype we integrated
Alpaka and DASH into MEPHISTO. In this section we describe the technical
details of the approach outlined in Section 2.

To implement the local patterns we extended the existing patterns in DASH.
A local pattern inherits from a global pattern and extends it with one essential
method:

1 template < typename Entity >
2 std :: vector < block_spec > LocalPattern :: blocks_for_entity (
3 const Entity &e);

Listing 3: Method to retrieve the local blocks for an entity.

This method can be implemented for each entity, for example CudaRTEntity
or NumaEntity. Assigning a new local pattern is a non-collective operation so no
synchronization is required. With blocks_for_entity the DASH algorithms can
retrieve the mapping of local blocks to entities and gain ownership.

We used the concept of C++’s execution policies and executors to allow
users to specify on which entities an algorithm should execute. Execution
policies can be used to relax the guarantees given by the STL, e.g. to have
std::for_each(std::execution::par_unseq, begin, end, f) apply f in parallel and
possibly vectorized over [begin, end). The policies can be extended by executors
to specify where an algorithm is executed. At the time of writing none of the
executor proposals have been standardized. We extended one of them2 to
integrate an AlpakaExecutor that can be attached to an execution policy. An
AlpakaExecutor can be created for each entity. It holds state, e.g. a thread pool,
and may exist across algorithm invocations.

Inside the algorithm’s implementation the three phases are executed as
described in Section 2. We obtain the blocks with blocks_for_entity for each
entity and start the kernels using Alpaka. In our implementation the execution
devices from Alpaka are directly mapped to entities.

1 auto local_blocks = pattern . blocks_for_entity (entity);
2 auto nlocal_blocks = local_blocks .size ();
3 std :: vector <result_t > lres{ nlocal_blocks };
4 for(int i = 0; i < nlocal_blocks ; i++) {
5 executor . request_ownership (entity , local_block [i]);
6 executor . execute_kernel (reduction_kernel (user_func), entity ,
7 local_block [i], &lres[i]); // releases ownership
8 }
9 executor . synchronize ();
10 result_t lresult = std :: reduce (lres. begin (), lres.end (),
11 result_t {}, user_func);
12 return reduce_global (lresult , user_func);

Listing 4: Simplified excerpt from the MEPHISTO-enabled dash::reduce
algorithm.

2 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0443r12.html

48 Pascal Jungblut, Karl Fürlinger

Listing 4 shows a simple invocation of Alpaka inside of DASH. For our
prototype we extended DASH’s transform, reduce and transform_reduce which
have equivalent semantics as the STL variants. The prototype also provides
three predefined Alpaka-enabled executors for CPU (serial, OpenMP) and
CUDA. The code resembles the three phases outlined in Section 2.4: all blocks
for the current entity (entity) are loaded and the ownership is requested. In
this case this is a blocking call, but the request for ownership may be wrapped
into a std::future to asynchronously wait and start executing the kernel after
that. The call to execute_kernel hands over the control to Alpaka. It calculates a
reasonable work division, i.e. the dimensions of elements per thread, threads per
block and the number of blocks, based on the input size and the characteristics
of the entity. The algorithm synchronizes after all local blocks have been reduced
by the entities. This is a node-local barrier. The results of all entities are then
reduced again and finally a global result is calculated using the existing global
dash::reduce.

3.4 Usage

Listings 2 and 4 show internals of the integration that are transparent to a user
of the library. The interface of the containers and algorithms is very similar to
DASH programs like the example in Listing 1. The changes required to offload
the invocation of a DASH-algorithm to an entity are small:

– Specify a local pattern for the container.
– Extend the call to the algorithm with an execution policy.

To extend the example from Listing 1 we add a round-robin local pattern
and pass the policy with the executor attached to the algorithms.

1 using Entity = mephisto :: entity :: CUDA;
2 dash :: Pattern <2> blocked (8, 12, dash :: BLOCKED , dash :: NONE)
3 mephisto :: local_pattern :: round_robin <Entity > pattern (blocked);
4 mephisto :: execution :: par_unseq <Entity > par_unseq ();
5 auto array = dash :: array <double >(pattern);
6 dash :: generate (par_unseq , array . begin () , array .end () , random_gen);
7 dash :: sort(par_unseq , array . begin () , array .end () , array . begin ());

Listing 5: MEPHISTO-enabled version of Listing 1.

Listing 5 shows the same example with MEPHISTO enabled. Line 1 specifies
the entity that should be used within the executor. Only this line would need
to be changed to offload to other entities. Lines 3 and 4 create the local pattern
and initialize an execution policy. The execution policy is passed to both
algorithms as a first parameter, similar to the standard C++ execution policies.

4 Evaluation

To evaluate our approach and its portability, we implemented a global transform-
reduce operation that supports offloading with Alpaka. The data structures are

Integrating Node-Level Parallelism Abstractions into the PGAS Model 49

allocated and managed by DASH. Where applicable they are allocated using
unified memory allocators so that GPUs can access data without having to
copy it first.

We evaluated the prototype using several systems:
SuperMUC-NG at LRZ is based on a Intel Xeon 8174 (Skylake-SP) with 48
cores at 2.7 GHz. The benchmarks were compiled with Intel ICC 19.0.5.281
and executed with Intel MPI 2019. Each node has 96GB of memory.
HAWK of the HLRS consists of 5,632 nodes with two AMD EPYC 7742 CPUs
at 2.25 GHz with 64 cores each. We tested several compilers and OpenMP-
implementations and found ICC 19.1.0.166 and AOCC (Clang) 2.1.0 with the
best consistent results. The reported results were compiled with ICC.
DGX-1 P100 from NVIDIA contains eight Tesla P100 GPUs with 16 GB
HBM2 cross-connected with NVLink. The host CPUs are two 20-core Intel
Xeon E5-2698. DGX-1 V100 is very similar to DGX-1 P100: it contains Tesla
V100 with 16 GB HBM2 instead. The code was compiled with ICC 19.0 for
the host code and the CUDA back-end with version 10.2 on both systems.

4.1 Reduction

As a micro-benchmark we implemented a reduction using dash::transform_reduce
and observed the scaling behavior as well as the portability across architectures.
The operation takes a unary function unary(elem) for the transform and a
binary operation binary(accum, elem) for the reduction. One can lower the
number of slow memory accesses by computing binary(acc, unary(elem))
for each element in a block and use a tree reduction for the block, grid, entity
level and finally the global level for the global result. For a given array arr of
size a in this scenario the transform_reduce computes

∑a−1
i=0

arri

arri
2+1 .

Figure 3 shows the total run time of a reduction for 10 GB total (strong
scaling) and 20 GB per process (weak scaling) on up to 256 nodes in HAWK and
SuperMUC-NG. In both strong scaling studies the overhead of MEPHISTO’s
back-end (OpenMP in this case) becomes visible as we add more threads per
process. Due to Alpaka’s optimized reduction kernel and its zero-overhead
abstractions the total run time is slightly lower than a pure MPI implementation
up until 32 threads per process.

Because PGAS is often used to program distributed systems as well, we
evaluated the same implementation with 20 GB per process. For HAWK (fig. 3b)
we chose the fastest combination of 4 processes each with 32 threads per process.
The graph also shows the purely local portion of the computation, up until
the global reduction. As expected it stays nearly constant regardless of the
number of total nodes. The same effect can be seen on SuperMUC in figure 3d.
Here we used 32 threads and one process per node so all node-level parallelism
was managed by Alpaka. For the final global reduction MEPHISTO uses an
MPI_Allreduce so the growing overhead can be traced back to that call.

One central motivation of MEPHISTO is the optimal support for different
architectures and thus portability. To demonstrate the feasibility and portabil-

50 Pascal Jungblut, Karl Fürlinger

●

●

●

●

● ●

● ●

0.25

1.00

4.00

2 8 32 128
threads

tim
e

(s
)

● MEPHISTO (1 proc)

MEPHISTO (2 proc)

MEPHISTO (4 proc)

MPI

(a) HAWK: strong scaling with 10 GB.

●
●

● ● ●
● ● ● ●

0.0

0.1

0.2

1 2 4 8 16 32 64 128 256
nodes

tim
e

(s
)

● local

total

(b) HAWK: weak scaling with 4 processes
and 20 GB per process.

●

●

●

●

●

●

1

4

16

2 8 32
threads

tim
e

(s
)

● MEPHISTO (1 proc)

MEPHISTO (2 proc)

MEPHISTO (4 proc)

MPI

(c) SuperMUC-NG: strong scaling with
10 GB.

●

●

●

● ●

●

●
●

●

0.79

0.80

0.81

0.82

0.83

0.84

1 2 4 8 16 32 64 128 256
nodes

tim
e

(s
)

● local

total

(d) SuperMUC-NG: weak scaling with 4 pro-
cesses and 20 GB per process.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.01

0.10

0.50

1.00

2.00

111 222 444 888 161616 323232 646464 12
8

12
8

12
8

25
6

25
6

25
6

51
2

51
2

51
2

10
24

10
24

10
24

20
48

20
48

20
48

40
96

40
96

40
96

81
92

81
92

81
92

problem size (MB)

tim
e

(s
)

● MEPHISTO (no prefetch)

MEPHISTO (prefetch)

Thrust

(e) One Nvidia P100

●

●

●

●

● ●

0.4

0.6

0.8

1.0

1.2

1111 2222 3333 4444 5555 6666
GPUs

tim
e

(s
)

● P100 (noprefetch)

P100 (prefetch)

V100 (noprefetch)

V100 (prefetch)

(f) DGX-1 V100 vs P100

Fig. 3: Evaluation of MEPHISTO’s transform-reduce implementation. The top
figures show shows strong scaling on a shared memory node of HAWK (a) and
weak scaling with 20GB per process on the same system (b). The figures below
show the same benchmarks on SuperMUC-NG. Figure e shows a comparison
between Thrust and MEPHISTO with and without prefetch enabled whereas
Figure f shows the scaling on a different number of GPUs.

Integrating Node-Level Parallelism Abstractions into the PGAS Model 51

ity of the approach we also evaluated the transform-reduce implementation on
Nvidia’s DGX-1 nodes with P100 and V100. Figure 3e shows the execution
time for a transform-reduce over the problem size on one P100. We compare
MEPHISTO (with and without prefetching) to Thrust [1]. This library comes
bundled with CUDA and implements STL-like algorithms optimized for the ex-
ecution on CUDA-enabled GPUs. We used thrust::transform_reduce to perform
the same operation as with MEPHISTO.

Block-wise prefetching has a positive effect on the performance across all
problem sizes. However, especially for small problem sizes Thrust’s implemen-
tation is the fastest alternative. Note that Thrust’s containers manage memory
on their own and do not rely on unified memory. Therefore we include data
movement between host and device but no allocation in the run time which
reduces Thrust’s run time compared to MEPHISTO. Scaling up from one GPU
per node to up to six as depicted in Figure 3f reveals two characteristics. First,
prefetching does not offer a speed-up in all scenarios. Especially when the
number of concurrently used GPUs is large, prefetching has a clear negative
effect on the performance. Second, the parallel efficiency is not ideal with
this problem size of 10GB. Further investigation indicates that the PCI-e link
between the host memory and the GPUs becomes congested. The effect is
amplified when all GPUs start prefetching whole blocks during the execution.

During the evaluation it became clear that the architecture of DGX-1 limits
the throughput for a single process. Figure 4a shows the topology of the DGX-1:
each CPU is connected to four P100/V100 via two PCI-e switches. The CPUs
in turn are connected with Intel’s QuickPath Interconnect (QPI) and the GPUs
with NVLink. With one process pinned to CPU0, all blocks assigned to GPU 4,
5, 6 and 7 must be sent over QPI to the second socket and PCI-e to the GPUs.
With the x-per-process-pattern the benchmark can be started with one, two,
four or eight processes and with eight, four, two or one GPU per process. The
evaluation in Figure 4b shows the benefit of each configuration, especially when
working with prefetching. With one process assigned to each GPU the PCI-e
lanes become congested. Even with two processes (one per CPU) there is still
a higher runtime than with a 4× 2 configuration. This matches the topology
directly and shows the need for flexible process-to-accelerator assignments.

4.2 MiniMD

As a more complex case we ported MiniMD [5] to DASH and then used
MEPHISTO to add shared memory parallelism. This step required only some
minimal changes in the code:
– Choose one of the pre-configured entities (e.g. using OpenMP) to be used.
– Specify which calls to DASH’s algorithms should be performed in parallel

using executors.
– Optional: change the data layout using DASH’s patterns.

MiniMD is a molecular dynamic proxy application that mimics the workload
of LAMMPS [14]. The 3d-space is decomposed into a configurable number of

52 Pascal Jungblut, Karl Fürlinger

CP U0

NVLink
PCI-e

GPU

PCI-e switch

CP U1

QPI

(a) Simplified DGX-1 architecture [10]

0.0

0.2

0.4

0.6

1x8 2x4 4x2 8x1
processes x # GPUs

tim
e

(s
)

P100 (noprefetch)

P100 (prefetch)

(b) Runtime of MEPHISTO’s transform-reduce combinations of
the number of processes and GPUs per process.

Fig. 4: DGX-1 architecture and the resulting performance differences. The
x-per-process local pattern allows flexible mapping of GPU.

cells. Each cell holds a dynamic number of atoms. To update the position and
velocity of each atom, the force of the surrounding atoms is calculated. MiniMD
configures a cut-off distance rcutoff and only calculates forces of neighbors inside
this radius. Because the space domain is already split into cells, only the cells
within rcutoff have to be considered, reducing the complexity from O(n2) to
O(n) for n atoms. For our evaluation we used the default configuration of the
reference implementation that requires each cell to consider at maximum 27
neighbor cells. After a fixed amount of iterations, the atoms need to be re-
assigned to cells due to changed positions. The atoms are stored in a dash::NArray
with four dimensions: three dimensions representing cells and one for atoms
in each cell. An NArray is static in size so we re-allocate when a cell overflows
during the binning process. At process borders the bins are mirrored after each
binning phase and the positions and velocities of atoms are updated during
each iteration.

Integrating Node-Level Parallelism Abstractions into the PGAS Model 53

0.5

1.0

2.0

4.0

8.0

2 8 32
threads

tim
e

(s
)

Kokkos

MEPHISTO

Reference

Fig. 5: Comparison of the shared memory runtime of the reference, Kokkos
and MEPHISTO implementations on SuperMUC-NG.

For the updates on atoms we are using global pointers that asynchronously
fetch updated positions on each iteration. The computation of the neighbor
forces is done using dash::transform with a par_unseq execution policy
attached with an AlpakaExecutor.

Figure 5 shows the comparison of the reference implementation and the
Kokkos and MEPHISTO ports on one node of SuperMUC-NG with an in-
creasing number of threads. The anomalies at around 24 threads point to a
NUMA-related issue, although we observed similar spikes for two socket-pinned
MPI processes (with half the number of threads) on all variants. Here all
variants perform similar. We tested several other combinations of processes
and threads and all performed similar or minimally slower.

5 Related Work

A large number of frameworks, compiler extensions and dedicated languages
have been developed for shared and distributed systems. We highlight the
most relevant related works and discuss how they relate to Alpaka, DASH and
MEPHISTO.

5.1 Shared memory abstractions for parallelism

Similar to Alpaka is Kokkos [6], an open source abstract interface for shared
memory programming. For the details on the differences between both, refer
to [15]. SYCL3 is cross platform and built on top of OpenCL that supports

3 https://www.khronos.org/sycl/

54 Pascal Jungblut, Karl Fürlinger

potentially a wide range of accelerators. In contrast to OpenCL, it is also single-
source. SYCL is a part of Intel’s OneAPI approach for heterogeneous, parallel
programming. Thrust [1] is a library that implements STL-like algorithms with
a CUDA, Thread Building Blocks or OpenMP back-end. Because it ships its
own data structures, the compatibility with most PGAS implementations will
be limited. OpenMP itself is an open standard for shared memory programming.
Version 4.5 introduced the target environment with data regions which can
be used to allocate device memory and offload computation to accelerators.
However, it does not yet support explicit memory access to the different
memory types of accelerators (e.g. block- and grid-wide memory). Very similar
to OpenMP is OpenACC, also an open standard, which provides access to
block-shared memory. All of these offer no integration with distributed memory
paradigms.

5.2 PGAS implementations

PGAS is either implemented as a programming language or in a library for an
existing language. UPC [4], Coarray Fortran [13], Chapel [2], and X10 [3] are
languages with built-in PGAS support. All have configurable data placement
with respect to the nodes, making it usable for our approach. However, these
languages require a special compiler that limits the portability. High-level
libraries such as DASH, Global Arrays or UPC++ provide PGAS support
without the need for a special compiler. They ship with distributed data
structures and algorithms. There are also more low-level ones such as GASPI
or one-sided MPI. These are used as a provider by the aforementioned libraries.
The integration of the shared memory abstractions with our approach is possible
with all of these, because the only requirements for the PGAS implementation
are user-defined data layouts and a form of synchronization between processes.
All of the above offer both.

5.3 Hybrid approaches

There has been some work on combining shared memory parallelism in a PGAS
environment, much like MPI+X with the message passing model. The MiniMD
application was ported to PGAS in [11] using UPC and POSIX threads.
Jose et al. implement a PGAS runtime to achieve considerable speedups
due to shared memory support [8] These focus on specific implementation
whereas MEPHISTO is agnostic to the back-end. Most similar to our work is
[12]. The authors combine already mentioned directive-based OpenACC with
XcalableMP to XcalableACC, enabling offloading to accelerators. It requires a
dedicated compiler but offers accelerator-to-accelerator communication. HPX [9]
supports distributed job scheduling but uses Active Global Address Space, thus
violating our requirement that allocated memory is not moved by the runtime.

Integrating Node-Level Parallelism Abstractions into the PGAS Model 55

6 Conclusion

6.1 Limitations

The approach, aside from the restrictions outlined in Section 2, requires users
to be aware of race conditions when working with a shared memory space.
Currently there exists no explicit method to synchronize during the execution.
However, it is possible to use either synchronization from both the PGAS and
the node-level abstraction’s implementation.

Further, our prototype implementation currently only implements unified
memory for the CUDA back end. This in turn requires CUDA-aware MPI to
provide a coherent view of the data to MPI.

6.2 Summary

In this paper we present our approach to integrate node-level abstractions
for parallelism with the PGAS programming model in a user-friendly way. It
extends existing methods for data distribution to include local patterns that
map contiguous memory blocks to processing resources. Further, it includes
a simple execution model using these patterns to execute kernels on enti-
ties, heterogeneous processing elements. We combine two existing projects as
MEPHISTO to achieve flexible kernel acceleration and offloading in distributed
systems with partitioned global memory. The evaluation of the approach on
different CPU and GPU architectures shows competitive performance when
compared to industry-standard implementations.

6.3 Outlook

In the future we want to focus on automatic load balancing (auto tuning)
between entities. For now we only tested the execution on one entity at a time,
albeit with multiple instances (threads/GPUs) of each. When the host and
multiple entities may execute during a single invocation of an algorithm, the
benefits of smart load balancing seem worthwhile investigating to minimize
the idle time for each entity.

Another more complex endeavor is the scheduling of kernels on executors
independently of the invocation of their containing algorithms. This could bring
benefits due to better cache usage and the removal of barriers. For example,
we extended DASH’s transform_reduce to support heterogeneous hardware with
Alpaka. Part of the speed-up we gained over two separate calls to transform
and reduce comes from the temporal locality the combined implementation
provides. A runtime could detect adjacent calls to transform and reduce and
instead execute the compact version instead, similar to kernel fusion.

56 Pascal Jungblut, Karl Fürlinger

References

1. Nathan Bell and Jared Hoberock. Chapter 26 - Thrust: A productivity-oriented library for
CUDA. In Wen mei W. Hwu, editor, GPU Computing Gems Jade Edition, Applications
of GPU Computing Series, pages 359 – 371. Morgan Kaufmann, Boston, 2012.

2. Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel programmability
and the chapel language. The International Journal of High Performance Computing
Applications, 21(3):291–312, 2007.

3. Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. Acm Sigplan Notices, 40(10):519–538, 2005.

4. UPC Consortium et al. Upc language specifications v1. 2. Technical report, Ernest
Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US), 2005.

5. Paul Crozier and Steven Plimpton. miniMD v. 1.0. Technical report, Sandia National
Laboratories, 2009.

6. H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling
manycore performance portability through polymorphic memory access patterns. Journal
of Parallel and Distributed Computing, 74(12):3202 – 3216, 2014. Domain-Specific
Languages and High-Level Frameworks for High-Performance Computing.

7. Tobias Fuchs and Karl Fürlinger. Expressing and exploiting multi-dimensional locality
in DASH. In Software for Exascale Computing-SPPEXA 2013-2015, pages 341–359.
Springer, 2016.

8. Jithin Jose, Sreeram Potluri, Hari Subramoni, Xiaoyi Lu, Khaled Hamidouche, Karl
Schulz, Hari Sundar, and Dhabaleswar K Panda. Designing scalable out-of-core sorting
with hybrid MPI+PGAS programming models. In Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models, pages 1–9, 2014.

9. Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio, and Dietmar
Fey. Hpx: A task based programming model in a global address space. In Proceedings
of the 8th International Conference on Partitioned Global Address Space Programming
Models, pages 1–11, 2014.

10. Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R Tallent,
and Kevin J Barker. Evaluating modern GPU interconnect: PCIe, NVLink, NV-SLI,
NVSwitch and GPUDirect. IEEE Transactions on Parallel and Distributed Systems,
31(1):94–110, 2019.

11. Mingzhe Li, Jian Lin, Xiaoyi Lu, Khaled Hamidouche, Karen Tomko, and Dhabaleswar K
Panda. Scalable MiniMD design with hybrid MPI and OpenSHMEM. In Proceedings
of the 8th International Conference on Partitioned Global Address Space Programming
Models, pages 1–4, 2014.

12. Masahiro Nakao, Hitoshi Murai, Takenori Shimosaka, Akihiro Tabuchi, Toshihiro Hanawa,
Yuetsu Kodama, Taisuke Boku, and Mitsuhisa Sato. XcalableACC: Extension of Xcal-
ableMP PGAS language using OpenACC for accelerator clusters. In 2014 First Workshop
on Accelerator Programming using Directives, pages 27–36. IEEE, 2014.

13. Robert W Numrich and John Reid. Co-array Fortran for parallel programming. In ACM
Sigplan Fortran Forum, volume 17, pages 1–31. ACM New York, NY, USA, 1998.

14. Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Technical
report, Sandia National Labs., Albuquerque, NM (United States), 1993.

15. Erik Zenker, Benjamin Worpitz, René Widera, Axel Huebl, Guido Juckeland, Andreas
Knüpfer, Wolfgang E Nagel, and Michael Bussmann. Alpaka–an abstraction library
for parallel kernel acceleration. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 631–640. IEEE, 2016.

13th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2020)
Porto, Portugal
July 9-10, 2020

On Single-Valuedness in Textually Aligned SPMD
Programs

Frédéric Dabrowski

Abstract We propose a formal definition of single-valuedness in the context
of SPMD programs. In this definition, the concomitance of the computation
of values at distinct processes relies on a logical time, which is induced by
textually aligned program points. We show how textual alignment and single-
valuedness can be used to ensure proper use of collectives in SPMD programs.
We focus on synchronization barriers and Direct Remote Memory Access (in
BSP style) and sketch the analysis implemented in our prototype analyser.

Keywords SPMD · BSP · Collective primitives · textual alignment ·
single-valuedness, · formal semantics · static analysis

1 Introduction

In the spmd programming model [2,11], a collection of parallel processes exe-
cutes a Single Program on Multiple Data. Unlike the Single Instruction, Mul-
tiple Data (simd) [12] model, where all processors execute the same instruc-
tions at the same pace, the spmd model allows replicated processes to follow
distinct flows of control. Several communication means may be proposed by
spmd programming languages (MPI[13], OpenMP[27], BSPlib[34], ...). The
most popular are Direct Remote Memory Access (DRMA) and message pass-
ing. In both cases, collective operations (or collectives for short) play a major
role. They expose a simple synchronization scheme: all processes execute the
same sequence of collectives, performing a global synchronization for some of
them. Broadcasts, reductions and global barriers are examples of collectives.
However, behind the apparent simplicity of the model, the ability to execute
distinct instruction streams with no restriction may lead to programming er-
rors.

Univ. Orléans, INSA Centre,Val de Loire,
LIFO EA 4022 Orléans, France
E-mail: frederic.dabrowski@univ-orleans.fr

58 Frédéric Dabrowski

To preclude these types of errors, one can introduce a strict separation at
the programming language level between global and parallel flows of control.
The former produces a single instruction stream, which every process follows.
The latter produces multiple instruction streams free of collectives [26,25,14].
It is noteworthy that this distinction had already been present in the early
definition of the spmd model, quoting [9]: “the participating processes follow
a different parallel flow of control, but all the processes follow the same global
flow of control”. However, spmd programs are most often written in general
programming languages using libraries, the result being that the two flows are
mixed up (e.g., mpi, implementations of the bsp model [16,36]). This simple
observation highlights the need for tools capable of reconstructing the global
control flow in library based implementations.

Current practices show that global barriers are usually textually aligned ,
which means that all processes synchronize on the same textual occurrences.
In other words, their use is confined to global control flow. The same applies
to other kinds of collective operations. This model not only simplifies pro-
gramming, but also it is a prerequisite for some program analysis [21,5,4]. In
previous work [19,6,8], we formally defined textual alignment and prove that
enforcing textual alignment of synchronization barriers is a sufficient condi-
tion to avoid deadlocks. In this paper, we consider another relevant property:
single-valuedness. This property states that an expression occurring in the
text of a program evaluates to the same value at all processes. For some col-
lectives, not only processes must execute the same instruction but also they
must execute it on the same data. For example, in mpi all processes must
pick the same source process when performing a broadcast. By combining tex-
tual alignment and single-valuedness, one can enforce this stronger property.
We propose a formal definition of single-valuedness and show how these two
properties can be used to prove the correctness of programs using collectives,
not only global synchronization points but also more general collectives. In
particular, this combination solves a problem raised by Aiken et al. in [1,15];
namely defining the notion of computing the same value at programs points
occuring between physical synchronization points. The primary idea is that
all textually aligned program points can be seen as logical barriers. In partic-
ular, we show how to check the correctness of DRMA operations à la BSP.
More details will be given in Section 2. In [3], we propose sufficient condition
to ensure correct use of barriers, however this work did not propose a formal
definition of single-valuedness. In this paper we provide such a definition based
on textual alignement and propose a simpler semantics.

In [1,15], Aiken and Gay introduced the concept of structural correctness
in non textually aligned programs. Unlike our work it only considers param-
eterless primitives. Their work had been used for the design of the Titanium
language [35,10]. A later proposal introduced textually aligned barriers in Ti-
tanium by revisiting structural correctness. This proposal was finally replaced
by a dynamic approach [22] after it has been observed that it was flawed [20,
22]. A recent work also considers dynamic approaches to the problem of tex-
tual alignment of collectives [23]. In [18], the authors consider an empirical

On Single-Valuedness in Textually Aligned SPMD Programs 59

static analysis for detecting Multi-Valued expressions, which is used to lower
the number of dynamic checks. Barrier checking for non-textually aligned is
also studied in [37].

In Section 2 we present a subset of the BSPlib language. Is supports drma
communications. In Section 3 we present bspdrma a toy languages that mimics
the features of this BSPlib subset. We define its operational semantics and
the two kinds of errors we aim to rule out, deadlocks and stack mismatch.
Sections 4 and 5 introduce formal definitions of textual alignment and single
valuedness. We show how they can be used to rule out the two kind of errors
introduced in section 3. In Section 6 we sketch the prototype checker we are
developing. In section 7 we conclude and sketch future work;

2 BSP

In the Bulk Synchronous Parallel (BSP) model, a static number processes
progress at the same pace, synchronizing on global barriers. Between two
consecutive synchronizations, processes perform local computations and issue
communication requests. These requests will be handled at the time of the next
synchronization barrier. Communication requests are either message-passing
requests or direct remote memory access requests. Several implantation of the
BSP model exists (BSPlib[34], BSML[28], BSPOnMPi[30], MultiCoreBSP[32],...).
Here we focus on BSP DRMA primitives as proposed by the BSPlib and pro-
vide a short description of their behavior.

Each process has access to its identifier and to the total number of process
through the functions

bsp_pid_t bsp_pid(void) and bsp_pid_t bsp_nprocs(void)

The execution of a program proceeds in successive steps, which are local com-
putation steps issuing communication requests, terminated by global synchro-
nization barriers. Requests issued during a step are served at the end of this
step (Figure 2). Synchronization barriers are performed by a collective call to

void bsp_sync(void)

Processes can communicate by accessing the memory of other processes. To
refer to a remote memory location processes rely on a mapping between local
addresses. This mapping is built programmatically. Processes collectively push
memory locations on a distributed stack. As the stacks have the same size at
every processes, they can be seen as a global stack of p-tuples (where p is the
number of processes). Elements of a tuple are the physical adresses at each
process of a replicated logical adress. For example in (Figure 2) both process
0 and process 1 have pushed the address of the variable y which is a at process
0 and b at process 1. In this case the address a of process 0 is mapped to the
address b of process 1 (and vice versa). Pushing a memory location on the
stack is done by a call to

void bsp_push_reg(const void* addr, bsp_size_t size)

60 Frédéric Dabrowski

Figure 1 Execution of a BSP program

where addr is the local memory location and size is the length of the buffer. A
line of the global stack can be removed by a collective call to

void bsp_pop_reg(const void* addr)

Finally, a process can read or write to a remote location by calling the following
functions

◦ void bsp_put(bsp_pid_t pid, const void * src, void *dst, bsp_size_t offset,

bsp_size_t size): writes size bytes from the location src to the offset offset

of the remote location dst.
◦ void bsp_get(bsp_pid_t pid, const void * src, void *dst, bsp_size_t offset,

bsp_size_t size): reads size bytes from the offset offset of the remote loca-
tion src to the location dst.

Example 1 Here, each process writes its id in the memory of its right neighbor.� �
1 x = bsp_pid ();

2 y = 0;

3 bsp_push_reg (&y,sizeof(int));

4 bsp_sync ();

5 bsp_put ((pid + 1) % bsp_nprocs (), &x, &y, 0, sizeof(int));

6 bsp_pop_reg (&y),

7 bsp_sync ();� �
First each process pushes the address of variable y and perform a barrier to
update the stack (bsp_put_reg and bsp_pop_reg issue requests that are served at
the end of the current step). Then each process requires a write of the value of x
to the distant register matching the address of y in the stack. Finally, processes
pop the addresses and perform a barrier to realize the communication.

In this paper we consider two kinds of errors:

◦ deadlocks: occur when one process is blocked on a barrier while another
process is terminated (we only consider partial correctness)

◦ stack mismatch: two processes pop locations occurring in distinct lines of
the stack. As we have seen each line is a mapping between remote addresses,
processes must thus agree on which line to remove.

In the next section we present a simple language and its semantics. This lan-
guage is used to formalize these kinds of errors.

On Single-Valuedness in Textually Aligned SPMD Programs 61

Figure 2 Two processes registering physical addresses into their stacks

3 bspdrma

The language bspdrma is a variation of the While language, extended by a min-
imal set of primitives dedicated to bsp-like drma programming. It supports
global synchronization, dynamic register allocation, push and pop operations
and update of remote registers. It is akin to the subset of bsp of Section 2,
besides a few limitations whose aim is to simplify the presentation. Dynamic
allocation is supported only in the context of drma communications, there
is no heap allocated structures. We use the name register instead of memory
location to reflect this. Registers hold data of size one. We modify the commu-
nication scheme to avoid non determinism due to concurrent write to remote
registers. More precisely, messages received by a process are buffered on a per
source process basis and can be read separately by the target process. These
restrictions are made without loss of generality:

◦ in practice, shared memory locations are used to exchange contiguous data
(dynamic structures are serialized, processes don’t exchange pointers),

◦ concurrent writes are communication errors that we do not deal with in
this paper.

3.1 Syntax

We consider a countable set of variables Var that we note x, y, z, An
expression a is a term built from integers, variables, arithmetic operations
and the constants pid and nprocs. The two constants denote respectively the
current process id and the total number of processes. Statements are deco-
rated with labels taken in a countable set Lab, elements of which are noted `
(possibly with subscript). The syntax of the language is given in Figure 3.1.
Each label occurs at most once in a statement. When not necessary labels are
omitted. The instruction skip does nothing and returns control to the rest of
the computation. An instruction x := a stores the value of the expression a in
the variable x. Sequences, conditionals and loops behave as usual.

◦ global synchronizations are performed by sync. It is a blocking instruction
that must be performed collectively by all processes. Pending requests are
realized at the time the synchronization occurs.

62 Frédéric Dabrowski

a ::= pid | nprocs | x | . . . (expressions)

i ::= skip | x := a | sync | init x | push x | pop x | x[a]← y

s ::= [i]` | s; s | [if a]` {s} {s} | [while a]` {s} | [with x ← y[a]]` {s} (statements)

Figure 3 Syntax of bspdrma

◦ a fresh register is allocated and stored in the variable x by the instruction
init x.

◦ a register stored in x is pushed (resp. poped) by the instruction push x
(resp. pop x).

◦ An instruction y[a] ← x performs a request to update the register paired
with the register stored in y at process a. The new value is that of x.

◦ an instruction [with x ← y[a]] {s} stores in x the last value written
by processor a in the register paired with the register stored in y and
executes s. The value was written at the previous step. If no such value
exists, s is dropped and the control returns immediately to the rest of the
computation.

As stated before, remote writes in bspdrma differs a bit from what can be found
in bsp. Here a register is rather like a buffer in which other processes can write
at a reserved position. Let’s rephrase the example of the previous section in
bspdrma to illustrate this.

x := pid ;
init z; push z; sync;
z[(pid + 1) mod nprocs]← x;
pop x; sync

[with y ← z[(pid + 1) mod nprocs]] {skip};

We use the local variable y to store the value written in z by the right neighbor
of the process. Specifying the emitter rather that reading the last written value
(of a scheduling dependent process) rules out non determinism.

3.2 Semantics

We give an operational semantics for our language as a small-step transition
system. The semantics records execution paths (sequences of labels) followed
by processes during the execution. These annotations will be used in the defi-
nitions of textual alignment and single-valuedness. They have no effect on the
behavior of programs and could be erased.

On Single-Valuedness in Textually Aligned SPMD Programs 63

3.3 Definitions

A path pt is a finite sequence of labels. A register is a triple (u, pt , `) where
u belongs to a countable set of names U , pt is a path and ` a label. A value
v ∈ V is either an integer or a register. An environment E is a mapping from
variables to values.

The semantics of expressions is given by a function J.K : Env × nat → V
where the second parameter is the processes id at which the evaluation takes
place. The special constant pid returns the process id so we have JpidK(E, i) =
i. The special constant nprocs returns the number of processes so we have
JnprocsK(E, i) = p. Unlike the process id, the number p of process, which
is unique for a given execution, is left implicit to improve readability. The
semantics of the rest of expressions is as usual. For the sake of simplicity, we
assume that J.K(E, i) is a total function.

The semantics is a transition system over global states, which consists of
vectors of size p where p is the number of processes. Components of vectors
are processes states. They have the form of tuples (s, (E,S,B,R), pt) where,
at process i,

◦ s is either a statement or the termination symbol •
◦ E is the environment of process i
◦ S is the contribution of process i to the stack
◦ B is the buffer of process i; it is a function mapping registers and process

ids to values. It is a partial function. If B(u, j) = v then process j has
requested an update of u with value v at i.

◦ R is the history of requests performed by process i since the beginning of
the current step. Requests, noted r, are defined by

r ::= push(u, pt , `) push request
| pop(u, pt , `) pop request
| write((u, pt , `), i, v) message request

A write((u, pt , `), i, v) denotes a write of value v at the location paired with
u at process i. We note R1 ·R2 the concatenation of R1 and R2.

◦ pt is the sequence of labels crossed by i since the beginning of the execution.

As usual a context C denotes the rest of the computation, it has the form of a
statement with a hole. Given a context C and a statement s we note C[s] for
the result of placing s in the hole in C. Contexts are defined by the grammar:

C ::= [] | []; s

We generalize the notation to the termination symbol • by the equations:
[•] = • and [•]; s = s. Given a function f , We note f [x 7→ v] the function
defined by

f [x 7→ v](y) =

{
v if x = y

f(y) otherwise

64 Frédéric Dabrowski

If f is partial, we note dom(f) its definition domain. We note Γ ·γ a sequence
Γ extended with the element γ.

A global transition, v → v′ moves from one global state to the next. Figure
4 gives the two rules that define global transitions.

◦ Rule local specifies individual computation steps. The vector is updated ac-
cording to the result of a transition of the picked component (see below).
Note that process may execute sync instructions occurring at distinct la-
bels.

◦ Rule sync specifies global steps which occur when all process reach a syn-
chronization barrier. Communications requested during the computation
step are served. All components of the vector are updated according to the
result. The definition of . is given in Figure 5. We note R↓ (resp. R↑) the
sequence, in order, of registers pushed (resp poped) in R.

In both cases we record the labels crossed by processes. Other rules specify
local transitions. They have the form

pt , ` `i s, E,B → s′, E′, r

where i is the process id, pt is the sequence of labels crossed so far by i and
` is the current label. Executing s with environment E and buffer B leads to
the statement s′ and the environment E′ performing the request r (or ε if no
request is performed).

◦ The skip instruction, assignment, conditional and loops behave as usual
(rules skip, assign if1, if2,while1 and while2).

◦ An instruction init x generates a fresh register stored in variable x (rule
init). The new register is annotated with pt and `. We assume a function
fresh that maps a buffer to a fresh register, two buffers with the same
domain are mapped to the same register.

◦ An instruction push x (resp. pop x) performs a request to push (resp.
pop) the register (u, pt , `) stored in x. A request push((u, pt , `)) (resp.
pop((u, pt , `))) is issued (rules push and pop).

◦ An instruction x[a] ← y performs a request to write the value v stored in
y to a remote register paired with the register stored in x . The value j of
a is the target process. A request write(u, j, v) is issued (rule send).

◦ A statement [with x ← y[a]]` {s} reads the message sent to the current
process to the register stored in y and stores it in x (rule receive1). The
control is then returned to the statement s. If no such message exists, the
control is simply returned to the rest of the computation (rule receive2).

Given an environment E, the initial state init(E) is (E, ε, ∅, ε). We note E `
s i (s′, st, pt) if 〈(s, init(E), ε), . . . , (s, init(E), ε)〉 →∗ v and πi(v) = (s′, st, pt).
The relation i is the projection on process i of an execution. We note→∗ the
reflexive transitive closure of v and say that v′ is reachable from v if v → v∗.
Local transitions are deterministic and so are global transitions, thanks to
the with construct. The semantics is deterministic in the sense defined below.

On Single-Valuedness in Textually Aligned SPMD Programs 65

pt , ` `i [skip]`, E,B → •, E, ε
skip

JaK(E, i) = v

pt , ` `i [x := a]`, E,B → •, E[x 7→ v], ε
assign

fresh(B) = u

pt , ` `i [init x]`, E,B → •, E[x 7→ (u, pt, `)], ε
init

E(x) = (u, pt , `)

pt , ` `i [push x]`, E,B → •, E, push(u, pt , `)
push

E(x) = (u, pt , `)

pt , ` `i [pop x]`, E,B → •, E, pop(u, pt , `)
pop

E(y) = v E(x) = (u, pt ′, `′) JaK(E, i) = j

pt , ` `i [x[a]← y]`, E,B → •, E,write(u, j, v)
send

E(y) = (u, pt ′, `′) JaK(E, i) = j B(u)[j] = v

pt , ` `i [with x ← y[a]]` {s}, E,B → s, E[x 7→ v], ε
receive1

E(y) = (u, pt ′, `′) JaK(E, i) = j B(u)[j] undefined

pt , ` `i [with x ← y[a]]` {s}, E,B → •, E, ε
receive2

JaK(E, i) 6= 0

pt , ` `i [if a]` {s1} {s2}, E,B → s1, E, ε
if1

JaK(E, i) = 0

pt , ` `i [if a]` {s1} {s2}, E,B → s2, E, ε
if2

JaK(E, i) 6= 0

pt , ` ` [while a]` {s}, E,B → s, E, ε
while1

JaK(E, i) = 0

pt , ` ` [while a]` {s}, E,B → •, E, ε
while2

pt , ` `i s, E,B → s′, E′, r
πi(v) = (C[s], (E,S,B,R), pt) πi(v

′) = (C[s′], (E′, S,B,R · r), pt · `)
v → v′ local

w .w′

∀i.πi(v) = (Ci[[sync]`i], πi(w), pti) ∀i.πi(v′) = (Ci[•], πi(w′), pti · `i)
v → v′ sync

Figure 4 Dynamic Semantics

66 Frédéric Dabrowski

We have w . w′ where πi(w) = (Ei, Si, Bi, Ri) πi(w
′) = (E′

i, S
′
i, B

′
i, R

′
i) if

◦ E′
i = Ei

◦ S′
i = (Si/R

↑
i) ·R↓

i

◦ B′
i[u](j) =





v if write((u′, (pt ′, `′)), i, v) ∈ Rj and pos(Si, u) = pos(Sj , u
′)

error if write((u′, (pt ′, `′)), i, v) ∈ Rj and pos(Si, u) 6= pos(Sj , u
′)

undefined otherwise
If several messages have the same source and same target, we take the last one.

◦ R′
i = ε

and no error occurs. We note Γ/Γ ′ for

Γ/ε = Γ

Γ · γ/Γ ′ · γ′ =

{
Γ/Γ ′ if γ = γ′

(Γ/Γ ′ · γ′) · γ otherwise

ε/Γ · γ = error
error · γ = error

Figure 5 Exchange

Indeed, local transition are deterministic and ”scheduling” choice are not sig-
nificant. Moreover, thanks to the with constructs, communications are also
deterministic.

Lemma 1 Let v, v1 and v2 be vectors. If v →∗ v1 and v →∗ v2 then there
exists v′ such that v1 →∗ v′ and v2 →∗ v′.

3.4 Programming errors

As stated before, we intend to rule out two kinds of errors: deadlocks and stack
mismatches. In this section we introduce their formal definitions. A deadlock
occurs when a process is blocked at a barrier waiting for a terminated process.
All processes are stuck (we do not consider infinite loops).

Definition 1 A deadlock occurs in v, if the following property holds

deadlock(v) = ∃i, j.πi(v) = (C[sync],−,−) ∧ πj(v) = (•,−,−).

A statement is well synchronized if no deadlock occurs in any state reachable
from an initial state.

Example 2 The following program is not well synchronized because some pro-
cesses perform less synchronizations than others

x := pid ; while x > 0 do x := x− 1; sync done

More precisely all processes but 0 (which is terminated) are stuck on the first
barrier. Thanks to determinism, deadlocks are reproducible and are easily
observed by programmers.

On Single-Valuedness in Textually Aligned SPMD Programs 67

A stack mismatch occurs when two processes perform incompatible push and
pop requests. Intuitively, requests are compatible if all processes perform the
same number of push/pop request and if ”concomitant” pop requests refer the
same positions in the stacks. Intuitively, a mapping between remote registers,
as defined by stacks can be removed but it cannot be modified (see example
3).

Definition 2 A stack mismatch occurs in v if there exists i and j such that
πi(v) = (Ci[sync], (−, Si,−, Ri),−), πj(v) = (Cj [sync], (−, Sj ,−, Rj),−) and

|R↓i | 6= |R↓j | ∨
|R↑i | 6= |R↑j | ∨
(∃k.(R↑i)k = ui ∧ (R↑j)k = uj ∧ pos(Si, ui) 6= pos(Sj , uj)

A statement is well matched if no stack mismatch occurs in any state reachable
from an initial state.

Example 3 The following program is not well matched because process 0 tries
to pop the first line while other processes try to pop the second line.

init x; init y; push x; push y; sync; if pid = 0 then pop x else pop y end; sync

But the following statement is well matched (processed may pop any line).

init x; init y; push x; push y; sync; pop x; sync

Remember that we only consider programming errors related to misuses of
collectives. In particular, we don’t consider local errors such as trying to pop
or to use non pushed registers In the next section, we will show how to use
textual alignment and single-valuedness to define a programming methodology
that rules out the two kind of errors we have introduced.

4 Textual Alignment

Instances of textually aligned labels are crossed by all processes at the same
pace, at least from a logical point of view. Intuitively, textually aligned code
blocks could be executed in a pure simd mode. We will return to this remark
later. Some programs are obviously classified as textually aligned, whereas
others require more explanations to justify their classification.

Example 4 Consider the following statements written in C.� �
1 if (bsp_pid () > 0) {sync()} else {sync()}

2

3 if (bsp_pid () < bsp_nprocs ()) {sync()} else {sync()}

4

5 x = 0;

6 while (x<bsp_nprocs ()) {if (x = bsp_pid ()) sync(); x = x +

1}

7

68 Frédéric Dabrowski

8 x = 0;

9 while (x < 3) {if (x == 2) sync; x = x + 1}

10 � �
The first statement (line 1) is clearly not textually aligned. Processes execute
sync instructions that occur in distinct branches. Obviously, label equality
is the weaker reasonable condition. On the opposite, it is obvious that the
second statement (line 3) should be considered textually aligned. In the third
statement (lines 5,6), all processes perform the same number of iterations of
the loop. Yet, they call the sync primitive at distinct iterations. Although
the behaviors of all processes are observationally equivalent, this statement
should not be considered as textually aligned (think of loop unrolling). On the
opposite, the last statement (lines 8,9) is textually aligned.

Intuitively, a label ` is said to be textually aligned if, whenever a process
reaches a textual occurrence of `, other processes will eventually reach the
same occurrence (we consider partial correctness only). An obvious way to
distinguish occurrences of a label ` is to consider the set of execution paths
leading to `. However, for our purpose, this definition is not appropriate as
exemplified by the following statement:

if b then x := 0 else x := 1 end;x := x+ 1

In this case, we would like to consider that whichever branch is taken, the
same textual occurence of the last assignment is reached. We note ∆l the
functions that retain, from a path, the labels of loops surrounding ` in a
program statement s (we omit the statement which is always clear from the
context). Obviously, the information extracted by ∆` is sufficient to distinguish
distinct occurrences of ` in the execution trace of processes.

Definition 3 A label ` in a statement s is textually aligned if for all E, if
exists i < p such that E `i s (s′, sti, ptj) where entry(s′) = ` then for
all j < p, there exists stj and ptj such that E `j s (s′, stj , ptj) and
∆`(pt i) = ∆`(ptj).

This definition relate local executions rather that global executions. This is
because, in general, the execution of the same textual occurrence of a label
at distinct processes may be separated by arbitrarily many synchronizations.
Altough, in this paper, we will consider programs with textually aligned bar-
riers, this property cannot be assumed a priori. For such programs it will be
the case that same textual occurrences of labels are always reached during the
same steps by all processes. Indeed, instances of textually aligned label occur
in the same order in distinct processes as stated by the following lemma.

Lemma 2 Let `1 and `2 be two textually aligned program points in s and let
E be an environment.

◦ E `i s (si, sti, pt i) and E `i s (s′i, st
′
i, pt ′i)

◦ E `j s (sj , stj , ptj) and E `j s (s′j , st
′
j , pt ′j)

On Single-Valuedness in Textually Aligned SPMD Programs 69

◦ entry(si) = entry(sj) = `1 and entry(s′i) = entry(s′j) = `2
◦ ∆`1(pti) = ∆`1(ptj) and ∆`2(pt′i) = ∆`2(pt ′j)

then if pt i ≺ pt ′i we also have ptj ≺ pt ′j where ≺ is the prefix order.

We omit the proof of this intermediate result, the interested reader can refer
to our previous Coq[33] developments [7].

Proposition 1 If all barriers of a statement are textually aligned then this
statement is well-synchronized.

Proof Let i and j be two process ids. We prove that for all n > 0 if E `i
s (C[[sync]`], wi, pt i) where i has crossed n barriers then there exists a vec-
tor v such that 〈. . . (s, init(E), ε) . . .〉 →∗ v, πj(v) = (C[[sync]`], wj , ptj) and
∆`(pt i) = ∆`(ptj). The proof is by induction on n. Suppose that E `i s
(C[[sync]`], wi, pt i), then by hypothesis we have E `j s (C[[sync]`], wj , ptj)
and ∆`(pt i) = ∆`(ptj). We have to prove that these two local state are part of

the same synchronisation. Suppose that the local state of (C[[sync]`], wj , ptj),
which we call Aj , corresponds to another synchronization (otherwise we are
done). We distinguish two cases, whether Aj occurs in a synchronization pre-
ceding Ai = (C[[sync]`], wi, pt i) or not.

◦ Suppose Aj was part of a previous synchronization. Then we have a previ-
ous state of i of the form (s′i, w

′
i, pt ′i) such that pt ′i ≺ pt i and, by induction

hypothesis, ∆`(pt ′i) = ∆`(ptj). It comes ∆`(pt i) = ∆`(pt
′
i) which is incom-

patible with pt ′i ≺ pt i .
◦ Now suppose Aj was not part of a previous synchronization. We assumed
Aj is not part of same synchronization as Ai. Then there exists a state A′j =

(C ′[[sync]`
′
, w′j , pt ′j) which is part of the same synchronization as Ai and

pt ′j ≺ ptj . But by textual alignment, there exists A′i = (C[[sync]`
′
], w′i, pt ′i)

such that ∆`′(pt ′i) = ∆′`(ptj). We have pt i ≺ pt ′i otherwise Ai and A′i de-
note the same local state and then we have ` = `′ and ∆`(ptj) = ∆`(pt i) =
∆`(pt ′i) = ∆`(pt ′j) which is leads to a contradiction. Finally we get a con-
tradiction by Lemma 2.

From this result it is immediate that assuming a deadlocks leads to a contra-
diction. ut

In this section we have shown how textual alignment can be used as a suffi-
cient condition to ensure correctness of parameterless collectives such as global
synchronization barriers. More elaborated collectives require not only the ex-
ecution of the same instruction but also coherency in the actual values the
instruction is used with. This is the case, for example, of the broadcast in-
struction in mpi for which all processes must agree on the source process. In
the next section, we consider single-valuedness and show how it can be used
to prove correctness of push and pop instructions.

70 Frédéric Dabrowski

5 Single Valuedness

As defined in the literature, a variable is single-valued if all processes map it
to the same value at the same time. As the authors says in [1],

[...] ‘at the same time” is a slippery notion in a setting with asyn-
chronous execution. Only at global synchronization points (i.e., barri-
ers, broadcasts, and the start and end of execution) is it possible to
assert anything useful about the state of all processes,

In this section, we claim that textual alignment leads to a more effective notion
of time. We show that any textually aligned label can be use to state properties
on the state of all processes. Textually aligned program points are logical
synchronization points. They can be seen as common clock ticks, of which
synchronization barriers are simply special cases.

Single-valuedness can be defined in term of Leibniz equality. However, in
the context of bspdrma we need a bigger equivalence relation. Indeed, we will
propose a correctness criterion for which it is necessary to identify registers
allocated at the ”same time”. This is why registers are annotated in the se-
mantics. Two values v1 and v2 are similar, noted v1 w v2, if one of the following
equations is satisfied:

◦ v1 = v2 if v1, v2 are integers and v1 = v2
◦ (u, pt , `) = (u′, pt ′, `′) if ` = `′ and ∆`(pt) = ∆`(pt ′)

Definition 4 A variable x in a statement s is single-valued at label ` if for
all E, if exists i < p and j < p such that E `i s (si, sti, pt i) and E `j s
(sj , stj , ptj) where entry(si) = entry(sj) = ` and ∆`(pt i) = ∆`(ptj) then
Ei(x) w Ej(x).

The notion of single value easily extends to expressions by requiring that all
variables are single-valued and that pid doesn’t occur in the expression.

Example 5 Here, the pushed variable is single-valued in the first statement
but not in the second.

init x; push x

if b then init x else init x end; push x

Next we show how to use the single-valuedness property to enforce a proper
use of collectives operating on the stack. Intuitively, if push and pop instruc-
tions are textually aligned, all processes perform the same list of push/pop
instructions (up-to parameters). This is sufficient for push instructions but
not for pop instructions because all concomitant pop instructions must refer
to the same line in the stack. This requirement is met by enforcing single-
valuedness of stacked values.

On Single-Valuedness in Textually Aligned SPMD Programs 71

Proposition 2 If all barriers in s are textually aligned and if push/ pop in-
structions in s are textually aligned and single-valued then s is well matched.

Proof We prove a stronger property which is that for every reachable state
v there exists R, R′ and S such that for all process i we have πi(v) =
(Ci[sync], (−, Si,−, Ri),−) and

R↓i w R ∧R↑i w R′ ∧ Si w S

where w is applied peer to peer. Because barriers are textually aligned, we can
reason on a single step and conclude by induction on the number of barriers
crossed so far. So suppose the property holds at the beginning of the step. By
hypothesis and by Lemma 2, push/pop instructions at ` that occurs in i at
path pt i also occurs, in same order, in j at path ptj and ∆`(pt) = ∆`(ptj). By
the single value hypothesis we have request that are performed in the same
order with compatible (with respect to w) values. Moreover, the stacks are
equal because of the hypothesis (pushed/pop values were equals at the end of
the previous step). It there is no previous step, the initial state trivially satisfy
the conditions. ut

We have showed how to combine textual alignment and single-valuedness to
define sufficient conditions to ensure correctness of drma collectives in a bsp
like language. As stated before, we have focused on issues related to the col-
lective nature of push and pop instructions. It is still possible for a program
to get stuck because processes collectively fail, for example by trying to pop a
non valid register. Such behaviors can be ruled out by simple local correctness
properties. We briefly discuss this issue in the next section.

6 Analysis

We sketch the design principles underlying our prototype bsp analyser for C
programs[29]. It guarantees that a validated program contains no errors related
to the use of collectives. We use the Frama-C[31] toolbox to check that calls
to the following functions are textually aligned and that the parameter addr is
single-valued.

◦ void bsp_sync(void)

◦ void bsp_push_reg(const void* addr, bsp_size_t size)

◦ void bsp_pop_reg(const void* addr)

Frama-C is a platform dedicated to C source code analysis which can be ex-
tended by new plugins written in OCaml. It provides basic tools: abstract
syntax tree, control-flow graphs, program-dependence graph and a dataflow
analysis engine among others. Our prototype handles all bsp functions of sec-
tion 2. Given a C program it computes a control flow graph decorated with
the following information

◦ program point with data-dependencies on the process id

72 Frédéric Dabrowski

◦ program point with control-dependencies on pid-dependent values

The analysis proceeds in two steps, both of which extensively rely on the
program dependence graph generated by Frama-C.

◦ First, we compute a safe approximation of the set of functions that may
return pid-dependent values. This is done by an inter-procedural dataflow
analysis which propagates dependencies between function definitions. A fix-
point iteration is performed. Each step propagates dependencies through
edges of the program dependence graph. It start with the singleton {int
bsp_pid(void)}

◦ Second, we proceed to a trivial intra-procedural analysis to infer the above
mentionned information from the previous step.

From the decorated control flow graph it is easy to extract safe approximations
of the following properties.

◦ single-valuedness of branching conditions
◦ single-valuedness of push and pop instructions
◦ textual alignment of all program points (a program point is textually

aligned as soon as all surrounding branching are single-valued)

Indeed, the analysis captures an over approximation of the intended properties.
As an example of loss of precision, it is possible for a value to be pid-dependent
and yet to be single valued. Consider the condition at label ` in the following
example.

if [pid < nprocs]` then s1 else s2 end

Remember, that our prototype does not address local correctness of calls
to functions operating over the stack. It is then possible for a program to try to
pop a memory location that is not in the stack. Conceptually, this feature can
be added to our prototype quite easily. It requires a simple dataflow analysis
computing abstract stacks of reachable states. In practice, we observed that
they are never two distinct memory locations allocated at the same program
point into the stack. Thus, we argue that it is enough to have abstractions that
abstract exactly, for each allocation point, the last memory location allocated
at that point. More precisely, a dataflow analysis can abstract values as follows:
the last memory location (u, pt , `) allocated is abstracted by the label ` and
all value are abstracted by >. This is a simple kill-gen analysis where an
abstract memory location ` (generated by a memory allocation) is turned into
> (killed) as soon as a new memory location is allocated `. Adding this feature
to our prototype requires to extend the value analysis EVA[24] of Frama-C to
discriminate the last memory locations allocated at each program point. We
expect to add this feature to our prototype in a short time.

Another issue not handled by our prototype is the detection of programs in
which the sizes of shared buffers are not sufficient to receive messages. To rule
out this kind of error one could use a high-precision bound analysis. Bound
checking for array accesses can be done with the EVA plugin of Frama-C.

On Single-Valuedness in Textually Aligned SPMD Programs 73

7 Conclusion

We have formally defined sufficient conditions to ensure correctness of collec-
tive drma communications à la bsp. These sufficient conditions rely on the
formal definitions of two important properties, namely textual alignement and
single-valuedness. The formal definition of textual alignment improves on our
previous work in term of simplicity. As far as we know this is the first formal
definition of single-valuedness based on textual alignment. We have shown that
the latter permits to define the former not only at synchronization points but
also at all textually aligned points. Indeed, the latters behave as synchroniza-
tion points at the logical level. Building on these results we have sketched the
principles of a static analysis and we have presented our prototype checker.
In future work, we expect to extend our checker with an appropriate value
analysis. This will allow to rule out local errors as well. Another direction is to
consider more collective communication scheme like broadcast, map, reduces
and others. We also expect to study the interaction of our analysis with the
PARCOACH [17] dynamic checker. In this context, we expect our analysis to
reduce the overhead of the instrumentation.

References

1. Alexander Aiken and David Gay. Barrier inference. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’98,
pages 342–354, New York, NY, USA, 1998. ACM.

2. Larbey F. Auguin M. Opsila: an advanced simd for numerical analysis and signal
processing. In Microcomputers: developments in industry, business, and education,
Ninth EUROMICRO Symposium on Microprocessing and Microprogramming, pages
311–318, Madrid, 1983.

3. Wadoud Bousdira, Arvid Jakobsson, and Frederic Dabrowski. Safe Usage of Registers
in BSPlib. In SAC 2019, Limassol, Cyprus, April 2019.

4. Prasanth Chatarasi, Jun Shirako, Martin Kong, and Vivek Sarkar. An Extended Poly-
hedral Model for SPMD Programs and Its Use in Static Data Race Detection, pages
106–120. Springer International Publishing, Cham, 2017.

5. C. Chen, W. Huo, L. Li, X. Feng, and K. Xing. Can we make it faster? efficient may-
happen-in-parallel analysis revisited. In 2012 13th International Conference on Parallel
and Distributed Computing, Applications and Technologies, pages 59–64, Dec 2012.

6. Frederic Dabrowski. Textual Alignment in SPMD Programs. In SAC ’18: Proceedings
of the 33rd Annual ACM Symposium on Applied Computing, Pau, France, April 2018.

7. Frédéric Dabrowski. Jlamp 2019, coq artefact. https://github.com/DabrowskiFr/

coq-jlamp2018.
8. Frédéric Dabrowski. A denotational semantics of textually aligned spmd programs.

Journal of Logical and Algebraic Methods in Programming, 108:90 – 104, 2019.
9. Frederica Darema. SPMD Computational Model, pages 1933–1943. Springer US,

Boston, MA, 2011.
10. Hilfinger P. N. (editor), Dan Bonachea, David Gay, Susan Graham, Ben Liblit, Geoff

Pike, and Katherine Yelick. Titanium Language Reference Manual, Version 1.16.8.
Technical Report UCB//CSD-04-1163x, Computer Science, UC Berkeley, 2004.

11. Darema F. Spmd model: past, present and future, recent advances in parallel virtual
machine and message passing interface. In Proceedings of the 8th European PVM/MPI
Users’ Group Meeting, Lecture Notes in Computer Science, Santorini/Thera, Greece,
2001.

74 Frédéric Dabrowski

12. Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Trans.
Comput., 21(9):948–960, September 1972.

13. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version
3.1.

14. F. Gava and F. Loulergue. A static analysis for bulk synchronous parallel ml to avoid
parallel nesting. Future Generation Computer Systems, 21(5):665 – 671, 2005. Parallel
computing technologies.

15. D. Gay. Barrier Inference. PhD thesis, University of California, Berkeley, 1998.
16. Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau, Kevin Lang,

Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob H. Bisseling. Bsplib: The bsp
programming library. Parallel Comput., 24(14):1947–1980, December 1998.

17. Pierre Huchant, Emmanuelle Saillard, Denis Barthou, Hugo Brunie, and Patrick Car-
ribault. PARCOACH Extension for a Full-Interprocedural Collectives Verification. In
Second International Workshop on Software Correctness for HPC Applications, Dallas,
United States, November 2018.

18. Pierre Huchant, Emmanuelle Saillard, Denis Barthou, and Patrick Carribault. Multi-
valued expression analysis for collective checking. In Ramin Yahyapour, editor, Euro-
Par 2019: Parallel Processing, pages 29–43, Cham, 2019. Springer International Pub-
lishing.

19. Arvid Jakobsson, Frédéric Dabrowski, Wadoud Bousdira, Frédéric Loulergue, and Gae-
tan Hains. Replicated synchronization for imperative {BSP} programs. Procedia Com-
puter Science, 108:535 – 544, 2017. International Conference on Computational Science,
{ICCS} 2017, 12-14 June 2017, Zurich, Switzerland.

20. A. Kamil. Problems with the titanium type system for alignment of collectives. unpub-
lished note, 2006.

21. Amir Kamil and Katherine Yelick. Concurrency analysis for parallel programs with
textually aligned barriers. In Proceedings of the 18th International Conference on
Languages and Compilers for Parallel Computing, LCPC’05, pages 185–199, Berlin,
Heidelberg, 2006. Springer-Verlag.

22. Amir Kamil and Katherine Yelick. Enforcing Textual Alignment of Collectives Using
Dynamic Checks, pages 368–382. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

23. Andreas Knüpfer, Tobias Hilbrich, Joachim Protze, and Joseph Schuchart. Dynamic
Analysis to Support Program Development with the Textually Aligned Property for
OpenSHMEM Collectives, pages 105–118. Springer International Publishing, Cham,
2015.

24. CEA List. Theevaplug-in. http://frama-c.com/download/frama-c-eva-manual.pdf,
2019.

25. Frédéric Loulergue, Frédéric Gava, and David Billiet. Bulk Synchronous Parallel ML:
Modular Implementation and Performance Prediction. volume 3515 of LNCS, pages
1046–1054. Springer, 2005.

26. Frédéric Loulergue and Gaétan Hains. Functional parallel programming with explicit
processes: Beyond SPMD, pages 530–537. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1997.

27. OpenMP Architecture Review Board. OpenMP application program interface version
3.0. http://www.openmp.org/mp-documents/spec30.pdf, May 2008.

28. Software. BSML: Bulk synchronous parallel ml, a library for BSP programming in
OCaml. https://traclifo.univ-orleans.fr/BSML/.

29. Software. Bspcheck, a c static analyzer for bsp programming. https://github.com/

DabrowskiFr/bspcheck.
30. Software. BSPOnMPI, a platform independent software library for developing parallel

programs. http://bsponmpi.sourceforge.net/.
31. Software. Frama-c, an extensible and collaborative platform dedicated to source-code

analysis of c software. https://frama-c.com/.
32. Software. MultiCoreBSP, BSP programming on modern multicore processors. http:

//www.multicorebsp.com/.
33. The Coq Development Team. Coq. https://coq.inria.fr.
34. Mick van Duijn, Koen Visscher, and Paul Visscher. BSPLib: a fast, and easy to use

C++ implementation of the Bulk Synchronous Parallel (BSP) threading model. http:

//bsplib.eu/.

On Single-Valuedness in Textually Aligned SPMD Programs 75

35. Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind
Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex Aiken.
Titanium: a high-performance java dialect. Concurrency: Practice and Experience,
10(11-13):825–836, 1998.

36. A. N. Yzelman, R. H. Bisseling, D. Roose, and K. Meerbergen. Multicorebsp for c:
A high-performance library for shared-memory parallel programming. Int. J. Parallel
Program., 42(4):619–642, August 2014.

37. Yuan Zhang and Evelyn Duesterwald. Barrier matching for programs with textually
unaligned barriers. In Proceedings of the 12th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’07, pages 194–204, New York, NY,
USA, 2007. ACM.

13th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2020)
Porto, Portugal
July 9-10, 2020

A Divide-and-conquer Parallel Skeleton for Unbalanced
and Deep Problems

Millán A. Mart́ınez · Basilio B. Fraguela ·
José C. Cabaleiro

Abstract The Divide-and-conquer (D&C) pattern appears in a large number
of problems and is highly suitable to exploit parallelism. This has led to much
research on its easy and efficient application both in shared and distributed
memory parallel systems. One of the most successful approaches explored in
this area consists in expressing this pattern by means of parallel skeletons
which automate and hide the complexity of the parallelization from the user
while trying to provide good performance. In this paper we tackle the develop-
ment of a skeleton oriented to the efficient parallel resolution of D&C problems
with a high degree of unbalance among the subproblems generated and/or a
deep level of recurrence. Our evaluation shows good results achieved both in
terms of performance and programmability.

Keywords Algorithmic skeletons · Divide-and-conquer · Template metapro-
gramming · Load balancing

1 Introduction

Divide-and-conquer [1], hence denoted D&C, is a strategy widely used to solve
problems whose solution can be obtained by dividing them into subproblems,
separately solving those subproblems, and combining their solutions to com-
pute the one of the original problem. In this pattern the subproblems have
the same nature as the original one, thus this strategy can be recursively ap-
plied to them until base cases are found. The independence of the subproblems

Millán A. Mart́ınez · Basilio B. Fraguela
Universidade da Coruña, CITIC, Computer Architecture Group. 15071. A Coruña. Spain
Tel: +34-881 011 219
E-mail: {millan.alvarez, basilio.fraguela}@udc.es

José C. Cabaleiro
Centro Singular de Investigación en Tecnolox́ıas Intelixentes (CiTIUS), Universidade de
Santiago de Compostela. 15782. Santiago de Compostela, Spain
Tel: +34 881 816 421
E-mail: jc.cabaleiro@usc.es

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 77

allows exploiting parallelism in this pattern, and the fact that it has a well de-
fined structure allows expressing it by mean of algorithmic skeletons [6], which
automate the management of typical patterns of parallelism [19]. Since skele-
tons hide the implementation details and the difficulties inherent to parallel
programming from the user, they largely simplify the development of parallel
versions of these algorithms with respect to manual implementations. In fact
several parallel skeletons for expressing D&C problems have been proposed in
the literature, either restricted to shared memory systems [18,10,8] or sup-
porting distributed memory environments [7,3,9,15,5,11]. In addition to the
large number of problems that exhibit a D&C pattern, properly designed D&C
skeletons can be used to express or implement other very common patterns
such as map or reduce [12]. This wide applicability makes it extremely inter-
esting in our opinion to develop highly optimized skeletons for this pattern.

In this paper we present a novel C++ parallel skeleton for the resolution
of D&C problems in shared memory environments. Our proposal improves
upon the existing solutions when considering applications with a large de-
gree of unbalance among the subproblems generated and/or a large depth
in the recursion of the algorithm. As we will see, these situations can some-
times lead the existing skeletons to either provide suboptimal performance
or even be inapplicable. Our skeleton, called parallel stack recursion is an
evolution of the parallel recursion skeleton proposed in [10] after a com-
plete redesign and reimplementation. Our new implementation is available
at https://github.com/fraguela/dparallel recursion together with the material
published in [10] and [11].

The rest of this paper is organized as follows. The next section discusses
the related work. Then, Section 3 reviews the key aspects and main problems
of the D&C skeleton parallel recursion. Our solution to these problems is pre-
sented in Section 4, where the new skeleton and its implementation details
are explained. The evaluation of the performance and programmability of the
new implementation is presented in Section 5. Section 6 is devoted to our
conclusions and future work.

2 Related Work

The divide-and-conquer parallel pattern is supported by a number of skeletons
in the literature. Like ours, some of them are restricted to shared memory sys-
tems, the advantage with respect to the distributed system counterparts being
the reduced communication and synchronization costs as well as the easier load
balancing. In this category we find the Java-based Skandium library [18], which
follows a producer-consumer model in which the tasks are pushed and popped
from a shared ready queue by the participating threads. The C++ DAC par-
allel template [8] supports three different underlying runtimes (OpenMP [4],
Intel TBB [22] and FastFlow [2]) who take the responsibility of balancing the
workload among the threads. These two proposals have in common that the
skeleton only needs to be fed the input data and functions for identifying

78 Millán A. Mart́ınez et al.

base cases, splitting non-base cases, combining partial results and solving base
cases, which are indeed the basic components of a D&C algorithm.

Our work derives from the C++ parallel recursion skeleton [10], explained
in detail in Section 3, which relies on the Intel Threading Building Blocks
(TBB) runtime [22] for tasking and load balancing. This skeleton allows to
optionally provide a partitioner object that helps the runtime to decide when
the resolution of a non base problem must be solved sequentially or in a parallel
fashion. This is in contrast with the previously discussed approaches, which
always apply parallelism to the resolution of every non base case. They can,
though, mimic a similar behavior at a higher programming cost by identifying
as base cases also those non basic problems whose parallelization is not worthy
and including a sequential D&C implementation for their resolution in the
function that takes care of the base cases. As we will see, even with this higher
degree of control, parallel recursion is not well suited to problems that exhibit
a large degree of unbalance. The partitioner concept of [10] is inspired by
the TBB, which offers several higher order functions, many of which support
partitioners, as well as lower level mechanisms to exploit D&C parallelism,
although it lacks a specific skeleton for this parallel pattern.

In the distributed memory realm we find eSkel [7], which provides parallel
skeletons for C on top of MPI, including one for D&C. The API is somewhat
low-level because of the limitations of the C language, which leads for example
to the exposure of MPI details. A template library for D&C algorithms without
this problem is Muesli [5], which is designed in C++ and built on top of
MPI and OpenMP, although the latter has only been applied to data-parallel
skeletons, so that its D&C skeleton is only optimized for distributed memory.

Lithium [3] is a Java library specially designed for distributed memory that
provides, among others, a parallel skeleton for D&C. The implementation is
based on macro data flow instead templates and extensively relies on runtime
polymorphism. This is in contrast with Quaff [9], whose task graph must
be encoded by the programmer by means of C++ type definitions which are
processed at compile time to produce optimized message-passing code. These
static definitions mean that tasks cannot be dynamically generated at arbitrary
levels of recursion and, although the library allows skeleton nesting, it has the
limitation that this nesting must be statically defined.

Finally, there are D&C skeletons specifically oriented to multi-core clusters,
as they combine message-passing frameworks in order to support distributed
memory with multithreading within each process. This is the case of [14],
which supports load balancing by means of work-stealing. The proposal though
is only evaluated with very balanced algorithms and unfortunately, contrary
to ours, it is not publicly available. Furthermore, their balancing operations
always involve a single task, which, as we will see, can be very inefficient. An-
other work in this area is dparallel recursion [11], an evolution of [10] in which
the shared memory portion relies on [10] and offers thus the same behavior.

It is interesting to notice that while skeletons have been traditionally di-
rectly used by programmers, their scope of application is growing thanks to
very promising novel research. Namely, the development of techniques and

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 79

template<typename T, int N>
struct Info : Arity<N> {
bool is base(const T& t) const; //base case detection
int num children(const T& t) const; //number of subproblems of t
T child(int i, const T& t) const; //get i−th subproblem of t
};

template<typename T, typename S>
struct Body : EmptyBody<T, S> {
void pre(T& t); //preprocessing of t before partition
S base(T& t); //solve base case
S post(T& t, S ∗r); //combine children solutions
};

Listing 1: Class templates with pseudo-signatures for the info
and body objects used by parallel recursion

tools to identify computational patterns and refactor the codes containing
them [16,17] not only simplifies the use of skeleton libraries by less experi-
enced users but it can even lead to the automatic parallelization of complex
codes on top of libraries of skeletal operations.

3 The parallel recursion skeleton

In this section we will describe the D&C algorithm template parallel recursion,
including the limitations that led us to propose a new alternative in this field.

3.1 Syntax and semantics

Specifying a D&C algorithm requires providing functions to decide whether
a problem is a base case or, on the contrary, it can be subdivided into sub-
problems, to subdivide a non-base case, to solve a base case, and to obtain to
solution of a non-base problem by combining the solutions of its subproblems.
The analysis performed in [10] noticed that the two first functions are mostly,
and often exclusively, related to the nature of the input data structure to pro-
cess, while the two latter ones more strongly relate to the computation being
performed. For this reason, parallel recursion relies on two separate objects to
provide these two groups of elements. We now describe in turn the require-
ments for these objects, which are modeled by the C++ class templates Info
and Body shown in Listing 1.

The object that describes the structure of the problem is called the info
object and it must belong to a class that provides the member functions
is base(t), which indicates whether a given problem t is a base case or not,
num children(t), which gives the number of subproblems in which a non-base

80 Millán A. Mart́ınez et al.

problem can be subdivided, and finally child(i, t), which returns the i-th
child of the non-base problem t. As shown in Listing 1, the class Info for this
object must derive from a class Arity<N> provided by the library, where N is
either the number of children of every non-base case of the problem, when it is
fixed, or the identifier UNKNOWN when this value is not a constant. In the first
case, Arity<N> automatically provides the num children function member so
that users do not need to implement it.

We call body object the one that provides the computations. Its class must
provide the functions of the class template Body shown in Listing 1. Here,
base(t) provides the solution for a base case t, while post(t, r) receives in
the pointer r the array of solutions to the subproblems in which a non-base
problem t was subdivided so that combining them, maybe with some addi-
tional information from t, it can compute the solution to the parent problem t.
The object class must also support a function member pre(t) that allows per-
forming computations on the problem t before even checking whether it is a
base problem or not, as it was found to be useful for some D&C problems. The
library provides a class template EmptyBody<T,S> that can be used as base
case for the body object classes, where T is the type of the problems and S is
the type of the solutions, although this it not required. The main advantage of
EmptyBody is that it provides empty implementations of all the body functions
required, so that deriving a class from it avoids writing unneeded components.

Besides the input problem and the two aforementioned objects, the skeleton
accepts a fourth optional argument called the partitioner. Its role is to indi-
cate when parallelism should be applied during the execution of the skeleton.
The partitioner can be of three different classes. If the programmer provides
a partitioner from the simple partitioner class, the skeleton will parallelize
the resolution of any non-base problem. This behavior is the only possible one
in the other shared-memory skeletons we know of [18,8]. Creating, schedul-
ing and synchronizing parallel tasks for every level of a D&C recursion tree
may be very inefficient, particularly when the tree contains many computa-
tions of small size. For this reason, two other alternatives are supported. If
the partitioner belongs to the auto partitioner class, the skeleton will apply
some heuristics in order to try to generate a number of parallel tasks that
keeps busy the threads available while allowing for some load balancing, in
case the tasks were not of an identical size. In general it is impossible for
the skeleton to know in advance the size of the tasks, and even the num-
ber of children of each subproblem. Therefore a third possibility is to use a
custom partitioner, in which the user controls when to apply parallelism by
means of a do parallel(t) member function that she must provide in the info
object. The function must return a boolean that indicates whether a problem
t should be solved using parallelism or not.

Listing 2 illustrates the use of the skeleton in a problem consisting in
adding the value val stored in a tree of nodes of type tree t in which
each node has a variable number of children whose pointers are stored in
a std::vector<tree t*> called children. The base cases are identified by
the is base member function of the info object, whose class is TreeAddInfo,

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 81

struct TreeAddInfo: public Arity<UNKNOWN> {
bool is base(const tree t ∗t) const { return t−>children.empty(); }

int num children(const tree t ∗t) const { return t−>children.size(); }

tree t ∗child(int i, const tree t ∗t) const { return t−>children[i]; }
};

struct TreeAddBody: public EmptyBody<tree t ∗,int> {
int base(tree t ∗ t) { return t−>val; }

int post(tree t ∗ t, int ∗r) { return std::accumulate(r, r + t−>children.size(), t−>val); }
};

int r = parallel recursion<int>(root, TreeAddInfo(), TreeAddBody(), auto partitioner());

Listing 2: Reduction on a tree using parallel recursion

as those nodes whose vector of children is empty. These nodes just contribute
their stored value val to the reduction, as shown in the member function base

of the body object, whose class is TreeAddBody. The num children member
function of the info object provides the correct variable number of children of
each node, each child being obtained by means of the child member function
of the same object. Finally, the post member function of the body object uses
the std::accumulate function to add the values returned by all the children
of the node together with the value val stored in the node itself. The last line
in Listing 2 illustrates the invocation of the skeleton with the root of the tree
and applying an auto partitioner to take the decisions on parallelization.

3.2 Implementation and limitations

The implementation of parallel recursion heavily relies on templates and
static parallelism, which are resolved at compile time, in order to avoid the
costs associated to runtime polymorphism. As for parallelism, it uses the low
level API of the Intel TBB [22] to build and synchronize the parallel tasks.
This also means that the library relies on the TBB scheduler to balance the
workload among the threads, which is achieved by means of work-stealing.

At the top level, the skeleton proceeds generating new parallel tasks to solve
the children subproblems of each non-base problem as long as the partitioner
in use decides that parallelism must be applied. However, when the partitioner
decides that a given problem must be solved sequentially, the skeleton assigns
the solution of that problem to a purely sequential highly optimized code
that relies on the info and body objects to perform the computation, but
which never checks again the possibility of creating new parallel tasks within
the resolution of that problem. As a result, the task graph generated by the

82 Millán A. Mart́ınez et al.

skeleton takes the form of a tree that grows with new tasks as long as the
partitioner in use recommends doing so, and which once this is not the case,
reaches leaf tasks. Each leaf task recursively solves in a sequential fashion an
independent D&C problem.

The aforementioned strategy is very successful in many situations, but it
presents two main limitations. First, there is the issue of load balancing. As
seen in [10], the skeleton can provide good performance for some unbalanced
problems by generating more tasks than threads and letting the TBB sched-
uler balance them. However, sometimes this does not work well because the
unbalance among tasks generated at high levels of the D&C tree may be too
big to keep all the threads busy, while generating parallel tasks down to the
level needed to attain this balance could be very detrimental to performance.
In addition, even if we wished to assert as much control as possible by means
of a custom partitioner, it might not be possible to estimate whether it is in-
teresting or not to parallelize a given problem with the information available.

The second limitation is related to the implementation of the serial com-
putations performed by the skeleton when it decides not to parallelize a D&C
problem. They follow a very efficient and simple recursive strategy that relies
on stack memory for the recursive calls. Unfortunately, stack memory is much
more limited than other kinds of memory, and if this recursion is very deep it
can be easily exhausted, breaking the program. As in the case of the load bal-
ancing problem, this can be solved by reducing the size of the sequential tasks
applying parallelism up to deeper levels in the D&C tree. However, often this
does not solve the stack memory problems either, as this limitation also exists
in the case of the parallel computations of this skeleton. The reason is that the
frame in which a parallelized problem is considered remains in the stack until
the lower level tasks it generates finish and return their results, which also
implies continuous growth in the depth of the stack memory as deeper and
smaller parallel tasks are generated. Furthermore, the excessive parallelization
may have important additional costs due to the overheads associated to the
creation, scheduling and synchronization of the tasks.

4 A new D&C algorithm template

Given the nature of the problems of the parallel recursion skeleton de-
scribed in Section 3.2, our first approach to solve them was to try to mini-
mize the changes required following an incremental strategy. Namely, we de-
signed new partitioners that allowed spawning new parallel tasks from tasks
that such partitioners had decided to run sequentially at some point, some-
thing that the original skeleton did not support. Unfortunately, the results
obtained were unsatisfactory, which led us to consider a complete redesign
and reimplementation in a form of a new algorithm template which we call
parallel stack recursion. We now discuss in detail the strategy followed by
this parallel skeleton together with its interface and a very useful auto-tuning
feature for its most critical parameter.

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 83

4.1 Implementation strategy

We observed that the cost of the creation and management of parallel tasks
and the decision on when to build them in order to balance the workload
could imply large overheads, particularly in algorithms in which the core com-
putation was relatively lightweight. As a result we decided to build our new
algorithm template so that it would have a single parallel task per thread,
and to base the load balancing on the ability of such tasks to steal pending
work from other tasks, which should be cheaper. This largely simplified the
structure of the parallel execution, in particular avoiding the requirement of
parallel recursion to perform an efficient scheduling of parallel tasks, which
this skeleton obtained by relying on the excellent scheduler of the Intel TBB
framework. As a result, the parallelization of parallel stack recursion was
just based on the C++11 facilities for multithreading, thus eliminating the
dependency on Intel TBB. Since the skeleton uses a single task per thread,
both words will be used interchangeably in what follows.

In order to enable the load balancing among the threads, the library could
simply rely on a shared queue where all the threads could place and retrieve
problems to process such as the one proposed in [18]. However that strategy
implies the need for synchronizations on the queue every time a thread requests
a new problem to process or tries to insert new pending problems. For this
reason we designed a data structure in which each thread has its own container
of pending problems, where it places the new problems it generates and from
which it obtains the problems it processes. The load balancing is achieved in
this structure by stealing pending work from the containers of other threads
when the current thread cannot find work in its own container. Such steals of
course must be performed with proper synchronization on the container of the
victim thread.

The use of the proposed containers to keep the problems also solves the
second issue of parallel recursion related to the limitation of the stack
memory, as the data of our containers are stored in the heap and there are no
longer recursive calls within the skeleton. Rather, each thread works in a simple
cycle in which, once a new problem is obtained, it is processed in a single step
if it is a base case, while non base problems can be also subject to an optional
processing, after which they are decomposed in children problems that are
stored in the container to be considered later. In either case, the problem is
then deallocated and the skeleton proceeds to obtain a new problem to process.

As for the problem containers, given the recursive nature of D&C algo-
rithms, and in order to enhance locality, using stacks seemed the most natural
and performant option. As a result of this selection, since each thread will
be always pushing and popping problems from the top of its stack, it was
clear that work stolen by another thread should be taken from the opposite
part of the stack, namely its bottom. Despite this adequate design decision, if
work stealing could happen at any moment in the private stack of a thread,
this thread would always have to use synchronization mechanisms whenever
it accessed its stack in order to make sure it suffered no conflicts with work

84 Millán A. Mart́ınez et al.

steals. This would clearly strongly degrade the performance with respect to
unsynchronized accesses. In order to avoid this problem, the work stack of
each thread is divided in two dynamic sections:

– At the top we find the local section, which is exclusively reserved for the
owner thread. Since it is only accessible by its owner, work cannot be stolen
form this portion of the stack and the owner thread can therefore push and
pop problems in an unsynchronized fashion there. Each thread is expected
to work the vast majority of the time on this portion of the stack.

– Just below there is the shared section, from which other threads can steal
work when they run out of it, and in particular, from the bottom of this
section. As a result, and as its name implies, accesses to this region must
always be synchronized.

While steals could always take place with a granularity of a single problem,
there are two reasons why in general it is more beneficial to steal chunks of
several problems. The first one is that the computing cost associated to a single
problem may be too small, and thus stealing only one problem will often be
insufficient to keep reasonably busy doing useful work the thread that initiated
the process. The second one is that each steal has non negligible costs, as it
involves not only examining the stacks of several threads until finding one
with stealable problems in the shared section, but also locking the victim
stack and transferring the stolen problems from it to the destination stack.
It is therefore desirable to amortize this cost among several stolen problems.
For these reasons our skeleton supports a parameter called chunkSize that
controls the number of problems stolen in a steal process. This way, once the
user defines this variable, a thread will only attempt to steal work from another
thread when the shared section of its stack has at least chunkSize elements,
and that will be the amount of problems stolen.

Our library also uses the chunk size to decide when to migrate work between
the local and the shared sections of a stack. This way, when a local section has
a size s of at least two chunk sizes, (bs/chunkSizec−1)×chunkSize elements
of the bottom of the local section are moved to the shared section. Conversely,
if a local section becomes empty, the associated thread checks whether the
shared section has elements. If this is the case, the chunkSize problems at the
top of the shared section (notice that the size of the shared section is always
a multiple of chunkSize), and thus just next to the just emptied local section,
are moved to this latter section. If on the contrary the shared section has
no data, the thread will try to steal work, namely chunkSize problems, from
another stack. The data movements between –always consecutive– sections of
the same stack are very cheap because, beyond the required synchronization,
as they always affect the shared section, they do not imply any actual data
movement, but rather a modification of pointers that indicate the limits of the
sections on the stack.

A final issue to consider is what to do when a thread cannot find work
to steal from any other thread. In this case, it spinlocks, waiting for a signal
that is activated each time that any thread releases a chunk to its shared

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 85

section. At that point, the thread retries the steal process. If at any time it
is detected that all threads are in the spinlock waiting for work, this means
that all the problems have already been processed and the execution of the
algorithm finishes.

4.2 Interface

One of the aims in the design of parallel stack recursion was to minimize the
changes in its interface so that it were as similar as possible to that of par-
allel recursion. Indeed the new algorithm template can use exactly the same
info objects and with the same semantics as the original parallel recursion al-
gorithm. There are some changes however in the body and partitioner objects
supported, which we now explain in turn.

4.2.1 Body object

Given the implementation described in Section 4.1, a problem is destroyed as
soon as its children are generated, which makes it impossible to use the post

member function described in Section 3.1. It would have been possible to use
still that interface, at the cost of more memory and CPU consumption, by
storing somewhere subdivided problems until all their subproblems are pro-
cessed, and by adding in the internal data structures of the library components
to associate each problem with its subproblems and their solutions. However,
when we analyzed the highly unbalanced problems for which the new skeleton
was useful, we found that the reduction operations of their D&C algorithms
were not only associative and commutative, but also that we could not find
situations in which it were necessary to process together a problem with the
solution of its subproblems. Therefore, although it would have been perfectly
possible to use exactly the same body objects as parallel recursion, for effi-
ciency reasons we propose a new post function that covers all the problems
we found and is in fact easier to write than the original one. Its signature is

void post(const S& local result, S& global result)

where S is the type of the results, local result is a partial result such as
the one obtained by processing a base problem by means of the base member
function, and global result is the global result with which the local result
must be reduced. A restriction with this design is that while with the original
post function the non base problems could contribute to the computation of
the global result, this is impossible now. The reason is that since partial results
are only obtained from the base functions applied to base problems and their
reductions performed by post invocations, the intermediate nodes of the tree
have no mechanism to contribute to the global result beyond the results of its
children. While this is enough in many problems, whose results are obtained
by combining only the results obtained at the leaves of the D&C recursion
tree, in some algorithms the internal nodes may also have a contribution to
the result. For this reason, the body objects of our skeleton support a

86 Millán A. Mart́ınez et al.

struct NewTreeAddBody: public EmptyBody<tree t ∗,int, true> {
int base(tree t ∗ t) { return t−>val; }

void post(int local, int& global) { global += local; }
};

int r = parallel stack recursion<int>(root, TreeAddInfo(), NewTreeAddBody());

Listing 3: Reduction on a tree using parallel stack recursion

S non base(const T& t)

member function that computes a partial result from a non base node t. The
EmptyBody template introduced in Section 3.1 provides a default implemen-
tation of this function that just invokes the base member function. Finally,
since only some problems benefit from the non base function, the EmptyBody

template now supports a third optional argument which is a boolean that
indicates whether this function should be used, when true, or not, when false.

Given the explanations above, the problem expressed in Listing 2 using
parallel recursion can be rewritten using parallel stack recursion as
shown in Listing 3. The listing does not include the TreeAddInfo class because
it is identical. As for the body class, since the internal nodes of this D&C
recursion tree also contribute to the result, it derives from an instantiation
of the EmptyBody class template whose third argument is true. The member
function non base is not implemented though, as its default implementation
relies on the base member function, which suffices in this case, as both base
and non base nodes contribute their val value to the global result. Altogether
we can see that the interface is very similar and somewhat simpler than that
of parallel recursion.

4.2.2 Partitioner

The second change reflected in the interface pertains to the partitioner.
In parallel recursion this object decides when to switch from parallel
computation, by generating and synchronizing new parallel tasks, to se-
quential computation, by entering a sequential recursive computation. In
parallel stack recursion however, there is always a single task per thread
that iteratively works on its container stack, sometimes stealing work from
other stacks. Therefore the role of the partitioner was redefined. Namely, in
this skeleton it chooses whether a given problem taken from the stack must
be processed using the aforementioned strategy based on dynamic stacks de-
scribed up to this point or, on the contrary, it must be solved by means of a
recursive sequential computation unrelated to the stack container analogous
to those offered by parallel recursion. The second alternative means that

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 87

all the computations are directly performed in the thread that took the prob-
lem from its stack, making impossible the stealing of portions of this D&C
recursion tree by other threads. It has the advantage however that the com-
putation can be faster because every interaction with the container stack is
avoided and replaced with a direct optimized recursive execution that relies
on the stack memory of the thread. This can be particularly advantageous for
problems whose computations are very simple.

In parallel stack recursion, the simple partitioner gives place to the
default behavior that relies on the container stacks for all the processing, while
the custom partitioner allows to programmatically choose between the default
behavior and the optimized sequential resolution for every problem taken from
the stack. This partitioner must be used with caution, since it can cause the
same problems of unbalance and excessive stack memory usage that the new
skeleton intends to avoid.

Regarding the automatic partitioner, we must remember that the effort
to develop this new skeleton derives from the impossibility to find adequate
work decompositions in terms of overhead incurred and load balancing in the
original skeleton for very irregular problems. As a result, it seemed of little
use to support any automatic partitioner in the new skeleton, since there are
no simple heuristics that allow to obtain good performance in the irregular
unbalanced problems it is oriented to. This is why we can notice that Listing 3
does not use the automatic partitioner used in Listing 2.

4.3 Chunk size auto-tuning

As we have seen, our skeleton only introduces one quantitative parameter,
called chunkSize, which controls the granularity of the steals among threads as
well as the movements between the sections of a stack. This is one of the most
important parameters that influences performance. Usually, a program has a
set of consecutive chunk sizes that provide good performance and, as one moves
away from these values, the performance begins to decrease, sometimes very
quickly. The reason is that if the chunk size is too small, the threads consume
too much time performing continuous steals, while if it is too large, there are
fewer steals and some threads remain idle for too long. Unfortunately, there is
no a universal value for this parameter that guarantees good performance for
all cases, as the best value depends on many factors such as the type of D&C
problem, its implementation, and even on the processor architecture where the
execution is performed.

Figure 1 illustrates the comments we have just made by representing the
performance of the benchmarks used in our evaluation in Section 5 when they
are parallelized using different chunk sizes for parallel stack recursion.
The performance is measured as the speedup achieved with respect to an op-
timized sequential execution when running each problem using 24 threads, i.e.
one per core, in the system used in our experiments, also described in Sec-
tion 5, and a simple partitioner. We can see that the performance is basically

88 Millán A. Mart́ınez et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

2

4

6

8

10

12

14

16

18

20

22

24

ChunkSize

S
p

e
e

d
u

p

uts-T3XXL uts-T2XL NQueens fib

Fig. 1: Performance of several benchmarks in a 24 core system using the
parallel stack recursion library with the simple partitioner as a function
of the chunkSize.

Table 1: Benchmarks used. n stands for nodes and h for heights.

Name Problem Size Seq. Time

uts-T3XXL Binomial tree, 2793M n, h 99049 519.867 s
uts-T2XL Geometric [cyclic branch factor] tree, 1495M n, h 104 457.092 s
N Queens 16 x 16 board 178.696 s
fib 54st Fibonacci number 332.491 s

a concave downward curve (inverted U shape) with respect to the chunk size
because of the aforementioned problems when the chunks too large or too
small. Interestingly, while benchmarks such as fib present a very limited num-
ber of chunk sizes that provide good performance, others reach near optimal
performance for a large range of values.

Given the importance of this parameter and the difficulty to predict a priori
a good value for it, users should perform tests in order to choose a reasonable
value for their executions. While doing this manually is not particularly diffi-
cult, it is tedious and it represents additional work that can be automated. For
this reason, another contribution of our new library is an auto-tuning frame-
work that automatically searches for the best chunk size for a given problem
and environment. The framework allows to control the search process, for ex-
ample, the amount of time of the search or the size of the number of tests.

5 Evaluation

Our evaluation relies on the benchmarks described in Table 1, which includes
their sequential runtime in the system used in the experiments. The uts (Un-
balanced Tree Search [21]) benchmark processes unbalanced trees of different
shapes and sizes. The two main types of trees it suports are binomial and

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 89

geometric. A binomial tree is an optimal adversary for load balancing strate-
gies, since there is no advantage to be earned by choosing to move one node
over another for load balance: the expected work at all nodes is identical. In
geometric trees however the expected size of the subtree rooted at a node in-
creases with proximity to the root. The N Queens benchmark solves the N
Queens puzzle problem, which computes on how may ways can n chess queens
be placed on an n× n chessboard so that no two queens threaten each other.
Finally, fib implements the recursive algorithm to compute the n-th Fibonacci
number. Although this is an inefficient method, it is often used in the literature
of D&C and unbalanced algorithms. The enormous simplicity of its computa-
tions is particularly interesting when evaluating a parallel skeleton like ours,
since it is in this kind of algorithm where the overheads of the library can be
more clearly observed.

We will first analyze the performance of the skeleton, which will be fol-
lowed by a study on the programmability advantages it offers. In all cases, it
will be compared to the sequential version, a version developed using OpenMP,
and another one based on the parallel recursion algorithm template. While
other approaches could not be compared for space reasons, it must be noted
that parallel recursion was successfully compared to other implementa-
tions in the single node experiments in [11], thus providing an approximate
indirect comparison to our new proposal.

5.1 Performance evaluation

All the measurements were taken in a server with 128 GB of memory and two
2.5 GHz Intel Xeon E5-2680v3 with 12 cores each, totaling 24 cores. The codes
were compiled with g++ 6.4.0 and the optimization level O3. As we will see,
we measured the performance when using 6, 12 and 24 cores, always using
a single thread per core. We measured separately the performance obtained
using the different kinds of partitioners supported by each skeleton, tuning the
user-provided function used by the custom partitioner separately for the two
skeletons. The parallel stack recursion chunk size used was obtained by
means of a separate auto-tuning configured to use just 10% of the runtime of
the sequential version. This time is not included in the performance measure-
ments. Further tests proved that in our experiments the performance of the
chunk size obtained following this strategy was always almost identical to that
of the optimal chunk size.

In all the figures, the benchmarks using parallel stack recursion will
be labeled as spar, those using parallel recursion will be known as par, and
those that are implemented with OpenMP will be labeled as omp.

The uts benchmark allows generating unbalanced trees that follow different
distributions and have different sizes and shapes depending on the arguments
to the binary. The T3XXL tree is predefined in the uts distribution package,
while T2XL has been added as example of a geometric tree with a circular

90 Millán A. Mart́ınez et al.

6 threads 12 threads 24 threads
0

2

4

6

8

10

12

14

16

18

20

22

24

S
p

e
e
d

u
p

spar (partitioner: simple)
OpenMP

Fig. 2: Performance results of uts-T3XXL benchmarks

factor branch, its uts parameters being -t 1 -a 2 -d 26 -b 7 -r 220. The
performance obtained on these trees is now discussed in turn.

We consider that T3XXL is the most challenging benchmark tried, since
this binomial tree has a very large depth and extreme imbalance. Figure 2
shows the speedup achieved by our skeleton and the standard OpenMP
implementation of the benchmark for 6, 12 and 24 threads, taking as
baseline the standard sequential implementation. All the executions with
parallel recursion failed with a stack overflow error no matter the par-
titioner used, further confirming the interest of our new proposal. The figure
only shows the results of parallel stack recursion with a simple partitioner
because we were unable to find a custom partitioner that performed better. As
we can see, our skeleton, despite strongly reducing the complexity of the code
with respect to the OpenMP implementation as shown in Section 5.2, system-
atically offers between 6.5% and 7.1% better performance than the manually
optimized OpenMP implementation.

It deserves to be mentioned that in experiments using smaller binomial
trees so that parallel recursion would not break, it consistently offered
clearly worse performance than parallel stack recursion and OpenMP.

T2XL is a geometric tree with a cyclic branch factor, which makes some-
what difficult to balance its processing. As we can see in Figure 3, the use
of the simple partitioner in parallel stack recursion is enough to obtain
the best performance, there being no advantage in the use of a custom parti-
tioner. The speedups obtained by parallel recursion are always lower, and
it is particularly interesting that the use of the automatic partitioner provides
very bad results for this benchmark. As for OpenMP, despite the high pro-
gramming cost of developing by hand this optimized code, it performs about
3% slower than our skeleton.

Figure 4 shows the results of N Queens. The larger complexity of the com-
putations of this benchmark allows the simple partitioner to obtain quite good
results, although usually worse than those of OpenMP. The exception hap-
pens at 24 threads, where fact that our new proposal always performs slightly

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 91

spar par omp
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

S
p

e
e
d

u
p

partitioner: simple
partitioner: custom
partitioner: automatic
OpenMP

(a) 6 threads

spar par omp
0
1
2
3
4
5
6
7
8
9

10
11
12

S
p

e
e
d

u
p

partitioner: simple
partitioner: custom
partitioner: automatic
OpenMP

(b) 12 threads

spar par omp
0
2
4
6
8

10
12
14
16
18
20
22
24

S
p

e
e
d

u
p

partitioner: simple
partitioner: custom
partitioner: automatic
OpenMP

(c) 24 threads

Fig. 3: Performance results of uts-T2XL benchmarks

spar par omp
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

S
p

e
e
d

u
p

partitioner: simple
partitioner: custom
partitioner: automatic
OpenMP

(a) 6 threads

spar par omp
0
1
2
3
4
5
6
7
8
9

10
11
12

S
p

e
e
d

u
p

partitioner: simple
partitioner: custom
partitioner: automatic
OpenMP

(b) 12 threads

spar par omp
0
2
4
6
8

10
12
14
16
18
20
22
24

S
p

e
e
d

u
p

partitioner: simple
partitioner: custom
partitioner: automatic
OpenMP

(c) 24 threads

Fig. 4: Performance results of N Queens benchmarks

better than parallel recursion allows it to reach the same performance
as OpenMP. As expected, both skeletons improve their performance when a
tuned custom partitioner is used, our new proposal systematically offering bet-
ter performance than the other implementations. This way, it is consistently
∼ 4.8% faster than parallel recursion and ∼ 4.4% faster than OpenMP,
except for 24 threads, where its advantage grows to 9%.

Figure 5 shows the performance of all the parallel implementations of fib
developed. As mentioned before, this is a particularly challenging benchmark
given the extremely lightweight nature of all the individual functions that
conform it as a D&C algorithm. This is clearly reflected in the poor perfor-
mance of both skeletons when a simple partitioner is used, as the consider-
ation of every single Fibonacci number computation as a separate task to
be managed leads to much overhead. Our new skeleton is considerably more
efficient than parallel recursion in this situation, being in fact 22 times
faster when 24 threads are used, and reaching a performance similar to that

92 Millán A. Mart́ınez et al.

spar par omp
0

1

2

3

4

5

6

7

8

9

10

11

S
p

e
e
d

u
p

partitioner: simple
partitioner: custom
partitioner: automatic
OpenMP

(a) 6 threads

spar par omp
0

2

4

6

8

10

12

14

16

18

20

22

S
p

e
e
d

u
p

partitioner: simple
partitioner: custom
partitioner: automatic
OpenMP

(b) 12 threads

spar par omp
0

4

8

12

16

20

24

28

32

36

40

44

S
p

e
e
d

u
p

partitioner: simple
partitioner: custom
partitioner: automatic
OpenMP

(c) 24 threads

Fig. 5: Performance results of fib benchmarks

of OpenMP. When smarter partitioners that perform as sequential computa-
tions the calculations of Fibonacci numbers under some threshold are used,
the performance of both skeletons grows considerably. In this scenario our
new proposal also consistently outperforms parallel recursion across all
the parallel executions, although only for a small margin that decreases as the
number of threads grow. Namely, the speedup of the new skeleton with respect
to parallel recursion goes from 6.2% for 6 threads to 2.5% for 24.

As for the absolute performance, both skeletons achieve superlinear
speedups, which are in addition much higher than that of the OpenMP ver-
sion, even when it also applies the strategy of computing as sequential tasks
the Fibonacci numbers below a threshold for which we searched for the optimal
value. Both behaviors are related to the fact, already observed and discussed
in [11], that the object code that the compiler generates from our skeleton
is much more efficient than the one it generates from the typical recursive
implementation used by the sequential and OpenMP versions.

5.2 Programmability comparison

The best approach to measure and compare the programmability of different
options is probably to rely on the observations and results from a group of
programmers with a similar degree of expertise when trying to apply them.
This is seldom possible, thus, our study relies on three approximate metrics of
this kind. The first one is the number of source lines of code (SLOC) excluding
comments and blank lines. Its value strongly depends on the programming
style used and lines can widely vary in terms of complexity. A more precise
metric is the Halstead programming effort [13], which estimates the complexity
of the program through a formula that takes into account the number of unique
operands, unique operators, total operands and total operators found in the
code. The last metric computed is the cyclomatic complexity [20], defined as V
= P + 1, where P is the number of predicates or decision points in a program.

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 93

SLOC Halstead eff cyclomatic c.
-50

0

50

100

150

in
c
re

a
s
e
 o

v
e
r

S
e
q
u
e
n
ti
a
l
(%

)

OpenMP

parallel_recursion

parallel_stack_recursion

(a) uts benchmark

SLOC Halstead eff cyclomatic c.
0

100

200

300

400

500

in
c
re

a
s
e
 o

v
e
r

S
e
q
u
e
n
ti
a
l
(%

)

OpenMP

parallel_recursion

parallel_stack_recursion

(b) N Queens benchmark

SLOC Halstead eff cyclomatic c.
0

200

400

600

in
c
re

a
s
e
 o

v
e
r

S
e
q
u
e
n
ti
a
l
(%

)

OpenMP

parallel_recursion

parallel_stack_recursion

(c) fib benchmark

Fig. 6: Growth of the programmability metrics of the parallel implementations
with respect to the sequential one.

Figure 6, shows the relative growth of all the metrics in the parallel versions
with respect to the sequential counterpart. The measurements were performed
in all the cases on the whole application. As expected, given their similar API
and semantics, the metrics are very similar for the two skeletons considered,
which is interesting given the more complex behavior and better performance
of our new proposal. The differences come basically from the changes in the
post and non base functions, although the latter one is only required in uts.

It is interesting that, despite relying on compiler directives, whose API is
usually terser than that of libraries, the OpenMP version yields consistently
worse programmability metrics than the skeletons. This way, depending on
the metric used, the OpenMP version requires between 83% and 192% for
more effort than parallel stack recursion for uts, between 28% and 72%
for N Queens and between 14% and 25% for fib. An important reason for this
in the case of the last two benchmarks is the need to write two versions of
the algorithm in order to obtain the best performance, something which was
already observed in [11]. The first version is the one invoked by the user and it
contains the OpenMP directives as well as tests to decide whether the solution
of a problem should rely on task parallelism or be performed as a sequential
task. The second implementation is purely sequential and it takes care of
these latter tasks avoiding any overhead associated to the parallelization. In
the case of uts the sequential and OpenMP versions are much more complex
than the ones based on skeletons because they have to explicitly create and
manage data structures to perform the processing of the trees than in the
skeleton implementations are implicitly provided by the library runtime. It is
also interesting that sometimes, despite the better performance observed in
Section 5.1, our skeleton offers slightly better programmability metrics than
parallel recursion. This is mostly associated to the simpler post method
of parallel stack recursion, which by being restricted to a single element,
avoids loops and computations on numbers of children that are required in the
analogous method of parallel recursion.

94 Millán A. Mart́ınez et al.

6 Conclusions

Divide-and-conquer is a very important pattern of parallelism that appears
in many problems and can be used to implement other very relevant pat-
terns. This makes very relevant and useful the development of tools that
allow the easy and optimized implementation of this pattern, one of the
best solutions being algorithmic skeletons. In this paper we have introduced
parallel stack recursion, a C++ algorithmic skeleton that implements this
pattern in shared memory with a focus on problems with large levels of re-
cursion and/or high degree of unbalance. While our proposal is a complete
redesign of parallel recursion, a highly optimized skeleton for the same
pattern, it manages to keep an almost identical interface.

Our evaluation shows that indeed the new skeleton can be applied in situ-
ations in which parallel recursion breaks due to stack memory limitations,
which justifies by itself its development. Furthermore, the new skeleton is on
average 10.4% faster than parallel recursion in the benchmarks that the
latter one supports, and 4.9% faster than optimized OpenMP implementa-
tions if we disregard the fib benchmark, in which the compiler gives an unfair
advantage to our skeletons. The maximum speedups however can go up to
22% when compared to parallel recursion and 9% when compared to the
OpenMP baseline, again discarding fib. Despite these performance advantages,
the evaluation shows that the development effort associated to our new pro-
posal is consistently similar to that of parallel recursion and noticeably
better than that of OpenMP. This latter observation is particularly true in
the case of our largest benchmark, uts, in which versions not based on a skele-
ton have to manually define and manage data structures in order to support
the highly irregular processing and the load balancing it needs to attain good
performance.

As future work we plan to develop a version of this skeleton optimized
for systems such as current multi-core clusters, whose optimal exploitation
involves the usage of distributed and shared memory programming paradigms.

Acknowledgements

This research was supported by the Ministry of Economy and Competitiveness
of Spain and FEDER funds (80%) of the EU (TIN2016-75845-P, TIN2016-
76373-P and the predoctoral Grant of Millán Álvarez Ref. BES-2017-081320),
and by the Government of Galicia (Xunta de Galicia, Spain) co-founded by
the European Regional Development Fund (ERDF) under the Consolidation
Programme of Competitive Reference Groups (ED431C 2017/04 and ED431C
2018/19) as well as under Xunta de Galicia and FEDER funds of the EU (Cen-
tro de Investigación de Galicia accreditation 2019–2022, refs. ED431G2019/01
and ED431G2019/04). We also acknowledge the Centro de Supercomputación
de Galicia (CESGA) for the usage of its supercomputers.

A Divide-and-conquer Parallel Skeleton for Unbalanced and Deep Problems 95

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley (1974)

2. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: FastFlow: High-Level and
Efficient Streaming on Multicore, chap. 13, pp. 261–280. John Wiley & Sons, Ltd (2017)

3. Aldinucci, M., Danelutto, M., Teti, P.: An advanced environment supporting structured
parallel programming in Java. Future Gener. Comput. Syst. 19(5), 611–626 (2003)

4. Board, O.A.R.: OpenMP application program interface version 5.0 (2018)
5. Ciechanowicz, P., Kuchen, H.: Enhancing Muesli’s data parallel skeletons for multi-core

computer architectures. In: 12th IEEE Intl. Conf. on High Performance Computing and
Communications, (HPCC 2010), pp. 108–113. IEEE (2010)

6. Cole, M.: Algorithmic skeletons: structured management of parallel computation. MIT
Press (1989)

7. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming. Parallel Computing 30(3), 389–406 (2004)

8. Danelutto, M., De Matteis, T., Mencagli, G., Torquati, M.: A divide-and-conquer par-
allel pattern implementation for multicores. In: Proc. 3rd Intl. Workshop on Software
Engineering for Parallel Systems, SEPS 2016, pp. 10–19. ACM (2016)

9. Falcou, J., Sérot, J., Chateau, T., Lapresté, J.T.: Quaff: efficient C++ design for parallel
skeletons. Parallel Computing 32(7-8), 604–615 (2006)

10. González, C.H., Fraguela, B.B.: A generic algorithm template for divide-and-conquer
in multicore systems. In: Proc. 12th IEEE Intl. Conf. on High Performance Computing
and Communications, (HPCC 2010), pp. 79–88. IEEE (2010)

11. González, C.H., Fraguela, B.B.: A general and efficient divide-and-conquer algorithm
framework for multi-core clusters. Cluster Computing 20(3), 2605–2626 (2017)

12. Gorlatch, S., Cole, M.: Parallel skeletons. In: Encyclopedia of Parallel Computing, pp.
1417–1422. Springer (2011)

13. Halstead, M.H.: Elements of Software Science. Elsevier (1977)
14. Hosseini Rad, M., Patooghy, A., Fazeli, M.: An efficient programming skeleton for clus-

ters of multi-core processors. Int. J. Parallel Program. p. 1094–1109 (2018)
15. Karasawa, Y., Iwasaki, H.: A parallel skeleton library for multi-core clusters. In: Proc.

2009 Intl. Conf. on Parallel Processing (ICPP’09), pp. 84–91. IEEE (2009)
16. von Koch, T.J.K.E., Manilov, S., Vasiladiotis, C., Cole, M., Franke, B.: Towards a com-

piler analysis for parallel algorithmic skeletons. In: Proc. 27th Intl. Conf. on Compiler
Construction, CC 2018, p. 174–184 (2018)

17. Kozsik, T., Tóth, M., Bozó, I.d.: Free the conqueror! refactoring divide-and-conquer
functions. Future Gener. Comput. Syst. 79(P2), 687–699 (2018)

18. Leyton, M., Piquer, J.M.: Skandium: Multi-core programming with algorithmic skele-
tons. In: Proc. 18th Euromicro Conf. on Parallel, Distributed and Network-based Pro-
cessing (PDP 2010), pp. 289–296. IEEE (2010)

19. Mattson, T., Sanders, B., Massingill, B.: Patterns for parallel programming. Addison-
Wesley Professional (2004)

20. McCabe, T.J.: A Complexity Measure. IEEE Transactions on Software Engineering 2,
308–320 (1976)

21. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., Tseng, C.W.: UTS: An
unbalanced tree search benchmark. In: Languages and Compilers for Parallel Computing
(LCPC 2006), pp. 235–250. Springer Berlin Heidelberg (2006)

22. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism. O’Reilly (2007)

13th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2020)
Porto, Portugal
July 9-10, 2020

High-Level Parallel Ant Colony Optimization with
Algorithmic Skeletons

Breno A. de Melo Menezes · Nina
Herrmann · Herbert Kuchen · Fernando
Buarque de Lima Neto

Abstract Parallel implementations of swarm intelligence algorithms such as
the Ant Colony Optimization (ACO) have been widely used to shorten the
execution time when solving complex optimization problems. When aiming
for a GPU environment, developing efficient parallel versions of such algo-
rithms using CUDA can be a difficult and error-prone task even for experi-
enced programmers. To overcome this issue, the parallel programming model
of Algorithmic Skeletons simplifies parallel programs by abstracting from low-
level features. This is realized by defining common programming patterns (e.g.
map, fold and zip) that later on will be converted to efficient parallel code.
This exempts the programmer from low-level programming aspects. In this
paper, we investigate how algorithmic skeletons in the form of a programming
library (namely Musket) can cope with the development of a parallel imple-
mentation of ACO and how that compares to low-level implementations. Our
experimental results show that Musket suits the development of ACO. Besides
making it easier for the programmer to deal with the parallelization aspects,
Musket generates high performance code with similar execution times when
compared to low-level implementations.

Keywords Algorithmic Skeletons · Ant Colony Optimization · High
Performance Computing

B.A. de Melo Menezes, N. Herrmann, H. Kuchen
University of Muesnter. Leonardo-Campus 3. 48149 Muenster - Germany
Tel.: +49 251 83-38267
E-mail: {breno.menezes,nina.herrmann,kuchen}@uni-muenster.de

F. Buarque de Lima Neto
University of Pernambuco. Rua Benfica, 455. Recife, 50720-001 - Brazil
Tel.: +55 (81) 3184-7548
E-mail: fbln@ecomp.poli.br

High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons 97

1 Introduction

Nature inspired metaheuristics have been widely used to solve complex op-
timization problems [1]. When tackling combinatorial problems, Ant Colony
Optimization (ACO) is one of the best known algorithms [2]. Initially proposed
by Dorigo, it is inspired by the social behavior of ant colonies when searching
for new sources of food and their ability of finding the shortest path between
the colony and the food [3]. ACO was initially created to solve problems such
as the Traveling Salesman Problem (TSP), achieving satisfactory results.

ACO has a higher computational cost when compared to other metaheuris-
tics. Considering the TSP problem, the number of nodes to be visited in the
tour increases and the number of possible tours grows exponentially as the
number of nodes in the graph gets bigger. In order to explore more of these
possibilities in the search space, more ants are needed in the colony and, there-
fore, the computational costs increase substantially. Knowing that a consid-
erable part of the computations are performed during path construction and
that the runtime might be negatively affected when tackling a bigger instance
of TSP with several ants, the application of improvements becomes mandatory
in order to run the algorithm in a reasonable amount of time without losing
the quality of the solutions.

Parallel implementations of ACO have been introduced aiming for differ-
ent high-performance hardware, such as multi-core CPUs and GPUs. Low-
level frameworks such as OpenMP, MPI and CUDA provide many tools for
programmers, assisting the development of such parallel versions of the algo-
rithm. Nevertheless, lots of skills and experience are necessary in order to come
up with highly optimized code, especially when combining these frameworks.
The tools provided by CUDA help programmers to develop parallel programs
for GPUs, even though some expertise is necessary to generate high perfor-
mance code. Programmers must be aware of data transfers, synchronization
points and many other issues that turn this task difficult and error prone.

Aiming to ease the development of such parallel algorithms, high-level par-
allelization tools provide means to profit from the use of high-performance
hardware without the issues inherent to low-level programming. For example,
some tools allow the use of fixed structures which are often used in program-
ming, known as algorithmic skeletons. Skeletons represent common operations,
such as map, zip and reduce. Those can be used in a program and will be con-
verted to parallel code. This way, the programmer’s job is to translate the
methods from the original algorithm into predefined operations available in
the high-level tool which is responsible for the parallelization.

Musket (Muenster Skeleton Tool for High-Performance Code Generation)
is a approach based on a Domain Specifcic Language (DSL) created to speed-
up the development of parallel programs [4]. By using it, programmers are
able to create code by first writing it in the DSL Musket and then converting
the program into parallel CPU or GPU code. Created as a general purpose
tool, Musket has already been applied and tested in several problems including

98 Breno A. de Melo Menezes et al.

metaheuristics, presenting promising performance results compared to other
parallelization approaches [5].

In this paper, we investigate the use of Musket to create a parallel GPU
version of ACO in order to understand and compare how it relates to a low-
level implementation in terms of performance and development complexity.
The identification of positive and negative sides of using the general purpose
structures available in Musket may also serve as a base for the future devel-
opment of the framework.

Our paper is organized as follows: The basics about ACO are displayed in
Section 2. In Section 3 we give an overview of related work. The description
of Musket and how it was applied in this work can be found in Section 4.
Experiments are detailed in Section 6 together with the results. In Section 7
we put together the conclusions of this work and point out the future work.

2 Ant Colony Optimization

ACO is a metaheuristic in which artificial ants cooperate among each other
in order to solve complex discrete optimization problems. In the case of TSP,
the objective is to find the shortest tour in a graph, starting from a random
node, visiting each node once and only once and coming back to the original
node [6, 7]. In order to solve such a problem, each ant in the colony tries to
create a tour and at the end of each iteration they share their success through
pheromone deposits. More successful ants, the ones that generated shorter
tours, deposit more pheromone on the visited edges. Pheromone is what will
attract other ants in the following iteration, helping them to generate similar
tours based on the success of ants from previous iterations.

The process described above can be divided into two steps which com-
pose the execution of ACO, namely tour construction and pheromone deposit.
During the tour construction, each ant must create a tour starting at a ran-
dom node. The decision where to go next from the current node i is done in
a probabilistic manner, taking into account the distance and the amount of
pheromone between the actual node and a candidate node. The probability is
calculated as shown in Equation 1.

pi,j =
[τi,j]

α
[ηi,j]

β

∑
lεN [τi,l]

α
[ηi,l]

β
∀jεN (1)

where α and β are the parameters used to determine the influence of
pheromone quantity and distance between the nodes over the probability, re-
spectively. τi,j is the pheromone at the edge from node i to j, ηi,j is 1/di,j ,
where di,j is the distance from node i to j. N is the set of unvisited nodes
that can follow node i. pi,j is the probability that the ant goes from node i to
j. The actual node i and visited nodes have the probability equal to zero.

Once each ant has created its tour, the fitness of each ant will be equal to
the total distance traveled. Afterwards, the pheromone update shall take place.

High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons 99

The first step is the pheromone evaporation where each edge loses a certain
quantity of pheromone according to the following assignment (Equation 2).

τi,j := (1− ρ) ∗ τi,j (2)

where, ρ ∈ [0..1] defines the evaporation rate and τi,j is the amount
of pheromone between nodes i and j. ρ is used to control the amount of
pheromone, enabling the algorithm to focus more on new trails. After the
evaporation, it is time for each ant to deposit pheromone on the tour it has
created, according to the following assignment (Equation 3):

τi,j := ∆t+ τi,j (3)

where ∆t = 1/qk, and qk is the length of the round tour of ant k. By doing
so, ants that generated shorter tours deposit more pheromone at visited edges
than the ones that generate longer tours.

This process is repeated through as many iterations as needed. Although
the pheromones are used to attract ants and help them create tours similar to
a previous successfully ones, the probabilistic way of choosing the next step
allows ants to create distinct paths and therefore generate diversity.

2.1 GPU-ACO

Aiming a GPU environment, we present here one possible implementation of
ACO in parallel using CUDA. The steps that compose the ACO algorithm as
described above are quite simple and the general process makes the algorithm
quite suitable for parallelization. Even so, extra care is required when dealing
with the same steps in a parallel way.

The CUDA framework makes it possible to run sequential instructions on
the CPU, while the computational intensive tasks can run on the GPU in par-
allel. In our approach, the whole algorithm runs on the GPU and, therefore,
operations such as routing and pheromone updates are declared as CUDA ker-
nels. One positive point about this approach is that no data transfer between
host and device is necessary along the iterations. These data transfers are per-
formed at the beginning (reading data and copying to GPU) and at the end
of the execution (retrieving results from GPU to host). A general view of the
proposed implementation is represented in Algorithm 1.

The first step of this implementation is the initialization of the structures
that compose the problem. It includes reading the data from a file that contains
the coordinates of each city present in the graph of the TSP instance and the
initialization of other variables. Afterwards, the data can be copied to the GPU
and, already on the device side, other data structures necessary to run ACO
can be created directly on the GPU, i.e. random number generators, distance
matrix, pheromone matrix and route matrix. After everything is created and
initialized properly, the algorithm can loop through its iterations and perform
the tour constructions and pheromone updates.

100 Breno A. de Melo Menezes et al.

Algorithm 1 Pseudo-code GPU-ACO of TSP
1: initialize ACO
2: copy data to Device();
3: initialize GPU
4: calculate distance kernel <<< n blocks, n threads >>> (...);
5: create random generators kernel <<< n blocks, n threads >>> (...);
6: n threads = warp size;
7: n blocks = n ants/warp size;
8: while (iterations < n iterations) do
9: tour construction kernel <<< n blocks, n threads >>> (...);

10: pheromone evaporation kernel <<< n cities, n cities >>> (...);
11: pheromone deposit kernel <<< n ants, n cities >>> (...);

12: end while
13: copy results to Host();
14: clear GPU();

The tour construction is the first step in an iteration and also the most
demanding task of ACO. In order to create a parallel version of it, we consider
the straight forward approach where each ant creates its tour independently
in a thread. The number of CUDA blocks will be determined by dividing the
number of ants in the colony by the desired number of threads per block,
meaning that it can be changed and adapted according to the necessity and
capabilities of the hardware. The simplicity to implement this approach is one
of its positive aspects. Once there is a sequential implementation of ACO, it
is quite easy to port it to CUDA using this approach.

After the tour construction phase, the pheromone update is broken down
into two different steps. The first one is the pheromone evaporation, in which
each connection in the graph loses a certain amount of pheromone as explained
before in Equation 2. In our parallel implementation, one CUDA block is
generated for each city and, inside this block, one thread is generated for each
other city in order to decrease the amount of pheromone (Listing 1).

1 __global__ void evaporation_kernel(double* c_phero) {

2 int edge_index = blockIdx.x * blockDim.x + threadIdx.x;

3 double RO = 0.5; //Evaporation rate = 50%

4

5 if(blockIdx.x != threadIdx.x){ // no edge from city_i to itself

6 c_phero[edge_index] = (1 - RO) * c_phero[edge_index];

7 }

8 }

Listing 1: Evaporation kernel

The pheromone deposit phase starts which one CUDA block assigned to
one ant in the colony. Each thread inside a block is responsible for updating an
edge visited by the ant in the tour constructed previously. As the pheromone
matrix is stored in the GPU’s global memory and it is being updated by dif-
ferent threads, racing conditions might appear. In order to overcome that, the

High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons 101

pheromone deposit is performed using CUDA’s atomic operations, guarantee-
ing the integrity of the data without losing performance.

The process is repeated for a number n of iterations. At the end, the
best results are copied to the host and the execution is ended. With such a
simple approach it is already possible to achieve a considerable speedup when
compared to sequential implementations.

3 Related Work

Low-level parallel implementations of ACO have been already investigated in
literature. The approaches include mainly the introduction of data parallelism
into the code, like in the work of Uchida et al. [8]. Other works focus on
improvements in the algorithm that would favor data parallelism. Cecilia et al.
developed a new mechanism called I-Roulette in order to enhance parallelism
during the path creation process. Furthermore, they introduce strategies for
parallelization of the pheromone update process suitable for GPU architectures
[9].

Another approach to reduce the execution time of the algorithm is to im-
prove the parallelization itself, instead of modifying the algorithm and fitting
it to the hardware. The idea is that, given ACO’s characteristics and given
how the processes are structured in a GPU, for example, different levels of par-
allelization can be used in order to make a better use of all processing power
of the hardware [10]. Also, in another work, the same authors investigate the
use of atomic operations to enhance the process of updating the pheromone
matrix [11]. The results indicate that different levels of parallelism can be use-
ful according to the size of the problem and that the use of atomic operations
can speedup the pheromone update phase.

Rieger et al. introduced Musket, a DSL for parallel programming [4]. Their
idea is to offer a language with algorithmic skeletons built in and with a syn-
tax similar to C++ in order to help programmers to write high performance
distributed parallel programs without the need of expertise in low-level frame-
works. High performance low-level code for different architectures (Multi-core
CPUs, GPUs or clusters) is generated from Musket files. The authors point
out the benefits of using a DSL compared to other high-level approaches.
Also, among some examples, the Fish School Search (FSS) metaheuristic is
used as a benchmark. Further analysis of FSS and Musket are done by Wrede
et al. [5]. Both studies show the possibility of using such general purpose tools
for the application in the metaheuristics field. The major criticism of using
high-level frameworks has been the possible loss in performance. This papers
serves to evaluate the performance of a skeleton based implementation and a
hand written implementation previously discussed [10] [11].

102 Breno A. de Melo Menezes et al.

4 Musket

Musket (Muenster Skeleton Tool for High-Performance Code Generation) is
a framework based on a DSL which enables programmers to develop parallel
applications and generate optimized code without requiring knowledge about
low-level programming languages and frameworks. For interested readers the
code can be found in a public repository [12].

The syntax of Musket is based on C++ which is widely used for high
performance computing. It was defined using the Xtext framework and it in-
cludes a parser and an editor that can be incorporated to Eclipse [13]. In this
way, programmers can use helpful resources such as syntax highlighting, code
completion and validation. Creating parallel programs in Musket is simplified
in multiple ways. Common parallel programming structures are simplified by
representing them as skeletons. Moreover, the division and allocation of data
structures to distinct processes is done by the code generator which transforms
Musket code to C++ with CUDA operations in case GPU code is generated.
Furthermore, it is totally abstracted from specifying the number of threads to
be started. Those and other advantages become more apparent by illustrating
an exemplary program (Listing 2).

A Musket program is divided into four parts, namely meta-information,
data structure declaration, user function declaration and main program dec-
laration. The meta-information block (lines 1-5) specifies for which type of
hardware code should be generated. Firstly, the platform argument distin-
guished between a program for GPUs or CPUs. In case of stating multiple
platforms multiple programs are created. For our application context only the
GPU code generator is required. Afterwards, the number of processes, cores,
and GPUs which shall be used are specified. Information about the targeted
architecture is essential to generate a distribution for data structures which is
efficient and to organize the parallel execution of the skeletons.

In Musket global data structures are declared before writing functions in
the data structure declaration block (line 7). On the one hand, for each addi-
tional data structure type which is offered, the effort for the implementation
rises. On the other hand, it is possible to include additional information for the
data structures e.g. on the data distribution (see line 7). Here, the elements of
the array are distributed among the GPUs. Available distribution modes are
dist for distributed, copy to make data structures available for all processes,
and local which is a specific form of copy where no global copy needs to be cre-
ated. Similar to the specification of arrays, matrices are created, which require
the same parameters despite having two parameters for the size, to specify the
number of rows and columns.

The user function declaration part (lines 9-11) includes custom user func-
tions which will be invoked by skeletons and then executed among the nodes
and cores available. Inside user functions programmers can make use of control
structures, such as if-else statements and for loops, moreover, a selection of
C++ library methods and external functions are available. Global structures

High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons 103

1 #config PLATFORM GPU CPU_MPMD

2 #config PROCESSES 4

3 #config CORES 24

4 #config GPUS 4

5 #config MODE release

6

7 array<int,16384,dist> a;

8

9 int double_values(int i){

10 return i + i;

11 }

12

13 main{

14 mkt::roi_start();

15 a.mapInPlace(double_values());

16 mkt::roi_end();

17 }

Listing 2: Musket Code Sample

declared in the previous section can be used either with a local index or a
global index. Moreover, local variables can be created.

In the last part, similar to C programs, a main function is declared which
defines the overall structure of the program. In the example, lines 13-17 con-
tain the main program declaration. There, general instructions of the program
must be listed using control structures, musket functions, and the paralleliza-
tion instructions in the form of algorithmic skeletons. Musket functions are
typically used functions for writing parallel programs which do not need to be
executed in parallel, for example measuring the run time and getting maxi-
mal and minimal values of data types. The example starts with starting the
time measurement. Wrapping such functions relieves the user of the framework
to think about target specific functions. In order to simplify parallelization,
Musket offers (different versions of) the Skeletons fold, map, reduce (which in
contrast to fold only accepts a selection of commonly used reduction opera-
tors), zip, gather, scatter and shift partition. For zip and map, in place and
index variants and their combinations are available. The given example dou-
bles the value of every element of the array. The implementation of the ACO
algorithm will show how those structures can also be used for more complex
programs.

The written DSL code will then be transformed into low-level code. With
each program generated (in case of multiple platforms) CMake Files and ex-
ecution scripts are generated. The generated code is not meant to be further
adjusted.

5 Our Proposal

ACO is a metaheuristic which is suitable for parallelization. Many tasks, such
as the path construction, are independent of each other and each ant is able to

104 Breno A. de Melo Menezes et al.

create its own path without the interference from other ants. Even though, the
task of creating a parallel version for it can be quite challenging. A few steps
require extra care since reduction steps are executed before performing general
calculations. For example, as shown on Equation 1, where the probability is
calculated using the product of the amount of pheromone and the distance
divided by the sum of all products. Furthermore, steps like the pheromone-
update phase include changes which shall be performed by each ant in the
colony over the pheromone matrix, which is a structure used by the whole
colony. Therefore, the programmer must be careful to avoid race conditions
and perform the right data transfers without compromising performance.

In order to overcome such difficulties, Musket is helpful. Generally, high-
level frameworks have the advantage that the user does not need expertise in
the specific area (in this context parallel programming). Musket DSL code is
also more concise than e.g. C++ code with calls to a (skeleton) framework.

However, using a DSL also has its disadvantages. The developer of the
DSL has to decided which functionalities are essential. Missing necessary func-
tionalities limit the user of the DSL. While, in contrast, including too much
functionalities increases the complexity of the code generator and confuses
inexperienced users.

In order to evaluate the usability and practicability of a high-level frame-
work for the exemplary case of the ACO algorithm, a Musket version will be
compared to a hand written version. The aspects of major interest are the
performance of the programs and the complexity of the syntax and structure
provided by the different approaches. As part of the comparison the creation
process of a program implementing the ACO algorithm in Musket will be
described, to illustrate advantages and disadvantages of using a high-level
framework.

5.1 Musket-ACO

In the following, interesting aspects of the high-level implementation of ACO
will be be discussed. It is assumed that the general process of the ACO algo-
rithm from the low-level implementation is known [10]. The implementation
of the main method is explained and supplemented with selected user func-
tions to illustrate how closely the implementation is to the original algorithm
defined in Algorithm 1.

Similar to the low-level program the high-level program first calculates the
distance for each city to each other city in the map and saves the results in a
data structure (Listing 3, line 3). This means that for example for a map of
4 cities 16 distances are calculated (including the 0 distance for itself). Those
calculations are parallelized with a map skeleton, applied to the distance data
structure. The generated code starts one thread for each calculation since the
calculations for each entry are independent of each other.

In the next step of the algorithm a fixed number of closest cities for each
city is calculated. This speeds up the route calculation in the subsequent step

High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons 105

1 main{

2 mkt::roi_start();

3 distance.mapIndexInPlace(calculate_distance());

4 city.mapIndex(calculate_iroulette());

5 for (int i = 0; i < iterations; i++){

6 antss.mapIndex(route_kernel2());

7 bestroute = d_routes_distance.reduce(min);

8 antss.mapIndex(update_best_sequence(bestroute));

9 antss.mapIndex(update_delta_phero());

10 city.mapIndex(update_phero());

11 }

12 mkt::print(distance);

13 mkt::roi_end();

14 }

Listing 3: Main Method of Musket Program

since a promising subset of close cities can be checked first. Therefore, when
searching for a possible next city not the whole data structure storing the dis-
tance to all possible cities is checked but a significantly smaller data structure
with the closest cities. For e.g. 442 cities this means that instead of select-
ing possible next cities from a data structure which has 4422 entries a data
structure of the size x ∗ 442 is checked. Depending on x which is is the fixed
number of selected cities this can significantly decrease the size of the data
structure chosen and therefore reduce the time to select promising next can-
didates. The low level implementation has used 32 cities for this purpose. For
the comparison of the programs the same value is used.

The implementation of the calculation is shown in Listing 4. The variable
IROULETE is the number of closest cities which should be calculated. Each
iteration of the for loop in line 2 calculates one entry for the closest city.
Initially, no city is selected as the next closest city (line 5). Then it is checked
whether the city already belongs to the closest cities (line 9-11), if not it is
checked whether the distance is smaller than the distance to the previous
city. After all cities have been checked, the city with the smallest distance is
written to the d iroulette data structure. Since the calculation requires to
be executed for each city, the user function is called with a map.

For calculating the routes, a map skeleton is used (Listing 3 line 6). The
algorithm is parallelized for ants, hence for each ant the map operation is
conducted. Based on the amount of pheromone deposited and on random
starting points, one ants calculates one route. Since the user function of the
route kernel is long, it is not displayed in a separate listing. For the exact
procedure of calculating one route take a look at [10].

The next step of the algorithm serves to identify connections which are
likely to be part of a short route. As ants leave pheromone on paths where
they find sources for food, connections which are used in short routes are
marked with a high amount of pheromone and connections between cities
which are rarely used are marked with a low value of pheromone. This requires
to calculate the total distance of each route and update the pheromone of each

106 Breno A. de Melo Menezes et al.

1 int calculate_iroulette(int cityindex, int value){

2 for(int i = 0 ; i< IROULETE ; i++) {

3 double citydistance = 999999.9;

4 double c_dist = 0.0;

5 int cityy = -1;

6 for(int j = 0 ;j<ncities;j++){

7 bool check = true;

8 for(int k = 0 ; k < i ; k++){

9 if(d_iroulette[cityindex * IROULETE + k] == j){

10 check = false;

11 }

12 }

13 if(cityindex != j){

14 if (check == true) {

15 c_dist = distance[(cityindex * ncities) + j];

16 if(c_dist < citydistance){

17 citydistance = c_dist;

18 cityy = j;

19 }

20 }

21 }

22 }

23 d_iroulette[cityindex * IROULETE + i] = cityy;

24 }

25 return value;

26 }

Listing 4: User function of Musket Program to calculate the closest cities

city connection based on the quality of routes they are involved in. The step
of calculating routes and updating pheromone are repeated as can be seen
in Listing 3 lines 5-11. With each iteration the result is likely to improve.
However, the effect of increasing the number of iterations on the quality of
the result is not part of our work as we discuss the applicability of high level
approaches rather than the quality of the algorithm.

The explained steps of calculating the length of the routes and updating the
pheromone according to the routes resulted in multiple skeleton calls (Listing
3 lines 7-10). First, in line 7 and 8 the best route is identified and the path of
the best route is saved. The best route is identified by using a reduce skeleton
which finds the minimum value of all route distances (line 7). Depending on
that value, firstly, the best sequence is identified with a map skeleton which
checks for the route of each ant whether it is the best route and in case it finds
the best route writes the best route to the corresponding data structure (line
9). The process of updating the pheromone had to be split in two skeletons.
This is necessary in order to assure that synchronization takes place. First,
the pheromone is updated based on all entries of possible routes. This means
that some distances between cities are updated multiple times. Only after
all updates are finished the second step of updating the pheromone can be
executed which is to build the average of the old and new value. Moreover,
extremely big or small values are removed as part of the user function in line

High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons 107

10. This is essential to prevent that ants get stuck for one route, since it has an
extremely high pheromone value, and other routes are not taken into account.

In total the implementation did not vary significantly from the original
algorithm. Only minor adjustments had to be made. The most outstanding
deviation is the implementation of finding the minimum value of the routes
and updating the pheromone. This change has the advantage that part of the
operations are executed in parallel.

6 Our Case Study

The comparison between both parallel implementations of ACO used in this
work can be done from different perspectives. As we propose the use of a high-
level parallelization, the first point to analyse is the applicability of the tool. As
mentioned in the previous section, the skeletons available in Musket suffice to
create a high-level program of ACO. Another aspect which can be discussed
is the usability of Musket. In Musket, 215 lines where needed compared to
the 374 lines of the low-level implementation. For this comparison the code
methods which read the data from files were excluded in both programs.

Most of the difference between the codes from both version comes from the
main method, since kernel calls do not have to be written in Musket. But most
importantly it is abstracted from all data transfers, which consume several
code lines in the low-level program. Moreover, it should be considered that
the lines-of-code metric is admittedly debatable since it misses to evaluate how
complex the written lines are. In addition to requiring only 57% of the lines
of code compared to the low-level program, Musket abstracts from complex
decisions such as choosing the number of threads or moving data from the CPU
to the GPU. Therefore, it could be argued that creating a Musket program does
not only require less lines of code but additionally is written faster since the
programmer does not need to think as much as in a low-level implementation
using pure CUDA.

Another aspect to be evaluated in this work is the runtime. In order to
test this aspect in both parallel implementations mentioned in this work, a
NVIDIA GeForce RTX 2080 Ti accelerator containing 4352 CUDA cores, 11
GB memory and running CUDA 7.5 was used. The programs and results are
publicly available [14].

The experiments performed in this work include instances of TSP taken
from popular repositories with different graph sizes [15,16]. The selected TSP
instances have different numbers of vertices so that the performance of low-
and high-level ACO implementations can be evaluated on various problem sizes
(Table 1). Unfortunately, the selection from the different repositories does not
grow linearly in size. While some maps are very close in size, e.g. qa194 and
d198, other maps have big differences, e.g. d1291 and pr2392.

For experimental purposes, each version was tested using different colony
sizes (1024, 2048, 4096 and 8192 ants) for all TSP instances in order to simulate
different levels of computational load. An important remark is that in this

108 Breno A. de Melo Menezes et al.

Instance dj38 qa194 d198 lin318 pcb442 rat783 pr1002 pcb1173 d1291 pr2392
vertices 38 194 198 318 442 783 1002 1173 1291 2392

Table 1 TSPLIB

work, the fitness achieved is not relevant and the focus of the analysis is rather
on the execution time. Since in essence both implementations represent the
same algorithm and just vary in the parallelization approach and both achieve
similar fitness values when using the same setup.

Aiming a fair comparison between both approaches, the execution times
registered in the experiments are denoted in seconds and represent the whole
execution of the algorithm, including the initialization process and data trans-
fers between host and GPU. The runtimes are the average of 30 runs excluding
the first runs due to the warm up of the GPU.

The results show that for the smaller problems, where less resources are
needed, both implementations present very similar, almost identical, results.
On the other hand, when more resources are needed, the low-level version
tends to scale better and provide shorter execution times. Figure 1 puts the
values beside each other graphically for an easier comparison. The values for
the last and biggest map are excluded in this graph since they impede the
readability and will be discussed afterwards.

Fig. 1 Execution times comparison

High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons 109

Intuitively, the graph underlines how close the runtime values from the
low-level program and the Musket program are. Also, as the TSP instance
increases in size, the low-level program tends to be slightly faster, especially
with higher values for the colony size.

The execution times follow a similar pattern also for the biggest problem
tackled (pr2392). Figure 2 illustrates this. This pattern appears in all test
cases and is directly connected to how the programs are organized. In the
low-level version, the operations are executed specifically for a certain task,
against general purpose operations present in the Musket program.

Fig. 2 Execution times for pr2392

Table 2 shows the overall execution times for both parallel ACO imple-
mentations considering the different problems and setups.

GeForce RTX 2080 Ti
1024 2048 4096 8192

Problem LL Musket LL Musket LL Musket LL Musket
dji38 0.103 0.186 0.106 0.189 0.107 0.192 0.158 0.199
cat194 0.890 0.782 0.896 0.797 1.022 0.938 1.742 1.789
d198 0.906 0.852 0.914 0.861 1.037 1.001 1.784 1.804
lin318 2.217 2.103 2.250 2.103 2.726 2.665 6.175 6.261
pcb442 3.711 3.464 3.783 3.474 5.022 4.961 14.318 14.224
rat783 13.365 12.870 13.766 13.621 24.651 25.191 57.208 56.407
pr1002 25.409 25.529 26.307 26.116 43.194 43.657 91.539 93.51
pcb1173 34.680 34.201 39.201 40.23 70.605 72.321 151.416 158.965
d1291 45.37 46.744 48.832 51.306 87.808 91.888 182.741 197.17
pr2392 251.412 252.648 292.913 304.26 428.534 462.256 899.670 969.704

Table 2 Execution times comparison: low-level(LL) vs. Musket

Another factor that affects the execution times is the setup regarding the
number of blocks and block size. As CUDA does not accept more that 1024
threads per block for most architectures and some kernels used the block
size equal to the number of cities, some balancing was necessary. Using more
blocks with less threads each, enables CUDA to run the algorithm but it also
adds some overhead. Adaptations to solve this matter are easily done in the

110 Breno A. de Melo Menezes et al.

low-level program which generates a program with a better configuration of
numbers of blocks and threads, which fits better to the problem, compared
to high-level approaches. Of course the kernel instructions can be changed in
order to optimize the execution time, but for comparison purposes only the
numbers of blocks and threads were changed. In order to investigate further
the runtime differences between both implementations, the runtime of single
kernels was isolated and investigated separately.

The most important and time consuming step in ACO is the tour con-
struction. Performed many times during the execution, it is affected by the
colony size and also the graph size. Therefore, special attention was given to
the time spent by each parallel implementation on creating routes. Figures 3
shows for the example of 1024 ants the proportional amount of time spent in
each kernel by the Musket implementation and the low-level implementation.
Obviously, even for the smallest map the route-construction kernel requires for
both programs by far most of the runtime. Therefore, we firstly investigated
the calculations of the route.

Fig. 3 Proportional execution times of route Calculation

In order to compare the two implementations regarding the tour construc-
tion step, we have investigated in the average time spent in the tour construc-
tion per iteration as shown in Figure 4. The graphs show similar results to
the total execution times mentioned previously and it is no wonder since the
tour construction is the reason for a great part of the general execution times
shown before.

High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons 111

Fig. 4 Execution times comparison for the tour construction kernel

The kernels responsible for executing the other steps of the algorithm have
almost equal execution times for both implementations. Furthermore, they
represent a small, almost irrelevant, part of the whole execution time. There-
fore no deeper analysis becomes necessary.

As an overall result, plenty of similarities between the execution times of
both implementations investigated in this work can be observed. They show
how the use of Musket can simplify the development of parallel programs, as
the use of general purpose skeletons provided out of the box suffices to develop
a parallel version of ACO in fewer lines of code and on a much lower complexity
level when compared to the low-level CUDA implementation without impairing
the performance.

7 Conclusion

The use of a high-level parallelization approach can be of great help for pro-
grammers aiming to run swarm intelligence algorithms on high-performance
hardware, such as graphical processing units. In this work we have evaluated
Musket as a approach for the parallelization of the Ant Colony Optimization
algorithm in order to identify the pros and cons of using such a tool regarding
the development aspect and also the performance aspect when compared to a
low-level implementation.

112 Breno A. de Melo Menezes et al.

Considering the development aspect, in its actual state, the skeletons em-
bedded in Musket provide enough resources for the development of a parallel
ACO. Furthermore, the experiments have shown that Musket offered some
advantages in the terms of simplicity, requiring less skills to develop a high
performance parallel version of ACO. Not only less lines of code were nec-
essary, but it is also much simpler to program without having the concerns
that regard the parallel aspects of programming a CUDA-based version of the
code, such as data initialization, data transfers and the allocation of blocks
and threads.

In terms of runtime, the ACO version implemented using Musket presented
similar execution times compared to the low-level CUDA based implementa-
tion. Because of experimental reasons, the comparison was made using the
same code for every test setup, without algorithm enhancements or adapta-
tions for the problem instance. Results showed that the low-level version scaled
better when the colony size increased and more resources were needed.

The ACO version used in this work was idealized to be a simple implemen-
tation for a single GPU environment. Many optimizations could be introduced
in order to enhance the performance of the algorithm. Also, if the goal is to
run in a new environment such as multiple GPUs or multiple computational
nodes with multiple GPUs, more complex changes are necessary, which can
be tricky even for experienced programmers. In this aspect, Musket has the
advantage that the same program can be used to generate code for different
architectures once there is a code generator for it.

Future works include the evaluation on different hardware, such as multiple
GPUs in one computational node and also a cluster environment with many
nodes and many GPUs per node. Furthermore, we want to enhance Musket
to provide metaheuristic-specific skeletons in order to make better use of the
hardware and reduce even more the execution times for such problems.

References

1. El-Ghazali Talbi. Metaheuristics. John Wiley & Sons, Inc., Hoboken, NJ, USA, jun
2009.

2. Nikolaos Ath Kallioras, Konstantinos Kepaptsoglou, and Nikos D. Lagaros. Transit stop
inspection and maintenance scheduling: A GPU accelerated metaheuristics approach.
Transportation Research Part C: Emerging Technologies, 55:246–260, 2015.

3. Marco Dorigo and Mauro Birattari. Ant Colony Optimization. (December), 2006.
4. Christoph Rieger, Fabian Wrede, and Herbert Kuchen. Musket: A domain-specific lan-

guage for high-level parallel programming with algorithmic skeletons. Proceedings of
the ACM Symposium on Applied Computing, Part F147772:1534–1543, 2019.

5. Fabian Wrede, Christoph Rieger, and Herbert Kuchen. Generation of high-performance
code based on a domain-specific language for algorithmic skeletons. The Journal of
Supercomputing, (0123456789), 2019.

6. Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE
computational intelligence magazine, 1(4):28–39, 2006.

7. Marco Dorigo and Gianni Di Caro. Ant colony optimization: a new meta-heuristic,
1999.

8. Akihiro Uchida, Yasuaki Ito, and Koji Nakano. Accelerating ant colony optimisation
for the travelling salesman problem on the GPU. International Journal of Parallel,
Emergent and Distributed Systems, 29(4):401–420, 2014.

High-Level Parallel Ant Colony Optimization with Algorithmic Skeletons 113

9. José M. Cecilia, José M. Garćıa, Andy Nisbet, Martyn Amos, and Manuel Ujaldón.
Enhancing data parallelism for ant colony optimization on GPUs. Journal of Parallel
and Distributed Computing, 73(1):42–51, 2013.

10. Breno A.M. Menezes, Herbert Kuchen, Hugo A. Amorim Neto, and Fernando B. De
Lima Neto. Parallelization Strategies for GPU-Based Ant Colony Optimization Solving
the Traveling Salesman Problem. 2019 IEEE Congress on Evolutionary Computation,
CEC 2019 - Proceedings, pages 3094–3101, 2019.

11. Breno Augusto De Melo Menezes, Luis Filipe De Araujo Pessoa, Herbert Kuchen, and
Fernando Buarque De Lima Neto. Parallelization strategies for GPU- ased ant colony
optimization applied to TSP. Advances in Parallel Computing, 36:321–330, 2020.

12. Breno Augusto De Melo Menezes and Nina Herrmann. Musket repository. https:

//github.com/wwu-pi/musket_dsl, 2020. Last Change: 04.05.2020.
13. The Eclipse Foundation. Xtext documentation. https://eclipse.org/Xtext/

documentation/, 2020.
14. Breno Augusto De Melo Menezes and Nina Herrmann. Programs and results. https:

//github.com/wwu-pi/HLPP2020_ACO_Programs, 2020. Last Change: 04.05.2020.
15. University of Waterloo. National traveling salesman problems. http://www.math.

uwaterloo.ca/tsp/world/countries.html. Accessed: 14.03.2018.
16. Heidelberg University. Discrete and combinatorial optimization. https://www.iwr.

uni-heidelberg.de/groups/comopt/software/TSPLIB95/XML-TSPLIB/instances/. Ac-
cessed: 14.03.2018.

13th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2020)
Porto, Portugal
July 9-10, 2020

OpenACC unified programming environment for
GPU and FPGA multi-hybrid acceleration

Ryuta Tsunashima · Ryohei Kobayashi ·
Norihisa Fujita · Taisuke Boku ·
Seyong Lee · Jeffrey S. Vetter ·
Hitoshi Murai · Masahiro Nakao ·
Mitsuhisa Sato

Abstract Attached accelerators have been frequently used in recent High Per-
formance Computing (HPC) systems because of their high performance/power
ratio. In particular, the Graphics Processing Unit (GPU) is the most popu-
lar accelerator owing to its high peak FLOPS performance and high memory
bandwidth supported by HBM2, etc. However, the performance of GPU de-
pends highly on a large degree of SIMD parallelism and has difficulty sustaining
a high performance on programs with frequent branch operations or a partially
low degree of parallelism.

By contrast, a Field Programmable Gate Array (FPGA) has received at-
tention as a different type of accelerator than GPU as a fully reconfigurable
processor fitting the target applications. The high performance of FPGA is
mainly provided by a pipelined operation and optimized circuit suitable for
any operation even with frequent conditional branches. We have been focusing
on the flexibility of FPGA to compensate for the weakness of GPU. We believe
that the coupling of GPU with FPGA can result in one of the most powerful
accelerating platforms available.

However, the program coding of GPU and FPGA coupling can be quite
difficult for application users. Traditionally, CUDA by NVIDIA has been the
most popular programming language with the largest share of GPUs used in
HPC, whereas a hardware description language such as Verilog HDL has been
used in FPGA programming. OpenCL coding has recently become available

Tsunashima, Ryuta · Kobayashi, Ryohei · Fujita, Norihisa · Boku, Taisuke
Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577, Japan
E-mail: tsunashima@hpcs.cs.tsukuba.ac.jp

Kobayashi, Ryohei · Fujita, Norihisa · Boku, Taisuke
Center for Computational Sciences (CCS), University of Tsukuba, Ibaraki 305-8577, Japan

Lee, Seyong · Vetter, Jeffrey S.
Oak Ridge National Laboratory (ORNL), P.O. Box 2008, Oak Ridge, TN 37831, USA

Murai, Hitoshi · Nakao, Masahiro · Sato, Mitsuhisa
Riken Center for Computational Science (R-CCS), RIKEN, Hyogo 650-0047, Japan

Title Suppressed Due to Excessive Length 115

even on high-end FPGAs. Moreover, several recent studies have also enabled
the OpenACC coding for use in FPGA. In this study, we provide a unified
programming system based on OpenACC for a platform equipped with both
GPU and FPGA aiming at the next-generation accelerated supercomputer
framework. Our programming environment is called Multi-Hybrid OpenACC
Translator (MHOAT), and in this paper, we describe the basic concept and
prototype system of MHOAT based on an evaluation on the amount of coding
required and the performance of a hybrid multi-device accelerated system.

Keywords GPU · FPGA · OpenACC · API · Multi-hybrid acceleration ·
MHOAT

1 Introduction

One of the most important issues on large-scale supercomputers targeting High
Performance Computing (HPC) applications is how to reduce the power con-
sumption while sustaining a high performance. General purpose CPUs such
as multi-core Intel Xeon provide high programming flexibility and computa-
tional efficiency; however, the performance in terms of power consumption
(FLOPS/Watt) is barely increased owing to limited semiconductor technol-
ogy, and it is difficult to lower the circuit signal voltage owing to signal noise.
Accelerators, by contrast, are an attractive solution with an extremely high
peak performance with a relatively low power consumption. For instance, an
NVIDIA Tesla V100 (Volta) GPU provides approximately 7 TFLOPS in 64bit
double precision with a peak performance of under 300 W of power. In fact,
seven out of the top-10 systems in a recent top-500 list from November 2019
are equipped with GPUs as accelerators[1].

The most important technology in driving GPU for HPC applications is
the programmability. Because GPU was developed originally for graphics pro-
cessing, the coding of this device is difficult for application users despite its
high floating point operation performance. However, after OpenCL compilers
were made available for GPUs, the barrier was lowered and NVIDIA started
providing a CUDA programming environment for easier programming in the
C/C++ language base. PGI began providing a Fortran compiler for CUDA to
help with a large amount of dusty-deck Fortran coding for scientific computing.

Although the difference between the peak and sustained performances
when applying GPU is significant, the performance is maintained at greater
than 50% on the High-Performance Linpack (HPL) benchmark, which is used
for the TOP500 list, and the use of GPU is extremely popular, specifically
on the top-10 ranked ultra-large-scale systems. Because such systems consume
significant power, it is extremely important to introduce high FLOPS/Watt
devices such as GPUs. However, GPU is not a perfect solution even with high
programmability. The extremely high performance of GPU is provided by a
high degree of horizontal parallelism under a single instruction stream (in a
SIMD manner, or SIMT manner in NVIDIA GPUs) to reduce the power con-
sumption for operation control. Therefore, GPU must basically be applied for

116 Ryuta Tsunashima et al.

Table 1 Acceleration devices

Device GPU FPGA

Parallelism SIMD Pipeline

Memory
Strong

(large HBM2)
Weak

(DDR and small HBM)
Conditional Branch

(true/false
part run sequentially)

Weak
Strong

(true/false cases run
in parallel)

Lower Parallelism
Weak

(most of core goes to rest)
Strong

Inter-node
Communication

Weak
(by CPU interconnect)

Strong
(own optical link)

simple data parallel applications. Some codes used to achieve frequent condi-
tional branches, partially a low degree of parallelism, or a frequent inter-node
communication, are unsuitable for GPU.

On the other hand, FPGA has been attractive as a new type of acceler-
ator for HPC applications, and is a fully reconfigurable processor allowing a
rewriting of the inner circuit according to the application. The benefits of this
device are as follows:

– It is optimizable for computational applications.
– It is vertically parallelizable in a pipeline manner.
– The optimized performance based on the power consumption can exceed

that of GPU.
– Recent high-end FPGAs enable a direct communication between FPGA

devices using high-speed optical links.

However, FPGA also has several disadvantages for HPC use:

– The Hardware Description Language (HDL) is difficult to program for
general application users.

– A long compilation time (usually from several to more than 10 hours)
prevents the productivity of the codes.

– Hardware resources (logic elements and memory devices) are limited be-
cause they cannot be reused in different locations within a large code unlike
with an ordinary CPU or GPU.

The recent high-end FPGA for HPC provides much larger hardware resources
and memory capacity, which decreases some of the weaknesses described above.
Herein, we focus on the complimentary characteristics of both devices, GPU
and FPGA (Table 1). Thus, we have an idea to couple these devices together
on a computational node even for use in a large-scale cluster system, achieving
a type of 360-degree system that would allow each device to compensate the
other for various types of HPC computing. We have been studying this concept,
which we call Multi Hybrid Accelerated Supercomputing.

The platform used by our concept is based on a complex computational
node with CPUs, GPUs, and FPGAs connected by an intra-node PCIe switch[2].
Recent CPUs are equipped with a number of PCIe lanes (gen3 or gen4), where
multiple devices can be easily connected. However, we need additional FPGAs

Title Suppressed Due to Excessive Length 117

beside of multiple GPUs on a node. Thus, we may need external PLX switches
to enlarge the number of PCIe lanes sufficiently to support multiple GPUs and
FPGAs together. Of course, another set of PCIe lanes is required for an inter-
connection network such as InfiniBand.

Although the hardware construction is relatively easy thanks to the gen-
erality of PCIe to connect all devices, the program coding is quite difficult
for application users. The most popular GPU devices in current HPC systems
include the NVIDIA Tesla series, such as a V100 (Volta architecture). CUDA
is the common programming environment for these GPUs. However,
OpenACC[3] has recently been focused on as an easier programming frame-
work than CUDA because it introduces directive-based and incremental coding
for an original sequential code such as OpenMP on a general CPU.

The programming environment for FPGA has also evolved. It started with
HDL such as VHDL or Verilog HDL. Recently, however, major FPGA ven-
dors such as Intel and Xilinx have provided a High Level Synthesis (HLS)
environment including OpenCL or C/C++ languages. For users familiar with
accelerated parallel programming, the OpenCL solution is quite welcoming to
porting their code to a “relatively” high level programming language other
than HDL. However, even OpenCL is difficult for users who are familiar with
very traditional OpenMP + MPI style parallel programming. To support a
higher level of programming, OpenACC compiler for FPGA has been stud-
ied[4].

Herein, we introduce a common basic environment for programming on
both devices, OpenACC, to simplify the coding on this complicated platform
of Multi Hybrid Accelerated Supercomputing. The CPU controls both devices
and offloads the heavy computations to them according to the characteris-
tics of the calculations. Because OpenACC allows a user to synchronize the
data contents on the host memory and accelerating device memory (GPU
or FPGA), the user can manage the data duplication and localization over
multiple device memories on CPU, GPU, and FPGA.

This research covers the comprehensive programming interface using only
OpenACC for conducting cooperative computations on GPU and FPGA based
on our proposed concept. One of the important components of our research is
the compiler of OpenACC used for the FPGA. We apply OpenARC compiler
developed by Oak Ridge National Laboratory, which is a source-to-source com-
piler applied to generate OpenCL code from OpenACC to run on FPGA. Al-
though OpenARC compiler can support other devices such as NVIDIA GPU,
we use another commercial OpenACC compiler for the GPU for several rea-
sons (discussed later in this paper). The research issues herein include the
following:

– How to describe the target offloading devices.
– How to generate multiple codes to be compiled individually by different

compilers for the GPU and FPGA.
– How to finalize the generation of a single object executable code to manage

three devices, i.e., CPU, GPU, and FPGA, in a single process

118 Ryuta Tsunashima et al.

2 Related Studies

In [5], an astrophysical simulation was implemented for FPGA designed to en-
hance the inter-node GPU-to-GPU communication as well as partial compu-
tation offloading to the FPGA. The dedicated FPGA system is called PCI Ex-
press Adaptive Communication Hub version 2 (PEACH2). The use of FPGA
for a PCIe hub switch with a programmable communication feature to sup-
port GPU acceleration is also called a Tightly Coupled Accelerators (TCA)
method[6]. PEACH2 extends the communication link from the intra-node
GPU-FPGA to the external intra-node communication between them. The
FPGA works as an DMA controller between remote GPUs based on mem-
ory address mapping of GPU global memory to the PCIe address space, and
transfers the data using the PCIe protocol. The core computation of the tar-
get application of a Locally Essential Tree (LET) algorithm for a fundamental
astrophysical gravity simulation is efficiently operated through a combination
of FPGA computations and communications over an external PCIe link be-
tween FPGAs over the nodes. The prototype system of PEACH2 achieves a
7.2x improvement in the computing time than CPU for an N-body simulation
based on the LET algorithm.

In [7], FPGA is introduced to offload another astrophysical simulation us-
ing the Authentic Radiation Transfer (ART) method, which is an essential
physical phenomenon on the early stage universe generation in the space. The
Accelerated Radiative transfer on Grids using Oct-Tree (ARGOT) program in-
cludes two astrophysical simulations, i.e., the ARGOT method and the ART
method. With the ART method, the parallel computational elements are too
small and without enough SIMD-style parallelism to be handled by GPU, par-
ticularly for small sized problems where the performance of GPU is as low as
that of CPU. The pipelined computation by FPGA can be efficiently achieved
and the simulation speed is not affected by the problem size with up to a 6.9x
times faster performance than that of GPU computations.

We proposed a new concept of accelerated computing called Accelerators in
Switch (AiS)[8], which is a computing model that aggressively applies FPGA
for both computations and communication. This approach is expected to en-
able an ideal high-performance parallel computing system to be developed
by combining the high-speed computing of GPU. In most applications, it is
difficult to outdo the absolute high performance of GPU, although there are
some weaker computational aspects of the GPU architecture. This solution
realizes a complimentary system using GPU and FPGA to compensate one
another. Specifically, multi-physics applications such as in [7] include multiple
phenomena of simulations with different properties, and thus can be shared
between the GPU and FPGA. However, the programming of a coupled GPU
and FPGA introduces the following difficulties for users:

– The programming languages for development are different on each accel-
erator.

– Poor coding and performance portability occur owing to an incompatibility
in multiple languages.

Title Suppressed Due to Excessive Length 119

1. Creating a context
clCreateContextFromType(…);

2. Getting devices included a context
clGetContextInfo(…);

3. Creating a command queue
clCreateCommandQueue(…);

4. Creating a program object
clCreateProgramWithBinary(…);

5. Building a program object
clBuildProgram(…);

6. Creating a kernel
clCreateKernel(…);

7. Transferring data from host to device
clEnqueueWriteBuffer(…);

8. Setting arguments of kernel function
clSerKernelArg(…);

9. Calling kernel function
clEnqueueNDRangeKernel(…);

10.Transferring data from device to host
clEnqueueReadBuffer(…);

4. Kernel execution
__kernel void kernel_function(…){}

Host

Device

Fig. 1 Flow of OpenCL programming

– The performance of multiple devices must be balanced for their efficient
use.

– A number of key performance optimization issues such as memory alloca-
tion and communication between devices must be overcome.

3 Existing programming environment

3.1 OpenCL

In general, FPGA programming is performed using HDL, which is a language
applied to describe a logic circuit design for defining the components and be-
havior of such a circuit. Although the code looks like an ordinary program,
each element of the code specifies the logic element, operational condition, and
connectivity between logic elements. Most importantly, because each compo-
nent is compiled in the corresponding hardware logic, these components work
simultaneously with a potentially high degree of parallelism. Therefore, the
description is quite complicated with large number of code lines and difficult
to debug because the relationship and activated timing on the processor clock
are not user friendly. The optimization is also difficult because the processor
frequency is determined through the compilation and any unbalanced or overly
long stage of logic element easily causes a bottleneck, enlarging the pipeline
stage and degrading the active clock frequency. In conclusion, the code pro-
ductivity of FPGA when applying HDL is quite low.

As a significant progress in FPGA programming, the recent FPGA de-
velopment environment provides OpenCL coding instead of HDL. OpenCL is
a programming language targeting heterogeneous computing platforms with
accelerating elements. The parallel execution is conceptually involved in the

120 Ryuta Tsunashima et al.

description used to fit various types of accelerator architectures such as GPU
or many-core processor. OpenCL supports API features to be shared for these
devices, and the abstraction level is relatively low compared with ordinary
CPU languages, and thus a high level of optimization is possible for users.

Regarding the recent high-end FPGAs, HLS environment with OpenCL is
available using OpenCL alone or through a mixture with HDL. The grammar
of OpenCL is based on C language and is much easier to introduce even for
ordinary application users. It is also highly expected to reduce the coding cost
when using FPGA compared with HDL coding. Figure 1 shows the flow of
OpenCL programming. As like as CUDA, there are two types of program, i.e.,
the device code and the host code. The host code is a program used to control
the accelerating devices such as GPU or FPGA on the CPU. The device code
is a program running on the device. In OpenCL, these parts are separated
into individual blocks and compiled individually. The host code is compiled
by ordinary C compilers such as GCC, whereas the device code is compiled
by special compilers for the target devices. For instance, AMD recommends
using OpenCL for their GPUs, and device compiler tuning has been developed
along with a CUDA compiler by NVIDIA. Although NVIDIA also provides the
environment for OpenCL coding on their GPUs, they highly recommend using
CUDA instead, and numerous codes have been developed using CUDA rather
than OpenCL. In conclusion, it is difficult to achieve a uniform compilation
environment based on OpenCL when combining GPU and FPGA.

3.2 Combined GPU and FPGA compilation environment

It is basically possible to combine GPU and FPGA devices in a single program
by coupling heterogeneous language environments, using CUDA for GPU and
OpenCL for FPGA, as examples. Because both CUDA and OpenCL share the
same style of coding with the host and device codes, it is theoretically possible
to share one host code in two different types of devices. We confirmed that the
NVIDIA CUDA compiler for GPU and Intel FPGA SDK for OpenCL have no
problem in terms of linkage, such as symbol conflicts[9].

However, such a programming environment is difficult to apply for users,
although it works perfectly with high-level optimization. This is true not only
for grammatical differences but also for differences in the basic architecture
and optimization techniques used to exploit the potential parallelism, such as a
kernel parallelism level specification and kernel argument specification. These
differences might confuse programmers, inducing programming bugs and a
poor optimization. In addition, the hardware resources on FPGA are limited
and thus FPGA is unsuitable for extremely high parallel data level processing
unlike with GPU. Therefore, a comprehensive programming interface enabling
these accelerator features to be exploited is necessary.

Title Suppressed Due to Excessive Length 121

3.3 OpenACC

OpenACC is another API for the programming of an accelerator, and is a
language extension standard of directives, supporting C, C++, and Fortran
as popular languages used in scientific applications. Such a directive-based
programming is well accepted in the parallel computing community. Its ad-
vantages are as follows:

– Programming is easier than with CUDA and OpenCL thanks to a high
level of abstraction.

– No distinction exists between the host and device codes.
– Hardware acceleration is enabled by only writing directives.
– High productivity with incremental improvement allowing directives to the

applied in any part of the code.

To provide a higher level of abstraction and ease of coding in a unified API,
we focus on OpenACC programming for both GPU and FPGA in our Multi
Hybrid Accelerated Supercomputing approach. To understand our concept and
design, we briefly introduce the basic framework of OpenACC code.

Figure 2 shows a code example in C. First, all of the initial data exist in
the CPU memory. It is therefore necessary to transfer the target data to the
target device through the following directive:

#pragma acc data

The copyin() clause specifies the data transfer from the host to the accelera-
tor, and the copyout() clause specifies the opposite direction of a data trans-
fer. The data transfer timing is automatically determined as the beginning of
an offloaded block for a copyin() and the end of the block for a copyout().

The code block to be offloaded to the target device is then specified by the
following directive:

#pragma acc kernels

In addition, OpenACC programs can even execute a computation on an accel-
erator using only this directive, although an unspecified processing depends on
the compiler, particularly with the possibility of a large data transfer cost ow-
ing to a conservative data movement and timing between the host and device.
Thus, it is important to describe the data directive explicitly with #pragma

acc data.

The following directive is used to specify the parallel computations in a
loop:

#pragma acc loop

An independent clause specifies that there is no dependency in the loop and
suggests the compiler optimize the code such as through software pipelining.

122 Ryuta Tsunashima et al.

１．Defining transfer data
 #pragma acc data copyin(in1[0:N], in2[0:N])
 copyout(out[0:N])
 {
２．Defining a target of kernel execution
 #pragma acc kernels
３．Defining for each loop
 #pragma acc loop independent
 for (i = 0; i < N; i++) {
 out[i] = in1[i] * in2[i];
 }
 }

Fig. 2 Example code of OpenACC

3.4 OpenACC compilers for different accelerators

There are several compilers ready for OpenACC already on the market, in-
cluding PGI compiler[10] and GCC. In particular, the PGI compiler is the rec-
ommended compiler for NVIDIA GPUs with high level optimization because
PGI is a group company of NVIDIA. By contrast, the OpenACC compiler
for FPGA is still in the research stage and is unavailable commercially. Ope-
nARC[4] is a research compiler for various accelerators including GPU and
FPGA. This compiler has been open to research regarding FPGA utilization
based on easy OpenACC coding. OpenARC for FPGA transfers the OpenACC
target code to OpenCL to be processed by Intel SDK, allowing OpenCL to
be applied to Intel FPGA. Because the tool provides HLS, it can convert a
C-based for statement into a pipeline circuit that can process the streams. In
the current implementation of OpenARC, C language is available for the tar-
get code, although the translated output is in C++. For this study, the Center
for Computational Sciences (CCS) at the University of Tsukuba collaborates
with Future Technology Group at Oak Ridge National Laboratory (ORNL) to
apply OpenARC compiler to Multi Hybrid Accelerated Supercomputing. We
also collaborated with the Riken Center for Computational Science (R-CCS)
to apply their Omni OpenACC compiler for the frontend processing of our
multi-hybrid language environment.

OpenARC can output codes individually for multiple target accelerators
including GPU, many-core CPU or FPGA. For the GPU compilation, the tar-
get device is limited to the NVIDIA GPU and the compiler generates a CUDA
code as the output. For FPGA, OpenCL code is generated for Intel SDK as
previously described. However, the current OpenARC does not support mul-
tiple target devices simultaneously during a process, but supports multiple
devices individually, and thus we cannot apply it directly to the handling of
the GPU and FPGA together.

Therefore, we apply the OpenARC compiler as a backend compiler only
for the FPGA part in our multi-hybrid programming environment. We cannot
apply the same compiler for the GPU part because the codes generated for the
FPGA and GPU share several symbols and functions but with different be-
haviors, and thus we cannot mix the two generated codes into a single process
using the OpenARC compiler only. Therefore, we apply another OpenACC
compiler, i.e., the PGI compiler, for the backend compiler of the GPU part.

Title Suppressed Due to Excessive Length 123

Exec
file

A single
OpenACC
program

GPU
calc.

FPGA
calc.

OpenACC
program
for GPU

OpenACC
program
for FPGA

OpenACC
programs

�

�
�

Fig. 3 Suggesting programming environment overview

fpga.c

gpu.c

fpga
.o

gpu.o

fpga
.cl

a.out

Runtime

fpga
.aocx

pgc++

fpga
.cpp

PGI Compiler
(pgc++ -c)

fpga
.aoco

aoc -c aoc

pgc++
-c

OpenARC

OpenCL
kernel

OpenCL
host

OpenACC Object
files

Fig. 4 Flow of backend compiling and linking

Although it is theoretically possible to separate the device offloading for
each accelerator by hand and apply the appropriate compiler for each part,
doing so is quite complicated and a burden for application users. For much
easier coding to support users, multi-hybrid coding toward efficient 360-degree
accelerated computing is introduced.

4 Unified programming environment for cooperative computations

4.1 Overview

To realize a programming environment for a multi-hybrid accelerator system,
we propose the language processing framework shown in Figure 3. The target
code is written using OpenACC in which it is explicitly specified which device
should be applied for specified offloading parts. These parts are then detected
and split into individual files allowing each accelerator to compile using the
appropriate existing compiler. The file should be split automatically as the
source-to-source translation from OpenACC to OpenACC. Finally, each back-
end compiler generates a binary code to be executed on each device as a kernel
function, and the binaries are assembled into an executable binary including
the host code.

Figure 4 shows the flow of the backend compiler. Each part contains an
offload description by the OpenACC directives and is compiled separately by

124 Ryuta Tsunashima et al.

the PGI compiler for GPU and the OpenARC compiler for FPGA. Finally,
the following binary objects are linked into a single executable file; (1) GPU-
related binaries by the PGI compiler such as user code itself, kernel invocation,
data transfer, and other miscellaneous jobs, (2) FPGA-related host code com-
piled by Intel FPGA SDK for OpenCL[11] after translation by the OpenARC
compiler, and (3) the peripheral libraries for GPU and FPGA are linked into
a single executable file. The OpenCL kernel code generated by the OpenARC
compiler is compiled into the FPGA programming bitstream file by the Intel
FPGA SDK for OpenCL Offline Compiler aoc.

Our translator system operating as an OpenACC-OpenACC source con-
verter is developed based on the Omni Compiler Infrastructure (Omni)[12] re-
searched through collaboration between R-CCS and CCS. Omni is a compiler
infrastructure based on a source-to-source translation for Fortran and C for use
in large-scale parallel computers, supporting OpenACC, XcalableMP[13] and
XcalableACC[14] languages. The OpenACC feature supports the generation of
CUDA or PZCL (custom OpenCL for PEZY-SC)[15], although FPGA-ready
OpenCL code generation is not supported. Moreover, the GPU code genera-
tion optimization is unsuitable for recent GPUs such as the Volta architecture
by NVIDIA. For these reasons, we apply an Omni compiler as a parser of the
source code to help with the translation of OpenACC-to-OpenACC as a part
of our new environment for multi-hybrid acceleration.

4.2 MHOAT: meta-compiler

We developed a sort of meta-compiler over a compiler toolkit and a back-
end compiler, as described in the previous subsections. This meta-compiler is
named as Multi-Hybrid OpenACC Translator (MHOAT). Currently, MHOAT
supports C language only owing to the code parsing of the Omni C compiler,
which is not ready for OpenACC Fortran.

In MHOAT, the main feature is to recognize the user description to map
the offloaded part to one of the target accelerators, and separate that part to
the target OpenACC code for the device. The current OpenACC specification
implies a feature to determine the target device; however, this feature is used
for code optimization and applies a different set of parameters, and thus is
not suitable for our purpose. Instead, we originally introduce a new pragma
to specify the target device as follows.

#pragma accomn ondevice(DEVICE)

”accomn” is a special pragma under the pragma family of ”omn,” which
is originally introduced for the unique extension of OpenMP pragma in the
Omni compiler suite. We define the new pragma accomn according to this
tradition of Omni, particularly for an OpenACC extension. Listing 1 shows
an example of the use case of this pragma. The ondevice(DEVICE) clause
specifies the target device provided by the input value DEVICE used to assign
that offloaded part to the pragma. Currently, we support only GPU or FPGA as

Title Suppressed Due to Excessive Length 125

1 void fuga() {
2 #pragma accomn ondevice(FPGA)
3 {
4 #pragma acc data copy(a, b)
5 {
6 #pragma acc kernels loop independent
7 for(i=0; i < N; i++)
8 a[i] = a[i] + b[i];
9 }

10 }
11 }

Listing 1 accomn ondevice usage

OpenACC
Omni Compiler

OpenACC

XcodeML

An OpenACC program

tasks on host

tasks on FPGA

tasks on GPU
CPP

C-
Front
End

fpga.c

gpu.c

MHOAT

Fig. 5 MHOAT processing flow

a DEVICE. We designed MHOAT for easy extension of this target for future
use.

Under the restriction caused by the current implementation, this pragma
must be described in any function except the main() function. This is because
the current implementation requires binding a unique symbol for each offloaded
part written in an individual function. It does not affect the coding much, but
our future work will be to relax this restriction. Some other detailed features
of OpenACC are not fully supported owing to the prototype implementation
of MHOAT. The purpose of the current version of MHOAT is to demonstrate
the fact that the functionality of our concept fits the practical applications
under the minimum extension of the standard OpenACC code.

Figure 5 shows the processing flow of MHOAT. In the Omni toolkit, the
included header part and macro functions in C are first treated by the C
Preprocessor (CPP). The code is then parsed and translated into a special
internal object form called XcodeML, which is a common object in the Omni
toolkit. Finally, the XcodeML code is handled by MHOAT to analyze and
separate the code into the appropriate partial source for GPU and FPGA
compilation. As a result, MHOAT generates two sets of files for the GPU to
be handled by the PGI compiler and for the FPGA to be handled by the
OpenARC compiler. Inside the OpenARC compiler, the code is translated
into OpenCL to be handled by Intel FPGA SDK for OpenCL. In addition, a
non-offloaded code including the main() function is also treated by the PGI
compiler to be included in the GPU part to avoid any confusion caused by the
C++ parsing of OpenARC.

126 Ryuta Tsunashima et al.

FPGA GPUCPU
Program
invoked

Recv data from
GPU

&
Send data to

FPGA

Vecadd on
GPU

Send data to
GPU

Vecadd on FPGA

Recv data from
FPGA

Exec. flow

Fig. 6 Flow of the test program

5 Verification of MHOAT functionality

We confirmed the functionality of MHOAT using a test code with GPU and
FPGA multi-hybrid acceleration based on OpenACC and our extended pragma,
using the backend compilers of PGI and OpenARC. We carefully separate the
original code into several split files to verify the functionality of the code trans-
lation by MHOAT. The target code verified herein is a toy program with the
process flow shown in Figure 6.

The program consists of three code blocks in which the CPU, GPU, and
FPGA execute individually. Current MHOAT can handle single FPGA and
GPU for each on a computation node. First, the host initializes the data on
CPU memory and transfers the data to the GPU using the data pragma
of OpenACC. Then, the GPU performs a vector add computation with two
vector data and generates a resulting vector. This is transferred to the CPU
memory and transferred to the FPGA memory sequentially because there is
no direct mapping or synchronization feature of the different devices in the
current version of MHOAT. Next, another vector add operation is conducted
on the FPGA, and finally the resulting vector is sent back to the CPU memory.
The following code is the actual program we verified in this study.

Although the program in Listing 2 is a simple toy code without any scien-
tific meaning, it is a sort of collection of typical processing in HPC applications
and we can confirm the correctness of the code execution, data handling, and
kernel invocation for both the GPU and FPGA to lead a complicated and prac-
tical multi-hybrid accelerated code. The correctness of the execution result is
confirmed through both GPU+FPGA and CPU execution.

We applied our Cygnus[17] cluster system at CCS, University of Tsukuba
for verification of MHOAT. MHOAT is a meta-compiler for a single process,
for which only a single node of Cygnus is used. The specifications of Cygnus are
shown in Table 2, and a block diagram of the computational nodes is shown in
Figure 7. As shown here, Cygnus is one of the worlds most advanced clusters,
in which each computation node is equipped with multiple FPGA cards and

Title Suppressed Due to Excessive Length 127

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include ”acc ondevice.h”
4 #include ”each block global decl.h”
5 int main(int argc, char∗∗ argv) {
6 int workers = 16;
7 int gangs = 256;
8 int size = workers ∗ gangs;
9 float∗ A = (float∗) malloc(size ∗ sizeof(float));

10 float∗ B = (float∗) malloc(size ∗ sizeof(float));
11 float∗ D = (float∗) malloc(size ∗ sizeof(float));
12 float∗ E = (float∗) malloc(size ∗ sizeof(float));
13 int i, error=0;
14 for (i = 0; i < size; i++) {
15 A[i] = (float) i;
16 B[i] = (float) i ∗ 100;
17 }
18 funcGPU(A, B, D, size);
19 for (i = 0; i < size; i++) {
20 if (D[i] != (float) i + (float) i ∗ 100) error++;
21 }
22 printf(”errorGPU:%d\n”, error);
23 funcFPGA(D, E, size);
24 for (i = 0; i < size; i++) {
25 if (E[i] != (float) i + (float) i ∗ 100 + (float) i) error++;
26 }
27 printf(”errorFPGA:%d\n”, error);
28 return 0;
29 }
30 void funcGPU(float∗ a, float∗ b, float∗ d, int size) {
31 #pragma accomn ondevice(GPU)
32 {
33 int j;
34 #pragma acc data copyin(a[0:size], b[0:size]) copyout(d[0:size])
35 {
36 #pragma acc kernels loop independent gang worker(16)
37 for (j = 0; j < size; j++) {
38 d[j] = a[j] + b[j];
39 }
40 } } }
41 void funcFPGA(float ∗a, float ∗b, int size) {
42 #pragma accomn ondevice(FPGA)
43 {
44 int j;
45 #pragma acc data copyin(a[0:size]) copyout(b[0:size])
46 {
47 #pragma acc kernels
48 {
49 #pragma acc loop independent
50 for (j = 0; j < size; j++) {
51 b[j] = a[j] + (float)j;
52 }
53 } } } }

Listing 2 The target program code

multiple GPU cards. In fact, there are two FPGA cards and four GPU cards
all connected by the PCIe gen3 interface as well as a CPU and InfiniBand
interconnection. Through this verification, we apply only a single FPGA and
a single GPU in a computational node under current limitation of MHOAT.

For the target code, MHOAT generates two codes, one for the FPGA (List-
ing 3) and one for the GPU (Listing 4). Unnecessary comments are omitted.
In Listing 3, it is shown that only the lines for an #include directive state-
ment and the function describing #pragma accomn ondevice(FPGA) in List-
ing 2 are generated. Here, statements such as # 1 "each block.c" are line
markers added by CPP, and are used by MHOAT for a code analysis. After
processing, although they remain for further use, they are mostly ignored by
the following compilers. By contrast, as shown in Listing 4, the main() func-
tion and the accelerated part (function) remain for the GPU using #pragma

accomn ondevice(GPU) because the host part is treated by the PGI compiler.

128 Ryuta Tsunashima et al.

CPU
0

CPU
1

PC
Ie netw

ork (sw
itch)

PC
Ie netw

ork (sw
itch)

GPU

GPUGPU

GPU

SINGLE NODE
(with FPGA)

HCA

FPGA

HCA

FPGA

HCA

HCA

N
etw

ork
sw

itch
(100G

bps x2)

N
etw

ork
sw

itch
(100G

bps x2)

Inter-FPGA
direct network
(100Gbps x4)

Inter-FPGA
direct network
(100Gbps x4)

Fig. 7 GPUFPGA node in Cygnus

Table 2 Verification environment

CPU
Intel Xeon Gold 6126
(12C / 2.6GHz) x2

GPU
NVIDIA Tesla V100
(32GiB HBM2 PCIe 3.0 x16) x4

FPGA
Intel Stratix 10 GX 2800
(BittWare 520N[18]
PCIe Gen3 x16) x2

OS CentOS 7.3
GPU compiler PGI Compiler 19.1
FPGA compiler OpenARC V0.17 (Oct, 2019)

OpenCL compiler
Intel FPGA SDK for OpenCL
19.1.0.240

These codes are compiled by the backend compiler, as shown in Figure
4. As a result, a single executable file is generated as an ordinary executable
binary.

6 Evaluation of code volume and execution time

After verification of the code generation and execution, we evaluated the ease of
the code production and the actual performance of simple code on a single node
of the Cygnus cluster. Herein, we verify the coding amount of a traditional
mixture of CUDA and OpenCL for GPU/FPGA coupling and a MHOAT
supported OpenACC unified code. The execution environment is as follows:
OpenARC V0.21 (February 13, 2020), Intel FPGA SDK for OpenCL 19.4.0.64,
CUDA 10.2, and PGI Compiler 19.10.

This is again a type of toy program because our purpose is the compar-
ison of code amount between traditional approaches and our methods, but
more complicated and similar to a typical HPC code (but still without sci-
entific meaning). We first apply a matrix-matrix multiplication on the GPU,
followed by a conjugate gradient (CG) method for a linear equation solver
on the FPGA. The target matrix was taken from the Matrix Market [16].
Here, the resulting data of the GPU is referred to by the FPGA. We adjusted

Title Suppressed Due to Excessive Length 129

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include ”acc ondevice.h”
4 #include ”each block global decl.h”
5 # 1 ”each block.c”
6 # 2 ”each block.c” 2
7 # 3 ”each block.c” 2
8 # 4 ”each block.c” 2
9 # 5 ”each block.c” 2

10 # 57 ”each block.c”
11 void funcFPGA(float ∗ a, float ∗ b, int size)
12 {
13 # 61 ”each block.c”
14 ;
15 {
16 int j;
17 # 64 ”each block.c”
18 ;
19 #pragma acc data copyin (a [0 : size]) copyout (b [0 : size])
20 {
21 # 66 ”each block.c”
22 ;
23 #pragma acc kernels
24 {
25 # 68 ”each block.c”
26 ;
27 #pragma acc loop independent
28 # 68 ”each block.c”
29 for(j = (0); j < size; j++) {
30 {
31 # 70 ”each block.c”
32 (∗(b + j)) = ((∗(a + j)) + ((float)(j)));
33 }
34 }
35 }
36 }
37 }
38 }

Listing 3 computation of FPGA

the same matrix size of the matrix-multiplication on the GPU and CG on
the FPGA as 10974 10974, and with 219,812 non-zero elements on the CG
method, and the number of iterations of the CG method is stopped at 1000.

First, we compare the amount of code description. Figure 8(a) shows the
number of lines of CUDA+OpenCL versus that of OpenACC-only. The first
method corresponds to a traditional CUDA (GPU) and OpenCL (FPGA) cou-
pling, whereas the latter case is by MHOAT. In the CUDA+OpenCL case, we
measured the host code for the CUDA and OpenCL separately according to
their operation. In OpenACC-only, only the kernel-GPU and kernel-FPGA
are referenced because there is almost no host code description in OpenACC
in this target code. All comments and blank lines are omitted. Here, we can
see that our MHOAT with OpenACC-only coding reduces the total line count
by approximately 44% compared with the original CUDA+OpenCL mixture
coding. In particular, the traditional method requires a number of host code
lines even with such a small and simple program. In addition to this advantage
proof, we examined the number of characters instead of lines. The complexity
of a line may be extremely large in several cases, and thus we focus on the
actual number of characters. The result is shown in Figure 8(b). Here, we can
see that the number of characters is reduced by approximately 64%. The re-
duction in the host code greatly contributes to OpenACC-only manner. With
the CUDA+OpenCL method, many specific notations regarding the memory

130 Ryuta Tsunashima et al.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include ”acc ondevice.h”
4 #include ”each block global decl.h”
5 int main(int argc, char ∗ ∗ argv)
6 {
7 int workers = 16;
8 int gangs = 256;
9 int size = workers ∗ gangs;

10 float ∗ A = (float ∗)(malloc(size ∗ (sizeof(float))));
11 float ∗ B = (float ∗)(malloc(size ∗ (sizeof(float))));
12 float ∗ D = (float ∗)(malloc(size ∗ (sizeof(float))));
13 float ∗ E = (float ∗)(malloc(size ∗ (sizeof(float))));
14 int i;
15 int error = 0;
16 for(i = (0); i < size; i++) {
17 {
18 (∗(A + i)) = ((float)(i));
19 (∗(B + i)) = (((float)(i)) ∗ (100));
20 }
21 }
22 funcGPU(A, B, D, size);
23 # 26 ”each block.c”
24 for(i = (0); i < size; i++) {
25 {
26 {
27 if((∗(D + i)) != (((float)(i)) + (((float)(i)) ∗ (100)))) {
28 error++;
29 }}}}
30 printf(”errorGPU:%d\n”, error);
31 funcFPGA(D, E, size);
32 for(i = (0); i < size; i++) {
33 {
34 {
35 if((∗(E + i)) != ((((float)(i)) + (((float)(i)) ∗ (100))) + ((float)(i)))) {
36 error++;
37 }}}}
38 printf(”errorFPGA:%d\n”, error);
39 return 0;
40 }
41 void funcGPU(float ∗ a, float ∗ b, float ∗ d, int size)
42 {
43 ;
44 {
45 int j;
46 ;
47 #pragma acc data copyin (a [0 : size] , b [0 : size]) copyout (d [0 : size])
48 {
49 ;
50 #pragma acc kernels loop independent gang worker (16)
51 for(j = (0); j < size; j++) {
52 {
53 (∗(d + j)) = ((∗(a + j)) + (∗(b + j)));
54 }}}}}

Listing 4 computation of GPU and host processing

and thread are required, which are not fundamental for computational pro-
gramming, and cause a large overhead for application users.

Next, we measured the execution time of both methods, the results of
which are shown in Figure 9. Unfortunately, the total execution time with the
GPU and FPGA when applying the MHOAT method is approximately 22%
larger than that of a traditional method. Here, the execution time using GPU
with OpenACC is approximately 1.7x larger than that of GPU with CUDA,
whereas the difference between OpenCL and OpenACC on FPGA is only 7%
(OpenACC coding is slightly larger with a 1.07x increase in the computation
time). We are investigating such a large performance degradation on GPU.
The offloading instruction on OpenACC is highly abstract, and the default
setting of the OpenACC kernel execution depends highly on the compiler. In
this example, we found that the shared memory of the CUDA device is prop-
erly used in the CUDA coding, whereas that of the OpenACC compiler is not.

Title Suppressed Due to Excessive Length 131

65 81
24

41
97

30

0

50

100

150

200

250

CUDA+OpenCL OpenACC

#
 li

ne
s

of
 c

od
e

host CUDA
host OpenCL
kernel GPU
kernel FPGA

(a) Number of lines

1189 1753
399

678

4116

962

0

1000

2000

3000

4000

5000

6000

7000

CUDA+OpenCL OpenACC

#
 o

f
ch

ar
ac

te
rs

host CUDA
host OpenCL
kernel GPU
kernel FPGA

(b) Number of characters

Fig. 8 Programming cost comparison

Result on Execution Time
•GPU:
–CUDA → OpenACC is 1.7x longer

–OpenACC optimization is more difficult
• Highly dependent on compiler

• FPGA:
–OpenCL → OpenACC is 1.07x longer

• small difference

–Must be improved by detailed analysis
• OpenARC is Beta version

2020/05/25 22

be
tt
er

CS research seminar

3.582 3.826

1.171
1.962

0

1

2

3

4

5

6

7

CUDA+OpenCL OpenACC

se
c

GPU

FPGA

Execution time

Fig. 9 Execution time

We think this evaluation is extremely preliminary and unfair for both meth-
ods. Please remind that the performance degradation is caused by CUDA to
OpenACC rewriting, not by MHOAT itself. On the other hand, the OpenARC
compiler for FPGA seems to obtain a good performance, and the development
of OpenARC is still on going, and thus we can expect a higher performance
in the near future.

7 Conclusion

In this paper, we proposed a new platform and programming methodology
using Multi Hybrid Accelerated Supercomputing with multiple accelerators,
and the coupling of GPU and FPGA on a single computational node. The
accelerator characteristics of both devices are quite different, and there is a
large room for compensation with each other toward a highly sustained per-
formance without any bottleneck on a single program under limited power
consumption. To support OpenACC-only coding and a unified code to sup-
port both devices, we developed a prototype meta-compiler called MHOAT.
MHOAT allows users to describe an OpenACC directive-base acceleration to
specify the offloaded device on each accelerated part by an extended pragma
on OpenACC. A traditional method exists for programming both devices by
hand using CUDA and OpenCL for GPU and FPGA, respectively; however,
the coding with a unified framework of OpenACC is much easier for users in
terms of both simplicity and an abstraction of the code.

132 Ryuta Tsunashima et al.

Through a preliminary evaluation, we first confirmed the correctness of
MHOAT, followed by the amount of code generated and the execution perfor-
mance. Using a simple code and compilation, we confirmed the correctness of
MHOAT with proper offloading on two different devices. Based on an exam-
ination of the amount of code lines and characters, the numbers of lines and
characters were reduced to 44% and 64%, respectively. Along with the amount
of code generated, it is also important to avoid the complexity for a mixture of
programming by users. We demonstrated the ease of MHOAT coding through
a unified programming style even on multi-hybrid accelerators.

The performance comparison between CUDA+OpenCL and MHOAT
OpenACC-only on simple matrix-matrix multiplications and the CG method
shows the disadvantage of MHOAT in its current implementation including the
target code itself. The performance of MHOAT is 22% lower than a traditional
approach, particularly with approximately a 1.7x longer execution on the GPU
side. The result is still under investigation, but we believe our method will open
a new way to achieving multi-hybrid programming for the next-generation
combined accelerator environment.

Our future study will focus on the performance improvement of MHOAT,
particularly an optimization methodology to apply OpenACC for both devices.
We are preparing a real application, such as an ARGOT program[7] rather
than a toy code, to demonstrate the practicality and total performance when
applying GPU+FPGA coding and its execution. Another issue is a parallelized
code with multiple nodes combined with MPI programming. This theoretically
causes no problem, and we will create such examples. Finally, we will apply
this new compilation method to our original PGAS-based parallel-language
XcalableACC in the future.

Acknowledgements This research is partially supported by the ”Communication-Computation
Unified Supercomputing” project under MEXT’s ”Next Generation Supercomputer R&D”
program and through collaborative research among CCS, R-CCS, and ORNL. This research
(in part) used computational resources from Cygnus provided through the Multidisciplinary
Cooperative Research Program at the Center for Computational Sciences, University of
Tsukuba, titled ”HPC application and system software development on FPGA-GPU com-
bined platform” and ”Development of parallel language XcalableMP 2.0 with high perfor-
mance portability”.

References

1. June 2019 — TOP500 Supercomputer Sites,
<https://www.top500.org/lists/2019/06/>

2. Kobayashi, R., Fujita, N., Yamaguchi, Y., Nakamichi, A., & Boku, T., ”GPU-FPGA
Heterogeneous Computing with OpenCL-Enabled Direct Memory Access”, 2019 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW), IEEE,
2019.

3. homepage — OpenACC,
<https://www.openacc.org>

4. Lee, S., Lambert, J., Kim, J., Vetter, J. S., & Malony, A. D., ”OpenACC to FPGA:
A Directive-Based High-Level Programming Framework for High-Performance Reconfig-
urable Computing”, CS18, (2018).

Title Suppressed Due to Excessive Length 133

5. Tsuruta, C., Miki, Y., Kuhara, T., Amano, H., & Umemura, M., ”Off-loading let gener-
ation to peach2: A switching hub for high performance GPU clusters”, ACM SIGARCH
Computer Architecture News, 43, 4: 3-8 (2016).

6. Hanawa, T., Fujii, H., Fujita, N., Odajima, T., Matsumoto, K., & Boku, T., ”Evaluation
of FFT for GPU cluster using tightly coupled accelerators architecture”, In: Cluster Com-
puting (CLUSTER), 2015 IEEE International Conference on. IEEE, p. 635-641 (2015).

7. Fujita, N., Kobayashi, R., Boku, T., Oobata, Y., Yamaguchi Y., Yoshikawa, K., Abe, M.,
Umemura, M., ”Accelerating Space Radiative Transfer on FPGA using OpenCL”, Proc. of
HEART2018 (Int. Symposium on Highly-Efficient Accelerators and Reconfigurable Tech-
nologies), Toronto (2018).

8. Tsuruta, C., Kaneda, T., Nishikawa, N., & Amano, H., ”Accelerator-in-switch: A frame-
work for tightly coupled switching hub and an accelerator with FPGA”, 2017 27th Inter-
national Conference on Field Programmable Logic and Applications (FPL), IEEE, 2017.

9. Kobayashi, R., Fujita, N., Yamaguchi Y., Boku, T., Yoshikawa, K., Abe, M., Umemura,
M., ”Accelerating Radiative Transfer Simulation withGPU-FPGA Cooperative Computa-
tion”, Proc. of ASAP2020, (2020).

10. PGI Compilers & Tools,
<https://www.pgroup.com/>

11. Intel:Intel FPGA SDK for OpenCL,
<https://www.intel.co.jp/content/www/jp/ja/software/programmable/

sdk-for-opencl/overview.html>
12. Omni Compiler,
<http://omni-compiler.org/>

13. Nakao, M., Murai, H., Boku, T., Sato, M., ”Performance Evaluation for Omni Xcal-
ableMP Compiler on Many-core Cluster System based on Knights Landing”, IXPUG
Workshop Asia 2018, Tokyo, Japan (2018).

14. Nakao M., Odajima, T., Murai, H., Tabuchi, A., Fujita, N., Hanawa, T., Boku, T., Sato,
M., ”Evaluation of XcalableACC with Tightly Coupled Accelerators/InfiniBand Hybrid
Communication on Accelerated Cluster”, International Journal of High Performance Com-
puting Applications (2019).

15. Akihiro Tabuchi, Yasuyuki Kimura, Sunao Torii, Video Matsufuru, Tadashi Ishikawa,
Taisuke Boku, Mitsuhisa Sato, ”Design and Preliminary Evaluation of Omni OpenACC
Compiler for Massive MIMD Processor PEZY-SC”, Proc. of IWOMP2016 (International
Workshop on OpenMP (LNCS 9903: OpenMP: Memory, Devices, and Tasks), pp.293-305,
Nara, Oct. 2016.

16. Matrix BCSSTK17
<https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstruc2/bcsstk17.

html>
17. Supercomputers - Center for Computational Sciences,
<https://www.ccs.tsukuba.ac.jp/eng/supercomputers/#Cygnus>

18. 520N - BittWare FPGA Acceleration,
<https://www.bittware.com/fpga/520n/>

13th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2020)
Porto, Portugal
July 9-10, 2020

Restoration of Legacy Parallelism in C and C++
Applications

Vladimir Janjic · Christopher Brown ·
Adam D. Barwell ·

Abstract Parallel patterns are a high-level programming paradigm that en-
ables non-experts in parallelism to develop structured parallel programs that
are maintainable, adaptive, and portable whilst achieving good performance on
a variety of parallel systems. However, there still exists a large base of legacy-
parallel code developed using ad-hoc methods and incorporating low-level par-
allel/concurrency libraries such as pthreads without any parallel patterns in
the fundamental design. This code would benefit from being restructured and
rewritten into pattern-based code. However, the process of rewriting the code
is laborious and error-prone, due to typical concurrency and pthreading code
being closely intertwined throughout the business logic of the program. In
this paper, we present a new software restoration methodology, to transform
legacy-parallel programs implemented using e.g. pthreads into structured pat-
terned equivalents. We demonstrate our restoration technique on a number of
benchmarks, allowing the introduction of patterned parallelism in the resulting
code; we record improvements in cyclomatic complexity and speedups.

Keywords Parallel patterns, restoration, pthreads, program transformation,
code analysis

1 Introduction

Parallel patterns are a well-established high-level parallel programming model
for producing portable, maintainable, adaptive, and efficient parallel code.
They have been endorsed by some of the biggest IT companies, such as Intel
and Microsoft, who have developed their own parallel pattern libraries (Intel

V. Janjic
School of Science and Engineering, University of Dundee, UK.
E-mail: vjanjic001@dundee.ac.uk

C. Brown, A. Barwell
School of Computer Science, University of St Andrews, UK.
E-mail: cmb21,adb23@st-andrews.ac.uk

Restoration of Legacy Parallelism in C and C++ Applications 135

TBB [1], Microsoft PPL, etc.) A standard way to use these libraries is to
start with a sequential code base, identifying in it the portions of code that
are amenable to parallelisation, together with the exact parallel pattern to be
applied. Then instantiating the identified pattern at the identified location in
the code, after possibly restructuring the code to accommodate the parallelism.

Sequential code gives the cleanest starting point for introduction of parallel
patterns. There exists, however, a large base of legacy code that was paral-
lelised using lower-level, mostly ad-hoc parallelisation methods and libraries,
such as pthreads [10]. This code is usually very hard to read and understand,
is tailored to a specific parallelisation, and optimised for a specific architec-
ture, effectively preventing alternative (and possibly better) parallelisations
and limiting portability and adaptivity of the code. An even bigger problem,
from the software engineering perspective, is the maintainability of the legacy-
parallel code: commonly, the programmer who wrote it is the only one who can
understand and maintain the code. This is due to both complexity of low-level
threading libraries and the need for custom-built data structures, synchroni-
sation mechanisms, and sometimes even thread/task scheduling implemented
in the code. The benefits of using parallel patterns lie in a clear separation be-
tween sequential and parallel parts of the code and a high-level description of
the underlying parallelism, making the patterned applications much easier to
maintain, change, and adapt to new architectures. Common examples include
farms and pipelines. In a farm, a single computational worker is applied to a
set of independent inputs. The parallelism arises from applying the worker to
different input elements in parallel. In a parallel pipeline, a sequence of func-
tions, f1, f2, ..., fm are applied to a stream of independent inputs, x1, ..., xn

where the output of fi becomes the input to fi+1; the parallelism arises from
executing fi+1(fi(...f1(xk)...)) in parallel with fi(fi−1(...f1(xk+1)...)).

In this paper, we present a new methodology for the restoration of legacy-
parallel code into an equivalent patterned form, through application of a num-
ber of identified program transformations; the ultimate goal of which is to
provide a semi-automatic way of converting legacy-parallel code into an equiv-
alent patterned code, therefore increasing its maintainability, adaptivity, and
portability whilst either improving or maintaining performance. This paper
makes the following specific research contributions:

1. we present a novel software restoration methodology for converting legacy-
parallel applications into their structured (patterned) parallel equivalents;

2. we present a new set of restoration transformations that attempt to sys-
tematically, i) eliminate pthread operations from legacy C/C++ programs;
ii) perform code repair, fixing any bugs introduced in i ; and, iii) reshape
code in preparation for parallel pattern introduction;

3. we evaluate these transformations on a set of benchmarks, demonstrating
that removal of parallelism can allow us to manually derive structured par-
allel code that is comparable to the original legacy-parallel version in terms
of performance, while being more portable, adaptive, and maintainable.

136 Vladimir Janjic et al.

Fig. 1: Software Restoration Process

2 Software Restoration

In this section, we propose a new Software Restoration methodology for im-
proving the structure of legacy-parallel C++ code by applying a series of incre-
mental program analysis and transformation steps to rewrite the code into its
patterned equivalent. Software restoration is based on program transformation
and code analysis and aims to:

1. discover the instances of common patterns in legacy-parallel code;
2. eliminate undesirable legacy parallel primitives from the same code; and
3. replace the removed parallel primitives with instances of parallel patterns.

The input to the Software Restoration process is a legacy-parallel C/C++
code that is based on some low-level parallelism library, such as pthreads, and
the output is the semantically-equivalent code based on parallel patterns. In
this way, we obtain well-structured code based on a higher level of parallel
abstraction, which is significantly more maintainable and adaptive while still
preserving good performance of the original, highly-tuned parallel version. In
this paper, we will focus on the TBB library as our target code.

The Software Restoration methodology consists of a number of steps, each
applying a class of code transformations, some of which are driven by the
pattern discovery code analysis. The whole process is depicted in Figure 1.
In the below description, we will focus on the code transformation steps. We
will use a synthetic, but representative, parallel pipeline as a running example
in order to demonstrate the transformation. Listing 1 presents aspects of the
original parallel code with pthreads that are pertinent to this demonstration.

Listing 1: Original Simple Pipeline Code

1 int main(int argc, char *argv[]) {
2 ...
3 // create the workers, then wait for them to finish
4 pthread_create(&workerid[0], &attr, Stage1, (void *)&stage_queues[0]);
5 pthread_create(&workerid[1], &attr, Stage2, (void *)&stage_queues[1]);

Restoration of Legacy Parallelism in C and C++ Applications 137

6 pthread_create(&workerid[2], &attr, Stage3, (void *)&stage_queues[2]);
7
8 for (i = 0; i < NRSTAGES; i++)
9 pthread_join(workerid[i], NULL);

10
11 ...
12 }
13
14 // Second stage reads an element from the input queue, adds 1 to it,
15 // and writes it to the output queue.
16 void *Stage2(void *arg) {
17 int my_input, my_output;
18
19 pipeline_stage_queues_t *myQueues = (pipeline_stage_queues_t *)arg;
20 queue_t *myOutputQueue = myQueues->outputQueue;
21 queue_t *myInputQueue = myQueues->inputQueue;
22
23 do {
24 my_input = read_from_queue(myInputQueue);
25 if (my_input > 0)
26 my_output = my_input + 1;
27 else // 0 is a terminating token. Pass on if received.
28 my_output = 0;
29 add_to_queue(myOutputQueue, my_output);
30 } while (my_input>0);
31
32 return NULL;
33 }
34
35 void add_to_queue(queue_t *queue, int elem)
36 {
37 pthread_mutex_lock(&queue->queue_lock);
38 // If the queue is full, wait until something reads from it before adding a new element
39 if (queue->nr_elements == queue->capacity)
40 pthread_cond_wait(&queue->queue_cond_read,&queue->queue_lock);
41 queue->elements[queue->addTo] = elem;
42 queue->addTo = (queue->addTo + 1) % queue->capacity;
43 queue->nr_elements++;
44 pthread_cond_signal(&queue->queue_cond_write);
45 pthread_mutex_unlock(&queue->queue_lock);
46 }

In the above main function (Lines 1–12), a pipeline of three stages is created
using three threads. The stages are connected by queues such that the first
stage has an output queue, and stages two and three have both an input and
an output queue. After creation, the main function waits for the threads to
finish their work (Lines 8–9) before continuing. In Lines 14–32, we show the
function for the middle stage of the pipeline, which reads an integer from the
input queue, increments it by one, then puts it into the output queue. The
first and third stages have a similar structure, where the first stage acts as a
source of integers for the second stage, and the third stage doubles its inputs
before adding them to the final output queue.

All the relevant synchronisation code for the queues can be found in two
functions: add_to_queue and read_from_queue. Only add_to_queue (Lines
35–46) is shown here, since read_from_queue is similar. Both functions use
one mutex lock and two conditional variables. The conditional variables are
used for synchronisation when threads are waiting to insert an element into a
full queue or for reading from an empty queue (e.g. at the start of the program).
When a thread needs to add to the queue, it first acquires the queue lock and

138 Vladimir Janjic et al.

checks if the queue is full (Lines 39–40). When the queue is full, the thread
releases the lock and waits for a signal that some other thread has consumed an
element of this queue (queue->queue_cond_read conditional variable at line
40). After this conditional variable is signalled, the thread adds the element to
the queue, updating the queue counter and pointer in the process (Lines 42–
44). Finally, the thread signals that an element has been added to the queue
(queue->queue_cond_write conditional variable in Line 44) and releases the
queue lock (Line 45) before returning.

Parallelism Elimination. The initial code analysis step, Initial Pattern Dis-
covery, analyses the original pthreaded code and discovers those parts of it,
if any, that correspond to instances of parallel patterns. In our example, this
stage identifies the pipeline created in Lines 4–6, with the pipeline stages be-
ing the functions: Stage1, Stage2, and Stage3. Following pattern discovery,
the first code transformation step is applied, where pthread operations and
primitives are either removed or transformed so as to eliminate parallelism. In
Listing 1, this impacts the main and add_to_queue functions; Listing 2 gives
the results of parallelism elimination on both functions.

Listing 2: Simple Pipeline Code with Parallelism Removed

1 int main(int argc, char *argv[]) {
2 ...
3 // Calls to pthread_create are converted to function calls.
4 Stage1((void *)&stage_queues[0]);
5 Stage2((void *)&stage_queues[1]);
6 Stage3((void *)&stage_queues[2]);
7
8 // The loop containing pthread_join is removed.
9 ...

10 }
11
12 void add_to_queue(queue_t *queue, int elem) {
13 // All mutex and conditional variable operations are removed.
14 queue->elements[queue->addTo] = elem;
15 queue->addTo = (queue->addTo + 1) % queue->capacity;
16 queue->nr_elements++;
17 }

Whilst all pthread operations have been removed or transformed, and the pro-
gram is now sequential, the Parallelism Elimination stage does not guarantee
that a program’s semantics are preserved. Accordingly, as in our running ex-
ample, errors may be introduced. Here, Stage1 contains a do-loop that adds
items to its output queue. Since the second stage, which reads from that queue,
is no longer consuming those elements concurrently, and the queue is smaller
than the total number of elements produced, the second stage will now con-
sume and process only a subset of its inputs in the original pthreaded version
after Stage1 returns. Ultimately, the semantics and output of the program
produced by the Parallelism Elimination stage is not the same as the original
pthreaded program; the code must therefore be repaired.

Code Repair. As observed in the previous step, Parallelism Elimination might
result in code that is broken and, hence, not semantically equivalent to the

Restoration of Legacy Parallelism in C and C++ Applications 139

original legacy-parallel code. Our example is just one of many instances in
which merely removing pthread constructs actually breaks the code (see Sec-
tion 4 for more examples). The next step in Software Restoration is, therefore,
to repair the potentially broken code produced by Parallelism Elimination.
Due to the potential complexity of this repair stage, multiple transformations
may need to be applied.

In order to repair the broken pipeline in our running example it is necessary
to stop the first stage from overflowing its output queue. This can be achieved
by merging the loops found in Stage1, Stage2, and Stage3, thereby resulting
in loop where the operations in stages two and three are applied to each integer
produced by stage one in the same iteration that produces it. The result of
this process can be found below in Listing 3.

Listing 3: Simple Pipeline Code after Code Repair

1 void Pipe(void* a1, void* a2, void* a3) {
2 // STAGE ONE
3 int my_output_1, i_1 = MAXDATA;
4
5 pipeline_stage_queues_t *myQueues_1 = (pipeline_stage_queues_t *)a1;
6 queue_t *myOutputQueue_1 = myQueues_1->outputQueue;
7
8 // STAGE TWO
9 int my_input_2, my_output_2;

10 ...
11 do {
12 // STAGE ONE
13 if (i_1 >= -1) { ... }
14
15 // STAGE TWO
16 my_input_2 = read_from_queue(myInputQueue_2);
17 if (my_input_2 >= 0) {
18 if (my_input_2 > 0)
19 my_output_2 = my_input_2 + 1;
20 else
21 my_output_2 = 0;
22 add_to_queue(myOutputQueue_2, my_output_2);
23 }
24
25 // STAGE THREE
26 my_input_3 = read_from_queue(myInputQueue_3);
27 if (my_input_3 >= 0) { ... }
28 } while (i_1 >= 0 || my_input_2 > 0 || my_input_3 > 0);
29 }

Here, the calls to Stage1, Stage2, and Stage3 in main are first lifted into a new
function, Pipe. Each of those calls are then unfolded in order to expose the do-
loops that they contain. These loops are then merged, allowing all three stages
to be executed within a single iteration. This avoids the first stage overflowing
its output queue, and consequently, results in a program that is sequential but
semantically equivalent to the original pthreaded program.

Program Shaping. Despite correcting those errors introduced during Paral-
lelism Removal, the code produced by the Code Repair stage may still contain
artefacts from the original legacy parallelisation. In our running example, such
artefacts include the queues between the stages. In other examples artefacts
can include custom-built representations of flat data structures, such as arrays,

140 Vladimir Janjic et al.

perhaps introduced for chunking purposes. These artefacts are redundant and
could hinder alternative (and possibly better) parallelisations of the code. The
next step is, therefore, to eliminate residual artefacts of legacy parallelism, and
to improve structure where such improvements make the code more amenable
to the introduction of patterned parallelism. As in Code Repair, due to the
potential complexity of this task, multiple transformations may need to be
applied. Each Program Shaping refactoring results in a program that is se-
mantically equivalent to the one it transforms. In our running example, we
remove the now redundant queues in between the stages, the result of which
can be found in Listing 4.

Listing 4: Clean Sequential Simple Pipeline Code

1 struct PipeStruct {
2 // Input to pipeline
3 int* i_1;
4 // Output of pipeline
5 queue_t* myOutputQueue_3;
6 // Inter-stage temporary variables, used in loop-condition.
7 int my_output_1;
8 int my_output_2;
9 };

10
11 PipeStruct S1(PipeStruct arg) { ... }
12
13 PipeStruct S2(PipeStruct arg) {
14 if (arg.my_output_1 >= 0) {
15 if (arg.my_output_1 > 0) arg.my_output_2 = arg.my_output_1 + 1;
16 else arg.my_output_2 = 0;
17 }
18 return arg;
19 }
20
21 PipeStruct S3(PipeStruct arg) { ... }
22
23 void Pipe(void* a1, void* a2, void* a3) {
24 // STAGE ONE
25 int my_output_1, i_1 = MAXDATA;
26 ...
27 do {
28 PipeStruct arg = PipeStruct {&i_1, myOutputQueue_3, &my_output_1, &my_output_2};
29 PipeStruct r = S3(S2(S1(arg)));
30 my_output_1 = r.my_output_1;
31 my_output_2 = r.my_output_2;
32 } while (i_1 >= 0 || my_output_1 > 0 || my_output_2 > 0);
33 }

Here, calls to add_to_queue and read_from_queue are first unfolded, allow-
ing the specific read and write statements that represent the passing of data
between stages to be matched and ultimately simplified to a single assign-
ment statement between stages. The stages are then lifted into the functions
S1 (Line 11), S2 (Lines 13–19), and S3 (Line 21), and a struct (Lines 1–9)
generated to ensure that each stage is a single-input single-output function.
The function composition on Line 32 is now in a form where pattern-based
parallelism can be simply introduced, perhaps again by refactoring.

Pattern Introduction. After the final pattern discovery analysis is performed
and the final patterns to be introduced are identified, together with the lo-

Restoration of Legacy Parallelism in C and C++ Applications 141

cations in the code where this will be done, the final step is to introduce
instances of parallel patterns into the now-clean sequential code. The parts of
the sequential code are replaced by calls to the functions from the high-level
pattern libraries such as Intel TBB [1] or OpenMP [14]. This results in final,
patterned parallel code that is semantically equivalent to the starting legacy-
parallel code, but with much cleaner structure and simpler, higher-level code
that allows easier maintainability, adaptivity and portability.

3 Restoration Transformations

We propose a series of program transformations to facilitate the restoration
of C programs that have been previously parallelised using low-level pthread
parallelism techniques. The following transformations are grouped according
to the stages in Section 2 in which they are used. In addition to the fol-
lowing, standard transformations may also facilitate the restoration process.
For instance, the transformation to unfold a function definition [9] is used in
both Code Repair and Shaping stages; e.g. in the former, it allows loops to be
merged, and in the latter, it allows the elimination of intermediate queues. The
extract method [17] transformation can be similarly used to lift a pipeline into
a self-contained function, or to lift its individual stages (back) into separate
functions.

3.1 Parallelism Elimination

Parallelism Elimination comprises a single composite transformation that ei-
ther removes or transforms pthread operations. As noted in Section 2, Paral-
lelism Elimination, and by extension this transformation, does not guarantee
that the result of the transformation will be semantically equivalent to the
transformed program. Parallelism Elimination effects the following transfor-
mations.

– Removes #include <pthread>.
– Removes all pthread operations aside from calls to both pthread_join and

pthread_create.
– Removes all variable declarations whose types are defined as part of the

pthread library, excepting pthread_t declarations.
– Declarations in the form pthread_t t; are transformed into void* t;.
– Calls to pthread_create of the form,

1 pthread_create(t,a,f,x)

are transformed into the form:

1 t = f(x);

Recall that Parallelism Elimination converts the type of pthread_t vari-
ables to void* variables of the same name(s), and that pthread_create

requires that f returns a value of type void*.

142 Vladimir Janjic et al.

– Calls to pthread_join are transformed according to whether the second ar-
gument is NULL. When the second argument is not NULL, e.g. pthread_join
(t,x), the join operation is transformed into the form x = t. Otherwise,
when the second argument is NULL, the call to pthread_create is removed.

– In cases where a call to pthread_join or pthread_create forms the right-
hand-side of an assignment statement, e.g.

1 r = pthread_join(t,x);

in addition to the transformation of the pthread operation, an assignment
statement is inserted where the variable being assigned, r in the above
example, is assigned the value of a successful call to the original pthread
operation, here pthread_join and 0. In the above example, the code re-
sulting from the transformation is:

1 r = 0;
2 x = t;

– Any for-loop whose body contains no statements following the removal of
a pthread operation will itself be removed.

– Any if-statement with a branch whose body contains no statements fol-
lowing the removal of a pthread operation will be transformed to have only
the other branch, or itself removed, if no such branch exists. For instance,
given the for-loop from the synthetic pipeline example in Listing 1,

8 for (i = 0; i < NRSTAGES; i++)
9 pthread_join(workerid[i], NULL);

since the second argument to pthread_join is NULL, the join operation
result is itself a statement, and the body of the for-loop contains no other
operations, this for-loop is removed.

3.2 Code Repair

In addition to unfolding and extract method refactorings, the merging of loops
is a key transformation of the Code Repair stage when restoring pipelines. In
order to avoid the overheads involved with thread creation, individual stages
of a pipeline may loop until a termination token or condition is met. Merging
the loops across pipeline stages from which pthreads have been eliminated
using the transformations in Section 3.1 can be necessary to avoid overflowing
any buffers or queues in between pipeline stages, thus restoring the original
semantic behaviour of the code. Here, we describe only the merging of do-loops,
but a similar approach can be used to merge, e.g., for-loops.

Merge do-loops. A sequence of n do-loops, in the same compound statement
can be merged such that the result is a single loop containing the bodies of
the original loops in the same order that they appeared in the original source
code. We note that any statements that appear in between loops in the original
code, must be commutative with respect to any preceding loops; i.e. it must be

Restoration of Legacy Parallelism in C and C++ Applications 143

possible to swap the ordering of the statements and preceding loops without
changing the behaviour of the program.

To illustrate this transformation we use the below code, derived from the
synthetic simple pipeline example in Section 2.

Listing 5: Intermediate Code Repair Stage for Simple Pipeline Example

1 void Pipe(void* a1, void* a2, void* a3) {
2 // STAGE ONE
3 int my_output_1, i_1 = MAXDATA;
4 ...
5 do {
6 ...
7 } while(i_1>=0);
8
9 // STAGE TWO

10 int my_input_2, my_output_2;
11 ...
12 do {
13 my_input_2 = read_from_queue(myInputQueue_2);
14 ...
15 } while (my_input_2>0);
16
17 // STAGE THREE
18 int my_input_3, my_output_3;
19 ...
20 do {
21 my_input_3 = read_from_queue(myInputQueue_3);
22 ...
23 } while (my_input_3>0);
24 }

This represents the example following the Parallelism Elimination stage (List-
ing 2), and where the calls to Stage1, Stage2, and Stage3 have been lifted
into the function Pipe using extract method and then unfolded. Since the state-
ments in between the above loops consist solely of declarations and assignment
statements and can be safely executed prior to the first and second loops, it
is possible to merge these loops.

Listing 6: Following Merging of loops in Listing 5)

1 void Pipe(void* a1, void* a2, void* a3) {
2 int my_output_1, i_1 = MAXDATA;
3 ...
4 do {
5 // STAGE ONE
6 if (i_1 >= -1) {
7 ...
8 }
9

10 // STAGE TWO
11 my_input_2 = read_from_queue(myInputQueue_2);
12 if (my_input_2 >= 0) {
13 ...
14 }
15
16 // STAGE THREE
17 my_input_3 = read_from_queue(myInputQueue_3);
18 if (my_input_3 >= 0) {
19 ...
20 }
21 } while (i_1 >=0 || my_input_2 > 0 || my_input_3 > 0);
22 }

144 Vladimir Janjic et al.

The bounding condition of the merged loop is formed of the disjunction of
the conditions of the original loops. Similarly, the body of the merged loop
comprises the bodies of the original loops wrapped in if-statements. The
condition of one of these if-statements is the weakened condition of the re-
spective original do-loop; e.g. the condition my_input_2>0 above is weakened
to my_input_2>=0. This weakening is necessary, since the body of a do-loop
is executed before the bounding condition is checked. Moreover, because the
loop body is guaranteed to execute once, it is possible that a variable used
in the bounding condition may be declared outside of the loop, but only ini-
tialised within it. For example, in the second and third stages above, neither
my_input_2 nor my_input_3 are initialised before the assignment inside the
body of their respective loops (Lines 15 & 23, Listing 5). In order to merge
these loops such that the second and third stages will execute, we move the
aforementioned assignment statements outside of the introduced if-statement
around the loop body (Lines 12 & 18, Listing 6). Such assignment statements
can only be lifted out of the body if they themselves depend upon variables
already assigned outside of the loop. Variables are renamed in the bodies of
the loops as necessary.

3.3 Program Shaping.

Program Shaping represents the broadest stage in the process and presents the
programmer with the largest range of choices in terms of transformations that
may be effected. In addition to unfolding definitions and creating new functions
via extract method, other standard transformations may be applied, e.g. dead-
code elimination [23], in order to improve or simplify the structure of the code.
In order to remove aspects of the code that represent optimisations enacted for
the legacy parallelisation, both existing and novel transformations may be nec-
essary. Novel transformations may include the unchunking of data, the removal
intermediate, and now redundant, queues between stages, and a tupling (and
potential localisation) of arguments to present transformations that introduce
algebraic skeletons with a simple composition of single-parameter functions.
In line with our running example, we propose transformations to remove in-
termediate queues, and to merge arguments.

Remove Intermediate Queues. In a pthreaded pipeline, passing the result of
a stage to the next can involve intermediary queues. Once the parallelism
from the pipeline has been eliminated and the code repaired, so too can
these queues be removed. We remove these intermediate queues by inspect-
ing, matching, and transforming read, write, and update operations pertaining
to those queues. In our recurring example we begin this process following the
Code Repair stage, and having unfolded add_to_queue and read_from_queue

operations for intermediate queues only ; note that the output queue operation
on Line 35 has not been unfolded.

1 void Pipe(void* a1, void* a2, void* a3) {

Restoration of Legacy Parallelism in C and C++ Applications 145

2 int my_output_1, i_1 = MAXDATA;
3
4 pipeline_stage_queues_t *myQueues_1 = (pipeline_stage_queues_t *)a1;
5 queue_t *myOutputQueue_1 = myQueues_1->outputQueue;
6 ...
7 do {
8 // STAGE ONE
9 if (i_1 >= 0) {

10 ...
11 myOutputQueue_1->elements[myOutputQueue_1->addTo] = my_output_1;
12 myOutputQueue_1->addTo = (myOutputQueue_1->addTo + 1) % myOutputQueue_1->capacity;
13 myOutputQueue_1->nr_elements++;
14 }
15
16 // STAGE TWO
17 my_input_2 = myInputQueue_2->elements[myInputQueue_2->readFrom];
18 myInputQueue_2->nr_elements--;
19 myInputQueue_2->readFrom = (myInputQueue_2->readFrom + 1) % myInputQueue_2->capacity;
20
21 if (my_input_2 >= 0) {
22 ...
23 myOutputQueue_2->elements[myOutputQueue_2->addTo] = my_output_2;
24 myOutputQueue_2->addTo = (myOutputQueue_2->addTo + 1) % myOutputQueue_2->capacity;
25 myOutputQueue_2->nr_elements++;
26 }
27
28 // STAGE THREE
29 my_input_3 = myInputQueue_3->elements[myInputQueue_3->readFrom];
30 myInputQueue_3->nr_elements--;
31 myInputQueue_3->readFrom = (myInputQueue_3->readFrom + 1) % myInputQueue_3->capacity;
32
33 if (my_input_3 >= 0) {
34 ...
35 add_to_queue(myOutputQueue_3, my_output_3);
36 }
37 } while (i_1 >= 0 || my_input_2 > 0 || my_input_3 > 0);
38 }

A variable is read from when that variable occurs in a statement and that vari-
able is not being updated ; e.g. capacity on Line 12 above. Similarly, a variable
undergoes a write when it is being assigned to and is not being updated ; e.g.
elements in the first output queue is written to on Line 13. Finally, a variable
is updated when it occurs in a statement that is both reading from and writ-
ing to that variable; e.g. addTo in Line 12 above. Basic increment operators,
e.g. nr_elements++ on Line 13, are similarly considered updates due to their
semantics. In order to transform these read, write, and update operations, we
pair the operations in the order that they appear in the code and according to
the variables they read, write, or update, and transform those pairs according
to their composition. If two queues are semantically the same but referred
to by different variables then they themselves will be considered the same
during pairing; e.g. myOutputQueue_1 and myInputQueue_2 refer to the same
intermediate queue, thus myOutputQueue_1->elements and myInputQueue_2

->elements are similarly considered to be the same variable for pairing. In
the above example, two cases arise:

1. Updates to variables that do not occur elsewhere in the code pertain to
queue housekeeping operations are therefore removed. In the above code,
Lines 12, 13, 18, 19, 24, 25, 30, and 31 are all removed.

146 Vladimir Janjic et al.

2. A write followed by a read is merged into a single assignment statement s.t.
the RHS of the read is replaced with the RHS of the write, and where the
original write statement is removed. For example, in the above code, the
write to elements on Line 11 and the read from elements on Line 17 can
be paired (due in part to the behaviour of the queue reading the element
that has just been added). Since this represents passing my_output_1 on
Line 11 to my_input_2 on Line 17, it is possible to remove Line 17 and
transform Line 11 into the form my_input_2 = my_output_1.

An unpaired read that is part of an update, e.g. capacity on Line 12, or
a paired write, e.g. addTo on Line 11, is removed or otherwise transformed
along with the update or paired write statement. Similarly, an unpaired read
that is part of a paired read statement, e.g. readFrom on Line 17, is also
transformed according to the paired read statement. When applied, the above
transformations result in the removal of the two intermediate queues.

1 void Pipe(void* a1, void* a2, void* a3) {
2 int my_output_1, i_1 = MAXDATA;
3
4 pipeline_stage_queues_t *myQueues_1 = (pipeline_stage_queues_t *)a1;
5 queue_t *myOutputQueue_1 = myQueues_1->outputQueue;
6 ...
7 do {
8 // STAGE ONE
9 if (i_1 >= 0) {

10 ...
11 my_input_2 = my_output_1;
12 }
13 // STAGE TWO
14 if (my_input_2 >= 0) {
15 ...
16 my_input_3 = my_output_2;
17 }
18 // STAGE THREE
19 if (my_input_3 >= 0) {
20 ...
21 add_to_queue(myOutputQueue_3, my_output_3);
22 }
23 } while (i_1 >= 0 || my_input_2 > 0 || my_input_3 > 0);
24 }

Merge Arguments. During restoration, the stages of a pipeline may each be
represented by a single function. Since the majority of patterned pipeline im-
plementations expect pipeline stages to take a single argument, i.e. usually
the result of the preceding stage, it may be necessary to tuple the parameters
of each stage. This can be done (semi-)automatically. A struct can be syn-
thesised across each of the functions representing stages in the pipeline, with
each function transformed to both return and take the synthesised struct as
its argument. In our running pipeline example, following the removal of the
intermediate queues, we have three stages represented by the functions S1, S2,
and S3, respectively. S1 takes a pointer to an integer and returns an integer
value; S2 takes and returns an integer value; and S3 takes an integer value and
a pointer to its output queue and returns nothing.

1 int S1(int* i_1) {

Restoration of Legacy Parallelism in C and C++ Applications 147

2 int my_output_1;
3 if (*i_1 >= 0) {
4 my_output_1 = *i_1;
5 *i_1 = *i_1-1;
6 }
7 return my_output_1;
8 }
9

10 int S2(int my_output_1) {
11 ...
12 return my_output_2
13 }
14
15 void S3(int my_output_2, queue_t* myOutputQueue_3) {
16 ...
17 }
18
19 void Pipe(void* a1, void* a2, void* a3) {
20 ...
21 do {
22 my_output_1 = S1(&i_1);
23 my_output_2 = S2(my_output_1);
24 S3(my_output_2, myOutputQueue_3);
25 } while (i_1 >= 0 || my_output_1 > 0 || my_output_2 > 0);
26 }

Here, we observe that the result of the first two stages are used in the merged
loop bounding condition and must therefore be propagated through the stages
when converted to composition form. This is achieved by synthesising a new
struct, PipeStruct, that contains all those variables used in the condition
statement, and both the input and output to the pipeline.

1 struct PipeStruct {
2 // INPUTS
3 int* i_1;
4 // OUTPUTS
5 queue_t* myOutputQueue_3;
6 // USED IN LOOP CONDITION
7 int my_output_1;
8 int my_output_2;
9 };

10
11 PipeStruct S1(PipeStruct arg) {
12 ...
13 return arg;
14 }
15
16 PipeStruct S2(PipeStruct arg) {
17 ...
18 return arg;
19 }
20
21 PipeStruct S3(PipeStruct arg) {
22 ...
23 return arg;
24 }
25
26 void Pipe(void* a1, void* a2, void* a3) {
27 ...
28 do {
29 PipeStruct arg = PipeStruct {&i_1, myOutputQueue_3};
30 PipeStruct r = S3(S2(S1(arg)));
31 my_output_1 = r.my_output_1;
32 my_output_2 = r.my_output_2;
33 } while (i_1 >= 0 || my_output_1 > 0 || my_output_2 > 0);
34 }

148 Vladimir Janjic et al.

Here, in order to introduce a TBB pipeline, we keep the input and output
to the pipeline as pointers. The variables my_output_1 and my_output_2 are
only used as part of the condition and are not outputs of the pipeline, as such
they are stored by their value. In this particular example, it is possible to
remove the second and third disjunctions and therefore remove my_ouptut_1

and my_ouptut_2 from PipeStruct, and thus further simplify the pipeline, but
this is left to another Shaping transformation or sequence of transformations.

4 Evaluation

In this section, we present an evaluation of our restoration methodology on a
number of examples of pthreaded C and C++ applications taken from a vari-
ety of domains, including image convolution, nqueens, cholesky decomposition,
blackscholes, pgpry, mandelbrot and matrix multiplication. For each bench-
mark we evaluate the effectiveness of our technique using standard metrics,
such as McCabe’s Cyclomatic Complexity [26], lines of code and difference in
runtimes between the original pthread version and the restored TBB version,
using the maximum number of available cores; these results are summarised
in Table 1, which also labels if each benchmark is a standard task from im-
plementation (F) or a pipeline, where each stage can also be farmed (P). All
of our execution experiments are conducted on a server with Intel Xeon E5-
2690 CPU with 28 cores, running at 2.6 GHz with 256 GB of RAM, with the
Scientific Linux 6.2 operating system.

4.1 Image convolution

Image Convolution is a technique widely used in image processing applications
for blurring, smoothing and edge detection. We consider an instance of the
image convolution from video processing applications, where we are given a
list of images that are rocessed by applying a filter. Applying a filter to an
image consists of computing a scalar product of the filter weights with the
input pixels within a window surrounding each of the output pixels:

out(i, j) =
∑

m

∑

n

in(i− n, j −m)× filt(n,m) (1)

Listing 7: Original Convolution with PThreads

1 void add_to_queue(queue_t *queue, task_t elem)
2 {
3 /* Same as in Listing 1 */
4 }
5
6 task_t read_from_queue(queue_t *queue)
7 {
8 ...
9 }

10

Restoration of Legacy Parallelism in C and C++ Applications 149

11 void* stage1() {
12 ..
13 while(1) {
14 t = read_from_queue(tq1);
15 r = workerStage1(t); /* Reads in pixels from a file into an array */
16 add_to_queue(tq2, r);
17 }
18 return NULL;
19 }
20
21 void* stage2() {
22 ..
23 while(1) {
24 t = read_from_queue(tq2);
25 r = workerStage2(t); /* Applies transformation to each pixel in a received array */
26 add_to_queue(tq3, r);
27 }
28 return NULL;
29 }
30
31 int main (int argc, char **argv)
32 {
33 ...
34 /* Reading in the images in the task queue tq1 */
35 ...
36 /* Create the pipeline */
37 for (int i=0; i<nw1; i++)
38 pthread_create(&workers1[i], NULL, stage1, NULL);
39 for (int i=0; i<nw2; i++)
40 pthread_create(&workers2[i], NULL, stage2, NULL);
41 ...
42 /* Wait for threads to finish execution and output results to files */
43 }

For the convolution example, we start off with a pthreaded version in Listing 7,
with a similar structure as the other pipelined examples in this paper, and
outlined in Section 2. After setting up the task queue for the first stage of
the pipeline (e.g. by reading a list of names of files with images), the example
creates the pipeline in Lines 37–40, spawning a number of worker threads for
each stage of the pipeline. The pipeline stages are shown at Lines 11 and 21,
respectively; each stage has a similar structure: a non-terminating while loop
that retrieves a task from the stage’s input queue (tq1 and tq2 for stage1

and stage2, respectively), computes the unit of work on the task item (Lines
15 and 25) and then places the result on an output queue (Lines 16 and 26).
Functions add_to_queue and read_from_queue put a task in an output queue
and read a task from an input queue, respectivelly, in a thread safe manner.
The code for add_to_queue was shown in Listing 1.

The first step to restoration is to remove the threading code; this is a fairly
straightforward process, but results in an executable that no-longer terminates.
This is due to the fact that there is no termination condition of the while

loops within the stages. A simple repair for this step is to add a termination
token, EOS, which threads through the pipeline computation when no more
tasks are on the original input queue amd terminates the stages when received
(Listing 8).

Listing 8: Convolution, Repaired with a Termination Token

1 if ((int)(task_t)t == EOS) {

150 Vladimir Janjic et al.

2 puttask(tq2, (task_t2 *)EOS);
3 break;
4 }

The next step is to perform program shaping which goes through various steps,
including unfolding the various calls to gettask and puttask in the stages,
merging the stages together, and finally removing the intermediate queue be-
tween the two stages (leaving the input and output queue; see Listing 9).

Listing 9: Stages merged, unfolded and intermediate queue removed

1 /* Unfolded gettask function, reutrning t1 as an input task to stage 1 */
2 . . .
3 r1 = workerStage1(t1);
4 r2 = workerStage2(r1);
5 /* Unfolded puttask function that puts r2 into queue tq2 */
6 tq2->elements[tq2->addTo] = r2;
7 tq2->addTo = (tq2->addTo + 1) % tq2->capacity;
8 tq2->nr_elements ++

The final step in the shaping process is to arrive at the code shown in List-
ing 10, where we remove the input and output queues completely, and trans-
form the program into a simple function composition; the function composition
has been unfolded into the original for loop (Line 37–40 from Listing 7), and
the loops merged into a single loop.

Listing 10: Convolution Shaped

1 for (int i=0; i<NIMGS; i++) {
2 workerStage2(workerStage1(i));
3 }

Finally, the fully shaped program from Listing 10 can be parallelised using
a structured pattern approach. Here we use TBB, to define a pipeline, using
C++ classes, as shown in Listing 11.

Listing 11: Convolution Restored with TBB

1 tbb::parallel_pipeline(
2 ntoken,tbb::make_filter<void,task_t2*>(tbb::filter::serial, Stage1(NIMGS))
3 & tbb::make_filter<task_t2*,int>(tbb::filter::parallel, Stage2())

4.2 Discussion

Table 1 shows the summary of our results for all the benchmarks. For all
benchmarks we see comparable results in the McCabe metrics, where the
TBB version gives a better result, apart from Blackscholes, where the com-
plexity is equal, and Matrix Multiplication, where the complexity actually
increases. This is most likely because both of these benchmarks are simple
farms, and the TBB logic actually introduces some complexity over simply
calling pthread_create multiple times. The number of lines of code for the
TBB version is mostly comparable, with most benchmarks showing a decrease
in lines of code. Blackscholes shows a slight increase in LOC, most likely, again,

Restoration of Legacy Parallelism in C and C++ Applications 151

Benchmark McCabe Lines Performance
Before After Before After Before After

Blackscholes F 29 29 366 393 38.5 39
Matrix Multiplication F 9 15 176 146 909.4 896.5

Mandelbrot F 12 11 145 142 2.21 2.28
NQueens P 41 24 421 337 8.63 8.622

Cholesky Decomposition P 31 19 321 226 16.97 17.08
PGPry P 23 19 210 243 138.1 131

Image Convolution P 71 29 714 280 12.85 5.2

Table 1: Metrics for each benchmark, where F = Farm, and P = Pipeline;
performance times are in seconds on a 28-core machine.

due to the slight increase in code logic for TBB versus the pthread version. In
terms of performance, again, the TBB versions are mostly comparable, with
the exception of a few cases. For convolution, the TBB version performs 2.4x
faster, due to the pthreading version introducing extra overheads in the locking
code; Blackscholes also performs very slightly worse, by 0.5 seconds.

5 Related Work

The concept of a systematic, or structured approach to software restoration
has, to our knowledge, been largely previously unexplored. A concept that is
probably most related to software restoration is that of reverse engineering,
which is a technique used to retrieve high-level requirements from existing
sequential code [12,13]. Yu et al. [31] proposed a technique that attempts to
use refactoring to try and recover requirements goal models from legacy code.
However, the work only targets sequential code and only capture high-level
information that is not useful for parallel restoration. Refactoring has roots in
Burstall and Darlington’s fold/unfold system [9], and has been applied to a
wide range of applications as an approach to program transformation [27], with
refactoring tools a feature of popular IDEs including, i.a., Eclipse [16] and Vi-
sual Studio [28]. Previous work on parallelisation via refactoring has primarily
focussed on the introduction and manipulation of parallel pattern libraries in
C++ [8,22] and Erlang [7,6]. Another approach has been the automated in-
troduction of annotations in the form of C++ attributes [30]. Dig proposed an
approach to parallel loops in Java [15], but did not use high-level algorithmic
skeletons. Aldinucci and Danelutto proposed an approach to convert between
skeleton configurations and could be used to introduce parallelism, but where
the sequential program must also be defined using (sequential) skeletons [2].
Thompson et al. [24] proposed an approach to refactor sequential Erlang pro-
grams into concurrent versions, using program slicing to guide the refactoring
process. However, their approach was not focussed on parallel performance,
and did not use restoration or parallel patterns. High-level parallel patterns,
sometimes known as algorithmic skeletons offer high-level abstraction over low-
level concurrency methods [4,18]. A range of pattern/skeleton implementations

152 Vladimir Janjic et al.

have been developed for a number of programming languages; these include:
RPL [22]; Feldspar [5]; FastFlow [3]; Microsoft’s Pattern Parallel Library [11];
and Intel’s Threading Building Blocks (TBB) library [1]. Since patterns are
well-defined, rewrites can be used to automatically explore the space of equiv-
alent patterns, e.g. optimising for performance [25,20] or generating optimised
code as part of a DSL [19]. Moreover, since patterns are architecture-agnostic,
patterns have been similarly implemented for multiple architectures [21,29].

6 Conclusions

In this paper, we have introduced a software restoration methodology for con-
verting legacy-parallel applications into structured parallel code using parallel
patterns. This ensures portability, maintainability and adaptivity of paral-
lel code while maintaining, and sometimes even increasing, performance. We
also presented transformations to eliminate ad-hoc pthread parallelism from
legacy-parallel code, transformations that repair the code from bugs intro-
duced by the elimination step, and , shape the code in order to patternise it.
Furthermore, we evaluated out software restoration methodology on a num-
ber of realistic benchmarks and use-cases, demonstrating benefit in terms of
gained performance, increased adaptivity, portability and maintainability.

References

1. TBB (intel threading building blocks). In: Encyclopedia of Parallel Computing, p. 2029.
Springer (2011)

2. Aldinucci, M., Danelutto, M.: Stream parallel skeleton optimization. In: PDCS, pp.
955–962 (1999)

3. Aldinucci, M., Danelutto, M., Kilpatrick, P., Torquati, M.: Fastflow: High-Level and
Efficient Streaming on Multicore, chap. 13, pp. 261–280 (2017). DOI 10.1002/
9781119332015.ch13

4. Asanovic, K., Bod́ık, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Mor-
gan, N., Patterson, D.A., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.A.: A view of
the parallel computing landscape. Commun. ACM 52(10), 56–67 (2009)

5. Axelsson, E., Claessen, K., Sheeran, M., Svenningsson, J., Engdal, D., Persson, A.:
The design and implementation of feldspar - an embedded language for digital signal
processing. In: IFL, Lecture Notes in Computer Science, vol. 6647, pp. 121–136. Springer
(2010)

6. Barwell, A.D., Brown, C., Hammond, K., Turek, W., Byrski, A.: Using program shaping
and algorithmic skeletons to parallelise an evolutionary multi-agent system in erlang.
Computing and Informatics 35(4), 792–818 (2016)

7. Brown, C., Danelutto, M., Hammond, K., Kilpatrick, P., Elliott, A.: Cost-directed refac-
toring for parallel erlang programs. International Journal of Parallel Programming
42(4), 564–582 (2014)

8. Brown, C., Janjic, V., Hammond, K., Schöner, H., Idrees, K., Glass, C.W.: Agricultural
reform: More efficient farming using advanced parallel refactoring tools. In: PDP, pp.
36–43. IEEE Computer Society (2014)

9. Burstall, R.M., Darlington, J.: A transformation system for developing recursive pro-
grams. J. ACM 24(1), 44–67 (1977)

10. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley Longman Pub-
lishing Co., Inc., USA (1997)

Restoration of Legacy Parallelism in C and C++ Applications 153

11. Campbell, C., Miller, A.: A Parallel Programming with Microsoft Visual C++: De-
sign Patterns for Decomposition and Coordination on Multicore Architectures, 1st edn.
Microsoft Press (2011)

12. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data.
ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998)

13. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby, Zheng,
H.: Bandera: extracting finite-state models from java source code. In: ICSE, pp. 439–448.
ACM (2000)

14. Dagum, L., Menon, R.: Openmp: An industry-standard api for shared-memory pro-
gramming. IEEE Comput. Sci. Eng. 5(1), 4655 (1998)

15. Dig, D.: A refactoring approach to parallelism. IEEE Software 28(1), 17–22 (2011)
16. Foundation, E.: Eclipse - an Open Development Platform (2009).

http://www.eclipse.org

17. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison Wesley
object technology series. Addison-Wesley (1999)

18. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-level
structured parallel programming enablers. Softw., Pract. Exper. 40(12), 1135–1160
(2010)

19. Gorlatch, S.: Domain-specific optimizations of composed parallel components. In:
Domain-Specific Program Generation, Lecture Notes in Computer Science, vol. 3016,
pp. 274–290. Springer (2003)

20. Gorlatch, S., Wedler, C., Lengauer, C.: Optimization rules for programming with col-
lective operations. In: IPPS/SPDP, pp. 492–499. IEEE Computer Society (1999)

21. Hagedorn, B., Stoltzfus, L., Steuwer, M., Gorlatch, S., Dubach, C.: High performance
stencil code generation with lift. In: CGO, pp. 100–112. ACM (2018)

22. Janjic, V., Brown, C., Mackenzie, K., Hammond, K., Danelutto, M., Aldinucci, M.,
Garćıa, J.D.: RPL: A domain-specific language for designing and implementing parallel
C++ applications. In: PDP, pp. 288–295. IEEE Computer Society (2016)

23. Kennedy, K.: A Survey of Data Flow Analysis Techniques, p. 554 (1981)
24. Li, H., Thompson, S.J.: Safe concurrency introduction through slicing. In: PEPM, pp.

103–113. ACM (2015)
25. Matsuzaki, K., Kakehi, K., Iwasaki, H., Hu, Z., Akashi, Y.: A fusion-embedded skeleton

library. In: Euro-Par, Lecture Notes in Computer Science, vol. 3149, pp. 644–653.
Springer (2004)

26. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 2(4), 308–320 (1976)
27. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Software Eng.

30(2), 126–139 (2004)
28. Microsoft: Visual Studio IDE (2019). https://visualstudio.microsoft.com/vs/

29. Reyes, R., Lomüller, V.: SYCL: single-source C++ accelerator programming. In:
PARCO, Advances in Parallel Computing, vol. 27, pp. 673–682. IOS Press (2015)

30. del Rio Astorga, D., Dolz, M.F., Sánchez, L.M., Garćıa, J.D., Danelutto, M., Torquati,
M.: Finding parallel patterns through static analysis in C++ applications. IJHPCA
32(6) (2018)

31. Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., do Prado Leite, J.C.S.:
Reverse engineering goal models from legacy code. In: RE, pp. 363–372. IEEE Computer
Society (2005)

13th International Symposium on
High-Level Parallel Programming and Applications (HLPP 2020)
Porto, Portugal
July 9-10, 2020

Fortress Abstractions in X10 Framework

Anshu S. Anand · Karthik Sayani · R.
K. Shyamasundar

Abstract Fortress provides a nice set of abstractions used widely in scientific
computing. The use of such abstractions enhances the productivity of program-
mers/users. Also, in scientific computations, boilerplate code has extensive
usage. Keeping this in view, we embed Fortress abstractions in an X10 envi-
ronment so that we can get better productivity without losing performance.
In this paper, we transform Fortress into X10 through a transcompilation sys-
tem. We describe compilation strategies for a few important constructs and
discuss the performance of the generated X10 code with respect to the origi-
nal Fortress code. The translated X10 code outperforms the original Fortress
code with a maximum of 206x speedup achieved in the best case. The system
also supports the multiresolution language approach that simplifies parallel
programming by allowing domain scientists to write programs in the Fortress
syntax that is closer to the mathematical notation. The translated X10 code,
which can further be compiled to either C++ or Java, implicitly assures perfor-
mance and may further be optimized for performance by utilizing the low-level
features of X10 (or C++/Java).

Keywords Transpiler · Fortress · X10 · Abstraction · Xtext · Xtend

The authors’ names are listed in alphabetical order.

Anshu S. Anand
Indian Institute of Information Technology Allahabad
E-mail: anshusanand2001@gmail.com

Karthik Sayani
Indian Institute of Information Technology Vadodara
E-mail: kartik.sayani.3196@gmail.com

R. K. Shyamasundar
Indian Institute of Technology Bombay
E-mail: shyamasundar@gmail.com

Fortress Abstractions in X10 Framework 155

1 Introduction

The accelerating pace of advances in Computational Science has challenged the
scientific community to use advanced computing capabilities to understand
and solve complex problems from various scientific disciplines like numeri-
cal simulations, model fitting, and data analysis. These problems involve large
computations that are usually executed on multi-node computing clusters with
each node comprised of multi-core processors and accelerators that specialize
in number crunching and parallel computing. To exploit the available hard-
ware, several high-performance languages have been developed, which enable
programmers to run an application on thousands of threads over hundreds of
computing units. For an experienced computer programmer, it is a matter of
a few days to learn and get familiar with the features of these languages. How-
ever, all these languages have their own sophisticated syntaxes and constructs.
This leads to two challenges:

– Firstly, there is much boilerplate code involved in writing a parallel pro-
gram. Programmers themselves have to spawn and manage the thread pool
and are also responsible for synchronization and joining of these threads.
For example, for a simple FOR loop construct, the body of which is re-
quired to be executed in parallel, a programmer has to invoke a certain
number of threads, write code to issue tasks to each thread, and also write
separate code for invoking these threads on several processors. The situa-
tion gets further complicated when atomic blocks and several computing
devices with multiple cores are involved.

– Secondly, for a person not familiar with the syntax of the language, it be-
comes increasingly difficult to understand how the problem is being solved
by a computer. This is important because the end-users of the output of
the solutions to these problems are they themselves. It is therefore required
that there be some way to get the syntax as close as possible to mathe-
matical notations, which are universally understood.

With these requirements in mind, Guy Steele and his team at Sun Mi-
crosystems Inc. began working on Project Fortress in 2002. Fortress [1] was
developed as a part of the High Productivity Computing Systems (HPCS)
program, along with Chapel [12] and X10 [10,11], for development of com-
puting systems with a focus on productivity and performance. However, even
as Chapel and X10 have evolved as full-fledged programming languages, the
development of Fortress language, unfortunately, ceased in the year 2012 due
to various reasons. However, Fortress did introduce some exciting syntax and
constructs. The goal of the developers was to build a language that was as close
as possible to mathematical notation, was efficient, scalable, and at the same
time, was as simple as possible to facilitate productivity in high-performance
software development.

156 Anshu S. Anand et al.

Motivation

The aim of this project is fueled by and carries forward the original goals of
Fortress, i.e., to build a high-performance language that is close to mathemati-
cal notation, scalable, and simplifies writing parallel code. Since domain/com-
putational scientists are by far the largest user community of HPC, Fortress’s
proximity to mathematical notation reduces the scope for errors in translating
the mathematical equations into programs, while also simplifying debugging,
thereby improving their productivity significantly. Thus, providing continued
support to such a language becomes absolutely necessary. However, Project
Fortress being no longer under development, and in its current state only
having a working interpreter, all the features provided by Fortress become un-
reachable to the entire scientific computing community. In this paper, we try
to address this problem using the X10 programming language.

X10 is an object-oriented and statically-typed language that has found
wide popularity in the HPC community. Both X10 and Fortress unite in the
view of the abstract programming model that they follow: Partitioned Global
Addressing Space (PGAS), wherein the global addressing space is logically
divided into several partitions such that each partition is local to some pro-
cessing element (called Places in X10). This approach is particularly helpful
in exploiting data locality in multi-core, multi-node clusters.

Since both Fortress and X10 work on very similar execution models and are
both compiled and ran on JVM, it opens up an opportunity to build a source-
to-source compiler (transcompiler/transpiler) for Fortress code to be converted
into X10. Thus, in this paper, we present a transpiler that translates Fortress
programs into X10, enabling users to still write programs in the Fortress syn-
tax that is similar to mathematical notation, and at the same time, get better
performance using X10’s infrastructure. Our work also supports Multiresolu-
tion langauge philosophy [2] that simplifies parallel programming by allowing
the domain scientists to use the high-level specification for convenience and
productivity, and at the same time, provide fine-grained control to the HPC
programmers using low-level representations for performance. Since the X10
compiler has two backends: C++ and Java, X10 itself can be compiled to both
C++ and Java, and therefore provides more flexibility to the HPC program-
mers for fine-grained optimizations of the original Fortress code.

The paper has been organized as follows: In the next section, we give a brief
background of the Xtext framework and the Xtend language used to realize
the transpiler. The architecture of the translation process from Fortress to X10
is described in detail in Section 3.2. We then present a case study of Buffon’s
Needle algorithm and give its Fortress implementation and the translated X10
code in Section 4. The results of run-time comparisons of benchmark appli-
cations in Fortress and the corresponding translated X10 code is discussed in
Section 5.

Fortress Abstractions in X10 Framework 157

2 Background

The Fortress-to-X10 Transpiler has been built using Xtext [6] which is a frame-
work for development of programming languages especially parser-based ex-
ternal Domain-Specific Languages (DSL) [3,4]. Unlike internal DSLs which are
written inside an existing host language in the form of an API, external DSLs
are parsed independently of the host language and have their own syntax. The
transpiler also employs the Xtend language [7] for code generation. We first
give a brief overview of the Xtext framework and the Xtend language, and
then discuss the similarities and differences in Fortress and X10 languages.

2.1 Xtext framework

Xtext provides complete infrastructure, including parser, linker, type-checker,
compiler as well as editing support for Eclipse. It uses the LL(*) parser gen-
erator of ANTLR in the background, allowing it to cover a wide range of
syntax.

In order to build a DSL, Xtext requires the DSL’s grammar to be de-
fined using the Xtext grammar language. Xtext grammar language itself is an
EBNF-like DSL developed using Xtext [9]. Now, to derive the various language
components, we need to execute the Generate Xtext Artifacts command. This
generates the following:

1. a metamodel based on Eclipse Modelling Framework’s (EMF) Ecore model [5].
From this Ecore model, a Java-API is generated that allows the AST to
be accessed programmatically.

2. an ANTLR-based parser that generates the abstract syntax tree (AST) for
textual DSL models.

3. a full-featured text editor with support for code highlighting, syntax col-
oring, content assist, code navigation, etc.

2.2 Xtend Language

Xtend is a statically typed template language for implementing generators,
interpreters, and model transformations. Since each of these require access to
AST, Xtend enables programmatic access to it using the Java-API mentioned
in Section 2.1. Since Xtend is compiled to Java, it seamlessly integrates with
all existing Java libraries. Like Xtext’s grammar language, Xtend language too
has been built using Xtext. It provides a rich set of language features like:

– lambda expressions
– template expressions
– active annotations
– type-based switch statements
– polymorphic method invocation

158 Anshu S. Anand et al.

The meta models of Xtext DSLs are represented as Ecore models and since
Xtend itself is built using Xtext, each Xtend program is also represented as an
Ecore model. A detailed discussion of the relationship between Xtext, Xtend
and Ecore can be found in [8].

2.3 Fortress and X10 languages

Here, we introduce Fortress and X10 languages through a comparison of a few
important programming aspects:

1. Programming model: As mentioned in Section 1, both Fortress and X10
use the PGAS programming model which provides an abstraction of a sin-
gle shared address space even though the address space is partitioned into
regions based on the underlying NUMA architecture. X10, in addition, also
supports asynchronous operations and control flow, which permits the cre-
ation of asynchronous tasks locally and globally, due to which it is said to
be an Asynchronous PGAS (APGAS) language.

2. Basic execution model: The basic unit of execution in Fortress is a
thread - implicit or explicit (launched using spawn), while in X10 it is
known as an activity - a lightweight thread or a user-level thread that is
much cheaper to create and manage than kernel-level threads.

3. Memory abstraction: Unlike X10 and Chapel, which provide flat mem-
ory abstractions, Fortress provides a hierarchical abstraction of the target
architecture. This is realized using regions that map to an element of the
systems hierarchy i.e., node, processor, core, or memory, thereby forming
a hierarchical tree. Every thread, object, and array element has an asso-
ciated region in Fortress, which can be queried using the function region
provided by Fortress.
X10, on the other hand, uses the notion of places that represent various
computational units with local memory. Both Fortress and X10 allow com-
putation to be placed near data using the same construct: at.

Fortress and X10 have many similar features. While Fortress uses spawn-at,
for-spawn, and at-atomic, X10 uses at-async, for-async, and at-atomic

for asynchronous remote tasks, nested parallelism, and remote transactions,
respectively. Also, X10 provides distributed arrays for data distribution, while
Fortress provides arrays, vectors, and matrices, that are assumed to be dis-
tributed across the machine [1]. Tuples in Fortress are also similar to Points
in X10.
Fortress, in addition, supports several unique features that were aimed at im-
proving the productivity of programmers. Here, we list a few:

1. Growable syntax [17], [18]
Growable syntax allows growing a programming language using syntactic
abstraction. Thus, the growable syntax of Fortress allows it to adapt to the

Fortress Abstractions in X10 Framework 159

changing needs of users by providing support for adding new constructs in
libraries by defining them in terms of existing constructs.

2. Dimensions and units [19]
Many applications involve representing physical quantities that are usually
expressed as raw numbers. By providing adequate support for units and di-
mensions, Fortress eliminates bugs that may arise due to mis-representation
of different physical measurements. For example, addition/substraction/-
comparison of quantities that are expressed in different units.

3. Function contracts [1]
allows a user to express certain semantic properties that cannot be ex-
pressed through the static type system.

4. High-level combinators [16]
It allows nested data structures to be generated through a set of primitives,
called Generators of Generators (GoGs).

Further description of Fortress language follows in Section 3.2. We now
describe the architecture of the Fortress to X10 transpiler for the translation
of Fortress programs to X10.

3 Translation from Fortress to X10

In this section, we describe the challenges in compiling Fortress to X10 and
describe the implementation of the Fortress-to-X10 transpiler along with an
illustration of translation of a few key constructs.

3.1 Challenges

Targeting X10 for translation has raised many challenges in the design of the
transpiler. Issues such as extensive usage of Left Recursion in the original
Fortress grammar expressed in Parser Expression Grammar and inclusion of
unimplemented features such as Dimensions, Coercion, Tests, and Properties
embedded in the Fortress Grammar presented a major task of filtering and
adapting the essential abstractions from the Fortress grammar while staying
true to the objectives of the project. The resulting modified Fortress Grammar
faced the following major challenges:

– Multiplication Operator:
Originally, multiplication in Fortress is implied by juxtaposing two operands
together. Juxtaposition itself is an overloaded operator that is given seman-
tic actions at run-time, i.e., When the left operand is a function, number
or a string, juxtaposition performs function application, multiplication and
string concatenation, respectively.

160 Anshu S. Anand et al.

Such an operator was possible to be defined in Parsing Expression Gram-
mar (PEG) due to infinite look-ahead, which is not the case with LL(*)
parser. And hence, multiplication operator ‘*’ was used.

– Parsing nested expressions:
Since Xtext doesn’t support left-recursive parser rules, parsing of nested
expressions is difficult due to their recursive nature. To get rid of left-
recursion, the grammar needs to be left-factored. Operator precedence is
handled by defining an order of delegation. An operator with higher prece-
dence has its rule listed above other operators.

– Dimensions and Units:
Since Fortress is being translated to X10, which doesn’t provide support
for dimensions and units, providing support for it in Fortress poses a chal-
lenge. This is because dimension-checking would require manipulation of
dimensions according to a dimensional algebra. There are type systems
that model units as types so that dimensional analysis is reduced to type
checking [20]. However, due to the complex semantics of units, more pow-
erful algorithms are required to perform type checking for unit correctness.

– Return Statements: Fortress, being a expression-oriented language, has
every construct as an expression that returns some value. For example, in
the following code:

f a c t o r i a l (n : ZZ64) : ZZ64 =
i f n === 0

then 1
e l s e

n∗ f a c t o r i a l (n−1)
end

the IF block is an expression that returns a value. We illustrate an example
in Section 3.3, where we revisit the same code (but in a different context)
and show how we address it.

3.2 An Architecture for translation from Fortress to X10

The Fortress to X10 transpiler, built using the Xtext framework and the Xtend
language, takes as input a Fortress program and translates it into the corre-
sponding X10 code. The architecture of Fortress-to-X10 transcompilation is
shown in Figure 1.

To implement the Fortress to X10 transpiler, the Xtext project takes as
input the grammar of Fortress language (obtained from the Fortress language
specification [1]) specified in Xtext’s grammar language. On generating the

Fortress Abstractions in X10 Framework 161

Fortress
Grammar
(in Xtext’s

Grammar language)

Xtext
Framework

Eclipse
IDE

instance

Code Genera-
tor Stub

Parser

X10
Program

generate

Xtext
artifacts

 :
 :

 :
 :

input

input

output

 :
 :

 :
 :

Code Genera-
tor methods

Fortress
program

Run

input

Fig. 1 Architecture of Fortress-to-X10 transcompilation

Xtext artifacts for the Fortress grammar, apart from the parser and other
infrastructure being generated, a code generator stub is put into the runtime
project. The code generator is then written using the Xtend language by defin-
ing methods to translate each element of the EMF’s metamodel.

On executing the project, a new instance of Eclipse IDE is generated with
support for functionalities like code completion, syntax highlighting, syntactic
validation, linking errors, the outline view, find references, etc. This enables
complete Eclipse support for programs written in the Fortress language.

To translate Fortress programs to X10, the code generator invokes (Xtend)
methods corresponding to each element of AST generated by the parser. Since
the DSL Xtext editor is already integrated in the automatic building infras-
tructure of Eclipse, the generator will be automatically called when the source
is written/modified in our DSL (Fortress, in our case). Thus this change is
automatically reflected in the translated code.

We now illustrate a simple “Hello World” application that is translated
from Fortress to X10. Figure 2 shows the application written in Fortress. Fig-
ure 3 shows a representation of the AST for the “Hello World” program,
obtained using the Sample Reflective Ecore Model Editor tool.

The translated X10 code is shown in Listing 1.

Listing 1 Translated X10 code

pub l i c c l a s s hel loWorld {
pub l i c s t a t i c de f main (args : Ra i l [S t r ing]) {

Console .OUT. p r i n t l n (” He l lo world ! ”) ;
}

}

162 Anshu S. Anand et al.

Fig. 2 A simple hello world application in Fortress

Fig. 3 AST of the Fortress hello world application

We now illustrate the translation of a few key constructs of Fortress into
X10.

Fortress Abstractions in X10 Framework 163

3.3 Illustration of translation of a few key constructs

For illustration, we show the translation of a few key constructs in Fortress
to X10.

3.3.1 Translation of if-then block

Figure 4 shows a Fortress code snippet of an if-then block and the correspond-
ing translated X10 code.

if 0.0 < val AND val < 1.0 then
println("Hello")

end

if(((0.0f < val)&&(val < 1.0f))){
Console.OUT.println("Hello");

}

Fortress code
snippet

translated X10
code

Fig. 4 Fortress to X10 translation of if-then block

The Xtend method that realizes this translation is listed below:

var s= ’ ’ ’ i f (’ ’ ’+d . cond . compi le + ’ ’ ’) ’ ’ ’+
’ ’ ’{ ’ ’ ’ + ”\n” + d . b locks . compi le +
”\n”+ ’ ’ ’} ’ ’ ’+”\n”

The Xtend method generates the if-then block in X10 syntax using simple
string operations. As with Java, the string literals in Xtend (enclosed in ”’ ”’)
can be concatenated with the ’+’ operator. The transpiler traverses through
the AST and translates every element of if to the corresponding code in the
X10 syntax using the above method.

3.3.2 Translation of for loop

Since for loops in Fortress are parallel by default, the equivalent translated
X10 code can be implemented using async and finish. For each loop iteration,
a new asynchronous activity in X10 is spawned using async. Figure 5 shows a
Fortress code snippet and the corresponding translated X10 code.

Parallelism in for loops is specified by the generators used. Thus, if there is
any dependency that limits parallel execution, the programmer should specify

164 Anshu S. Anand et al.

for i<-0#1000 do
 a[i] := SQRT((a[i])^2 + (a[i])^3)
end

finish for(i in 0n..(1000n-1))async{
 a(i)=SQRT(((Math.pow(a(i),2n))+

 (Math.pow(a(i),3n))));
}

Fortress code
snippet

translated X10
code

Fig. 5 Fortress to X10 translation of for loop

the use of sequential generator (eg. i ← seq(1 : n)) that forces the iterations
to be performed sequentially.

The grammar rules for for loop in Fortress, specified in the Xtext’s gram-
mar language is listed below:

DelimitedExpr :
’ fo r ’ gen=Generators do f ront=DoFront ’ end ’ ;

Generators : b inding=Binding
(’ , ’ c l a u s e+=GenClause)∗ ;

Binding : idtup=Q u a l i f i e d ’<−’ g=GenSource
| idtup=Q u a l i f i e d ’<−’
seq =’seq ’ ’ (’ g=GenSource ’) ’ ;

GenSource : Expr ({GenSource . s t a r t=cur rent }
’# ’ end=Expr) ? ;

GenClause : b inding=Binding
| expr=Expr ;

A for loop consists of the ‘for’ keyword followed by a generator clause
list. In Fortress, comma-separated generator clause lists are utilized to express
parallel iterations (eg. for i← 1:m, j← 1:n do end). Thus, the body of a
‘for’ loop is evaluated for every combination of values bound in the generator
clause list (i, j in the above example), in parallel. The generator clause list
begins with a binding that consists of one or more identifiers followed by the
token ‘←’ and a generator source that is essentially a sub-expression that
specifies the range of values for which the for loop is to be evaluated.

Fortress Abstractions in X10 Framework 165

3.3.3 Translation of function contracts

Function Contract is a key feature of Fortress that allows a function to im-
pose certain conditions on its execution. They enable us to express semantic
properties that cannot be expressed through the static type system.

static def factorial(n:Long):Long{
var result:Long;

factorial(n: ZZ64):ZZ64
requires {n>=0}

ensures {result >= 0}=
if n === 0

then 1
else

n*factorial(n-1)
end

Fortress code

Translated X10 code

var result:Long;
if((n >= 0)){

if((n == 0)){
result = 1;

}
else{

result = (n*factorial((n-1)));
}

}else
throw new Exception("CallerViolation");

if((result >= 0)==false)
throw new Exception("calleeViolation");

return result;
}

Fig. 6 Fortress to X10 translation of Function Contracts

It allows three optional clauses in the function’s declaration that are evalu-
ated in the scope of the function body: requires, ensures, and an invariant

clause. A brief description of these clauses is given below:

1. requires

It specifies constraints (as a sequence of comma-separated boolean expres-
sions) that the argument to a function must satisfy. The body of the func-

166 Anshu S. Anand et al.

tion is evaluated only if these expressions evaluate to true, or else an ex-
ception (CallerViolation) is thrown.

2. ensures

An ensure clause is evaluated after a requires clause. It consists of a se-
quence of ensures subclauses, each comprising of a boolean expression, fol-
lowed by an optional provided subclause. The provided subclause consists
of the keyword provided followed by a boolean expression. The boolean
expression preceding provided is evaluated after the function body is eval-
uated, only if the expression following provided evaluates to true or in the
absence of the provided subclause. If this expression (preceding provided)
evaluates to false, an exception CalleeViolation is thrown.

3. invariant

It specifies a sequence of expressions (of any type), enclosed by curly braces.
These expressions are evaluated both before and after a function call. For
each expression e, if the value of e evaluated before the function call is
not equal to the value of e evaluated after the function call, an exception
CalleeViolation is thrown.

Figure 6 shows an example of the usage of function contracts in Fortress
and the corresponding translated code in X10. The code also highlights the
ability of Fortress to succinctly express these semantic properties, which could
be realized in X10 only with much extra boilerplate code, affecting the read-
ability of code. Also, since the function has a return type (Long), the transpiler
declares a variable result that captures the values of expressions returned by
the if-then block, which is eventually returned at the end.

We now present a case study of the actual translation of a Fortress program
to X10 code using our transpiler framework.

4 Case Study

For the case study, we consider an implementation of Buffons needle [13] which
is a Monte-Carlo Simulation to estimate the value of π. Given a floor with
equally spaced parallel lines distance d apart, it finds the probability that a
needle of length l lands on any of the lines. This probability is then used to
estimate the value of π.

4.1 Fortress code

The buffon’s needle program implemented in Fortress is listed below:

component bu f fons
export Executable
run () : () = do

needleLength : RR64 = 20 .0
numRows : RR64 = 10 .0

Fortress Abstractions in X10 Framework 167

tab l eHe ight : RR64 = needleLength ∗
numRows

var h i t s : RR64 = 0 .0
var n : RR64 = 0 .0
s t a r t : RR64 = nanoTime ()
p r i n t l n (” S ta r t i ng p a r a l l e l Buf fons ”)
f o r i<−1#3000 do

de lta X = random (2 . 0) − 1 .0
de l ta Y = random (2 . 0) − 1 .0
r sq = delta X ˆ2 + delta Y ˆ2
i f 0 . 0 < r sq < 1 .0 then

y1 = tab leHe ight ∗ random (1 . 0)
y2 = y1 + needleLength ∗

(de l ta Y / SQRT(rsq))
(y L , y H) = (y1 MIN y2 , y1 MAX y2)
temp1 : RR64 = y L / needleLength
temp2 : RR64 = y H / needleLength
i f |/ temp1 \ | = | \ temp2 / | then

atomic do h i t s := h i t s + 1 .0 end
end
atomic do n := n + 1 .0 end
end

end
p r o b a b i l i t y = h i t s /n
p i e s t = 2 .0/ p r o b a b i l i t y
p r i n t l n (” h i t s =” | | h i t s | | ” n = ” | | n)
p r i n t l n (” Buffons : est imated Pi= ”

| | p i e s t)
f i n i s h = nanoTime () − s t a r t
p r i n t l n (f i n i s h)

end
end

4.2 The translated X10 code

The X10 code of the Buffon’s needle program translated using the Fortress-
to-X10 transpiler is listed below:

import x10 . i o . Console ;
import x10 . lang . Math ;
import x10 . array . Array 1 ;
import x10 . array . Array 2 ;
import x10 . array . Array 3 ;
import x10 . u t i l . Random ;
/∗ needs to import

168 Anshu S. Anand et al.

∗/
/∗ export s
export Executable
∗/

pub l i c c l a s s bu f fons {

pub l i c s t a t i c de f main (args : Ra i l [S t r ing])
{

va l needleLength : Double = 20 .0 f as
Double ;

va l numRows : Double = 10 .0 f as Double ;
va l tab l eHe ight : Double =

(needleLength ∗numRows) as Double ;
var h i t s : Double = 0 .0 f as Double ;
var n : Double = 0 .0 f as Double ;
va l s t a r t : Double = nanoTime () as

Double ;
Console .OUT. p r i n t l n (” S ta r t i ng

p a r a l l e l Buffons ”) ;
f i n i s h f o r (i in 1n . . (3 0 0 0 n−1)) async{

va l de l ta X = (random (2 . 0 f)−1.0 f) ;
va l de l ta Y = (random (2 . 0 f)−1.0 f) ;
va l r sq = ((Math . pow(delta X , 2 n))

+(Math . pow(delta Y , 2 n))) ;
i f (((0 . 0 f < r sq)&&(rsq < 1 .0 f))){

va l y1 = (tab leHe ight
∗random (1 . 0 f)) ;

va l y2 = (y1+(needleLength
∗ (de l ta Y /SQRT(rsq)))) ;

va l y L = min (y1 , y2) ;
va l y H = max(y1 , y2) ;
va l temp1 : Double =

(y L/ needleLength) as Double ;
va l temp2 : Double =

(y H/ needleLength) as Double ;
i f ((Math . c e i l (temp1) ==

Math . f l o o r (temp2))){
atomic{

h i t s = (h i t s +1.0 f) ;
}

}
atomic{

n = (n+1.0 f) ;
}

}

Fortress Abstractions in X10 Framework 169

}
va l p r o b a b i l i t y = (h i t s /n) ;
va l p i e s t = (2 . 0 f / p r o b a b i l i t y) ;
Console .OUT. p r i n t l n (” h i t s =”);
Console .OUT. p r i n t l n (h i t s) ;
Console .OUT. p r i n t l n (”n = ”) ;
Console .OUT. p r i n t l n (n) ;
Console .OUT. p r i n t l n (” Buffons :

est imated Pi= ”) ;
Console .OUT. p r i n t l n (p i e s t) ;
va l f i n i s h = (nanoTime()− s t a r t) ;
Console .OUT. p r i n t l n (f i n i s h) ;
}

}

The case study demonstrates the translation of Buffon’s Needle from Fortress
to X10 code using our transpiler framework. It demonstrates the following con-
structs/features of Fortress: component, export, run, for loop, and atomic. The
codes show the conciseness of the Fortress code and how the syntax is closer
to mathematical notation and hence more intuitive. An important distinction
between the two languages is the implicit data parallelism in Fortress given
by the parallel-by-default for construct.

5 Experimental Results

In this section, we discuss a few benchmark applications in Fortress and their
performance with respect to the transformed X10 codes.

All the experiments were conducted on Ubuntu 16.04 LTS system with the
Intel i7-4710HQ processor supported by 8 GB of DDR3 RAM. The Fortress
codes have been given full JVM memory allowance to create as many implicit
threads as needed to achieve the maximum performance. The X10 codes are
all run with 4 Places and as many number of activities required by each place.
All the run-times are averaged over 5 runs.

We first compare the execution times of the following three applications:

– Matrix Multiplication (MM32): employs Divide and Conquer strategy to
multiply two matrices of size 32*32.

– Positive Feedback (PosFeedback): Given a set of entities, each having a
positivity score and a bank of facts, evolving them by supplying random
facts.

– Buffons Pi (Buffons) [13]: A Monte Carlo method using Buffons needle to
approximate the value of Pi.

The results of these experiments are shown in Figure 7.

It is evident from the results that the translated X10 code outperforms the

170 Anshu S. Anand et al.

Fig. 7 Fortress Vs X10: Run-time Comparison

original Fortress code in terms of execution time, with an average speedup of
16x observed across the three experiments. While the speedup is 20.36x for
MM32, it is 13.63x and 14.13x for PosFeedback and Buffons, respectively.

We also performed experiments with the following benchmark applications:

– Array Stream Benchmarks [15]: It is a synthetic benchmark program that
measures memory bandwidth (in MB/s) and the corresponding computa-
tion rate for simple vector kernels. The results for array stream benchmarks
have been shown in Tables 1 and 2.

Table 1 Fortress Stream Benchmark Test

Int32 OpType Rate(MB/s) Avg. Time(s)
Copy 0.76380121485 10.4739294
Sscale 0.73007764609 10.957738595
Add 0.91273471055 13.147303221
Triad 0.80712187147 14.867643195
Sscale 0.79928385621 10.008959818

Int64 OpType Rate(MB/s) Avg. Time(s)
Copy 1.79794160235 8.899065453
Sscale 1.47913110244 10.81716149
Add 2.00083967138 11.994964086
Triad 1.493870698 16.065647472
Sscale 1.514487715 10.564628446

Float OpType Rate(MB/s) Avg. Time(s)
Copy 1.782398159 8.976669955
Sscale 1.84008156 8.695266747
Add 1.756414426 13.664201139
Triad 2.035071163 11.793199389

Fortress Abstractions in X10 Framework 171

Table 2 X10 Stream Benchmark Test

Int32 OpType Rate(MB/s) Avg. Time(s)
Copy 8.42345860721409 4.748643267
Sscale 9.524426067121496 4.199728122
Add 13.528420739316202 4.435107479
Triad 8.899139206154164 4.494816754

Long OpType Rate(MB/s) Avg. Time(s)
Copy 16.486417432848583 4.852479341
Sscale 16.41668567602583 4.873090804
Add 21.6605982250443 5.540013196
Triad 14.58383811756954 5.485524411
Sscale 17.148535071815235 4.66512152

Float OpType Rate(MB/s) Avg. Time(s)
Copy 8.02382936905595 4.985150875
Sscale 8.483019312473154 4.715302244
Add 10.898170595394351 5.505511175
Triad 7.578662969599845 5.277975833

In all of the experiments (Int, Int64/Long, and Float), an average speedup
of more than 2x was observed for the translated X10 code. Also, in all cases,
the highest speedup was observed for the Triad operation when compared
to other operations.

– NAS Fast Fourier Transform (and Inverse) of 3D grids [14]: This application
solves a 3-dimensional partial differential equation using the Fast Fourier
Transform. The results for the NAS Fast Fourier Transform (FT) have
been shown in Tables 3 and 4.

Table 3 Fortress NAS FT Benchmark

Class Grid Iterations Avg. Run Time
Class T: 2x4x4 1 0.650441406 seconds
Class S: 64x64x64 1 503.49956373 seconds
Class W: 128x128x32 1 1040.398577308 seconds

Table 4 X10 NAS FT Benchmark

Class Grid Iterations Avg. Run Time
Class T: 2x4x4 1 0.019727665 second
Class S: 64x64x64 6 2.653876066 seconds
Class W: 128x128x32 6 5.042912789 seconds

For NAS-FT, X10 clearly outperforms Fortress by a large margin. The
highest speedup of 206x is achieved by the X10 code for Class W.

6 Discussion

The experimental results show an impressive performance of the translated
X10 code with respect to the original Fortress code. The huge performance

172 Anshu S. Anand et al.

improvement was as expected because Fortress was an experimental and in-
terpreted language, with an inefficient interpreter. However, by providing this
tool for translating Fortress code to X10, we provide an opportunity for better
engagement of domain scientists with the X10 community. It will enable the
domain scientists to express their problems in a representation that is closer to
the mathematical notation, thereby reducing the scope for errors and simpli-
fying debugging. It will also significantly improve their productivity since they
can get their implementation to work without worrying about low-level perfor-
mance aspects. The 90/10 rule [2], which states that almost 90% of a programs
execution time is spent within 10% of its code, also suggests better productivity
for domain scientists by limiting their focus to problem-solving than on per-
formance improvement. Tuning the program for performance, which requires
a good understanding of low-level implementation details, could be realized
by HPC programmers. As an example, the domain scientists may write an
application using the Fortress arrays. The translated X10 code can then be
optimized for performance by taking advantage of the rich support for arrays
provided by X10. For example, while Region array in X10 could be used as the
default choice due to the flexibility they offer, the array implementation could
be changed to Rail for better performance in certain cases.Rail is an intrinsic
one-dimensional fixed-size array that supports only up to three dimensions
using row-major ordering, thus allowing efficient optimizations on indexing
operations. Further, since X10 itself can be compiled to either C++ or Java,
HPC programmers have more flexibility to optimize the original Fortress code
in a language of their choice.

7 Conclusion

In order to leverage the novel syntactic features of Fortress, we have built a
Fortress to X10 transpiler that enables a program written in Fortress syn-
tax to be automatically translated into the corresponding X10 code. We have
showcased the tremendous performance gain of X10 codes over the existing
Fortress system. Thus, we have shown how the reduction in boilerplate code,
readability achieved by Fortress and the impressive performance of X10 can
be amalgamated together to form a powerful language for high performance
and scientific computing. This also supports the Multiresolution language phi-
losophy that will enable the domain scientists to write programs easily in the
Fortress syntax that is close to the mathematical notation, without bothering
about performance. The translated X10 code inherently improves performance
and can further be optimized for performance by utilizing the low-level features
of X10, Java or C++.

There are certain features from the original Fortress implementation that
have not yet been implemented in the transpiler like growable syntax and
high-level combinators [16]. The current transpiler only supports a single com-
ponent i.e. a single class and also does not provide support for APIs, which
is another name for Interfaces in Fortress. This is the immediate future goal

Fortress Abstractions in X10 Framework 173

of the transpiler, to provide the notion of multiple classes, APIs, and pack-
ages. There are several novel features of Fortress that are not present in the
original implementation either, such as dimensions, units, and where clauses.
Including these features will further simplify the language for a programmer
and hence increase productivity. Another possible addition for the transpiler
would be operator overloading and user-defined types and operators. This is
an interesting addition that can be useful in various scenarios.

References

1. Sun MicroSystems Inc., The Fortress Language Specification (2008)
2. Multiresolution Languages for Portable yet Efficient Parallel Programming, Bradford L.

Chamberlain, whitepaper (2007)
3. Fowler, M., Domain-Specific Languages, Addison-Wesley (2010)
4. Voelter, M., et al.: DSL Engineering - Designing. Implementing and Using Domain-

Specific Languages, 1558 dslbook.org , ISBN: 978-1-4812-1858-0 (2013)
5. Steinberg, D., et al., EMF: Eclipse Modeling Framework 2.0, 2nd. Addison-Wesley Pro-

fessional, ISBN: 0321331885 (2009)
6. Xtext homepage, http://www.eclipse.org/Xtext/
7. Xtend Language homepage, http://www.xtend-lang.org
8. Klaus Birken, Building Code Generators for DSLs Using a Partial Evaluator for the Xtend

Language, In Proceedings of the 6th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, Technologies for Mastering Change -
Volume 8802, Springer-Verlag New York, Inc., New York, NY, USA, 407-424 (2014)

9. Lorenzo Bettini, Implementing DSL with Xtext and Xtend, Second Edition (2nd ed.).
Packt Publishing (2016)

10. Kemal Ebcioglu, Vijay Saraswat, Vivek Sarkar, X10: Programming for hierarchical par-
allelism and non-uniform data access, International Workshop on Language Runtimes,
OOPSLA (2004)

11. Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar, X10: an object-oriented
approach to non-uniform cluster computing, SIGPLAN Not. 40, 519-538, (2005)

12. David Callahan, Bradford L. Chamberlain, Hans P. Zima, The Cascade High Productiv-
ity Language, In 9th International Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS 2004), pages 52-60, IEEE Computer Society, (2004)

13. Buffon, G., Essai darithmetique morale, Histoire Naturelle, Gnrale, et Par-ticulire, Sup-
plment, 4 , 685 (1777)

14. NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.html
15. J. D. McCalpin, STREAM Benchmark, Link:http://www.cs.virginia.edu/stream/
16. Kento Emoto, Zhenjiang Hu, Kazuhiko Kakehi, Kiminori Matsuzaki and Masato Take-

ichi, Generators-of-Generators Library with Optimization Capabilities in Fortress. Euro-
Par (2) 2010: 26-37. https://doi.org/10.1007/978-3-642-15291-7 4

17. Sukyoung Ryu, Parsing Fortress syntax, In 7th International Conference on Principles
and Practice of Programming in Java (PPPJ ’09), ACM, NY, USA, 76-84 (2009)

18. E. Allen, R. Culpepper, J. D. Nielsen, J. Rafkind, and S. Ryu, Growing a syntax, In
Proceedings of Workshop on Foundations of Object-Oriented Languages, 2009.

19. Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, and Guy L. Steele.
2004. Object-oriented units of measurement. In Proceedings of the 19th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications
(OOPSLA 04), ACM, New York, NY, USA, 384403 (2004)

20. Lingxiao Jiang and Zhendong Su. 2006. Osprey: a practical type system for validating
dimensional unit correctness of C programs. In 28th international conference on Software
engineering (ICSE 06). ACM, New York, NY, USA, 262271 (2006)

21. Sascha Roloff, Frank Hannig and Jrgen Teich, Modeling and Simulation of Invasive
Applications and Architectures, Springer Singapore, 2019.

