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Abstract Probabilistic Inductive Logic Programming (PILP) is a Statistical Rela-
tional Learning technique which extends Inductive Logic Programming by con-
sidering probabilistic data. The ability to use probabilities to represent uncertainty
comes at the cost of an exponential evaluation time when composing theories to
model the given problem.For this reason, PILP systems rely on various pruning
strategies in order to reduce the search space. However, to the best of the authors’
knowledge, there has been no systematic analysis of the different pruning strategies,
how they impact the search space, and how they interact with one another.

This work presents a unified representation for PILP pruning strategies which
enables end-users to understand how these strategies work both individually and
combined, and to make an informed decision on which pruning strategies to select
so as to best achieve their goals. The performance of pruning strategies is evaluated
both time and quality-wise in two state-of-the-art PILP systems with datasets from
three different domains. Besides analysing the performance of the pruning strategies,
we also illustrate the utility of PILP in one of the application domains, which is a
real world application.

Keywords Statistical Relational Learning · Probabilistic Inductive Logic Program-
ming · Search Space Evaluation · Implementation · Performance

1 Introduction

Relational Learning is the set of Data Mining techniques used to discover non-trivial
knowledge in contexts where data may have complex relationships. Some examples
of such techniques are Inductive Logic Programming (Muggleton and Raedt 1994),
Graph Mining (Cook and Holder 2006), Relational Data Mining (Džeroski 2010)
and Relational Reinforcement Learning (Džeroski et al. 2001). Statistical Relational
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Learning (SRL) (De Raedt and Kersting 2004) extends Relational Learning by: (i) al-
lowing the training examples to be annotated with probabilistic information known
a priori, and (ii) producing classifiers whose prediction is a probability (as opposed
to a class). In this setting, both parameter and structure learning are possible; how-
ever, it is more common for SRL techniques to learn parameters, and only few SRL
methods can learn structure, or both. SRL is particularly relevant to produce and
manipulate structured representations of data, and its aim is precisely to capture
the logic relations that lie beyond the low-level features and reason about them.

Probabilistic Inductive Logic Programming (PILP) is a subset of SRL which ex-
tends Inductive Logic Programming (ILP) to compose theories as understandable
First Order Logic (FOL) sentences based on data annotated with probabilistic in-
formation. PILP algorithms use a set of Probabilistic Examples (PE) and logical
information pertaining complex relations expressed as logic facts, the Probabilistic
Background Knowledge (PBK), to find the FOL model that best explains the PE.
PILP focuses on structure learning – the logic rules compose a theory that models
the structure of the PE w.r.t PBK – but parameter learning can also be incorpo-
rated in this technique by tuning the probabilistic output of the theories which are
learnt (De Raedt et al. 2015). PILP differs from other SRL techniques in (i) the data
being represented as logical predicates and the model being a logical theory itself;
and (ii) the focus on learning the (logical) structure of the data inductively, by using
ILP algorithms to find the logical model which best explains the data.

In order to learn (probabilistic) theories from probabilistic data, PILP systems
need to rely on a specific language that can code probabilities. There are many
probabilistic inference systems that can represent and manipulate probabilities,
such as SLP (Muggleton 1996), ICL (Poole 1997), Prism (Sato and Kameya 1997),
BLP (Kersting et al. 2000), CLP(BN) (Santos Costa et al. 2002), MLN (Richardson
and Domingos 2006), ProbLog (Kimmig et al. 2011), among others. Whilst there
are a number of probabilistic logic languages in the literature, there are few works
dedicated to performing structure learning over one of these languages, and thus
representing uncertain knowledge in a human-readable form. PILP approaches such
as ProbFOIL (De Raedt and Thon 2011; De Raedt et al. 2015), SLIPCOVER (Bellodi
and Riguzzi 2012, 2015), and SkILL (Côrte-Real et al. 2015) can perform this task,
and there are ILP-based structure learning methods in the CLP(BN) (Santos Costa
et al. 2002) and MLN (Kok and Domingos 2005) languages as well. The ProbFOIL+
and SkILL systems are both based on the ProbLog language, whilst SLIPCOVER is
based on LPADs (Vennekens et al. 2004).

PILP systems evaluate the fitness of each candidate theory by computing the
probability of the theory entailing each example. This process can be very time
consuming, since the evaluation process must consider all possible worlds where the
theory may be true. For a small number of facts and relations in the PBK this may
not be a problem, but exact computation grows exponentially as the size of the
PBK is increased. In order to make the search space traversal less computationally
taxing, a pruning strategy aimed at searching for the most relevant theories can
be used. In previous work, we have already proposed different pruning strategies
for PILP environments, namely fitness pruning (Côrte-Real et al. 2015), prediction
pruning (Côrte-Real et al. 2018) and estimation pruning (Côrte-Real et al. 2016). This
work presents a unified representation of these pruning strategies and how they can
be applied in distinct parts of PILP algorithms, thus enabling end-users to better
understand how they work not only individually but also combined. These pruning
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strategies can follow alternative criteria, with varying degrees of strictness to prune
the PILP search space. Because those criteria are based on the data’s probabilistic
characteristics, the pruning strategies result in minimum information loss, which
in turn maintains the quality of the generated theories while significantly reducing
average execution time.

The main contributions of this work are: (i) a unified representation and de-
scription of the three pruning strategies in the context of a generic algorithm for
traversing the search space in PILP environments; (ii) the implementation of these
pruning strategies within the SkILL and ProbFOIL+ systems (chosen because both
are ProbLog based); and (iii) an experimental evaluation of how these pruning
strategies can be used in conjunction with each other. Experiments are performed
on three datasets: a dataset regarding metabolism interactions, a knowledge base
extracted from the web, and one real-world medical dataset. In general, the pruning
strategies are shown to shorten execution time while maintaining the quality of the
generated theories. To the best of the authors’ knowledge, the effect of applying
several pruning strategies in conjunction in a PILP system has never been studied
before. The fact that PILP systems may be able to prune out a significant part of the
search space is a relevant improvement to the exhaustive PILP algorithm, where the
search space grows exponentially. Besides evaluating the effect of applying several
pruning strategies, we also explore the utility of PILP in one of the domains, the
medical dataset. We show how to represent the probabilistic medical knowledge,
including probabilities to the examples, and how the SkILL models compare with
the medical expert mental model.

The remainder of the paper is organized as follows. First, Section 2 presents
the main background concepts of ILP and PILP. Next, Section 3 presents the PILP
pruning strategies and how they fit together in the PILP search space exploration
algorithm. In Section 4, the experimental methodology and the datasets used in this
work are described, followed by results and discussion. Before ending, in Section 5,
we discuss about how PILP can be used to represent knowledge in the medical
domain using one of our datasets and compare the performance of SkILL with
expert medical doctors. At the end, in Section 6, final remarks and perspectives of
future work are put forward.

2 Background

2.1 ILP

ILP is a machine learning method which stands out due to its suitability for rela-
tional data analysis. ILP’s main goal is to construct a theory which can explain a
set of observations - known as examples - or that can be used to build a predictive
model (Muggleton and Raedt 1994). In this work, an ILP theory refers to a set of
Horn clauses combined (disjunctively), and each individual clause is termed a rule.
A rule is composed of a head and a body, and follows the structure presented in
Eq. 1 (using Prolog’s syntax).

head D body literal1, body literal2, ..., body literalN. (1)

The body of a rule is composed by a sequence of literals, or goals, interacting
with one another through connectives, in this case the AND connective (represented
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by ,/2 in Prolog’s syntax). Each goal represents a call to a predicate, which is then
determined to be true or false. The number of literals in the body of a rule is termed
the rule length. The more literals are contained in the body of a rule (the greater
its length), the more specific the rule is. All rules of various lengths which can be
formed from the existing literals in a program form an AND search space.1 More
formally, let Literals be the set of distinct literals in the program. The AND search
space Rules is then the power set of Literals.

Rules = P(Literals) (2)

The theory (OR) search space can be defined in a similar way. Theories are
formed by combining a set of distinct rules using logical disjunction. The number
of rules in a theory corresponds to its length. All rules are thus theories of length
one. Because theories are combined using logical disjunction (as opposed to logical
conjunction for rules), adding a rule to a theory makes it more general. The OR
search space Theories is the set of all theories such that:

Theories = P(Rules) (3)

The theories used to explain examples in ILP are built from the literals that are
present in the program’s Background Knowledge (BK). The BK of an ILP program
consists of the support knowledge that one would have about the problem at hand,
and is often of a multi-relational nature. It is therefore crucial to have structured and
well-suited BK for learning. Fully exploring the ILP search space is equivalent to
evaluating each theory in the OR search space in order to determine the best theory
w.r.t. the Examples (E) and according to a given metric.

2.2 PILP

One of the limitations of (deterministic) ILP is that, whilst it can be easily used
to express relational data, it does not allow for any measure of uncertainty. The
ability to take uncertainty into account when building a declarative model of a real-
world phenomenon can result in a closer representation of reality. The Probabilistic
Logic Programming (PLP) paradigm addresses this issue by encoding knowledge
as facts or rules which are believed to be true to some degree or with a given
frequency, instead of using crisp true or false statements. One way to incorporate
uncertainty into PLP consists of using Sato’s distribution semantics (Sato 1995),
where a program is generalised to a distribution over a set of logic programs that
share the original definite clauses, but differ in the set of facts. There are several
Prolog-based PLP languages in the literature, but only ProbLog will be discussed
here since a comparison of PLP languages is out of the scope of this work. For such
a comparison see De Raedt and Kimmig (2015).

ProbLog is based on the possible world semantics (Kimmig et al. 2011). A ProbLog
program consists of a set of probabilistic facts F and a set of deterministic rules R.

1 Depending on the language bias (mechanism employed to constrain the search space), it might
also be the case that the same literal with different arguments can occur multiple times in the rule.
However, for the description of the search space, repeated literals in rules can be mimicked by
introducing auxiliary predicates (for instance). Therefore, for the sake of simplicity, this case is not
considered in what follows.
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Each fact p j :: f j in the program represents an independent binary random variable,
meaning that it can either be true with probability p j or false with probability 1− p j.
Each set of possible choices over all facts of the program represents a possible
world ωi, where ω+

i is the set of facts that are true in that particular world, and
ω−i = ωi \ ω+

i is the set of facts that are false. Since these facts have a probabilistic
value, a ProbLog program defining a probabilistic distribution over the possible
worlds can be formalized as shown in Eq. 4.

P(ωi) =
∏
f j∈ω+

i

p j

∏
f j∈ω−i

(1 − p j) (4)

A ProbLog query q is said to be true in all worlds wq where wq
|= q, and false in

all other worlds. As such, the success probability of a query is given by the sum of the
probabilities of all worlds where it is found to be true, as denoted in Eq. 5, with R
being a set of deterministic rules as previously mentioned.

P(q) =
∑

ω+
i ∪R |= q

P(ωi) (5)

2.2.1 From Rules to Probabilities

PILP differs from ILP in that the Probabilistic Examples (PE) have success probabili-
ties ranging between 0 and 1, as opposed to being either false or true. Facts and rules
in the Probabilistic Background Knowledge (PBK) can also be annotated with a prob-
abilistic value ranging from 0 to 1, which can represent either statistical information
or the degree of belief in a statement, using type I or type II probability structures,
respectively (Halpern 1990). In this setting, there are no longer positive and negative
examples, but only target probabilities for each example. The aim of a PILP theory
with respect to probabilistic examples is thus to produce probability values for each
one of them which are as close as possible to the target probability for that example.
Despite the similarities between ILP and PILP, there are several syntactic differences
between them. Table 1 summarises these differences using Prolog syntax for ILP
and ProbLog syntax for PILP.

Table 1 Main syntactic differences between ILP and PILP

Examples Background Knowledge Classifier
(Horn clauses) (Theory)

ILP

target(e_pos).
fact1(e_pos,propA).
fact2(e_pos,propB). target(E):-
fact1(e_neg,propC). fact2(E,V),clause1(V,V).

target(e_neg).
fact2(e_neg,propD). ↓

clause1(X,Y):- fact1(E,X),fact2(E,Y). truth value ∈ {TRUE,FALSE}
clause2(Y):- fact2(E,Y),clause1(X,Y).

PILP pe::target(e).

p f 1A::fact1(e,propA).

p f 2B::fact2(e,propB). target(E):-

p f 1C::fact1(e,propC). fact2(E,V),clause1(V,V).

p f 2D::fact2(e,propD). ↓

pc1::clause1(X,Y):- fact1(E,X),fact2(E,Y). truth value ∈ [0, 1]
pc2::clause2(Y):- fact2(E,Y),clause1(X,Y).

Because PILP theories are still generated based on the logical information of the
data, the ILP language bias translates directly to PILP. The process of generating
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theories also mimics ILP, since they are based on the logical clauses in the PBK.
Therefore, the search space algorithm of PILP has the same efficiency issues of
ILP’s. Furthermore, PILP adds an extra level of complexity due to the probabilistic
evaluation of theories w.r.t. the PE.

The fact that the PBK is now composed of probabilistic facts and relations alters
the semantics of the logical part of the predicates as well, when compared to the
deterministic version. When a rule is generated in PILP, its success probability (i.e.,
the success probability of the body) is calculated for each example. This value is
called the prediction of the rule for an example. As such, different literals in the body
of a rule will generate different success probabilities for an example, depending on
the probabilities of the probabilistic facts in the underlying model.

Another important difference between ILP and PILP lies in the assessment of the
fitness of theories – in PILP the loss function must be able to evaluate probabilistic
inputs. As such, the aim of PILP systems is to find theories which most closely
predict the value of the examples (also ranging between 0 and 1), or rather that
minimize the error between predictions and the examples’ values.

2.2.2 Search Space Traversal

Similarly to ILP, fully exploring the PILP search space is equivalent to evaluating
each theory in order to determine the best theory according to a given metric. The
exhaustive procedure to explore the search space, starting by exploring the rule
space (AND search) and only then proceeding to the theory space (OR search), is
given in Alg. 1 and Alg. 2, respectively.

Algorithm 1 and search space(PBK,PE)
1: R1 = generate rules o f length one(PBK,PE)
2: T1 = R1 = RN = prob evaluation(R1,PBK,PE)
3: RN+1 = combine rules(R1,RN)
4: while RN+1 , ∅ do
5: RN+1 = prob evaluation(RN+1,PBK,PE)
6: T1 = T1 ∪ RN+1
7: RN = RN+1
8: RN+1 = combine rules(R1,RN)
9: return T1

Algorithm 2 or search space(T1,PBK,PE)
1: TAll = TN = T1
2: TN+1 = combine theories(T1,TN)
3: while TN+1 , ∅ do
4: TN+1 = prob evaluation(TN+1,PBK,PE)
5: TAll = TAll ∪ TN+1
6: TN = TN+1
7: TN+1 = combine theories(T1,TN)
8: return TAll
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Algorithms 1 and 2 are similar to the ILP algorithm in that they start out with
rules (or theories) of shorter length and proceed to specify (or generalise) them. The
main difference relies on the evaluation procedure. In the case of ILP, it is a discrete
evaluation which verifies the truth value of a theory for all the examples. In the
case of PILP, the probability of success is computed for each example (lines 2/5 in
Alg. 1 and line 4 in Alg. 2). This is also the reason for the greater execution time and
complexity of PILP when compared to ILP – the cost of a probabilistic evaluation is
much greater than that of computing the truth value of a theory.

2.2.3 Loss Function and Theory Evaluation

Predictions of an ILP theory are either 1 or 0 (true or false, respectively) and, for the
purpose of this work, they will be interpreted as numeric values. This interpretation
is not strictly necessary to compute these metrics in ILP, but this distance based
approach extends directly to PILP and predictions ranging between 0 and 1. A
theory can thus be used to compute a prediction for each example. For some theory
t, an example i and its corresponding value ei, the theory’s prediction is defined as
pi(t). The closer the prediction pi(t) is to the original example value ei, the better that
theory is, for that example i.

The assessment of the fitness of a theory to describe the problem is measured
according to some loss function. Loss functions can also be defined in terms of
the distance di(t) between a prediction pi(t) and an example value ei. For ILP, the
distance di(t) will be either -1, 0 or 1. For PILP, the distance di(t) can be any real
number ranging from -1 to 1. If the distance is zero, then the prediction of the model
is correct. Otherwise, the prediction includes some error. Several metrics considering
distance di(t) over all examples are possible, namely Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE). These metrics calculate the fitness of a theory
t based on the linear or quadratic average distance between its predictions and the
example values, respectively Eq. 6 and Eq. 7, over all examples i ∈ E.

MAE(t) =
1
|E|

∑
i∈E

|di(t)| (6)

RMSE(t) =

√
1
|E|

∑
i∈E

di(t)2 (7)

Alternatively, loss functions can be defined in terms of true positive (TP(t)), true
negative (TN(t)), false positive (FP(t)) and false negative (FN(t)) parts of examples,
as shown in Eq. 8.

TP(t) =
∑
i∈E

min(ei, pi(t))

TN(t) =
∑
i∈E

min(1 − ei, 1 − pi(t))

FP(t) =
∑
i∈E

max(0, 1 − ei −min(1 − ei, 1 − pi(t)))

FN(t) =
∑
i∈E

max(0, ei −min(ei, pi(t)))

(8)
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Accuracy is used in classification problems to assess the number of correct pre-
dictions in proportion to all predictions made. Extending these concepts to the prob-
abilistic setting allows for defining standard scoring metrics, such as Probabilistic
Accuracy (PAcc) (De Raedt and Thon 2011). The PAcc metric can be defined in terms
of either MAE or TP, TN, FP, FN metrics. The two formulations are equivalent, as
shown in Eq. 9.

PAcc(t) =
TP(t) + TN(t)

TP(t) + TN(t) + FP(t) + FN(t)

=
1
|E|

∑
i∈E

(
min(ei, pi(t)) + min(1 − ei, 1 − pi(t))

)
=

1
|E|

∑
i∈E

(
1 − |ei − pi(t)|

)
=

1
|E|

∑
i∈E

(
1 − |di(t)|

)
= 1 −MAE(t)

(9)

3 Pruning Strategies

The PILP search space can be split in two separate dimensions w.r.t. the operation
that is being used to traverse it. This means that there is a search space for rules
(theories of length one), which uses the AND operation to navigate between them,
and a search space for theories (of length greater than one), which in turn uses the
OR operation to generate new theories. In what follows, these two dimensions will
be referred as the AND search space and the OR search space, respectively.

Traversing the PILP search spaces exhaustively is of exponential complexity with
the size of the PBK (both literals and facts), which requires significant computational
resources as datasets grow larger. To address this issue, three distinct ways to prune
the PILP search space can be used: fitness pruning, prediction pruning and estimation
pruning. These pruning strategies are based on the probabilistic information of
candidate theories and can be applied in different parts of the PILP search space
traversal process. Fitness pruning implements a polynomial bound complexity on
the PILP search space by selecting a subset of theories to be combined (as opposed
to calculating all possible combinations). Prediction pruning can safely reduce the
search space based on the probabilistic evaluation of candidate theories at each step
in the rule and theory combination procedure. Estimation pruning is designed to
save computational time by avoiding unnecessary exact probabilistic evaluation of
both rules and theories which will most likely be useless.

The three pruning strategies can be used individually or in combination with
each other. Algorithms 3 and 4 show a simplified version of how the three pruning
strategies can be applied to the AND and OR search space in PILP. Prediction prun-
ing is applied over previously evaluated rules and theories to remove candidates
that can not be improved on during the next iteration (lines 3 and 9 in Alg. 3 and
lines 2 and 8 in Alg. 4, respectively). Rules or theories are then selected from the
set of candidates after prediction pruning to make combinations of length N + 1.
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This combination process can now use fitness pruning to limit the number of com-
binations (lines 4 and 10 in Alg. 3 and lines 3 and 9 in Alg. 4, respectively). Before
candidates of length N + 1 are evaluated probabilistically, estimation pruning can
be applied to determine whether some combinations produced are not interesting
for exact evaluation (line 6 in Alg. 3 and line 5 in Alg. 4, respectively). Each pruning
strategy is presented next, in more detail.

Algorithm 3 and search space with pruning(PBK,PE)
1: R1 = generate rules o f length one(PBK,PE)
2: T1 = R1 = prob evaluation(R1,PBK,PE)
3: R1 = RN = AND prediction pruning(R1)
4: RN+1 = combine rules with AND f itness pruning(R1,RN)
5: while RN+1 , ∅ do
6: RN+1 = AND estimation pruning(RN+1)
7: RN+1 = prob evaluation(RN+1,PBK,PE)
8: T1 = T1 ∪ RN+1
9: RN = AND prediction pruning(RN+1)

10: RN+1 = combine rules with AND f itness pruning(R1,RN)
11: return T1

Algorithm 4 or search space with pruning(T1,PBK,PE)
1: TAll = T1
2: T1 = TN = OR prediction pruning(T1)
3: TN+1 = combine theories with OR f itness pruning(T1,TN)
4: while TN+1 , ∅ do
5: TN+1 = OR estimation pruning(TN+1)
6: TN+1 = prob evaluation(TN+1,PBK,PE)
7: TAll = TAll ∪ TN+1
8: TN = OR prediction pruning(TN+1)
9: TN+1 = combine theories with OR f itness pruning(T1,TN)

10: return TAll

3.1 Fitness Pruning

Fitness pruning consists of limiting the number of candidate theories in each itera-
tion to a maximum size. The advantage of the fitness approach is that it imposes a
polynomial limit on the exponential complexity of the search space, and therefore
makes the runtime of the program shorter (Côrte-Real et al. 2015). Before starting a
new iteration in the PILP algorithm, fitness pruning will select a limited number of
candidate theories to be used, from all the possible combinations for that iteration.

This is done by defining two sets – Primary and Secondary – and, for each stage
of the AND and OR search spaces, fitness pruning then selects a subset of theories
for the two sets, and then new candidate theories are generated by combining all
members from each set using the respective AND or OR operation. By default (i.e.,
with no pruning), when traversing the AND search space, the Primary set contains
all rules of length one (with one literal) and the Secondary set is filled, in each
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iteration, with the set of rules generated in the previous iteration (initially the rules
of length one, then the rules of length two, three and so on). Similarly, for the OR
search space, the Primary set contains all rules generated in the AND search process
(theories of length one) and the Secondary set is filled, in each iteration, with the set of
theories generated in the previous iteration (initially the theories of length one, then
the theories of length two, three and so on). With fitness pruning, the user defines a
maximum size PrimarySize for the Primary set and another independent maximum
size SecondarySize for the Secondary set, such that the total number of candidates
MaxSize in each iteration is calculated by multiplying the maximum length of both
sets as follows:

MaxSize = PrimarySize × SecondarySize (10)

Fully traversing the search space and evaluating all possible combinations of
theories for each iteration corresponds to the particular case where PrimarySize =
SecondarySize = ∞. Furthermore, in the case where SecondarySize = ∞, fitness prun-
ing is equivalent to a beam search with beam width of PrimarySize.

The selection of the theories that will be part of the Primary and Secondary
sets used for combination can be done according to different metrics, which are
equivalent to the loss functions introduced in Section 2.2.3 – for instance, RMSE or
PAcc. The selection is performed by ordering all theories according to the chosen
metric and populating the sets with the top theories. In addition to the loss functions,
a random metric, named RAND, can also be used. The RAND metric introduces
a stochastic selection of theories in this process. Using deterministic ranks based
on the quality of theories may in some cases result in sets of very similar theories
due to the restricted nature of the selection. The RAND metric solves this issue
by combining stochastically selected theories, as opposed to only good ones based
on a deterministic metric. There may be cases where using a weaker theory in a
combination may actually result in a final candidate theory of better quality.

Depending on the given metrics, fitness pruning can generate theories in a fully
stochastic way, use best theories or create a heterogeneous mix. If the RAND metric
is chosen, the selection process is distinct for each iteration.

Once the Primary and Secondary sets are populated, the theories for the next
iteration will be generated from the members which are present in these sets only.
Generated theories can still be excluded from the result if they do not comply with
the language bias of the problem.

The fact that fitness pruning uses ranking metrics and fixed-size sets makes its
complexity polynomially bound on user-defined parameters. As the datasets grow
larger than a few examples, the probabilistic evaluation of theories represents the
largest proportion of execution time, making the theory-generation procedure and
other control operations negligible. If fitness pruning was not used to select sets,
the overall number of probabilistic evaluations would be

∑TMaxLength
l=1

(
|T1 |

l
)
, where

TMaxLength is the maximum theory length and T1 is the set of theories of length
one.2 It is easy to see that using sets of fixed size for each iteration, the number
of probabilistic evaluations will be at most |T1| + (TMaxLength − 1) × PrimarySize ×
SecondarySize, which is much less than all possible combinations of theories in the
search space.

2 Remember that a theory is evaluated probabilistically against the set of all examples.
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3.2 Prediction Pruning

The aim of prediction pruning is to guide the search focusing on good candidate
theories, and not allowing candidates which are below a threshold of quality to
transition to the next iteration, particularly in scenarios where there are limited re-
sources (Côrte-Real et al. 2018). Unlike fitness pruning, the decision on whether a
candidate theory should be further explored is made based on the theory’s individ-
ual prediction values for each example. The criterion to exclude theories depends on
the search space being explored. For the AND search space, the combination of two
rules ra and rb using logical conjunction results in a more specific rule ra,b = ra

∧ rb.
In the probabilistic setting, for each rule r and example i, the prediction value pi(r) is
equal to the sum of the probabilities P(ωn) of each worldωn in the program in which
ωn |= r(i). This means that for the more specific rule ra,b to be true, both ra and rb

must be true simultaneously, i.e., only the worlds where both ra and rb are true can
be considered. This is equivalent to the intersection of the set of worlds which entail
ra and rb, taking also into account the variable groundings for ra and rb. Therefore,
the prediction value of a specific rule for an example i can be defined in terms of the
prediction values of less specific rules which compose it.

pi(ra,b) =
∑

ωn |=ra,b(i)

P(ωn) =
∑

ωn |=ra(i) ∩ ωn |=rb(i)

P(ωn) (11)

In Eq. 12, set theory principles state that the intersection of the worlds which
entail ra(i) and the worlds which entail rb(i) will always be equal or smaller than
either set.

|{ωn : ωn |= ra,b(i)}| ≤ |{ωn : ωn |= ra(i)}|

|{ωn : ωn |= ra,b(i)}| ≤ |{ωn : ωn |= rb(i)}|
(12)

Therefore, the prediction value pi(r) of a rule r will be monotonically decreasing
with the application of the AND operation, since in each iteration the rules become
more specific. Having established this ordering allows prediction pruning to be
applied over previously evaluated rules to determine whether they are useless for
further combination, given some criterion. For a given example i and rule r, if the
prediction value pi(r) is less than the example value ei, then continuing to apply the
AND operation can only result in distancing pi(r) from ei further, since pi(r) can only
decrease from the application of the AND operation. As such, prediction pruning
excludes rules whose prediction values for all examples suggest that the theory is
already too specific when compared to the example values. When a rule is excluded
in the prediction pruning stage, the rule is still considered as a candidate for the best
model (since it was already probabilistically evaluated), but it does not transition to
the next iteration of the algorithm as a candidate.

A similar argument can be made for the OR operation and the generality of
theories. The disjunctive combination ta;b = ta

∨ tb of two theories ta and tb is true
when either ta, tb or both ta and tb are true. In the probabilistic setting, the prediction
value pi(ta;b) will be equal to the sum of the probabilities P(ωn) of each world ωn
in the program in which ωn |= ta(i) or ωn |= tb(i), meaning the union of these sets
of worlds. Similarly to rules, the prediction value of a more general theory for an
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example i can be defined in terms of the prediction values of more specific theories
which compose it.

pi(ta;b) =
∑

ωn |=ta;b(i)

P(ωn) =
∑

ωn |=ta(i) ∪ ωn |=tb(i)

P(ωn) (13)

In Eq. 14, set theory principles state that the union of the worlds which entail ta

and the worlds which entail tb will always be equal or greater than either set.

|{ωn : ωn |= ta;b(i)}| ≥ |{ωn : ωn |= ta(i)}|

|{ωn : ωn |= ta;b(i)}| ≥ |{ωn : ωn |= tb(i)}|
(14)

Therefore, the prediction value pi(t) of a theory t will be monotonically increasing
with the application of the OR operation, since in each iteration in the OR search
space the theories become more general. The monotonic increasing prediction values
for each example of a given theory allows prediction pruning to be applied over
previously evaluated theories to determine whether they are useless for further
combination, given some criterion. Prediction pruning excludes theories whose
prediction values for all examples suggest that the theory is already too general
when compared to the example values. When a theory is excluded in the prediction
pruning stage, the theory is still considered as a candidate for the best model, but it
does not transition to the next iteration of the algorithm as a candidate.

3.3 Estimation Pruning

The aim of estimation pruning is to reduce execution time by preventing the prob-
abilistic evaluation of theories which are not good candidates and would thus be
pruned away at a later stage according to some criterion (Côrte-Real et al. 2016).
Estimation pruning follows a similar approach to prediction pruning but instead
of excluding theories based on their (previously calculated) probabilistic evalua-
tion, estimation pruning excludes theories whose estimation is too specific (for the
AND operation) or too general (for the OR operation) to be an interesting candidate
according to a given loss function. The advantage of this approach lies in the fact
that, by avoiding probabilistic evaluation on theories, the computational cost of
traversing the search space is significantly reduced, since the main time component
of this task is precisely the probabilistic evaluation of theories. However, the fact
that estimations are used (instead of prediction values obtained from probabilistic
evaluation) introduces a degree of uncertainty when applying the pruning crite-
rion, since estimations are not necessarily always a good approximation for theory
prediction values.

Estimation pruning estimates the prediction values of a theory based on theories
of smaller length whose probabilistic evaluation has already been calculated at a
previous iteration of the algorithm. For instance, in the case of rules, this can be
achieved by decomposing a rule into two other rules of smaller length which are in
themselves valid rules in the AND search space. If the probabilistic evaluations for
the rules of smaller length are known, it is possible to estimate the range in which
the prediction values of the composed rule will lie. In the OR search space, theories
can also be decomposed in theories of shorter length, and estimations made based
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on the probabilistic evaluation of the composing theories. Similarly to prediction
pruning, estimation pruning excludes combinations of theories whose estimated
prediction values suggest that the resulting theory will be too specific (for the AND
operation) or too general (for the OR operation).

Thus, estimation pruning aims to reduce execution time by ruling out theories
that have poor estimations and exactly evaluating theories that have good estima-
tions. The decision on whether a theory is discarded is made based on some criterion
which is now directly applicable to the estimated probabilistic values in lieu of the
exact prediction values of a theory3. The combination is then pruned away if it is
found to be useless. Conversely, if the combination is considered useful, then exact
probabilistic evaluation is performed and the theory and its exact evaluation are
saved for the next iteration. Since this pruning method is based on the estimation of
a combination of theories, it can be considered not safe in the sense that it is possible
to discard theories which might be better candidates than their estimations suggest.

The challenge in estimating the value of a probabilistic evaluation knowing the
values of the theories being combined lies in the fact that the amount of overlapping
of the sets of worlds corresponding to those two theories is unknown without
evaluation. If two theories are mutually exclusive (or disjoint) w.r.t. the PBK, then
their overlap is null. On the other hand, if a theory is more specific than another, the
former will cover a subset of the worlds covered by the latter. Theories can also be
independent, meaning that the probability that one theory is true in a world does
not change the probability that another theory is also true in that world.

Despite this uncertainty, it is possible to calculate the interval where the predic-
tions of a combination of two theories ta and tb will lie. The bounds of that interval
are determined by (i) the prediction values of the theories that are being combined,
and (ii) the operation being used to combine the theories. The minimum and max-
imum boundaries of an estimation interval can be calculated by considering the
theories’ prediction values point wise, i.e., determine the minimum and maximum
possible values for the combination of pi(ta) and pi(tb), for all examples. For each pair
of prediction values, the possible resulting prediction value for the combination of
ta and tb will vary monotonically from the minimum possible amount of overlap of
the world sets (mutual exclusivity, corresponding to disjoint sets) to the maximum
amount of overlap in the world sets (inclusiveness, corresponding to at least one of
the world sets being a subset of the other).

In the case of logical conjunction, the minimum possible value for a combination
of two predictions occurs if the sets of worlds for those predictions are as mutually
exclusive as possible, i.e., when the amount of overlap is minimum. This occurs
because the AND operation requires theories to be true in both sets of worlds.
Therefore, the maximum boundary for the case of the AND operation happens if
one of the sets of worlds is a subset of the other, meaning that one of the theories
is included by the other. Equation 15 shows the expressions for the minimum and
maximum boundaries when using the AND operation.

min boundAND =max(0, pi(ta) + pi(tb) − 1)

max boundAND =min(pi(ta), pi(tb))
(15)

3 Another option would be to use a probabilistic inference method which determines the predic-
tion values of a theory using an approximation, but this is outside of the scope of this work.
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Conversely, for logical disjunction, the minimum and maximum boundaries
correspond to the inclusive and mutually exclusive case, respectively. This is due to
the fact that, for the combination of two theories to be true using the OR operation,
only one of them needs to be true. Equation 16 shows the expressions used to
calculate the minimum and maximum boundaries for the OR operation.

min boundOR =max(pi(ta), pi(tb))

max boundOR =min(pi(ta) + pi(tb), 1)
(16)

Based on the boundaries of the estimation interval, estimation pruning defines
five estimators that can be used to estimate the value of theories, namely minimum,
maximum, center, independence and exclusion. These estimators predict different sets
of values inside the estimation interval, based on different set theory cases. The
minimum and maximum estimators correspond to the lower and upper boundaries
of the estimation interval. The center estimator is the center of the estimation inter-
val (halfway between minimum and maximum). The independence estimator assumes
that theories ta and tb are independent and calculates the values of their combina-
tion accordingly. The exclusion estimator assumes that the theories ta and tb are as
exclusive as possible (in the AND operation, the exclusion estimator is equal to the
minimum estimator, and in the OR operation, it is equal to the maximum estimator).
Equation 17 shows the expressions used to calculate the center, independence and
exclusion estimator for the AND and OR operations.

estimator centerAND =
1
2

(max(0, pi(ta) + pi(tb) − 1) + min(pi(ta), pi(tb)))

estimator centerOR =
1
2

(max(pi(ta), pi(tb)) + min(pi(ta) + pi(tb), 1))

estimator independenceAND =pi(ta) × pi(tb)

estimator independenceOR =pi(ta) + pi(tb) − pi(ta) × pi(tb)

estimator exclusionAND =max(0, pi(ta) + pi(tb) − 1)

estimator exclusionOR =min(pi(ta) + pi(tb), 1)

(17)

3.4 Pruning Criteria

For both prediction and estimation pruning, a criterion is necessary to decide
whether theories will be pruned away or not. Three criteria for deciding if a theory
is too specify/general are described next (though different ones may be defined):
a hard criterion, a soft criterion and a safe criterion. All criteria take into account the
predictions (or estimations) of a theory pi(t) for the available examples, as well as the
example values ei themselves. Furthermore, the operation (AND/OR) under which
the criterion is being applied must be taken into account.

The hard pruning criterion prunes a theory away if, in any example, the theory
made a prediction (or has an estimation) that was more specific (for the AND
operation) or more general (for the OR operation) than the annotated value for that
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example. Given a theory t, Eq. 18 and Eq. 19 present the expressions for the hard
pruning criterion for the AND and OR search space, respectively.

∃i : pi(t) < ei (18)

∃i : pi(t) > ei (19)

The soft pruning criterion takes into account the theory’s predictions (or esti-
mations) for every example, and only prunes the theory away if it is overall more
specific (for the AND operation) or more general (for the OR operation) than the
annotated values of the examples. The soft criterion differs from the hard criterion
in that it takes into account the aggregate value of all examples, whilst the hard
pruning criterion can discard theories based on one example value only. Given a
theory t, Eq. 20 and Eq. 21 present the expressions for the soft pruning criterion for
the AND and OR search space, respectively.

∑
i

(
pi(t) − ei

)
< 0 (20)

∑
i

(
pi(t) − ei

)
> 0 (21)

On the other hand, the safe pruning criterion excludes theories only when all of
their predictions are found to be too specific (for the AND operation) or too general
(for the OR operation), and no prediction can be improved by continuing with the
search in that search space. Figure 1 illustrates these concepts for a PILP setting with
three examples and four theories. For each example i, the example value ei (squares
in black) and four predictions (or estimations) of theories ta, tb, tc and td are plotted.

For the AND operation in Fig. 1(a), the safe pruning criterion would prune away
theory td (red triangles) because, for every example, its prediction values are lower
than the example values. The soft criterion prunes tc (diamonds) and td (triangles)
because their prediction values are overall lower than the example values. Finally,
the hard pruning criterion would prune away all theories except ta (for example, tb

is pruned away because its prediction for e1 is lower than the example value). All
pruning criteria would keep ta because all its prediction (or estimation) values are
higher than their respective example value.

An analogous reasoning can be made for the OR operation in Fig. 1(b). The safe
pruning criterion would prune ta (red triangles) because all its prediction values
are higher than the example values. The soft pruning criterion would prune both ta

(triangles) and tb (diamonds) because their prediction values are overall higher than
the example values. The hard pruning criterion would prune away ta (triangles), tb

(diamonds) and tc (circles). No pruning criterion would prune away td because all
its prediction (or estimation) values are lower than the example values.

The theories pruned away by the safe criterion are a subset of the theories
pruned away by the soft criterion, and similarly the theories pruned away by the
soft criterion are a subset of those pruned away by the hard criterion.
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(a) Pruning criteria for the AND search space
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(b) Pruning criteria for the OR search space

Fig. 1 Pruning criteria for AND and OR search spaces. The x-axis contains three examples i = {1, 2, 3}
and the y-axis represents probabilistic values ranging from 0 to 1. For each example i, example values
ei are depicted as black squares and four theories’ prediction values pi(ta), pi(tb), pi(tc) and pi(td) are
depicted in different markers.

3.5 Safeness

One concern of using pruning strategies is whether the best theories can be lost
due to the use of pruning. A safe pruning strategy can thus be defined as a strat-
egy which only prunes away candidate theories which are assuredly not the best
theory. In order to guarantee safeness, the pruning strategy must use the same
evaluation ranking that is used during search space traversal to determine the best
theory (Côrte-Real et al. 2018). This happens because the search space traversal eval-
uation metric defines a ranking for the utility of candidate theories and therefore
also defines the first theory of that ranking, i.e., the best theory.

In general, fitness pruning can not be guaranteed to be a safe pruning strategy.
This is because the candidate theories of iteration j + 1 are combinations of the most
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promising candidates of iteration j, according to some ranking. Even if this ranking
uses the same metric as the evaluation function, there is no guarantee that a combi-
nation of two candidate theories which were not included in the populations cannot
be a better theory than all the candidate theories generated from the population
members. This can happen when two theories whose rankings are low combine to
form a theory with much higher ranking. One way to ensure that fitness pruning is
a safe pruning strategy would be to include all possible theories in the populations,
which is equivalent to exhaustively traversing the search space by definition.

Estimation pruning is also not a safe pruning strategy in general. In the case
of this pruning strategy, theories are pruned away based on an estimation of their
prediction values (i.e., before evaluation). If the estimate does not correspond exactly
to the predictions of the theory for every example, the decision on whether to prune
or keep the theory is made with inaccurate information. This therefore makes it
impossible to guarantee that the best theory will not be pruned away in a setting
where its estimated predictions are not as good as the actual prediction values.

Prediction pruning, on the other hand, can be a safe pruning strategy given the
right conditions. This pruning strategy decides, for each evaluated theory, whether
candidate theories should be generated from it. In the case of AND operation,
candidate theories generated from another theory can only be more specific than
the original theory. Similarly, candidate theories generated from a theory using the
OR operation can only be more general than the original theory. Therefore, if the
original theory is already too specific (for the AND operation) or too general (for the
OR operation), candidate theories generated from it can only be even more specific
(AND operation) or general (OR operation). This fact guarantees that under certain
conditions of specificity/generality of the original theory, prediction pruning can be
a safe pruning strategy. In addition, prediction pruning can only guarantee safeness
if it is not used in combination with another (unsafe) pruning strategy.

3.6 Related Work

The most common pruning strategy used during the traversal of PILP spaces is
fitness pruning (or beam search). Beam search is a particular case of fitness pruning,
and it is used by the PILP systems SLIPCOVER and ProbFOIL+. The SkILL PILP
system uses fitness pruning for both the AND and the OR operations, allowing for
a greater control of the beam.

The prediction pruning strategy aims at focusing the search on good candidate
theories, and not allowing candidates which are below a threshold of quality to
transition to the next iteration. The SkILL system supports this pruning strategy
for both the AND and the OR operation, using safe, soft and hard criteria. Prob-
FOIL+ also supports these criteria, but only for the AND operation. Additionally,
ProbFOIL+ includes a refinement rejection criterion which is a combination of three
metrics that are calculated for each possible refinement: local score, global score and
significance. This rejection criterion can also be seen as a form of prediction pruning
for the AND operation, since once a specification of a theory is calculated, further
refinements of it will not be pursued unless it passes the rejection criterion. Further-
more, the learning process of SLIPCOVER also calculates possible refinements and
their respective log-likelihood for each rule, which again can be seen as a form of
prediction pruning with a different criterion.
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Estimation pruning avoids the costly operation of exact probabilistic evaluation
of theories by estimating the value of a combination of theories based on its sub-
theories. This strategy is supported by both the SkILL and the ProbFOIL+ systems,
even though ProbFOIL+ only supports the case of the AND operation.

4 Experiments

This experimental section analyses the effect of using a combination of pruning
strategies in the SkILL (Côrte-Real et al. 2015) and ProbFOIL+ (De Raedt et al. 2015)
PILP systems, which are both based on the ProbLog language. The SkILL system
runs on top of the Yap Prolog system (Costa et al. 2012), uses TopLog (Muggleton
et al. 2008) as the basis rules generator and the ProbLog Yap library as its prob-
abilistic inference engine. The experiments using the SkILL system were run on
a machine containing 4 AMD Opteron 6300 processors with 16 cores each and a
total of 250GB of RAM, unless otherwise indicated. The ProbFOIL+ system is based
on python and it uses the Yap Prolog system for logical inference of theories. In
these experiments, ProbFOIL+ uses only the examples provided in the training data
(without generation of additional negative examples as used in the original paper)
and it uses negated literals in the theories. The experiments using ProbFOIL+ were
run on a machine containing an Intel Core i7 processor with 4 cores and a total of
16GB of RAM.

The performance of the pruning strategies was analysed using three different
datasets: metabolism, athletes and breast cancer. All experiments use five-fold
cross validation and results presented are the average values for all folds, unless
otherwise indicated. Table 2 summarises the characteristics of the datasets.

Table 2 Dataset characteristics: number of probabilistic examples; number of facts in the PBK and
proportion of probabilistic facts in brackets; number of examples in the train set and proportion
of the dataset in brackets; and number of examples in the test set and proportion of the dataset in
brackets.

Dataset Examples PBK Train Size Test Size
metabolism 230 7000 (46%) 184 (70%) 46 (30%)

athletes 721 4294 (100%) 576 (70%) 144 (30%)
breast cancer 130 13400 (3%) 104 (80%) 26 (20%)

The metabolism dataset consists of an adaptation of the dataset originally from
the 2001 KDD Cup Challenge4. It is composed of 230 examples (half positive and half
negative) and approximately 7000 BK facts. To obtain probabilistic facts for the PBK,
the predicate interaction(gene1, gene2, type, strength) was adapted from
the original metabolism dataset. The fourth argument of this predicate indicates
the strength of the interaction between a pair of genes. This fact was converted to
the probabilistic fact pstrength::interaction(gene1, gene2, type), where pstrength
was calculated from strength interactions as follows:

pstrength =
strength −minstrength

maxstrength −minstrength
(22)

4 http://www.cs.wisc.edu/˜dpage/kddcup2001

http://www.cs.wisc.edu/~dpage/kddcup2001
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This resulted in about 3200 probabilistic facts in the PBK. 5 folds were generated
from this dataset, and each one of them is composed of 46 test examples selected
randomly from the main dataset (but keeping the same positive/negative ratio) and,
for each fold, the 184 remaining examples are used for training.

The athletes dataset consists of a subset of facts regarding athletes and the sports
they play collected by the never-ending language learner NELL5. NELL iteratively
reads the web, gathering knowledge, and for each fact that it comes across it assigns
a weight that can be used as a probability. As NELL iterates, the weights of the facts
in its database are updated, and the dataset used for this experiment contains the
facts and weights from iteration 850. The dataset is composed of 720 probabilistic
examples of athletes that play for a team, and 4294 probabilistic facts in the PBK
pertaining to the origin of the player, his/her gender, the city where a team plays, and
so on. 5 folds were generated from this dataset, and each one of them is composed of
144 test examples selected randomly from the main dataset and the 576 remaining
examples are used for training. Because in this case examples do not clearly belong
to one of two classes, the test examples were randomly selected from the dataset
without taking their expected value into account.

The breast cancer dataset contains data from 130 biopsies dating from January
2006 to December 2011, which were prospectively given a non-definitive diagnosis
at radiologic-histologic correlation conferences. 21 cases were determined to be ma-
lignant after surgery, and the remaining 109 proved to be benign. The probabilities
assigned to the examples represent the chance of malignancy for each patient. A
high probability indicates the team of physicians thinks the case is most likely ma-
lignant, and conversely a low probability indicates the case is most likely benign.
Five folds were generated from this dataset, and each one of them is composed of
26 test examples selected randomly from the main dataset (but keeping the same
positive/negative ratio) and the 104 remaining examples are used for training.

4.1 Fitness Pruning

This section analyses the effect of fitness pruning on probabilistic accuracy (PAcc)
and execution time using three different configurations for the primary/secondary
populations: 25/5, 25/10 and 25/20. The same configuration was used for both the
AND and OR search spaces and the PAcc metric was used for ranking both pop-
ulations. For example, the size 5 in 25/5 corresponds to the size of the secondary
population, i.e., in each iteration j, five theories (or rules) of length j are chosen
to populate this set according to the ranking metric PAcc. The first size (25 in all
cases) is the fixed number of theories (or rules) of length one that are combined
against the secondary set. This corresponds to using beam sizes of 125, 250 and 500
candidates, respectively. These sizes were chosen based on populations that would
make it feasible to complete executions in the systems we tested.

Table 3 shows the running time in seconds, total number of evaluations per-
formed and probabilistic accuracy for datasets metabolism, athletes and breast
cancer using SkILL with the three population sizes described above and ProbFOIL+
using a combination of beam search in the AND-space (with the default beam size:
5) and greedy search in the OR-space.

5 http://rtw.ml.cmu.edu

http://rtw.ml.cmu.edu
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Table 3 Execution time in seconds, number of probabilistic evaluations performed and probabilistic
accuracy on the test set using SkILL with varying population sizes (same sizes used for AND and
OR operation) and ProbFOIL+ with greedy beam search, for datasets metabolism, athletes and
breast cancer. Standard deviation is presented in brackets. Execution times between systems are
not comparable.

SkILL
25/5 25/10 25/20 ProbFOIL+

Execution Time
metabolism 2065 (111) 2552 (85) 3353 (204) 2008 (2016)

athletes 1715 (25) 3413 (469) 4610 (79) 57 (5)
breast cancer 779 (10) 1102 (76) 1449 (63) 3890 (339)

# Evaluations
metabolism 1450 (43) 1683 (45) 2151 (44) 3734 (2328)

athletes 679 (6) 1142 (16) 1852 (25) 201 (43)
breast cancer 326 (38) 647 (66) 1235 (68) 24290 (851)

Probabilistic Accuracy
metabolism 0.67 (0.06) 0.67 (0.06) 0.67 (0.05) 0.51 (0.04)

athletes 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.80 (0.01)
breast cancer 0.85 (0.03) 0.85 (0.03) 0.86 (0.04) 0.85 (0.01)

Fitness pruning establishes a bound on the number of AND and OR evaluations
performed during PILP search space traversal, reducing them from an exponential
number to a polynomially bound one. However, there is always a constant compo-
nent that is related to the number of rules of length one, which must be evaluated
regardless of the pruning settings (1181 rules for metabolism, 53 rules for athletes
and 25 rules for breast cancer). In Table 3, the effect of this component in SkILL is
evident on the execution time and evaluations presented, since they do not reduce
linearly with the number of combinations. Furthermore, as the number of combina-
tions grows larger, there may be cases where there are not enough rules or theories
of a given length to fill the population sets. This is more likely to happen during
AND search since the language bias may restrict how the rule search space can grow.

Even though fitness pruning only traverses part of the search space, the results
on Table 3 show that it does not sacrifice probabilistic accuracy. This is due to the
fact that rules and theories are ranked by ausing the same performance-related
metric (PAcc), and so combinations are made from the more accurate members
generated in each iteration (even though other ranking metrics can be used to select
theories, e.g., random selection to include weaker candidates). Nonetheless, as the
probabilistic accuracy does not decrease when the population sizes are reduced, it
can be concluded that PAcc is effective in keeping a good population of candidate
theories.

This procedure is different in the ProbFOIL+ system, where a greedy beam search
is used. For that reason, there are cases in which ProbFOIL+ performs significantly
more/less evaluations than SkILL (more evaluations for metabolism and breast can-
cer, less for athletes). However, ProbFOIL+’s probabilistic accuracy is significantly
less in two of the datasets (metabolism and athletes), as is to be expected from the
reduced number of evaluations, which in turn results in shorter execution times.
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4.2 Estimation Pruning

This section analyses the performance of estimation pruning in the SkILL and Prob-
FOIL+ systems using the independence estimator as it is was shown to have good
overall performance. For a detailed comparison of different estimators please refer
to Côrte-Real et al. (2016). In the ProbFOIL+ system, estimation pruning with the in-
dependence estimator was added only for the AND operation, since in ProbFOIL+
the OR search space forms a theory by adding the best rule found in the AND search
space and then adjusting the examples accordingly. As baseline for the SkILL ex-
periments, setting 25/20 fitness pruning is taken as exhaustive experiments without
fitness pruning were computationally infeasible. Likewise, for ProbFOIL+, a beam
of size 5 is used.

Table 4 shows the running time in seconds, total number of evaluations per-
formed and probabilistic accuracy for datasets metabolism, athletes and breast
cancer using varying estimation pruning criteria (but always the independence es-
timator) for SkILL and ProbFOIL+. The pruning criteria are reported as a tuple
where the first value is the AND pruning option and the second is the OR pruning
option. Pruning options can be soft pruning (S), hard pruning (H) or no pruning (x).
For example, Sx stands for soft AND pruning and no OR pruning.

Results in Table 4 indicate that, in most cases, the use of estimation pruning
can reduce the runtime of the experiments when compared to using no estimation
pruning (baseline columns). In the cases where this does not happen (for instance, in
the breast cancer dataset using ProbFOIL+), the number of probabilistic evaluations
is still reduced, but the theories that are being evaluated using estimation pruning
are more complex, and so it takes much longer to evaluate them. Furthermore, there
is no significant variation in accuracy when applying estimation pruning using the
independence estimator, for any of the settings presented in Table 4.

4.3 Prediction Pruning

This section assesses the quality of candidate theories in a limited resource setting.
Resources can be limited in two ways: either a timeout is imposed or a maximum
number of evaluations is defined, which corresponds to using fitness pruning in
SkILL or beam search in ProbFOIL+. Each theory in the PILP search space can
be thought of as a predictor. Since prediction pruning removes theories from the
search space, the distribution of the remaining candidate theories can change. For
a detailed analysis of this effect refer to Côrte-Real et al. (2018). This experiment
uses the same baseline as the previous experiment (SkILL with fitness pruning
25/20 and ProbFOIL+ with a beam of size 5). Table 5 shows the running time
in seconds, total number of evaluations performed and probabilistic accuracy for
datasets metabolism, athletes and breast cancer using prediction pruning for the
AND search space, given the same limitation of resources as the baseline case.

Results in Table 5 show that applying the soft or hard pruning criteria (in the
AND search space) leads to clear improvements in probabilistic accuracy for Prob-
FOIL+ and does not lead to degradation in SkILL, when compared to the baseline
results. Safe pruning has no effect on these datasets because its pruning power is
too limited. The effect of prediction pruning is more evident for ProbFOIL+ because
it selects fewer candidates in each iteration, when compared to SkILL’s primary
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Table 4 Execution time in seconds, number of probabilistic evaluations performed and probabilistic
accuracy on the test set using varying pruning criteria and independence estimator for SkILL and
ProbFOIL+ (only for the AND operation), for datasets metabolism, athletes and breast cancer.
Standard deviation is presented in brackets. Execution times between systems are not comparable.
The baselines are taken from Table 3 with setting 25/20 for SkILL.

(a) SkILL
Baseline Sx Hx xS xH

Execution Time (s)
metabolism 3353 (204) 1719 (328) 1753 (319) 2873 (828) 1422 (194)

athletes 4610 (79) 339 (28) 337 (27) 536 (73) 520 (27)
breast cancer 1449 (63) 53 (8) 220 (20) 199 (8) 220 (20)

# Evaluations
metabolism 2151 (44) 3312 (76) 3312 (76) 7053 (262) 5260 (280)

athletes 1852 (25) 1133 (90) 1133 (90) 2483 (271) 2414 (94)
breast cancer 1235 (68) 731 (0) 1919 (0) 1919 (0) 1919 (0)

Probabilistic Accuracy
metabolism 0.67 (0.05) 0.66 (0.05) 0.66 (0.05) 0.66 (0.05) 0.66 (0.05)

athletes 0.95 (0.01) 0.90 (0.12) 0.90 (0.12) 0.95 (0.00) 0.95 (0.00)
breast cancer 0.86 (0.04) 0.78 (0.31) 0.72 (0.36) 0.72 (0.36) 0.72 (0.36)

(b) ProbFOIL+

Baseline Sx Hx
Execution Time (s)

metabolism 2008 (2016) 1336 (798) 313 (83)
athletes 57 (5) 22 (18) 18 (1)

breast cancer 3890 (339) 6576 (1177) 4515 (431)
# Evaluations

metabolism 3734 (2328) 3531 (2959) 304 (76)
athletes 201 (43) 29 (3) 20 (2)

breast cancer 24290 (851) 8325 (286) 699 (30)
Probabilistic Accuracy

metabolism 0.51 (0.04) 0.51 (0.04) 0.51 (0.01)
athletes 0.80 (0.01) 0.80 (0.01) 0.80 (0.01)

breast cancer 0.85 (0.01) 0.87 (0.01) 0.87 (0.02)

and secondary populations. It is therefore more important that bad candidates are
pruned such that the limited beam is filled with better candidates. The prediction
pruning strategy is thus particularly useful when traversing the search space with a
narrow beam, so that the candidates selected to populate it are of greater predictive
value when compared to using no prediction pruning.

Table 5 also shows that applying prediction pruning does not necessarily reduce
the search space. It can actually increase the number of rules evaluated during the
execution, and even the execution time in some cases. This happens because pre-
diction pruning provides a type of lookahead, that is, it makes an assessment of the
predictive power of a rule in future iterations. When no prediction pruning is used,
the algorithms have a strong bias toward rules that show good performance early on
and the best rule (in the limited search space) is found after a few iterations. Predic-
tion pruning counteracts this bias, and also allows candidates that only reach their
full predictive accuracy after a higher number of iterations to be explored. However,
since the algorithm may take more iterations, this can lead to more evaluations and
longer rules that are harder to evaluate.
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Table 5 Execution time in seconds, number of probabilistic evaluations performed and probabilistic
accuracy on the test set using SkILL and ProbFOIL+ with prediction pruning for the AND search
space, for datasets metabolism, athletes and breast cancer. Standard deviation is presented in
brackets. Execution times between systems are not comparable. The baselines are taken from Table 3
with setting 25/20 for SkILL.

(a) SkILL
Baseline Safe Soft Hard

Execution Time (s)
metabolism 3353 (204) 2286 (185) 3216 (472) 1791 (37)

athletes 4610 (79) 4230 (582) 2322 (164) 2358 (73)
breast cancer 1449 (63) 616 (50) 636 (26) 353 (42)

# Evaluations
metabolism 2151 (44) 2150 (44) 3234 (90) 2103 (37)

athletes 1852 (25) 1896 (18) 994 (3) 994 (3)
breast cancer 1235 (68) 1234 (67) 1306 (43) 941 (70)

Probabilistic Accuracy
metabolism 0.67 (0.05) 0.67 (0.05) 0.67 (0.05) 0.67 (0.05)

athletes 0.95 (0.01) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)
breast cancer 0.86 (0.04) 0.86 (0.04) 0.84 (0.08) 0.86 (0.03)

(b) ProbFOIL+

Baseline Safe Soft Hard
Execution Time (s)

metabolism 2008 (2016) 1999 (2019) 752 (215) 464 (71)
athletes 57 (5) 57 (5) 55 (4) 14 (0)

breast cancer 3890 (339) 3828 (302) 8093 (2101) 725 (38)
# Evaluations

metabolism 3734 (2328) 4549 (3734) 4518 (1493) 2452 (492)
athletes 201 (43) 201 (43) 171 (21) 0 (0)

breast cancer 24290 (851) 24267 (828) 26495 (3542) 3532 (231)
Probabilistic Accuracy

metabolism 0.51 (0.04) 0.51 (0.03) 0.63 (0.11) 0.58 (0.07)
athletes 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01)

breast cancer 0.85 (0.01) 0.85 (0.01) 0.85 (0.03) 0.87 (0.01)

4.4 Combining Pruning Strategies

Fitness pruning focuses on limiting the number of candidates. Estimation pruning
is aimed at eliminating probabilistic evaluations, therefore reducing the execution
time. Conversely, prediction pruning focuses on ensuring that all rules or theo-
ries that proceed to the next iteration are viable candidates for combination, thus
focusing on the quality of the theories combined.

Pruning options for prediction and estimation pruning allow parameters to
be set differently for the AND and OR operations, which results in 81 possible
combinations for those settings. Since the aim of this experimental section is to
showcase the combined effect of the pruning operations, results are only presented
for the cases where the same pruning setting is used for the AND and Or search
spaces. This results in 9 combinations for a fixed fitness pruning size selection. In
what follows, only the 25/5 fitness pruning setting is reported.

Table 6 presents the pruning configurations for each setting, as well as the predic-
tive accuracy on the test set for SkILL. Table 7 presents the number of probabilistic
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evaluations performed and the execution time in seconds on the test set for SkILL.
All settings were tested for datasets metabolism, athletes and breast cancer, using
25/5 fitness pruning for both the AND and OR operation.

Table 6 Pruning configuration for each setting (EA, EO, PA and PO stand for AND estimation
pruning, OR estimation pruning, AND prediction pruning and OR prediction pruning, respectively)
and probabilistic accuracy on the test set using SkILL, for datasets metabolism, athletes and breast
cancer. Standard deviation is presented in brackets.

Configuration Probabilistic Accuracy
Setting EA EO PA PO metabolism athletes breast cancer

Baseline x x x x 0.67 (0.06) 0.95 (0.01) 0.85 (0.03)
(E=x, P=S) x x S S 0.67 (0.07) 0.95 (0.01) 0.84 (0.03)
(E=x, P=H) x x H H 0.67 (0.06) 0.95 (0.01) 0.86 (0.04)
(E=S, P=x) S S x x 0.67 (0.07) 0.95 (0.01) 0.86 (0.03)
(E=S, P=S) S S S S 0.67 (0.07) 0.95 (0.01) 0.86 (0.03)
(E=S, P=H) S S H H 0.67 (0.07) 0.95 (0.01) 0.86 (0.04)
(E=H, P=x) H H x x 0.67 (0.07) 0.95 (0.01) 0.86 (0.04)
(E=H, P=S) H H S S 0.67 (0.07) 0.95 (0.01) 0.86 (0.04)
(E=H, P=H) H H H H 0.67 (0.07) 0.95 (0.01) 0.86 (0.04)

Table 7 Number of probabilistic evaluations and execution time in seconds on the test set using
SkILL, for datasets metabolism, athletes and breast cancer. Standard deviation is presented in
brackets.

Setting # Evaluations Execution Time
metabolism athletes breast cancer metabolism athletes breast cancer

Baseline 1450 (43) 679 (6) 326 (38) 2065 (111) 1715 (25) 779 (10)
(E=x, P=S) 1321 (107) 309 (3) 333 (26) 7867 (590) 794 (10) 516 (173)
(E=x, P=H) 1227 (142) 292 (24) 36 (7) 2518 (817) 749 (57) 86 (3)
(E=S, P=x) 1412 (45) 287 (3) 84 (38) 1917 (57) 753 (10) 170 (109)
(E=S, P=S) 1358 (96) 288 (3) 67 (35) 2012 (37) 741 (8) 159 (111)
(E=S, P=H) 1227 (142) 247 (32) 25 (4) 2172 (489) 639 (75) 82 (2)
(E=H, P=x) 1181 (47) 92 (7) 26 (6) 1476 (61) 281 (16) 95 (4)
(E=H, P=S) 1181 (47) 105 (7) 26 (6) 1490 (90) 299 (16) 92 (4)
(E=H, P=H) 1228 (142) 194 (23) 25 (5) 1955 (77) 510 (53) 82 (1)

Results in Table 6 show that the proposed pruning strategies can maintain (and
in the case of the medical dataset increase) the probabilistic accuracy of the best
theory found, on the test set, even though the number of evaluations performed
(columns 2–4 on Table 7) is greatly reduced, especially in the case of the athletes
and breast cancer datasets. Despite the fact that probabilistic accuracies in the test set
are similar in most cases, the best theory may differ, and thus the information content
of different pruning settings w.r.t. the logic literals is different for each scenario.

Similarly to fitness pruning, the reduction in the number of evaluations correlates
with the shorter execution time for all settings where only estimation pruning is
used (lines 4 and 7 in Table 7). This is to be expected, since estimation pruning
only prevents probabilistic evaluations from being performed and has no effect on
the theories that are combined to traverse the search space. Introducing prediction
pruning, however, can have a negative effect both on the execution time and on the
number of evaluations performed. This is particularly evident for the metabolism
dataset in the soft prediction pruning setting (line 2 and column 5 in Table 7).
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The fact that prediction pruning is introduced alters the candidate theories for the
next iteration, meaning that when fitness pruning selects populations, the selected
theories are a different set than they would be if there was no prediction pruning.
This selection leads to an earlier collection of more complex to compute theories
and less likely to be discarded from estimation pruning. This effect is also visible in
the metabolism and athletes dataset, when there is a transition from soft to hard
prediction pruning while using hard estimation pruning (lines 8 and 9 in Table 7).

Table 8 presents the number of rules and theories pruned during the estimation
and evaluation pruning for the 9 combinations being considered for the case of the
athletes dataset and 25/5 fitness pruning. Other datasets and fitness pruning options
present a similar relation between pruned rules and theories.

Table 8 Number of rules and theories pruned during estimation and prediction pruning for the
athletes dataset. Standard deviation is presented in brackets.

Setting # Pruned Rules # Pruned Theories
Estimation Prediction Estimation Prediction

Baseline – – – –
(E=x, P=S) – 73 (3) – 32 (4)
(E=x, P=H) – 73 (3) – 43 (3)
(E=S, P=x) 597 (9) – 0 (0) –
(E=S, P=S) 24 (0) 52 (3) 0 (0) 14 (2)
(E=S, P=H) 24 (0) 52 (3) 0 (0) 29 (2)
(E=H, P=x) 598 (8) – 194 (7) –
(E=H, P=S) 24 (0) 52 (3) 181 (7) 3 (0)
(E=H, P=H) 24 (0) 52 (3) 54 (27) 29 (2)

Results in Table 8 show that there is a trade-off between estimation and prediction
pruning: as the amount of prediction pruning increases, estimation pruning is not
able to prune away as many combinations, since the candidate theories composing
those populations are better suited for combination (this is visible in lines 5, 6, 8
and 9 in Table 8). Because fitness pruning limits the amount of theories which are
selected for combination at each iteration, the fact that better candidates are selected
each time (caused by prediction pruning) has an impact on the estimation pruning’s
ability to avoid probabilistic evaluations.

The dependency between estimation and prediction pruning does not impact
the quality of the final theory obtained, and so the decision about the best estima-
tion configuration will depend on the execution time alone. Results in Table 7 show
that the two fastest pruning settings are obtained when hard estimation pruning
is coupled with off or soft prediction pruning. Settings with only prediction prun-
ing enabled underperform timewise when compared to other settings. The second
fastest pruning configuration is to use hard estimation and prediction pruning,
which is even slightly faster in breast cancer. These results indicate that the best
compromise regarding estimation and prediction pruning is to use a combination
of both in order to obtain a faster execution time and the maximum potential benefit
out of combining relatively small fitness pruning populations.
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5 PILP as an Explainable Classifier

In this section, we explore the usefulness of PILP representations and PILP classifiers
through the breast cancer dataset. Breast cancer is one of the most common forms
of cancer. Mammograms are the most commonly used technique to detect patients
at risk. Image-guided core needle biopsy of the breast is then performed to decide
on surgery. Biopsy is a necessary, but also aggressive, high-stakes procedure. The
assessment of malignancy risk following breast core biopsy is imperfect and biopsies
can be non-definitive in 5-15% of cases Berg et al. (1996); Brancato et al. (2012); Burbank
(1997); Gonçalves et al. (2011); Liberman (2000); Liberman et al. (2000). A non-
definitive result means that the chance of malignancy remains high due to possible
sampling error (i.e., the obtained biopsy is not representative of the suspicious
finding), for which surgical excisional biopsy or aggressive radiologic follow-up
is proposed. Non-definitive biopsies may therefore result in missed breast cancers
(false negatives) and unnecessary interventions (false positives).

The dataset used in this Section is the same used to test our pruning strate-
gies. They contain anonymised data from 130 biopsies dating from January 2006
to December 2011, collected from the School of Medicine and Public Health of the
University of Wisconsin-Madison. For all cases, several sources of variables were
systematically collected including variables related to demographic and historical
patient information (age, personal history, family history, etc.), mammographic BI-
RADS descriptors (like mass shape, mass margins or calcifications), pathological
information after biopsy (type of disease, if it is incidental or not, number of foci,
and so on), biopsy procedure information (such as needle gauge, type of procedure),
and other relevant facts about the patient.

Probabilistic data was then added to (i) the Probabilistic Examples (PE) and (ii)
the Probabilistic Background Knowledge (PBK). The confidence in malignancy for
each case (before excision) is associated with the target predicate is_malignant/1.
The chance of malignancy is an empirical confidence value assigned by a multidis-
ciplinary group of physicians. A high probability indicates the team of physicians
thinks the case is most likely malignant. A low probability indicates the case is most
likely benign. A sample of the PE is presented in Fig. 2.

example(is_malignant(case1), 0.10).
example(is_malignant(case2), 0.15).
example(is_malignant(case3), 0.01).

Fig. 2 Sample of the target predicate is_malignant/1

The domain knowledge incorporated in the PBK was taken from the literature
on breast cancer. For example, it is well known among radiology experts in mam-
mography that if a mass has a spiculated margin, the probability that the associated
finding is malignant is around 90%. The same kind of information is available in the
literature for mass shape or mass density (all part of the BIRADS terms). Figures 3,
4, and 5 show how these variables are encoded in the PBK.

Figure 3 encodes the probabilistic information regarding mass shape obtained
from the literature. There are three possible independent rules, each one applicable to
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0.05::feature_shape(Case) :-
mass(Case, Mass),
mass_shape(Mass, oval).

0.50::feature_shape(Case) :-
mass(Case, Mass),
mass_shape(Mass, round).

0.50::feature_shape(Case) :-
mass(Case, Mass),
mass_shape(Mass, irregular).

Fig. 3 Probabilistic information from the literature regarding mass shape

0.02::feature_margin(Case) :-
mass(Case, Mass),
mass_margin(Mass, circumscribed).

0.20::feature_margin(Case) :-
mass(Case, Mass),
mass_margin(Mass, indistinct).

0.70::feature_margin(Case) :-
mass(Case, Mass),
mass_margin(Mass, microlobulated).

0.90::feature_margin(Case) :-
mass(Case, Mass),
mass_margin(Mass, spiculated).

Fig. 4 Probabilistic information from the literature regarding mass margin

0.05::density(low);
0.10::density(equal);
0.50::density(high).

feature_density(Case) :-
mass(Case, Mass),
mass_density(Mass, MassDensity),
density(MassDensity).

Fig. 5 Probabilistic information from the literature regarding mass density

a particular kind of shape (oval, round, or irregular). The probability value annotated
in each rule is the frequency with which a mass whose shape is of that type is
malignant. This means that a finding may have simultaneously an oval and round
mass shape, for instance. Given that possible world semantics is used to encode
these rules, the probability of two rules occurring simultaneously is given by the
product of their probabilities. For instance, the probability that a mass has both an
oval and round shape is equal to 0.05 × 0.50 = 0.025. Similarly, Fig. 4 also encodes
independent rules, each for a characteristic of the mass margin. Figure 5 differs in
that it encodes three mutually exclusive possibilities for the mass density: low, equal,
or high (density/1 fact), defined in the top three lines (“;” is used for disjunction).
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The density rule is then constructed based on the mutual exclusivity introduced by
the density/1 fact.

is_malignant(Case) :-
feature_margin(Case).

is_malignant(Case) :-
feature_shape(Case),
feature_density(Case).

Fig. 6 A PILP model for the target predicate is_malignant/1

Figure 6 presents an example of a rule for the target predicate is_malignant/1,
which explains malignancy in terms of margin OR mass shape and density. Since the
rules in this explanation are composed of probabilistic literals (feature_margin/1,
feature_shape/1, and feature_density/1), the target predicate is_malignant/1
will also predict a probabilistic value ranging from 0 to 1, even though this is not
made explicit in the PILP model. This probability output is computed using the
possible world semantics (Kimmig et al. 2011), and it takes into account the mutual
dependency between all the probabilistic literals in the model.

Next, we show performance results for the PILP models produced by SkILL
on this dataset. Exhaustive search was used. 130 train and tune sets were used to
perform leave-one-out cross validation on the dataset, and the predicted values for
the test examples were recorded.

In addition to the PILP model described earlier, three other methods were used
to compare against PILP in terms of predictive accuracy, using default parameters:
a Support Vector Machine (SVM), a Linear Regression (LREG), and a Naive Bayes
classifier (NB). The scikit-learn python library (Pedregosa et al. 2011) was used. Since
these data contain several categorical features, it was necessary to transform them
into numerical features to be able to apply these methods. As such, each possible
label was first encoded as an integer. Once this was done, each feature was trans-
formed in several auxiliary features, each one of them binary and regarding only
one of the labels. This methodology was used to prevent the integer values corre-
sponding to the labels of a feature from being interpreted as being ordered, which
would not represent the independence between the labels accurately. Once these
operations were performed over all categorical features, a scaler (standardization)
was applied so as to reduce all features to mean 0 and unit variance. The predictions
for each method were then obtained.

Figure 5 presents the ROC curves for the malignant class and four methods
tested: PILP, SVM, LREG and NB. Each subfigure shows the ROC of the physicians’
predictions (blue dashed line) and the ROC of a method (brown solid line), both
against the ground truth (confirmed malignancy or benignity of a tumour after
excision). Each figure also presents the respective AUCs and the p-value found
using DeLong’s test for comparing both curves plotted.

The difference between the curves was found to be statistically not significant,
thus implying that all methods are statistically indistinguishable from a physician
when predicting the degree of malignancy of a patient in this dataset. Additionally,
PILP reduces more the false negative rate than the other methods, which is relevant
to the breast cancer domain.
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(b) SVM
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(c) LREG
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Fig. 7 ROC curves, AUCs and p-values for PILP, SVM, LREG and NB methods

Learned rules are shown in Fig. 8. The first one contains a probabilistic fact
related to one mammography descriptor: the shape of a mass. In medical literature,
irregular shapes or spiculated margins indicate higher risk of malignancy. This is
captured by the system, as well as other features such as no observed increase in
mass size and an ultrasound core needle biopsy type. Similarly, the other two rules
present features that are evidence of higher risk of malignancy, such as asymmetry,
the gauge of the needle and a possible displacement of the needle (offset) during
biopsy which can contribute as a confounding factor.
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is_malignant(Case):-
biopsyProcedure(Case,usCore),
changes_Sizeinc(Case,missing),
feature_shape(Case).

is_malignant(Case):-
assoFinding(Case,asymmetry),
breastDensity(Case,scatteredFDensities),
vacuumAssisted(Case,yes).

is_malignant(Case):-
needleGauge(Case,9),
offset(Case ,14),
vacuumAssisted(Case,yes).

Fig. 8 Theory extracted for physician’s mental models

6 Conclusion

PILP has generated a significant interest from the research community due to its
remarkable suitability to model both complex relationships between data and uncer-
tainty. Unfortunately, this expressiveness comes at the cost of an exponentially large
search space and an exponential theory evaluation time. Therefore, PILP systems
rely on the ability to prune the search space using pruning strategies.

This work categorizes existing PILP pruning strategies in three different types:
fitness, estimation and prediction pruning. Fitness pruning bounds the maximum
number of probabilistic evaluations according to user-defined parameters, which al-
lows for a polynomially bound algorithm w.r.t. probabilistic evaluations as opposed
to an exponential one. Estimation pruning estimates the prediction of a combina-
tion of theories and, based on that estimation, it prunes away combinations which
would not result in an accurate theory. This method can reduce the execution time
of the PILP algorithm since it prevents unnecessary probabilistic evaluations, which
represent the core of the runtime. Prediction pruning ensures that the candidate
theories for the next iteration can all benefit from being combined using a given
operation (AND or OR). The aim of this pruning is to guarantee that the quality of
the candidate theories available for combination is increased w.r.t the operation that
will be performed on them.

These pruning strategies were tested in the SkILL and ProbFOIL+ systems,
using three different datasets: an adaptation of the classic ILP dataset metabolism; a
knowledge base gathered from the web; and a breast cancer medical dataset. From
the results of those experiments, it can be concluded that the pruning strategies
maintain or increase probabilistic accuracy in all cases, while generally achieving
a reduction in execution time. Further experimental analysis shows that there is
a dependency between estimation and prediction pruning, which results in the
best pruning settings enabling both of these strategies so as to maintain quality of
theories while reducing execution time to a minimum. It was also shown that fitness
pruning can maintain predictive quality even for relatively small populations, and
so the best overall pruning strategy consists of enabling all three pruning strategies
simultaneously.

We also explored the power and explainability of PILP on our medical dataset.
We have shown how to represent data in this domain using a probabilistic logic
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programming language notation and demonstrated that PILP can learn interpretable
rules with the same prediction power of an expert in the domain of breast cancer.

Further work on this topic includes testing these pruning strategies also in a
deterministic setting, adding a parameter-learning stage to the presented AND and
OR pipelines, using the probabilistic information to select one path through the
search space, as opposed to pruning away theories as is shown in this work, and to
autonomously select the best parameters for pruning.
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Côrte-Real, J., Dutra, I. and Rocha, R. (2016), Estimation-Based Search Space Traversal in PILP En-
vironments, in A. Russo and J. Cussens, eds, ‘Proceedings of the 26th International Conference
on Inductive Logic Programming (ILP 2016)’, LNAI, Springer, London, UK, pp. –. Published in
2017.
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Džeroski, S. (2010), Relational Data Mining, Springer.
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