
Towards an Elastic Lock-Free Hash Trie Design
Miguel Areias and Ricardo Rocha

CRACS & INESC TEC, Faculty of Sciences, University of Porto, Portugal
Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

Email: {miguel-areias,ricroc}@dcc.fc.up.pt

Abstract—A key aspect of any hash map design is the problem
of dynamically resizing it in order to deal with hash collisions.
In this context, elasticity refers to the ability to automatically
resize the internal data structures that support the hash map
operations in order to meet varying workloads, thus optimizing
the overall memory consumption of the hash map. This work
extends a previous lock-free hash trie design to support elastic
hashing, i.e., expand saturated hash levels and compress unused
hash levels, such that, at each point in time, the number of levels
in a path matches the current demand as closely as possible.
Experimental results show that elasticity effectively improves
the search operation and, in doing so, our design becomes
very competitive when compared to other state-of-the-art designs
implemented in Java.

I. INTRODUCTION

Hash maps are a very common and efficient data structure
used to store data that can be organized as (K,C) pairs, where
the mapping between the unique key K and the associated
content C is given by a hash function. Hash tries (or hash array
mapped tries) are a tree-based data structure with nearly ideal
characteristics for the implementation of hash maps [1]. A key
aspect of any hash map design is the problem of dynamically
resizing it in order to deal with hash collisions. This includes
increasing the size of the underlying data structure and remap-
ping (or rehashing) all the existing keys to new locations and
decreasing (or compressing) the size of the data structure when
a certain amount of keys are removed.

An alternative to all-at-once rehashing is to perform resizing
gradually or incrementally, thus affecting just a small part of
the entire data structure. The advantages of compressing tree-
based data structures are well-known in the literature [2], [3].
Compression can be done at shallow or deeper trie levels,
but a key advantage is that it can be done concurrently with
the other operations. Two good examples are: (i) the B*-tree
proposal [4], which supports a compression procedure that
runs concurrently with regular operations, such as searches,
insertions and removals, to merge nodes that are underfull;
and (ii) the relaxed B-slack trees proposal [5] that supports a
similar concurrent absorb operation that reduces the number
of levels in the data structure.

In this context, elasticity refers to the ability to automatically
resize the internal data structures that support the hash map
operations in order to meet varying (local) workloads, thus
optimizing the overall memory consumption of the hash map.
Tree-based hash maps are O(logE K), where E represents the
branching factor in a hash level and K is the overall number of

keys inserted in the hash map. Elasticity will work on adjusting
the depth of the internal hash levels within a hash map to the
number of keys K that the hasp map holds at any given instant
of the execution. Thus, elasticity reduces, not only, memory
consumption, but can also potentially reduce the execution
time, since the number of levels to be traversed when trying
to operate a key is expected to be lower.

In this work, we propose a novel concurrent hash trie design
that puts together the following characteristics: (i) use fixed
size data structures; (ii) use persistent memory references; (iii)
be lock-free; (iv) store sorted keys; and (v) be elastic. In pre-
vious work [6], Areias and Rocha proposed a concurrent hash
trie design that supports most of the characteristics above with
the exception of elasticity. This work extends that previous
design to also support elastic hashing, i.e., expand saturated
hash levels and compress unused hash levels, such that, at
each point in time, the number of levels in a path matches
the current demand as closely as possible. To the best of our
knowledge, none of the available alternatives in the literature
fulfills all the above five characteristics simultaneously.

The remainder of the paper is organized as follows. First,
we introduce relevant background and present the main ideas
of our design. Next, we describe in detail the key algorithms
required to easily reproduce our implementation. Then, we
present a set of experiments comparing our design against
other state-of-the-art concurrent hash map designs. At the end,
we present conclusions and further work directions.

II. BACKGROUND

The first correct CAS-based lock-free list-based set design
was introduced by Harris [7]. Later, Michael improved Harris
work by presenting a design that was compatible with all
lock-free memory management methods and Michael used this
design as the building block for lock-free hash maps [8]. Skip
lists is an alternative and more efficient data structure to plain
linked lists that allows logarithmic time searching, insertions
and removals by maintaining multiple hierarchical layers of
linked lists where each higher layer acts as an express lane for
the layers below. Concurrent non-blocking skip lists were later
implemented by Herlihy et al. [9] and Shalev and Shavit [10].

An essential property of the trie data structure is that com-
mon prefixes are stored only once [11], which in the context of
hash maps allows us to efficiently solve the problems of setting
the size of the initial hash map and of dynamically resizing it
in order to deal with hash collisions. Prokopec et al. presented
the CTries [12], a non-blocking concurrent hash trie based on978-1-6654-3281-8/21/$31.00 c©2021 IEEE

single-word CAS instructions. The CTries introduce a non-
blocking, atomic constant-time snapshot operation, which can
be used to implement operations requiring a consistent view
of a data structure at a single point in time.

More recently, Areias and Rocha presented a novel lock-
free hash trie design that combines hashing with sort and tree
search algorithms to support additional important properties,
such fixed-size data structures, persistent references and sorted
keys [6]. Internally, the design has only two types of data
structures, hash arrays of buckets and leaf nodes. The leaf
nodes store the key/content pairs and the hash arrays of buckets
implement a hierarchy of hash levels of fixed size 2w. To map
a key K into this hierarchy, it first computes the hash value
h for K and then uses chunks of w bits from h to index the
entry in the appropriate hash level, i.e., for each hash level
Hi, it uses the ith group of w bits of h to index the entry in
the appropriate bucket array of Hi. To deal with collisions, the
leaf nodes form a linked list in the respective bucket entry until
a threshold is met and, in such case, it executes an expansion
operation to update the nodes in the linked list to a new hash
level Hi+1. This hierarchical organization is also the basis for
the new design that we present next.

III. OUR DESIGN BY EXAMPLE

This section discusses on how the insert, expand and remove
operations can work concurrently in a lock-free fashion with
the new compress operation.

A. Inserting Keys and Expanding Hash Levels

We begin with Fig. 1 showing a small example that illus-
trates how the concurrent insertion of nodes is done in a hash
level. Figure 1(a) shows the initial configuration for a hash
level Hi. Each hash level is formed by a bucket array of 2w

entries and by a header, which includes a backward reference
to the previous hash level, a hash level identifier and a key
representative of the hash level, respectively, values Pi, i and
K1 in Fig. 1 (in Fig. 1(a), the key representative is marked as
‘–’ since the hash level is still empty). For the root level, the
backward reference is nil.

(a) (b)

.
.
.

K1Bx

.
.
.

.
.
.

Bx

.
.
.

V K1

(c)

K2 K3Bx

.
.
.

.
.
.

V V V

Hi

-
i

PrevPxPi
Hi

K1
i

PrevPxPi
Hi

K1
i
PXPxPi

2 W

Fig. 1: Insert operation in a hash level

The bucket entries are initialized with a reference to the cur-
rent hash level. In Fig. 1(a), Bx represents a particular bucket
entry of Hi. Each bucket entry stores either a reference to a
hash level or a reference to a separate chaining mechanism,
using a chain of leaf nodes, that deals with the hash collisions
for that entry. Each leaf node includes a tuple that holds both
a reference to a next-on-chain leaf node and the state of the

node, which can be valid (V) or invalid (I). The initial state of
a node is valid. Figure 1(b) shows the configuration after the
insertion of node K1, on the bucket entry Bx, and Fig. 1(c)
shows the configuration after the insertion of nodes K2 and
K3, also in Bx. The insertion of nodes is done at the end of the
chain and a new inserted node closes the chain by referencing
back the current hash level.

When the number of valid nodes in a chain exceeds a thresh-
old value, then the corresponding bucket entry is expanded
with a new hash level and the nodes in the chain are remapped
in the new level. To keep keys sorted, a xor operation is applied
between the hash values of the key being inserted and the key
representative of the hash level, to check in which chunk of
bits they first differ. If they differ in a higher chunk of bits
than the hash level chunk identifier, then a new hash level
is inserted in a deeper level (this is called front-expansion).
Otherwise, a new hash level is inserted in a shallow level (this
is called back-expansion) [6].

We next describe the front-expansion operation in more
detail. Starting from the configuration in Fig. 1(c), Fig. 2
illustrates the front-expansion operation to a second level
hash for the bucket entry Bx. The front-expansion operation
is activated whenever a thread T trying to insert a key K
meets the following two conditions: (i) K is not found in
the current chain of leaf nodes, and (ii) the number of valid
nodes in the chain observed by T is equal to the threshold
value corresponding to the number of collisions allowed (in
what follows, we consider a threshold value of three keys). In
such case, T starts by pre-allocating a second level hash Hk,
with all entries referring the respective level and with a key
representative consisting of the key in the chain (K2 in the
example of Fig. 2) that differs in the lower chunk of bits from
the new key that is being inserted by T .

The new hash level Hk is then used to implement a
synchronization point with the current insertion point (node
K3 in Fig. 2(a)) that will correspond to a successful CAS
operation trying to update Hi to Hk (Fig. 2(b)). From this
point on, the insertion of new nodes on Bx will be done
starting from the new hash level Hk. If the CAS operation
fails, that means that another thread has gained access to
K3 and, in such case, T aborts its front-expansion operation.
Otherwise, T starts the remapping process of placing the valid
nodes K1, K2 and K3 in the correct bucket entries in the new
level. Figures 2(c) to 2(f) show the remapping sequence in
detail. For simplicity of illustration, we will consider only the
entries By and Bz on level Hk and assume that K1, K2 and
K3 will be remapped to these bucket entries.

In order to ensure lock-free synchronization, at any time,
any thread must be able to read all the available nodes and
insert/remove nodes without any delay from the remapping
process. To guarantee both properties, the remapping process
is thus done in reverse order, starting from the last node on the
chain, initially K3. Fig. 2(c) shows the hash trie configuration
after the successful CAS operation that adjusted node K3 to
entry Bz . After this step, Bz is no longer an insertion point
(gray background) and K3 becomes the next insertion point

(b)

K1 K2 K3

.
.
.

By

Bz

Bx

.
.
.

.
.
.

K1 K2 K3

.
.
.

.
.
.

.
.
.

(a)

(d)

.
.
.

K3

By

Bx

.
.
.

.
.
.

K1 K2

(e)

.
.
.

K3

By

Bx

.
.
.

.
.
.

K1

K4 K2

.
.
.

K3

Bk

.
.
.

.
.
. K5

K4 K2

K1

(f)

V V V V V V

V

VV V

V V V

VV

V V V

Bx

Bz

By

Bz Bz Bz

By

(c)

.
.
.

K3

By

.
.
.

.
.
.

K1 K2 VV

V

Bx

Bz

Hi

K1
i

PrevPx
Hi

K1
i

PrevPx
Hk

K2
k

PrevPzPi Pk Pi
Hk

K2
k

PrevPzPk
Hi

K1
i

PrevPxPi
Hk

k
PrevPzPk

K2

Hi

K1
i

PrevPxPi
Hi

K1
i

PrevPxPi
Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk
Hk

K2
k

PrevPzPk
Hk

K2
k

PrevPzPk

Bx

Fig. 2: Front-expansion with the concurrent insertion of nodes

(black background) for the insertion of new nodes on Bz . Note
that the initial chain for Bx has not been affected yet, since
K2 still refers to K3. Next, on Fig. 2(d), the chain is adjusted
and K2 is updated to refer to the second level hash Hk. The
process then repeats for K2 (the new last node on the chain for
Bx). First, K2 is remapped to entry Bz and then it is removed
from the original chain, meaning that the previous node K1

is updated to refer to Hk (Fig. 2(e)). Finally, the same idea
applies to node K1. In the continuation, K1 is also remapped
to a bucket entry on Hk (By in the figure) and then removed
from the original chain, meaning in this case that the bucket
entry Bx itself becomes a reference to the second level hash
Hk (Fig. 2(f)). Concurrently with the remapping process, other
threads can be inserting nodes in the same bucket entries for
the new level. This is shown in Fig. 2(e), where a node K4 is
inserted before K2 in Bz and in Fig. 2(f), where a node K5

is inserted before K1 in By .

B. Removing Keys and Compressing Hash Levels

In this subsection, we begin by describing how the con-
current removal of nodes is done in a hash level and how
it triggers the compress operation. Then, we show how the
compress operation is done in a lock-free fashion.

A remove operation can be seen as a sequence of two steps:
(i) the invalidation step; and (ii) the unreachability step. The
invalidation step searches for the node N holding the key to be
removed and updates the node state from valid to invalid. The
unreachability step then searches for the valid data structures
B and A, respectively before and after N in the chain of nodes,
in order to bypass node N by chaining B to A. Starting again
from the configuration in Fig. 1(c), where all keys are valid,
Fig. 3 illustrates how the concurrent removal of nodes is done.

Consider that a thread T wants to remove the key K2. T
begins the invalidation step by searching for node K2 and
by marking it as invalid (Fig. 3(a)). In the continuation, T
searches for the valid data structures before and after K2,
nodes K1 and K3 in this case. The next step is shown
in Fig. 3(b), where node K1 is chained to node K3, thus
bypassing node K2. From this point forward, node K2 is

K1 K2 K3EkBx

.
.
.

.
.
.

V I V K1 K2 K3EkBx

.
.
.

.
.
.

V I VK1 V

(a) (b)

Hi

K1
i

PrevPxPi
Hi

K1
i

PrevPxPi

VV

Fig. 3: Remove operation in a hash level

unreachable from the chain (unreachability step). The reader
can observe that, the chaining references of unreachable nodes
are left in a consistent state, allowing all late threads reading
those nodes to be able to recover to a valid data structure.

The removal of a key might trigger the compression of
the (leaf) hash level Hi where the key has found, if all
bucket entries of Hi are found empty. To keep the lock-
freedom property, the compress operation relies on a new
special node, named compression node, used to mark an
undergoing compress operation and in two key procedures:
(i) the freezing procedure, used to mark all bucket entries as
ready for compression; and (ii) the unfreezing procedure, used
to abort an unsuccessful compression. At the implementation
level, the compress operation: (i) does not keep track of which
hash levels are being traversed by a thread; (ii) does not keep
track of the number of buckets that are empty on a hash
level; and (iii) does not use snapshots to compress the hash
levels, because keys are stored in chain nodes and not in the
hash buckets. Figure 4 illustrates an example of a successful
compress operation.

Figure 4(a) shows the initial configuration of the hash levels,
where bucket entry Bx is referring to the hash level Hk, which
has only one node (with the key K2) in the bucket entry Bz

(all the remaining bucket entries are empty). The compress
operation will then be triggered when a thread T1 removes
the key K2 and becomes aware that Bz is empty (Fig. 4(b)).
T1 then uses the key representative K2 of Hk to find the
corresponding bucket entry Bx in the previous hash level Hi

in order to insert the special compression node F , meaning

.
.
.

K2

By

Bx

.
.
.

.
.
.

Bz

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

V

.
.
.

K2

By

Bx

.
.
.

.
.
.

BZ2

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

VIBz

.
.
.

By

Bx

.
.
.

.
.
.

BZ2

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

Bz

F

.
.
.

By

Bx

.
.
.

.
.
.

BZ2

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

Bz

F

(a) (b)

(c) (d)

Fig. 4: A successful compress operation

that a freezing procedure is undergoing in the hash level Hk

(Fig. 4(c)). After the insertion of F , T1 traverses all bucket
entries in Hk and, for each bucket entry, it applies a CAS
operation trying to update the entry’s reference to node F .
If one of the bucket entries is not empty (i.e., the CAS has
failed), then T1 aborts the freezing procedure and starts the
unfreezing procedure. Otherwise, the freezing procedure has
succeeded and all bucket entries are referring node F , in which
case T1 applies a final CAS on Bx to remove the hash level
Hk from the data structure (Fig. 4(d)).

Note that, while a thread is trying to compress a hash level,
other threads can be searching, removing or inserting keys
in the hash level under compression. Whilst the search and
remove operations cannot collide with the compress operation,
the insert operation can. For instance, consider again the
example in Fig. 4 and assume that a second thread T2 is
preempted in Hk, at the time of the configuration in Fig. 4(c).
Later, if T2 is resumed after the configuration in Fig. 4(d),
then it must be able to detect that Hk has been compressed
(and is not valid anymore) and must be able to position itself
in a valid hash level. Otherwise, if T2 is resumed before the
configuration in Fig. 4(d), it must somehow synchronize with
T1 in order to be able to complete its insertion operation. In
both situations, T2 knows about the existence of a compress
operation when it reaches the compression node F (note that
F can also be reached from the bucket entry Bx in Hi but,
in such case, the traversal can continue as usual to Hk). By
rereading the reference in Bx, T2 can check if the compression
is undergoing (case in which Bx still refers F) or has already
completed. If the compression is undergoing, then T2 notifies
T1 to abort the compression before proceeding with its insert
operation. Figure 5 illustrates the situation where a thread T1

is compressing the hash level Hk and a thread T2 wants to
insert a key K5.

Figure 5(a) shows the initial configuration where T1 has
already updated all bucket entries from Hk to refer F and
is about to complete the process with the final CAS on Bx.
Now consider that, due to preemption, T1 suspends before

.
.
.

By

Bx

.
.
.

.
.
.

BZ2

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

Bz

F

(a) (b)

(d)

.
.
.

BZ1

Bx

.
.
.

.
.
.

BZ2

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

Bz

F

U

.
.
.

BZ1

Bx

.
.
.

.
.
.

Bz

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

K5 V

By

BZ1By

(c)
.
.
.

BZ1

Bx

.
.
.

.
.
.

BZ2

Hi

K1
i

PrevPxPi
Hk

K2
k

PrevPzPk

Bz

F

K5 V

U
By

By

Fig. 5: Aborting an undergoing compress operation

updating Bx, and that, in the meantime, T2 is trying to
insert K5 on By . T2 follows the reference in By and reaches
node F (thus knowing about the existence of an undergoing
compress operation). T2 then needs to notify T1 to abort the
compression, and for that it replaces F with another special
compression node U , meaning that an unfreezing procedure
needs to be done (Fig. 5(b)). Once this notification succeeds,
T2 can proceed by inserting K5 in By (Fig. 5(c)). It is
important to notice that if another thread T3 was also trying
to abort the compression (e.g., to insert another key), it would
not have to insert a second node U , since one is enough
to trigger the unfreezing procedure. Later, when T1 resumes
and tries to apply the CAS on Bx, the CAS will fail. In the
continuation, T1 will notice the existence of node U and will
start the unfreezing procedure. This requires traversing again
all bucket entries in Hk to unfreeze them. At the end, T1

applies a CAS operation on Bx to remove U . Figure 5(d)
shows the corresponding final configuration.

IV. ALGORITHMS

This section presents the most relevant algorithms.

A. SearchRemoveKey

Algorithm 1 shows the pseudo-code for the search/remove
operation of a given key K in a given hash level H .

The algorithm begins by getting the bucket entry B from
H that fits the key K and by reading the reference R in B
(lines 1–2). Next, the algorithm checks if R is a reference to a
compression node (lines 3–4), case in which R is updated by
following the chain, thus making R necessarily a reference to a
hash level (to H or to a second hash level). In the continuation,
the algorithm then checks if R is a reference to a hash level
(lines 5–9), case in which it simply returns if the current chain
is empty (line 7) or restarts if R references a second hash level
(line 9). Otherwise, R holds a reference to a chain node and
the algorithm traverses the chain of nodes looking for a valid
node holding K. If a valid chain node holding K is found,
the algorithm proceeds to remove it (lines 11–13). Otherwise,
the chain of nodes was traversed and K was not found, which

Algorithm 1 SearchRemoveKey(Key K, Hash H)
1: B ← GetBucket(K,H)

2: R← NextRef(B)

3: if IsCompressionNode(R) then
4: R← NextRef(R)

5: if IsHashLevel(R) then
6: if R = H then // empty chain, K is not in H
7: return
8: else // R references a second hash level
9: return SearchRemoveKey(K,R)

10: repeat // traverse the chain of nodes
11: if IsV alidChainNode(R) ∧Key(R) = K then // key found
12: if MakeChainNodeInvalid(R) then
13: return MakeChainNodeUnreachable(R,H)

14: R← NextRef(R)

15: until IsHashLevel(R)

16: if R = H then // chain ended in the same hash level
17: return
18: R← GetHashLevel(R,Level(H) + 1)

19: return SearchRemoveKey(K,R)

means that R holds now a reference to a hash level. If R holds
a reference to H then no expansion/compression operation has
interfered with the search of K, thus the algorithm can simply
return (line 16–17). Otherwise, R holds a reference to a deeper
hash level, thus the algorithm restarts in the hash level after
H (lines 18–19).

B. MakeChainNodeUnreachable

Algorithm 2 presents next the pseudo-code for turning un-
reachable a given node N in a given hash level H . Remember
that, in the unreachability step, we need to search for the
valid data structures BR (before reference) and AR (after
reference), respectively before and after N in the chain of
nodes, in order to bypass node N by chaining BR to AR.

The algorithm begins by setting R and AR with the next
valid data structure starting from N (lines 1–2). If R is a chain
node, then R is updated with the hash level at the end of the
chain (lines 3–4). Otherwise, R already refers a hash level. In
both cases, at the beginning of line 5, R refers a hash level.
If R refers a deeper hash level, the process is restarted in
the hash level after H (lines 25–26). Otherwise, the algorithm
ended in the same hash level H (lines 5–24) and it proceeds
to compute the valid data structure BR before N . For that, it
starts from the bucket entry B in H that fits the key on N
and traverses the chain of nodes looking for the following valid
data structures until reaching N or a hash level (lines 6–12).

At the end of the traversal, if R reaches N then we are in
condition to bypass N by chaining BR to AR and thus make
N unreachable (lines 13–22). For that, the algorithm applies
a CAS operation to BR trying to update it from the reference
saved in BRN to AR and keeping the node state as valid if
BR is a chain node (line 20). However, if BR refers a bucket
entry and AR refers to H (lines 14–18), then the algorithm
tries to compress the hash level H (more details later). Notice
that if the CAS operation fails, it means that the reference in

Algorithm 2 MakeChainNodeUnreachable(Node N, Hash H)
1: R← GetNextHashLevelOrV alidChainNode(N)

2: AR← R

3: if IsChainNode(R) then
4: R← GetNextHashLevel(R)

5: if R = H then // chain ended in the same hash level
6: B ← GetBucket(Key(N), H)

7: R← B

8: repeat
9: BR← R

10: BRN ← NextRef(BR)

11: R← GetNextHashLevelOrV alidChainNodeOrN(R,N)

12: until R = N ∨ IsHashLevel(R)

13: if R = N then // we are in condition to bypass N
14: if BR = B then // no valid chain nodes found
15: if CAS(NextRef(BR), BRN,AR) then
16: if AR = H then // try to compress H
17: CompressHashLevel(Key(N), H)

18: return
19: else
20: if CAS(Next(BR), (BRN, valid), (AR, valid)) then
21: return
22: return MakeChainNodeUnreachable(N,H)

23: if R = H then // N is already unreachable
24: return
25: R← GetHashLevel(R,Level(H) + 1)

26: return MakeChainNodeUnreachable(N,R)

BR has changed somewhere between the instant where it was
found valid and the CAS execution. In such case, the process
is restarted (line 22), thus forcing the algorithm to converge to
a configuration where all invalid nodes are made unreachable.

Otherwise, if R ends in a hash level at the end of the
traversal, that means that N is not on H . Therefore, if R
refers to H that means that N is already unreachable, thus the
algorithm simply returns (lines 23–24). Otherwise, R refers a
deeper hash level and the process is restarted in the hash level
after H (lines 25–26).

C. CompressHashLevel

Finally, Alg. 3 presents the pseudo-code for trying to
compress a hash level. The algorithm receives as arguments
the key K that triggered the compress operation and the hash
level H to be compressed.

The algorithm begins by getting the previous hash level
PH and if it does not exist, it means that the algorithm is
trying to compress the root hash level, thus it returns (lines 1–
3). Otherwise, it gets the bucket entry B from PH that fits
K, allocates a freezing compression node F (with the next
reference to H), and applies a CAS on B in order to insert
F and thus mark the beginning of the freezing procedure
(lines 4–6). If the CAS fails, then B is not referring to H
anymore, thus the algorithm simply returns (line 28).

The freezing procedure starts by calling FreezeHashLevel()
to freeze the bucket entries in the hash level H (line 7). If it
fails, the algorithm then allocates an unfreezing compression
node U to replace F and thus mark the beginning of the

Algorithm 3 CompressHashLevel(Key K, Hash H)
1: PH ← PrevHashLevel(H)

2: if PH = nil then // abort if trying to compress the root hash level
3: return
4: B ← GetBucket(K,PH)

5: F ← AllocCompressionNode(H, freeze)

6: if CAS(NextRef(B), H, F) then
7: if FreezeHashLevel(F,H) then
8: repeat
9: R← NextRef(B)

10: while IsHashLevel(R) do // back-expansion in the meantime
11: PH ← R

12: B ← GetBucket(K,PH)

13: R← NextRef(B)

14: if CAS(NextRef(B), F, PH) then // try to remove H
15: return CompressHashLevel(K,PH)

16: until IsCompressionNode(R, unfreeze)

17: else // freezing failed
18: U ← AllocCompressionNode(H,unfreeze)

19: CAS(NextRef(B), F, U)

20: UnfreezeHashLevel(F,H)

21: repeat // remove unfreezing node and restore configuration
22: R← NextRef(B)

23: while IsHashLevel(R) do // back-expansion in the meantime
24: B ← GetBucket(K,R)

25: R← NextRef(B)

26: U ← R // reached unfreezing compression node
27: until CAS(NextRef(B), U,H)

28: return

unfreezing procedure (lines 18–19). The unfreezing procedure
follows on lines 20–27. If FreezeHashLevel() succeeds, the
algorithm then updates the current previous hash level PH ,
in case any back-expansion has occurred in the meantime
(lines 9–13), in order to apply the CAS that will remove H and
thus effectively compress the data structure (line 14). In case
of success, the algorithm then tries to recursively compress
the previous hash level PH (line 15). Otherwise, in case of
CAS failure, it means that another back-expansion occurred
in the meantime or that an unfreezing compression node has
been inserted by another thread. In the first case, we repeat the
process of updating the previous hash level PH . Otherwise,
we move to the unfreezing procedure, which begins by calling
UnfreezeHashLevel() to unfreeze the bucket entries in the hash
level H (line 20). As before, the algorithm then repeats the
process of finding the current previous hash level, in case any
back-expansion has occurred in the meantime (lines 22–25),
in order to reach the unfreezing compression node U (line 26)
and apply the CAS that will restore the initial configuration
and thus keep H in the data structure (line 27).

V. PERFORMANCE ANALYSIS

This section presents experimental results comparing our
design with other state-of-the-art concurrent hash map designs.
The environment for our experiments was a SMP system
based in a NUMA architecture with 32-Core AMD Opteron
(TM) Processor 6274 (2 sockets with 16 cores each) with

32GB of main memory, running the Linux kernel 3.18.x86 64
with OpenJDK’s jdk-13.0.1. Although our design is platform
independent, we have chosen to make its first implementation
in Java, mainly for two reasons: (i) rely on Java’s garbage
collector to reclaim unreachable data structures; and (ii) easy
comparison against other hash map designs. Some of the best-
known hash map designs currently available are implemented
in Java, such as the Concurrent Skip-Lists (CSL) from the
Java’s concurrency package and the CTries (CT) design from
Prokopec et al. [12]. For our design, which we named Free
Fixed Persistent Hash Map (FFP), we used two versions:
one without elastic hashing (FFPS) and another with elastic
hashing enabled (FFPE). We ran both FFPS and FFPE
designs with 8 buckets entries per hash level, a threshold value
of 2 chain nodes for the hash collisions, and implementing
sorted keys. To put all designs in perspective, Table I shows
how the 4 designs support/implement the characteristics: (i)
be lock-free; (ii) use fixed size data structures; (iii) maintain
the access to all internal data structures as persistent memory
references; (iv) store sorted keys; and (v) be elastic.

TABLE I: Features support

Features / Designs CSL CT FFPS FFPE
Lock-freedom 3 3 3 3
Fixed size structures - 7 3 3
Persistent references 3 7 3 3
Sorted keys 3 7 3 3
Elastic hashing - 3 7 3

For the experiments, we used an open source benchmarking
tool that allows to define benchmark sets with randomized
operations, where each set has a pre-defined ratio of the most
used operations: (i) insertion of items; (ii) searching for items;
and (iii) removal of items. To spread threads among a set S
of randomized operations, the tool equally divides S by the
number T of running threads in such a way that each thread
runs S

T operations. To support non concurrent randomicity on
each thread, we used JVM’s ThreadLocalRandom. Addition-
ally, we configured the benchmarking tool to run an initial
setup, where some (or all) keys in the set I = {0, ..., 88 − 1}
are pre-inserted in the hash map design, and then we measure
the execution time of running 1, 4, 8, 16, 24 and 32 threads,
with 88 (16,777,216) random operations for random keys in
set I . To measure the execution times, we ran each benchmark
5 times beforehand to warm-up the JVM, and then we took
the average execution time of the next 10 runs.

A. Elasticity Overheads

We begin the experimental results with a comparison be-
tween the FFPS and FFPE designs and, for that, we designed
benchmarks specifically aimed to show the behavior of elas-
ticity in extreme situations. To do so, within the setup stage,
we pre-inserted all 88 keys in set I and then we measured
the execution time that both designs take to: (i) search for all
keys; and (ii) remove all keys.1 Figure 6a shows the execution

1Since we are using 8 bucket entries per hash level, all chain nodes will
be located in a hash level with depth 8.

(a) Elasticity overheads (b) Elasticity benefits

Fig. 6: Elasticity overheads and benefits

time, in milliseconds, for both benchmarks and designs.
The Search All benchmark (dashed lines) shows that elas-

ticity has a negligible or no cost when the remove operation
is not being used. Remember that only the remove operation
triggers the hash compression process. On the other hand, the
Remove All benchmark (solid lines) shows slight differences
caused by the hash compression process. With one thread,
there is an overhead of 12% (on average, FFPS executes in
65,431 ms and FFPE in 73,048 ms), but with 4 threads
both designs have almost the same execution time. And, as
we increase the number of threads, the difference between
both designs remains quite stable, ending with a 14% overhead
for 32 threads (on average, FFPS executes in 25,649 ms and
FFPE in 29,167 ms).

B. Elasticity Benefits

Next, we study the benefits of elasticity in extreme situa-
tions. Again, within the setup stage, we pre-inserted all 88 keys
in set I but then we also remove them, i.e., the FFPS has all
keys removed but keeps its hash hierarchy unchanged, while
the FFPE design has all keys and hashes removed (except the
root hash). We then measured the execution time that both
designs take to: (i) search for all keys; and (ii) reinsert all
keys. Figure 6b shows the execution time, in milliseconds, for
both benchmarks and designs.

The Search All benchmark (dashed lines) shows the poten-
tial benefits of the FFPE design. With one thread, FFPE is
about 15 times faster than FFPS (on average, FFPS executes
in 23,607 ms and FFPE in 1,548 ms). This difference reflects
the fact that FFPS has to traverse paths of hash levels with
depth 8 to verify that a key is missing, while FFPE only needs
to consult the root hash level. As we increase the number of
threads, the memory caches becomes more efficient and FFPS
is able to reduce its difference. However, with 32 threads,
FFPE is still about 4 times faster than FFPS (326 ms and
1,253 ms, respectively).

For the Reinsert All benchmark (solid lines), one can
observe that the results seem to be consistent with the results
from the previous benchmark. The execution times are higher
because this benchmark requires reinserting all keys. With one
thread, FFPE is about 2 times faster than FFPS (on average,

FFPS executes in 59,758 ms and FFPE in 30,582 ms) and, as
we increase the number of threads, the difference consistently
increases, such that with 32 threads, FFPE is about 4 times
faster than FFPS (4,965 ms and 18,355 ms, respectively).
This shows that elasticity is a good strategy even if we have
to reinsert hashes when reinserting keys.

C. Comparison Against Other Designs

This subsection presents experimental results comparing
our design against other state-of-the-art concurrent hash map
designs. Here, our initial setup creates an even distribution
of keys by the different hash level depths, such that, each
remove, search and insert operation has an equal probability
of 1

8 of traversing a path with depth d (1 ≤ d ≤ 8). To do
so, we begin by inserting all 88 keys in set I and then we
remove 88 − 87 of those keys, leaving the hash map with 87

(2,097,152) keys evenly distributed by the 8 hash level depths.
We then measured the execution time that all designs take to
run different benchmark sets with different pre-defined ratios
of remove, search and insert operations.

Table II presents the execution time results and speedups
obtained when running the CSL, CT, FFPS and FFPE designs
on six benchmark sets with different ratios of remove, search
and insert operations for 1, 4, 8, 16, 24 and 32 threads.

The 1st and 2nd benchmarks perform only search and insert
operations, respectively. The 3rd benchmark splits the remove
and search operations in half, and the 4th benchmark, splits
evenly the ratios of the operations. The remaining benchmark
sets aim to provide a more detailed perspective of the behavior
of the designs as we decrease the weight of remove operations.

For the 1st benchmark (remove: 0% search: 100% insert:
0%), the CSL design shows the worst results with an execution
time of 54,850 ms and, as we increase the number of threads,
it keeps a higher execution time when compared to the other
designs. As expected, FFPE is by far better than FFPS, and
it is also the best, performing also better than CT. FFPE
maintains a steady difference to CT even when we increase
the number of threads. For the 2nd benchmark (remove:
0% search: 0% insert: 100%), again, CSL is the design with
the worst results, having an execution time of 100,033 ms.
However, as we increase the number of threads, CSL is able to

TABLE II: Execution time, in milliseconds, and speedup ratio (against one thread) for running the CSL, CT, FFPS and FFPE
designs with 1, 4, 8, 16, 24 and 32 threads, on 6 benchmarks with different ratios of remove, search and insert operations

Execution Time (ETp) Speedup Ratio (ET1
/ETp)

CSL CT FFPS FFPE CSL CT FFPS FFPE
1st – remove: 0% search: 100% insert: 0%
1 54,850 14,720 25,529 9,511
4 15,221 4,293 6,650 2,154 3.60 3.43 3.84 4.42
8 7,825 2,093 3,021 1,282 7.01 7.03 8.45 7.42

16 4,807 1,251 1,804 859 11.41 11.77 14.15 11.07
24 4,773 990 1,448 733 11.49 14.87 17.63 12.98
32 4,428 904 1,570 631 12.39 16.28 16.26 15.07
3rd – remove: 50% search: 50% insert: 0%
1 52,188 16,008 25,874 9,801
4 15,656 4,699 6,552 2,444 3.33 3.41 3.95 4.01
8 8,544 2,399 3,263 1,480 6.11 6.67 7.93 6.62

16 5,591 1,524 2,023 1,108 9.33 10.50 12.79 8.85
24 5,274 1,280 1,415 945 9.90 12.51 18.29 10.37
32 5,188 1,344 1,768 952 10.06 11.91 14.63 10.30
5th – remove: 40% search: 40% insert: 20%
1 76,120 21,843 30,589 21,690
4 23,187 6,414 7,700 5,685 3.28 3.41 3.97 3.82
8 12,511 3,515 3,980 3,156 6.08 6.21 7.69 6.87

16 7,875 2,386 2,629 1,998 9.67 9.15 11.64 10.86
24 7,906 2,209 2,452 1,779 9.63 9.89 12.48 12.19
32 7,027 2,200 2,333 1,791 10.83 9.93 13.11 12.11

Execution Time (ETp) Speedup Ratio (ET1
/ETp)

CSL CT FFPS FFPE CSL CT FFPS FFPE
2nd – remove: 0% search: 0% insert: 100%
1 100,033 36,781 48,321 31,666
4 30,646 11,740 16,992 9,265 3.26 3.13 2.84 3.42
8 16,089 7,119 11,048 5,537 6.22 5.17 4.37 5.72

16 9,903 5,341 9,983 3,871 10.10 6.89 4.84 8.18
24 9,191 4,980 9,083 3,691 10.88 7.39 5.32 8.58
32 8,636 4,838 9,177 3,923 11.58 7.60 5.27 8.07
4th – remove: 33% search: 33% insert: 33%
1 77,543 23,910 35,272 24,115
4 25,418 7,116 8,354 6,681 3.05 3.36 4.22 3.61
8 13,811 4,163 4,785 3,776 5.61 5.74 7.37 6.39

16 9,093 3,038 3,131 2,518 8.53 7.87 11.27 9.58
24 7,974 2,681 2,918 2,484 9.72 8.92 12.09 9.71
32 8,444 2,552 3,038 2,428 9.18 9.37 11.61 9.93
6th – remove: 20% search: 40% insert: 40%
1 82,145 25,061 34,771 26,087
4 25,789 7,859 8,620 6,972 3.19 3.19 4.03 3.74
8 13,898 4,373 4,865 3,915 5.91 5.73 7.15 6.66

16 8,659 3,047 3,441 3,043 9.49 8.22 10.10 8.57
24 8,514 2,877 3,144 2,694 9.65 8.71 11.06 9.68
32 6,854 2,773 3,096 2,385 11.98 9.04 11.23 10.94

revert the difference to FFPS (the second worst) reaching, with
32 threads, an execution time of 8,636 ms against 9,177 ms,
respectively. On the other hand, FFPE is still the design with
the lowest execution time in all thread launches, it executes
in 31,666 ms with one thread, and keeps decreasing, as
we increase the number of threads, until it reaches the best
execution time with 24 threads, performing 3,691 ms. For
the 3rd benchmark (remove: 50% search: 50% insert:
0%), CSL is still the design with the worst performance,
having an execution time of 52,188 ms and it is not able
to reduce the difference to the other designs as we increase
the number of threads. Additionally, FFPE has again the best
performance in all thread launches, having an execution time
of 9,801 ms and 952 ms for 1 and 32 threads, respectively.
For the remaining benchmarks (4th to 6th), it is interesting to
notice that FFPE costs with the remove operation are pretty
much compensated by the benefits with the search operation,
the backbone procedure of the insert and remove operations.

Finally, for the speedups, one can observe a similar tendency
in all designs, with some advantage to CSL when the ratio
of inserts is higher and to FFPE and CT when the ratio of
searches is higher. In any case, since, in general, FFPE starts
from lower execution times with one thread, the other designs
have more space to achieve better speedups.

VI. CONCLUSIONS AND FURTHER WORK

We have presented a novel, scalable and elastic hash trie
design that fully supports the concurrent search, insert, re-
move, expand and compress operations. To the best of our
knowledge, this is the first concurrent hash map design that
puts together being lock-free, using fixed size data structures
with persistent memory references, sorted keys and be elastic.

Experimental results show that elasticity overheads are
largely overcome by its benefits and that it effectively im-
proves the search operation, and, by doing so, our design

became very competitive, when compared against other state-
of-the-art designs implemented in Java.

As further work, we plan to use our design as the building
block for a novel distributed hash map design.

ACKNOWLEDGMENTS

This work is financed by National Funds through the
Portuguese funding agency, FCT – Fundação para a Ciência e
a Tecnologia, within project UIDB/50014/2020. Miguel Areias
is financed by the FCT grant SFRH/BPD/108018/2015.

REFERENCES

[1] P. Bagwell, “Ideal Hash Trees,” Es Grands Champs, vol. 1195, 2001.
[2] D. P. Mehta and S. Sahni, Handbook of Data Structures and Applica-

tions. Chapman & Hall/CRC, 2004.
[3] R. Grossi and G. Ottaviano, “Fast compressed tries through path

decompositions,” Journal of Experimental Algorithmics, vol. 19, 2015.
[4] Y. Sagiv, “Concurrent operations on B*-trees with overtaking,” Journal

of Computer and System Sciences, vol. 33, no. 2, pp. 275 – 296, 1986.
[5] T. Brown, “Techniques for Constructing Efficient Lock-free Data Struc-

tures,” Ph.D. dissertation, University of Toronto, 2017.
[6] M. Areias and R. Rocha, “On Extending a Fixed Size, Persistent and

Lock-Free Hash Map Design to Store Sorted Keys,” in International
Symposium on Parallel and Distributed Processing with Applications,
M. Dong, R. Ranjan, M. Cafaro, and W. Wang, Eds. Melbourne,
Australia: IEEE Computer Society, December 2018, pp. 415–422.

[7] T. L. Harris, “A pragmatic implementation of non-blocking linked-lists,”
in International Conference on Distributed Computing, ser. DISC ’01.
Springer-Verlag, 2001, pp. 300–314.

[8] M. M. Michael, “High Performance Dynamic Lock-Free Hash Tables
and List-Based Sets,” in ACM Symposium on Parallel Algorithms and
Architectures. ACM, 2002, pp. 73–82.

[9] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit, “A Provably Correct
Scalable Concurrent Skip List,” in International Conference on Princi-
ples of Distributed Systems, Technical Report, Bordeaux, France, 2006.

[10] O. Shalev and N. Shavit, “Split-Ordered Lists: Lock-Free Extensible
Hash Tables,” Journal of the ACM, vol. 53, no. 3, pp. 379–405, 2006.

[11] E. Fredkin, “Trie Memory,” Communications of the ACM, vol. 3, pp.
490–499, 1962.

[12] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky, “Concurrent
Tries with Efficient Non-Blocking Snapshots,” in ACM Symposium on
Principles and Practice of Parallel Programming. ACM, 2012, pp.
151–160.

