
Under consideration for publication in Theory and Practice of Logic Programming 1

Parallel Logic Programming: A Sequel∗

AGOSTINO DOVIER ANDREA FORMISANO
Università di Udine and GNCS-INdAM, Italy

(e-mail: agostino.dovier|andrea.formisano@uniud.it)

GOPAL GUPTA
University of Texas at Dallas, USA

(e-mail: gupta@utdallas.edu)

MANUEL V. HERMENEGILDO
IMDEA Software Institute and Universidad Politécnica de Madrid, Spain

(e-mail: manuel.hermenegildo@{imdea.org,upm.es})

ENRICO PONTELLI
New Mexico State University, USA
(e-mail: epontell@cs.nmsu.edu)

RICARDO ROCHA
CRACS/INESC TEC and Faculty of Sciences, University of Porto, Portugal

(e-mail: ricroc@dcc.fc.up.pt)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Multi-core and highly-connected architectures have become ubiquitous, and this has brought
renewed interest in language-based approaches to the exploitation of parallelism. Since its incep-
tion, logic programming has been recognized as a programming paradigm with great potential
for automated exploitation of parallelism. The comprehensive survey of the first twenty years
of research in parallel logic programming, published in 2001, has served since as a fundamen-
tal reference to researchers and developers. The contents are quite valid today, but at the same
time the field has continued evolving at a fast pace in the years that have followed. Many of
these achievements and ongoing research have been driven by the rapid pace of technological
innovation, that has led to advances such as very large clusters, the wide diffusion of multi-core
processors, the game-changing role of general-purpose graphic processing units, and the ubiqui-
tous adoption of cloud computing. This has been paralleled by significant advances within logic
programming, such as tabling, more powerful static analysis and verification, the rapid growth
of Answer Set Programming, and in general, more mature implementations and systems. This
survey provides a review of the research in parallel logic programming covering the period since
2001, thus providing a natural continuation of the previous survey. In order to keep the survey
self-contained, it restricts its attention to parallelization of the major logic programming languages
(Prolog, Datalog, Answer Set Programming) and with an emphasis on automated parallelization

∗ The authors would like to thank the anonymous reviewers for their careful reading and very valuable
feedback. We would especially like to thank the editor, Mirek Truszczynski, for his very useful comments
and encouragement. This research was partially supported by UNIUD PRID Encase, GNCS/INDAM grants,
by NSF grants 1914635 and 1833630, by the Portuguese funding agency, FCT - Fundação para a Ciência
e a Tecnologia, within project UIDB/50014/2020, by the Spanish MICINN project PID2019-108528RB-C21
ProCode, by the Madrid P2018/TCS-4339 BLOQUES-CM program, and by the Tezos foundation.

2 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

and preservation of the sequential observable semantics of such languages. The goal of the survey
is to serve not only as a reference for researchers and developers of logic programming systems,
but also as engaging reading for anyone interested in logic and as a useful source for researchers
in parallel systems outside logic programming.

KEYWORDS: Parallelism, high-performance computing, logic programming.

In loving memory of our friends Francisco Bueno, Ricardo Lopes, and German Puebla,
whose contributions to the field of logic programming have paved the way of many
innovations and discoveries.

1 Introduction

The universal presence of multi-core and highly-connected architectures has renewed in-
terest in language-based approaches to the exploitation of parallelism. Since its original
inception, logic programming has been recognized as one of the programming paradigms
with the greatest potential for automated exploitation of parallelism. Kowalski, in his
seminal book (Kowalski 1979) identifies parallelization as a strength of logic program-
ming and Pollard explored the potential of the parallel execution of Prolog (Pollard 1981).
This was the beginning of an intense branch of research, with a number of highlights
over the years—e.g., during the fifth generation computing systems project, 1982–1990.
A comprehensive survey of the first twenty years of parallel logic programming has
served for many years as a reference to researchers and developers (Gupta et al. 2001).
The content of that survey is still valid today. At the same time, the field of parallel and
distributed logic programming has continued to evolve at a fast pace, touching on many
exciting achievements in more recent years.

Many of these achievements and ongoing research have been driven by the rapid pace
of technological innovation, including the advent of Beowulf clusters, the wide diffusion
of multicore processors, the game-changing role of general-purpose Graphic Processing
Units (GPUs), the wide adoption of cloud computing, and the advent of big data with
related computing infrastructures.

In the past 20 years, there has been a wealth of additional research that has explored
the role of new parallel architectures in speeding up and scaling up the execution of
different logic programming paradigms. Notable achievements have been accomplished
in the use of new generations of parallel architectures for both Prolog and Answer Set
Programming (ASP), in the exploration of parallelism in constraint programming, and
in the extensive use of general purpose GPUs to speedup the execution of various flavors
of logic programming.

This survey provides a review of the research in parallel logic programming covering
the period since 2000. The survey has been designed to be self-contained and accessible,
however, being a natural continuation of the popular survey by Gupta et al., readers are
strongly encouraged to read both surveys for a more comprehensive perspective of the
field of parallel logic programming.

The goal of the survey is to serve not only as a reference for researchers and developers
of logic programming systems, but also as an engaging reading for anyone interested

Parallel Logic Programming: A Sequel 3

in logic programming. Furthermore, we believe that this survey can provide useful
insights and ideas to researchers interested in parallel systems outside of the domain of
logic programming, as already happened in the past. We will describe the key challenges
encountered in realizing different styles of parallelism in logic programming and review
the most effective solutions proposed in the literature. It is beyond the scope of this
survey to review the actual performance results produced—as they have been derived
using a diversity of benchmarks, coding techniques, and hardware architectures. The
interested reader will be able to find such detailed results in the original papers cited in
the bibliography of the survey. We would also like to stress that our focus is primarily
on systems where parallelism does not modify the semantics of the programs being
executed. The only exception is represented by the discussion on explicit parallelism,
which introduces a different semantics with respect to the original Prolog systems.

A survey on the approaches to parallelism for constraint programming has been
recently published (Gent et al. 2018). Constraint Logic Programming (CLP) languages, if
used for pure constraint modeling, can immediately benefit from the results presented
in the constraint programming survey. Considering that no recent work has appeared
in the domain of parallelization of CLP, we will not discuss this area in this survey.

Many of the systems that appeared in the literature and are mentioned in this
survey are publicly available. Interested readers are referred to the web page www.
logicprogramming.org (Systems and Links tab), hosted by the Association for Logic
Programming (ALP).

The survey is organized as follows. Section 2 provides some background on logic
programming and parallelism. A quick review of the first 20 years of parallel logic
programming is presented in Section 3. Section 4 explores the more recent advances in
parallel execution of Prolog, reviewing progress in execution models for Or-parallelism
(Section 4.1) and And-parallelism (Section 4.2), static analysis for exploitation of par-
allelism (Section 4.3), and finally exploitation of parallelism in Prolog systems with
tabling (Section 4.4). Section 5 reviews the techniques proposed to exploit parallelism in
ASP, including parallelism in Datalog (Section 5.1), traditional parallelism in ASP (Sec-
tion 5.2), parallel grounding (Section 5.3), and other forms of parallelism used in ASP
(Sections 5.4-5.5). The following sections explore the execution of logic programming in
the context of big data frameworks (“going large,” Section 6) and in the context of GPUs
(“going small,” Section 7). Section 6 also includes a discussion of execution models for
logic programming on distributed computing platforms and frameworks designed for
handling massive quantities of data (e.g., MapReduce). Section 8 provides some final
remarks.

2 Background

We start this section with a brief introduction to the foundations of logic programming.
Basically, a logic program consists of facts and logical rules, where deduction is carried
out by automatizing some variants of the modus ponens. The idea is to automatically
derive the set of logical consequences of a logic program. If this set is finite, as is the case
with the common restriction used in ASP, a bottom-up computation approach can be
used. If, instead, this set is infinite, top-down computation methods allow us to derive

www.logicprogramming.org
www.logicprogramming.org

4 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

selected inferences (e.g., for a given predicate). The interested reader is referred to the
book by Lloyd (1987) for a review of the fundamental notions of logic programming.
Some basic notions about parallelism and its limits are reported in Section 2.2.

2.1 Logic Programming

A logic programming language is built on a signature composed of a set of function
symbols F , a set of variablesX, and a set of predicate symbolsP. An arity function ar(p)
is associated to each function symbol and predicate symbol p. A term is either a variable
x ∈ X or a formula of the form f (t1, . . . , tn), where t1, . . . , tn are themselves terms, f ∈ F ,
and ar(f) = n ≥ 0. A constant is a symbol f ∈ F such that ar(f) = 0.

An atomic formula (or simply atom) is a formula of the form p(t1, . . . , tn), where p ∈ P,
t1, . . . , tn are terms, and ar(p) = n. A literal is either an atom or an entity of the form not A,
where A is an atom. A clause is a formula of the form

H← B1, . . . ,Bn,not C1, . . . ,not Cm

where H,B1, . . . ,Bn,C1, . . . ,Cm are atoms. If m = 0 (i.e., there are no negated literals), the
clause is said to be definite, if m = n = 0, then the clause is said to be a fact.

Given a clause r, we define head(r) = H, pos(r) = {B1, . . . ,Bn} and neg(r) = {C1, . . . ,Cm},
while B1, . . . ,Bn,not C1, . . . ,not Cm is called the body of r. The symbol “←” can be read
as “if”; in the rest of this paper we will use← and its programming language syntactic
notation :- interchangeably. Intuitively, if the body of the clause is true, then the head
will be true as a consequence. Variables are universally quantified. For instance, the
clause

grandparent(X,Y)← parent(X,Z), parent(Z,Y)

can be read as: “for every X,Y,Z, if X is parent of Z and Z is parent of Y then X is a grandparent
of Y”. A program is a collection of clauses. A program is definite if all of its clauses are
definite. Negated literals are here written at the end of the body, for simplicity, but they
can appear interleaved with positive literals in actual programs.

Important information concerning the semantics of a program P can be obtained by
the analysis of its dependency graph G(P) (Baral 2003; Gelfond and Kahl 2014). G(P) is a
graph where nodes correspond to atoms in P; an edge p← q is added in G(P) if there is
a clause in P with p as head and q in the body. The edge is labeled differently if q occurs
as an atom or a negated atom in the body of the clause.

A term (atom, clause, program) is ground if it contains no variables. A substitution
θ is a mapping from a set of variables to terms. If r is a term (literal, clause) and θ a
substitution, rθ denotes the term (literal, clause) obtained by replacing each variable X
in r with the term θ(X). Given two terms/atoms s, t, we say that s is subsumed by t (or
s is an instance of t) if there is a substitution θ such that s = tθ. Two terms/atoms s and
t are said to be variants if s is subsumed by t and t is subsumed by s. In this case, s and
t are identical modulo a variable renaming. An instance tθ of t is a ground instance if tθ
contains no variables. Given a clause r, ground(r) denotes the set of all ground instances
of r; analogously, given a program P, ground(P) =

⋃
r∈P ground(r).

Given two substitutions σ and θ, σ is more general than θ if there is a substitution
γ such that for every term t we have that (tσ)γ = tθ. θ is a unifier of two terms/atoms

Parallel Logic Programming: A Sequel 5

s and t if sθ = tθ, namely the two terms/atoms become syntactically equal after the
substitution is applied. If two terms/atoms admit a unifier, they will also admit a most
general unifier (mgu)—i.e., the most general substitution which is also a unifier; the mgu
is unique modulo variable renaming.

Let us denote with BP the set of all possible ground atoms that can be built with the
function and predicate symbols occurring in a program P, also known as the Herbrand
Base of P. An interpretation I ⊆ BP is a set of ground atoms—intuitively representing
which atoms are true; all atoms in BP \ I are assumed to be false.

An interpretation I is a model of a ground clause r if either head(r) ∈ I, or pos(r) ⊈ I, or
neg(r) ∩ I , ∅ (namely, if the head is true or if the body is false). An interpretation I is
a model of a clause if it is a model of all its ground instances. An interpretation I is a
model of a program P if it is a model of each clause in P.

The semantics of definite programs, which is used as the foundation of Datalog and
Prolog, is defined in terms of the set of logical consequences, namely by the set of atoms
that are true in every model. For a definite logic program P the existence of a unique
minimum model, denoted by MP, is guaranteed. MP can be defined as the intersection
of all I such that I is a model of P; it can be shown that MP corresponds to the set of all
ground logical consequences of P.

The minimal model MP of a definite logic program has a constructive characterization
through the use of the immediate consequence operator TP. The operator maps interpreta-
tions to interpretations, and it is defined as:

TP(I) = {head(r) | r ground instance of a clause in P, pos(r) ⊆ I}

TP is a monotone and continuous operator; in addition, MP is the least fixpoint of TP,
i.e., MP = TP(MP), and MP = TP ↑ ω, where TP ↑ 0 = ∅, TP ↑ n = TP(TP ↑ (n − 1)) for a
successor ordinal n, and TP ↑ α = lub{TP ↑ n | n < α} for a limit ordinal α. Computing MP

as TP ↑ ω = TP(TP(· · · (TP(∅)) · · ·)) is called the bottom-up approach to the semantics of P.

In the context of Prolog, computation is expressed in terms of reasoning about the
minimal model MP. Given a program P and a conjunction of possibly non-ground atoms∧n

i=1 pi, the objective is to determine substitutions θ for the variables in p1, . . . , pn such
that MP |=

∧n
i=1 piθ; these are referred to as correct answers. The conjunction

∧n
i=1 pi is

referred to as a goal and subsets of {p1, . . . , pn} are called subgoals (let us observe that a
subgoal can contain more than one atom).

SLD resolution is a strategy used to derive correct answers. It can be described as the
process of constructing a tree, the SLD-resolution tree, whose nodes are pairs composed
of a goal and a substitution. Given a goal p⃗ =

∧n
i=1 pi and a program P, the root of the

resolution tree is ⟨p⃗, ϵ⟩, where ϵ is the identity substitution. If ⟨
∧m

i=1 qi, θ⟩ is a node in the
resolution tree, then such node will have as many children as there are rules r ∈ P such
that there is a substitution γ such that head(r′)γ = q1θγ, where r′ is a renaming of the
rule r with fresh new variables. In this case a most general unifier of head(r′) and q1θ is
chosen. Each child is of the form ⟨pos(r′) ◦ [q2, . . . , qn], θγ⟩, where θγ is the composition
of the two substitutions and ◦ is the list concatenation operator. If m = 0, then the node
will be labeled as a success node and θ is a correct answer. If m > 0 but no child can be
constructed, then the node will be labeled as a failed node. Prolog typically implements
SLD resolution by building the resolution tree in a depth-first manner, where the children

6 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

of each node are sorted according to the ordering of the clauses in the program P. The
SLD resolution provides a top-down approach to reason about the semantics of P.

The top-down approach is extended in the case of negated literals in goals (general
programs). The goal not p succeeds or fails as a consequence of the result of the goal p.
If there is an answer substitution θ for p then the goal not p fails, otherwise it succeeds.
This is referred to as negation as failure.

However, for programs with general clauses, the existence and uniqueness of a min-
imum model is no longer guaranteed. The well-founded model of a logic program is a
unique 3-valued model (Van Gelder et al. 1991) or 4-valued model (Truszczynski 2018).
We briefly report the procedure presented by Brass et al. (2001), based on the following
variant of the TP operator, for computing the 3-valued well-founded semantics. Given a
ground program P and two sets of ground atoms I, J, we define the extended immediate
consequence operator

TP,J(I) = {head(r) | r ∈ P, pos(r) ⊆ I,neg(r) ∩ J = ∅}

Let us denote by P+ the set of definite clauses in P, the alternating fixpoint procedure is
defined as follows

K(0) = lfp(TP+) U(0) = lfp(TP,K(0))
K(i + 1) = lfp(TP,U(i)) U(i + 1) = lfp(TP,K(i+1))

Let (K∗,U∗) be the minimum fixpoint of the computation; that is, if i is the smallest value
such that K(i) = K(i − 1) and U(i) = U(i − 1), then K∗ = K(i) and U∗ = U(i).

The well-founded model of the program P is a 3-valued model W∗ defined as W∗ =

(K∗,U∗)—where all atoms in K∗ are true, all atoms in U∗ are false, and all atoms in
H \ (K∗ ∪U∗) are unknown.

The most successful approach for the two-valued semantics is the one based on the
notion of answer sets. Given a program P (for simplicity let us assume P to be ground)
and given an interpretation I, we define the reduct of P with respect to I, denoted by PI

as the set of definite clauses PI = {head(r) ← pos(r) | r ∈ P,neg(r) ∩ I = ∅}. A model M of
P is an answer set of P if M is the minimum model of the definite program PM. It should
be noted that a program may have no answer sets, one answer set (for example, each
definite program has exactly one answer set, corresponding to its minimal model), or
multiple answer sets.

2.2 Parallelism and Speedups

When talking about parallelism, it is a naive belief that if a program runs in time T on
a computing platform, then it should be possible to execute the program N times faster
using N processors.1 Namely, that the running time could decrease to T

N .
A definitive theoretical limit to this kind of reasoning was set by Amdahl (1967).

The crucial point is that the program we are considering is composed of parts that are
intrinsically sequential and other parts that can be parallelized. Let S (sequential) and P
(parallel) be the running times of the two fractions of the program, scaled to guarantee

1 In the rest of the paper, we will use the terms processor and process in a general sense, as representing an
entity capable of computation (e.g., a CPU, a core).

Parallel Logic Programming: A Sequel 7

that S+P = 1. With N processors one can expect an ideal running time of T
(
S + P

N

)
, with

a speedup of 1
S+ P

N
. Observe that with a “very large” N this leads to a maximum speedup

of 1
S . Even if S is “small” with respect to the program, e.g., S = 0.1, this means that the

maximum speedup is 10, no matter how many processors are used. The naive reasoning
mentioned at the beginning of the paragraph assumes implicitly that S = 0, which is
often not a realistic assumption.

Gustafson (1988) approached the problem from another perspective, giving new hopes
of high impact for parallel systems. The key observation of Gustafson is that Amdahl’s
law assumes that the problem size (the data size) is fixed. However, Gustafson argues
that, in practice, it makes more sense to scale the size of the problem (e.g., the amount of
data) in parallel with the addition of processors. Given the running time T as discussed
earlier, let us assume that the parallel part of the program P has “to do with data,”
and that the architecture allows parallel processors to concurrently access independent
portions of the data. Then in the same time T, in principle, the program could process
N times more data, leading to a speedup of PN+S

P+S . If S = 0.1, with one thousand of
processors we can, in principle, aim at reaching a speedup of ≈ 900.

3 The First 20 Years of Parallel Logic Programming: A Quick Review

The majority of the original research conducted on parallel execution of logic program-
ming focused on the exploitation of parallelism from the execution of Prolog programs.
In this section, we provide a brief summary of some of the core research directions ex-
plored in the original literature. Readers are encouraged to review the survey by Gupta
et al. (2001) for further details.

3.1 Explicit Parallelism

Parallel execution of the different operations in a logic program results in implicit ex-
ploitation of parallelism, i.e., no input is required from the user to identify and exploit
parallelism; rather, parallelism is automatically exploited by the inference system. Nev-
ertheless, the literature has presented several approaches that explore extensions of a
logic programming language with explicit constructs for the description of concurrency
and parallelism. While these approaches are not the focus of this survey, we will briefly
mention some of them in this section.

The approaches for the explicit description of parallelism in logic programming can
be largely classified into three categories: (1) message passing; (2) shared memory; and (3)
data-flow.

Methods based on message passing extend a logic programming language, typically
rooted in Prolog, to enable the creation of concurrent computations and the communica-
tion among them through the explicit exchange of messages. Several systems have been
described over the years with similar capabilities, such as Delta Prolog (Pereira et al.
1986) and CS-Prolog (Futó 1993). A more recent example is the April system (Fonseca
et al. 2006), where the high-level modeling capabilities of logic programming are used
to explicitly parallelize Machine Learning procedures into independent tasks, in the
various stages of data analysis, search, and evaluation (Fonseca et al. 2009).

8 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Message passing features have become common in many implementations of Prolog—
for example, Ciao Prolog (Hermenegildo et al. 2012), SICStus Prolog (Carlsson and
Mildner 2012), SWI-Prolog (Wielemaker et al. 2012), tuProlog (Calegari et al. 2018),
XSB (Swift and Warren 2012), and YAP Prolog (Santos Costa et al. 2012).

Most Prolog implementations provide comprehensive multi-threading libraries, al-
lowing the creation of separate threads and enabling message passing communication
between them so (see also the paper by Körner et al. (2022)). The design of these libraries
has also been guided by a 2007 ISO technical document which provides recommenda-
tions on how multi-threading predicates may be introduced in Prolog.
E.g., in YAP Prolog threads are created as follows:

thread create(:Goal, -Id, +Options)

and the communication between them can be achieved through message queues, e.g.,

thread send message(+ThreadId, +Term)

thread get message(?Term)

The roots of message-passing Prolog systems date back to the early 80s. The Delta
Prolog system (Pereira and Nasr 1984) draws inspiration from communicating sequen-
tial processes to provide the ability of creating processes capable of synchronizing
and exchanging messages; for example, the following code snippet describes a sim-
ple producer-consumer structure:

main :- producer // consumer.

producer :- generate(X), X ! channel, producer.

consumer :- X ? channel, consume(X), consumer.

A more extensive design is proposed in the CS-Prolog system (Futó and Kacsuk 1989),
which provides communicating process designed to execute on Transputer architectures.

The second class of methods is based on the use of shared memory to enable commu-
nication between concurrent processes. The most notable approaches rely on the use of
blackboards, as exemplified in the Shared Prolog system (Ciancarini 1990) and in the
various Linda libraries available in several Prolog implementations (e.g., SICStus). An
interesting alternative is provided by Ciao Prolog, where the communication is done
using concurrent facts in the Prolog database (Carro and Hermenegildo 1999). This ap-
proach is designed to provide a clear transactional behavior, elegantly interacting with
backtracking and preserving, under well-defined conditions, the declarative semantics
of logic programming.

Finally, a more extensive literature has been developed around the concept of con-
current logic programming (see for example the works by Shapiro (1987; 1989),Clark and
Gregory (1986), and Tick (1995)) and implemented in systems like Parlog and GHC.
These languages offer a syntax similar to traditional logic programming, but they view
all goals in the program clauses as concurrent processes, capable of interacting through
shared variables and synchronizing through dataflow constraints. For example, a goal of
the type ?- generate(Z), proc(Z) creates two concurrent processes, the first gener-
ating values in a list (used as a stream in concurrent logic programming) and the second
process consuming values from the stream, e.g.,

Parallel Logic Programming: A Sequel 9

proc([X|Y]) :- X > 0 | consume(X), proc(Y).

proc([X|Y]) :- X <= 0 | proc(Y).

The second process suspends until a value is available in the stream; the clause whose
guard (i.e., the goal preceding the “|”) is satisfied will be activated and executed. One
important aspect to observe is that, due to the complications of combining search with
this type of concurrency, these systems do not support the classical non-determinism of
logic programs. They instead implement only the deterministic part—a form of compu-
tation referred to as “committed choice.” The fact that all goals are concurrent processes
may also lead to complex and unintended interactions, making programs harder to
understand.

The idea of synchronization through shared variables is very appealing. This concept
has generated several research efforts focused on supporting variable binding-based
communication in conjunction with explicit concurrency in Prolog systems, e.g., in sev-
eral proposals for dependent And-parallelism (Gupta and Pontelli 1997; Hermenegildo
et al. 1995; Shen 1996). More information about these directions of work can be found
later in this section and in Section 4.2.

3.2 Implicit Parallelism

The fundamental idea underlying the implicit exploitation of parallelism is to make the
exploitation of parallelism transparent to the programmer, by automatically performing
in parallel some of the steps belonging to the operational semantics of the language.

As mentioned earlier, most of the pre-2000 literature on implicit exploitation of paral-
lelism focused on the parallelization of the execution model of Prolog. In very general
terms, the traditional SLD-resolution process adopted by Prolog can be visualized as a
search procedure (see Algorithm 1). There are three major steps in Algorithm 1: Atom
Selection, Clause Selection, and Unification. Atom Selection (also known as literal selection
in literature) is used to identify the next atom to resolve (line 3 of Algorithm 1). Clause
Selection is used to identify which clause to use to conduct resolution (line 5). Unification
determines the most general unifier to be used to unify the selected literal with the head
of the selected clause (line 6).

Extensive research has been performed to improve efficiency of these steps, especially,
for atom selection and clause selection. Techniques such as constraint programming
(Gent et al. 2018) and the Andorra principle (Santos Costa et al. 1991b) attempt to select
subgoals in an order that will lead to early pruning of the search space. The paral-
lelization of the atom selection step leads to independent and dependent And-parallelism
(Hermenegildo 1986b; Shen 1996; Gupta and Pontelli 1997), which allow multiple sub-
goals to be selected and solved in parallel. The distinction between the two forms
of And-parallelism derives from whether shared unbound variables are allowed (de-
pendent And-parallelism) or not (independent And-parallelism) between concurrently
resolved subgoals. The parallelization of the Clause Selection step, which allows reso-
lution of the selected subgoal using multiple clauses in parallel, leads to Or-parallelism
(Zhang 1993; Lusk et al. 1990; Ali and Karlsson 1990b).

Unification parallelism arises when arguments of a goal are concurrently unified with
those of a clause head with the same name and arity. This can be visualized in Algorithm 1

10 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Algorithm 1: High-level view of SLD-Resolution
Input: Input Goal
Input: Program Clauses
Output: Computed Substitution

1 i = 0
2 while (Goal not Empty) do
3 selectatom B from Goal /* And-Parallelism */

4 repeat
5 selectclause (H :- Body) from Program /* Or-Parallelism */

6 until (unify(H,B) or no clause is left) /* Unification Parallelism */

7 if (no clause is left) then
8 return Fail

9 else
10 θi =most general unifier(H,B)
11 Goal = (Goal \ {B} ∪ Body)θi

12 i++

13 return θ0θ1 · · ·θi−1

as the parallel execution of the steps present in the unify operation. The different argu-
ment terms can be unified in parallel as can the different subterms in a term (Barklund
1990). Unification parallelism is very fine-grained, it requires dealing with dependencies
caused by multiple occurrences of the same variables, and is best exploited by building
specialized processors with multiple unification units (Singhal and Patt 1989). Unifica-
tion parallelism has not been the major focus of research in parallel logic programming,
so we will not consider it any further.

3.2.1 Or-Parallelism

Or-parallelism arises when multiple clauses have the same predicate in the head and
the selected subgoal unifies with more than one clause head—the corresponding clause
bodies can be explored in parallel, giving rise to Or-parallelism. This can be illustrated
in Algorithm 1 as the parallelization of the choices present in the selectclause operation. Or-
parallelism is thus a way of efficiently searching for solutions to the goal, by exploring
alternative solutions in parallel: it corresponds to the parallel exploration of the search
tree originating from the choices performed when selecting different clauses for solving
the selected subgoals (often referred to as the or-tree).

Let us consider a very simple example, composed of the Prolog clauses that define the
concatenation of two lists:

append([], X, X).

append([H|X], Y, [H|Z]) :- append(X, Y, Z).

and the goal:

?- append(X, Y, [1,2,3]).

Parallel Logic Programming: A Sequel 11

The append literal in the goal (and all append subgoals that arise recursively during
resolution) will match both clauses, and therefore the bodies of these clauses can be
executed in parallel to find the four solutions to this goal.2

?- append(X, Y, [1,2,3]).

append([], X1, X1). append([H2|X2], Y2, [H2|Z2]) :-
append(X2, Y2, Z2).

X=[], Y= [1,2,3] ?- append(X2, Y2, [2,3]).

Fig. 1: Example of Or-parallelism

Or-parallelism should be, in principle, easy to achieve, since the various branches of
the or-tree are independent of each other, as they each explore an alternative sequence
of resolution steps. As such, their construction should require little communication
between parallel computations.3 However, in practice, implementation of or-parallelism
is difficult because of the sharing of nodes in the or-tree. Given two nodes in two different
branches of the or-tree, all nodes above (and including) their least common ancestor node
are shared between the two branches. A variable created in one of these ancestor nodes
might be bound differently in the two branches. The environments of the two branches
have to be organized in such a way that, in spite of the ancestor nodes being shared, the
correct bindings applicable to each of the two branches are easily discernible.

If a binding for a variable, created in one of the common ancestor nodes, is generated
above (or at) the least common ancestor node, then this binding will be the same for
both branches, and hence can be used as such. Such binding is known as an unconditional
binding and such a variable is referred to as an unconditional variable. However, if a
binding to such a variable is generated by a node below the least common ancestor
node, then that binding shall be visible only in the branch to which the binding node
belongs. Such a binding is known as a conditional binding and such a variable is referred
to as a conditional variable. The main problem in implementing Or-parallelism is the
efficient representation of multiple environments that co-exist simultaneously in the
or-tree—commonly known as the environment representation problem. Note that the main
problem in the management of multiple environments is how to efficiently represent and
access the conditional bindings; the unconditional bindings can be treated as in normal
sequential execution of logic programs. The environment representation problem has to
be solved by devising a mechanism where each branch has some private areas where it

2 Note however that in this example exploiting parallelism may not be too profitable since the granularity of
the tasks is small. We will return to this important topic.

3 Minor control synchronization is still needed. Moreover, we are not considering the challenge of dealing
with side-effects, which require communication between branches of the or-tree.

12 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

stores the conditional bindings applicable to such branch. Several approaches have been
explored to address this problem. For example:

• By storing the conditional bindings created by a branch in an array or a hash table
private to that branch, from where the bindings are accessed whenever they are
needed. This approach has been adopted, for example, in the binding array model,
successfully used in the Aurora system (Warren 1984; Lusk et al. 1990).
• Keeping a separate copy of the environment for each branch of the tree, so that every

time branching occurs at a node the environment of the old branch is copied to
each new branch. This approach has been adopted, for example, in the stack-copying
model, successfully used in the Muse and the ACE systems (Ali and Karlsson 1990a;
Pontelli and Gupta 1997).
• Recording all the conditional bindings in a global data-structure and attaching a

unique identifier with each binding which identifies the branch a binding belongs to.
This approach has been explored, for example, in the version vectors model (Hausman
et al. 1987).

3.2.2 And-Parallelism

And-parallelism arises when more than one subgoal is present in the goal or in the body
of a clause, and multiple subgoals are selected and resolved concurrently. This can
be visualized in Algorithm 1 as generating parallelism from the operation selectatom.
The literature has traditionally distinguished between independent And-parallelism and
dependent And-parallelism.

In the case of independent And-parallelism, subgoals selected for parallel execution are
guaranteed to be independent of each other with respect to bindings of variables. In
other words, two subgoals solved in parallel are guaranteed to not compete in the bind-
ing of unbound variables. A sufficient condition for this (called strict independence) is that
any two subgoals solved in parallel do not have any unbound variables in common. In-
dependent And-parallelism is, for example, a way of speeding up a divide-and-conquer
algorithm by executing the independent subproblems in parallel. The advantage of in-
dependence is that the parallel execution can be carried out without interaction through
shared variables. Communication is still needed for returning values and synchroniza-
tion (including during backtracking).

The main systems proposed to support independent And-parallelism, e.g., &-Prolog
(Hermenegildo 1986b) and &ACE (Pontelli et al. 1995), adopted initially a fork-join
organization of the computation, inspired by the original proposal on restricted And-
parallelism by DeGroot (1984). In this fork-join model independent goals selected to
be run in parallel (identified, e.g., using a different conjunction operator &) are made
available simultaneously for parallel execution, and the continuation of the computation
waits for completion of these parallel goals before proceeding (e.g., see Figure 2). These
And-parallel structures can be arbitrarily nested.

The major challenges in the development of independent And-parallel systems are:

• The implementation of distributed backtracking—the goal of maintaining the same
visible behavior as a sequential Prolog system implies the need of allowing a

Parallel Logic Programming: A Sequel 13

?- prod(X,Y), cons(X) & cons(Y), merge(X,Y,Z).

prod(X1,Y1) :- ...

?- cons(X) & cons(Y), merge(X,Y,Z).

cons(X1) :- ... cons(Y1) :- ...

?- merge(X,Y,Z).

merge(X2,Y2,Z2) :- ...

Fig. 2: Intuition behind independent And-parallelism

processor to backtrack over computations performed by other processors, with
requirements of communication and synchronization; these issues have been ex-
tensively explored by Hermenegildo (1986a)Hermenegildo and Nasr (1986)Shen
and Hermenegildo (1996)Pontelli and Gupta (2001); Chico de Guzmán et al.(2011;
2012).

• The identification of subgoals that will be independent at run-time—this problem
has been addressed by Hermenegildo (1986a; 1986b) through manual program
annotations and by Muthukumar et al. (1999) using static analysis techniques.

• The need to allow more relaxed notions of independence, i.e., the conditions that
guarantee that subgoals can be solved in parallel without communication. These
include:

— the classical notion of independence (called strict independence by Hermenegildo
and Rossi (1995), i.e., goals should not share variables at run time;

— non-strict independence, characterized by the fact that only one goal can bind
each shared variable (Hermenegildo and Rossi 1995);

— search independence, i.e., bindings are compatible (Garcı́a de la Banda 1994);
— constraint independence (Garcı́a de la Banda et al. 2000).

Deterministic behavior is also a form of independence (Hermenegildo and Rossi
1995).

Dependent And-parallelism arises when two or more subgoals that are executed in parallel
have variables in common and the bindings made by one subgoal affect the execution
of other subgoals. Dependent And-parallelism can be exploited in two ways (let us
consider the simple case of two subgoals):

14 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

1. The two subgoals can be executed independently until one of them accesses/binds
the common variable. It is possible to continue executing the two subgoals in-
dependently in parallel, separately maintaining the bindings generated by each
subgoal. In such a case, at the end of the execution of the two subgoals, the bind-
ings produced by each will have to be checked for compatibility (this compatibility
check at the end is referred to as back unification).

2. Once the common variable is accessed by one of the subgoals, it is bound to a
structure, or stream (the goal generating this binding is called the producer), and
the structure is read as an input argument by the other goal (called the consumer).

Case (1) is very similar to independent And-parallelism and can be seen as exploiting
independence at a different granularity level. Case (2) is sometimes also referred to
as stream-parallelism and is useful for speeding up producer-consumer interactions, by
allowing the consumer goal to compute with one element of the stream while the
producer goal is computing the next element. Note that stream-parallelism introduces
a form of coroutining. Stream-parallelism forms the basis of the Committed Choice
Languages mentioned earlier (e.g., Parlog (Clark and Gregory 1986), GHC (Ueda 1986),
and Concurrent Prolog (Shapiro 1987; 1989)).

The main challenge in implementing dependent And-parallelism is controlling the
parallel execution of the consumer subgoal. Given two subgoals that share a variable X,
one a producer of X and another a consumer, the execution of both can be initiated in
parallel. However, one must make sure that the consumer subgoal computes only as far
as it does not instantiate the dependent variable X to a non-variable binding. If it attempts
to do so, it must suspend. It will be woken up only after a non-variable binding has
been produced for X by the producer subgoal—or, alternatively, after the producer has
completed its execution without binding X. Thus, in addition to the concerns mentioned
in the context of independent And-parallelism, the two additional main concerns in
implementing dependent And-parallelism are:

1. Determining which instance of a given dependent variable is a producer instance
and which instances are consumer instances;

2. Developing efficient mechanisms for waking up suspended subgoals when the
variables on which they were suspended are instantiated (or turned themselves
into producer instances).

In Prolog execution, subgoals in the current goal are resolved in a left-to-right order.
Thus, when a subgoal is resolved, it will never have an unexecuted subgoal to its left in
the goal. This rule, however, can be relaxed, and considerable advantage can be gained
by processing goals in a different order. In particular, this can be applied to subgoals that
have at most one matching clause, known as determinate subgoals. This has been realized
in the Andorra principle (Santos Costa et al. 1991a). The Andorra principle states that all
determinate subgoals in the current goal should be executed first, irrespective of their
position in the goal. Once all determinate subgoals have finished execution, the leftmost
non-determinate subgoal is selected and its various alternatives tried in the standard
Prolog order. Along each alternative, the same principle is applied. Under the Andorra
principle, all deterministic decisions are taken as soon as possible and this facilitates
coroutining and leads to a significant narrowing of the search space.

Parallel Logic Programming: A Sequel 15

The Andorra principle has been realized in the Andorra-I system (Santos Costa et al.
1991b). The Andorra-I system also has a determinacy analyzer which generates condi-
tions for each subgoal at compile-time (Santos Costa et al. 1991c). These simple condi-
tions are checked at runtime and their success indicates that the corresponding subgoal
is determinate. The Andorra-I system is a goal stacking implementation of Prolog rather
than the traditional environment stacking, due to the need to reorder subgoals during
execution. The Andorra principle is in fact useful even beyond parallelism, as a control
rule for Prolog, and can also be implemented using delay primitives (Bueno et al. 1994).
This is supported for example by the Ciao Prolog system.

The Andorra principle has been generalized to the Extended Andorra Model (EAM)
(Haridi and Brand 1988) to exploit both And- and Or-parallelism. In EAM, arbitrary sub-
goals can execute in And-parallel and clauses can be tried in Or-parallel. Computations
that do not impact the environment external to a subgoal are freely executed, giving rise
to parallelism. However, computations that may bind a variable occurring in argument
terms of a subgoal are suspended, unless the binding is deterministic (in which case
the binding is said to be promoted). If the binding is non-deterministic, then the subgoal
is replicated for each binding (non-determinate promotion). These replicated subgoals are
executed in Or-parallel. At any moment, constraints and bindings generated outside of
a subgoal are immediately percolated down to that subgoal (propagation).

The Extended Andorra Model seeks to optimally exploit And-/Or-parallelism. It pro-
vides a generic model for the exploitation of coroutining and parallelism in logic pro-
gramming and has motivated two main lines of research. The first path resulted in the
Andorra Kernel Language (Haridi and Janson 1990) that can be thought of as a new
paradigm that subsumes both Prolog and concurrent logic languages (Haridi and Brand
1988). The second focused on the EAM with Implicit Control (Warren 1990; Lopes et al.
2012), where the goal is to achieve efficient (parallel) execution of logic programs with
minimal programmer control. An interpreter (in Prolog) was developed to better un-
derstand EAM with implicit control (Gupta and Warren 1992) and new concepts, such
as lazy copying and eager producers, that give finer control over search and improve
parallelism have been investigated. Gupta and Pontelli later experimented with an ex-
tension of dependent And-parallelism that provides some of the functionality of the
EAM through parallelism (Gupta and Pontelli 1997). The first prototype parallel im-
plementation of the EAM (called BEAM), based on the WAM, has been presented by
Lopes et al.(2003; 2004). The BEAM system is promising, though the fine grain And-/Or-
parallelism that EAM supports results in significant overhead and thus extracting good
performance requires taking into account additional factors such as granularity control.

The state-of-the-art in the exploitation of dependent And-parallelism at the beginning
of 2000 is represented by systems like ACE (Gupta and Pontelli 1997), BEAM (Lopes
et al. 2012) and DDAS (Shen 1996), which are effective but complex. There are also some
early attempts at simpler approaches to parallel implementations (Hermenegildo et al.
1995).

4 Parallel Execution of Prolog

Following the brief review made in the previous section of some of the core issues
underlying parallel execution of Prolog, let us now turn our attention to the advances

16 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

made in the area of parallel execution of logic programming since 2000. We start, in
this section, with reviewing the most recent progress in the context of parallel execution
of Prolog. We survey new theoretical and practical results in Or- and And-parallelism,
discuss advances in Static Analysis to aid with the exploitation of parallelism, and,
finally, discuss the combination of parallelism with the notion of Tabling.

4.1 Or-Parallelism

4.1.1 Theoretical Results

The literature on Or-parallel execution of Prolog is extensive and it is primarily fo-
cused on the development of solutions for the environment representation problem. More
than twenty different approaches have been presented in the literature to address this
problem.

From the theoretical point of view, the environment representation problem has been
formalized as a data structure problem over labeled trees (Ranjan et al. 1999). The Or-
parallel execution of a program can be abstracted as building a labeled tree,4 using the
following operations: (1) create tree(γ), which creates a tree containing only a root with
label γ; (2) expand(u, γ1, γ2), which, given a leaf u and two labels γ1 and γ2, creates two
new nodes (one per label) and adds them as children of u; (3) remove(u) which, given a
leaf u of the tree, removes it from the tree.

The environment representation problem is associated to the management of variables
and their bindings. This can be modeled as attributes of the nodes in the tree, assuming
a set of attributes Γ. At each node u, three operations are possible: (1) assign(α,u) which
associates the label α to node u; (2) dereference(α,u) which identifies the nearest ancestor
v of u in which the operation assign(α, v) has been performed; (3) alias(α, β,u) which
requires that any dereference operation forα in any descendant of u in the tree produces the
same result as the dereference of β. This abstraction formalizes the informal considerations
presented in the existing literature and can be used to classify the methods to address
the environment representation problem (Gupta and Jayaraman 1990).

It has been demonstrated that it is impossible to derive a solution to the environment
representation problem which achieves a constant-time solution to all the operations
described above. In particular, Ranjan et al. (1999) demonstrated that the overall prob-
lem has a lower-bound complexity of Ω(log n) on pure pointer machines, where n is
the maximum number of nodes appearing in the tree. The investigation by Pontelli
et al. (2002) provides also an optimal theoretical solution, achieving the complexity of
O(log n); the solution makes use of a combination of generalized linked lists, which
allow us to insert, delete, and compare positions of nodes in the list, and AVL trees.
Even though the solution is theoretical, it suggests the possibility of improvement over
existing methodologies, which have a complexity of O(n).

4.1.2 Recent Solutions to the Environment Representation Problem

As introduced in Section 3, before 2000, the state of the art in Or-parallel Prolog systems
was achieved using one of two approaches: stack copying (as used in the Muse system

4 Without loss of generality, we assume trees to be binary.

Parallel Logic Programming: A Sequel 17

and in ACE (Ali and Karlsson 1990b; Pontelli and Gupta 1997)), and binding arrays (as
used in the Aurora system (Lusk et al. 1990)). These techniques provided comparable
benefits and fostered a wealth of additional research (e.g., in the area of scheduling (de
Castro Dutra 1994; Beaumont and Warren 1993; Ali and Karlsson 1992)). The advent
of distributed computing architectures, especially Beowulf clusters, led researchers to
investigate the development of Or-parallel Prolog systems in absence of shared mem-
ory. The two approaches above are not immediately suitable for distributed memory
architectures, as they require some level of data sharing between workers5 during the
execution. For example, in the case of stack copying, shared frames need to be created to
coordinate workers’ access to unexplored choice point alternatives.

The PALS system (Villaverde et al. 2001b; Pontelli et al. 2007; Gupta and Pontelli 1999)
introduced the concept of stack splitting as a new environment representation method-
ology suitable for distributed memory systems. Stack splitting replaces the dynamic
synchronization among workers, e.g., as in the access to shared choice points during
backtracking in the binding-arrays method, with a “static” partitioning of the unexplored
alternatives between workers. Such partitioning is performed each time two workers
collaborate to share unexplored branches of the resolution tree. Thus, stack splitting
allows us to remove synchronization requirements by preemptively partitioning the
remaining unexplored alternatives at the moment of sharing. The splitting allows both
workers to proceed, each executing its branch of the computation, without any need for
further synchronization when accessing parts of the resolution tree which are common
among the workers.

The original definition of stack splitting (Villaverde et al. 2001a; Pontelli et al. 2006)
explored two strategies of splitting. Vertical stack splitting (Figure 3–top) is suitable for
computations where branches of the resolution tree are highly unbalanced and where
choice points tend to have a small number of alternatives (e.g., binary trees). In this case,
the available choice points are alternated between the two sharing workers—e.g., the
first worker keeps the first, third, fifth, etc. choice point with unexplored alternatives,
while the second worker keeps the second, fourth, sixth, etc. In the end, each worker
ends up with approximately half of the choice points with unexplored alternatives. The
alternation between choice points kept and choice points given away is meant to improve
the chance of a balanced distribution of work between the two workers. Horizontal stack
splitting has been, instead, designed to support sharing in the case of computations with
few choice points, each with a large number of unexplored alternatives. In this case, the
two workers partition the unexplored alternatives within each available choice point
(Figure 3–middle).

Follow-up research has explored additional variations of stack splitting. Diagonal
stack splitting (Rocha et al. 2003) provides a combination of horizontal and vertical
stack splitting. Middle stack splitting, also known as Half stack splitting (Villaverde et al.
2003), is similar to vertical stack splitting, but with the difference that one worker keeps
the top half of the choice points while the second worker keeps the bottom half. The
advantage of this methodology is its efficient implementation and the ability to know
the respective position of the two workers in the resolution tree immediately after the

5 We use the generic term worker to denote a computing entity in a parallel Prolog system.

18 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

sharing operation—a useful property in order to manage side-effects and other order-
sensitive predicates (Figure 3–bottom).

Fig. 3: From top to bottom: Vertical Splitting, Horizontal Splitting, Middle Splitting.
Workers visit the resolution tree in depth first order; CP stands for choice point; CP1
is the “root” of the tree. P and Q denote different workers. A black node means that
the choice point has no alternatives available. A connection between P/Q and a node
indicates that the worker is executing the given alternative of the choice point. The arrow
denotes immediate backtracking for the worker stealing work.

Even though stack splitting has been originally designed to sustain Or-parallelism on
distributed memory architectures, this methodology provides advantages also on shared

Parallel Logic Programming: A Sequel 19

memory platforms. The ACE system (Gupta and Pontelli 1999) demonstrated that stack-
splitting outperforms stack-copying in a variety of benchmarks. A microprocessor-level
simulation, using the Simics simulator, identified an improved cache behavior as the
reason for the superior performance in shared memory platforms (Pontelli and Gupta
1999).

4.1.3 Systems and Implementations

The original stack splitting methodology has been developed in the context of the PALS
project—an investigation of execution of Prolog on distributed memory machines. The
PALS system introduces stack splitting by modifying the ALS Prolog system (Applied
Logic Systems, Inc 2021), resulting in a highly efficient and scalable implementation.
PALS explores not only novel techniques for the environment representation problem,
but also the challenges associated to management of side-effects (Villaverde et al. 2003)
and different scheduling strategies (Villaverde and Pontelli 2004). PALS operates on
Beowulf clusters, mapping Prolog workers to processes on different nodes of a cluster
and using MPI for communication between them. PALS implements vertical, horizontal,
and middle stack splitting.

Santos Costa et al. (2010) implemented Or-parallelism on a multi-threaded imple-
mentation of YAP Prolog (ThOr). Their implementation relies on YapOr (Rocha et al.
1999b) which is based on the stack copying model. A multi-threaded implementation
can exploit low-cost parallel architectures (such as common multi-core processors).

Santos and Rocha (2013; 2016) extended this approach to systems composed of clusters
of multi-core processors—addressing the challenge of dealing with the combination of
shared and distributed memory architectures. They propose a layered model based on
two levels of workers, single workers and teams of workers, and the ability to exploit dif-
ferent scheduling strategies, for distributing work among teams and among the workers
inside a team. A team of workers is formed by workers which share the same mem-
ory address space (workers executing in different computer nodes cannot belong to the
same team). A computer node can contain more than one team. Several combinations of
scheduling strategies are allowed. For distributed memory clusters of multi-cores, only
static stack splitting is allowed for distributing work among teams. Inside a team, static
and dynamic scheduling can be selected. The use of static stack splitting techniques
(horizontal, vertical, diagonal, and so on) in shared memory architectures is described
by Vieira et al. (2012). As far as dynamic stack splitting techniques, the authors rely on
the or-frame data structures originally introduced in the Muse system.

4.2 And-Parallelism

4.2.1 Backtracking in Independent And-Parallel Prolog Systems

As explained in Section 3, Independent And-parallel (IAP) Prolog systems allow the
parallel execution of subgoals which do not interfere with each other at run time, even if
they produce multiple answers. Section 3 also pointed out that one of the most important
areas of research in the context of IAP systems is the implementation of backtracking
among parallel subgoals. The basic issues involved in this process have been addressed
by Hermenegildo (1986a) and Hermenegildo and Nasr (1986). These works identify the

20 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

main challenges of backtracking in IAP, such as trapped nondeterministic subgoals and
garbage slots. These concepts have been further developed and improved by Shen and
Hermenegildo (1996), Pontelli et al. (1996), and Carro (2001).

An alternative and more efficient model for backtracking in IAP has been proposed
by Pontelli and Gupta (2001). The implementation model is an extension of the origi-
nal backtracking scheme developed by Hermenegildo and Nasr (1986) and includes a
memory organization scheme and various optimizations to reduce communication and
overhead. It also makes use of an adaptation of the ACE abstract interpretation-based
analyzer (Pontelli et al. 1997), derived from that of the Ciao/&-Prolog system (Bueno
et al. 1999; Muthukumar et al. 1999). In particular, detection and special treatment of
external variables (i.e., variables appearing in the parallel call but created before the call
itself) enable increased independence during backtracking. The results obtained show
that speedups achieved during forward execution are not lost in heavy backtracking,
and the “super-linear” speedups that can be obtained thanks to the semi-intelligent
nature of backtracking in independent And-parallelism are also preserved. 6

A common aspect of most traditional IAP implementations that support backtracking
over parallel subgoals is the use of recomputation of answers and sequential ordering
of subgoals during backtracking. While this can, in principle, simplify the implemen-
tation, recomputation can be inefficient if the granularity of the parallel subgoals is
large and they produce several answers, while sequentially ordered backtracking limits
parallelism. An alternative parallel backtracking model has been proposed by Chico
de Guzmán et al. (2011) which features parallel out-of-order backtracking and relies
on answer memoization to reuse and combine answers. Whenever a parallel subgoal
backtracks, its siblings also perform backtracking after storing the bindings generated
by previous answers, which are reinstalled when combining answers. In order to not pe-
nalize forward execution, non-speculative And-parallel subgoals which have not been
executed yet take precedence over sibling subgoals which could be backtracked over.
This approach brings performance advantages and simplifies the implementation of
parallel backtracking.

The remaining challenges associated to trapped non-deterministic subgoals and garbage
slots have been addressed by Chico de Guzmán et al.(2012); the proposed approach
builds on the idea of a single stack reordering operation, that offers several advantages
and tradeoffs over previous proposals. While the implementation of the stack reordering
operation itself is not simple, in return it frees the scheduler from the constraints imposed
by other schemes. As a result, the scheduler and the rest of the run-time machinery can
safely ignore the trapped subgoal and garbage slot problems and their implementation
is greatly simplified. Also, standard sequential execution remains unaffected.

4.2.2 High-level implementation of Unrestricted And-Parallelism

Original implementations of independent And-parallelism, as demonstrated in the &-
Prolog and the &ACE systems, relied on low-level manipulations of the underlying

6 This is really due to the change in the backtracking algorithm that independent And-parallel systems
implement, which is a simple form of intelligent backtracking that takes advantage of the independence
information.

Parallel Logic Programming: A Sequel 21

abstract machine—typically some variant of the Warren Abstract Machine. This low-
level approach is necessary in order to reduce execution overheads related to the man-
agement of parallelism. While this approach has been extensively used and produced
highly efficient implementations, it leads to highly complex implementations, often hard
to maintain and not able to keep up with improvements in sequential implementation
technology.

High-level implementation. The improved performance of processors and the introduction
of advanced compilation techniques have opened the doors to an alternative approach
to the implementation of parallelism—by describing parallel execution models at a high
level, in terms of Prolog predicates. The concept builds on the identification of a small
collection of built-in predicates and their use to encode, as meta-programs, high-level
models of parallelism (Casas 2008; Casas et al. 2008a; Casas et al. 2008b). The concept
of implementing a form of parallelism via meta-programming encodings is not new
(see for example the papers by Codish and Shapiro (1986), Pontelli and Gupta (1995),
and Hermenegildo et al. (1995)), but it has been brought to full fruition only recently,
in terms of a full implementation using a minimal set of core predicates. This is done
by implementing in the engine a comparatively small number of concurrency-related
primitives which take care of lower-level tasks, such as locking, stack set management,
thread creation and management, etc. The implementation of parallel models (e.g.,
independent And-parallelism) is then realized through meta-programs that make use
of such primitives. The approach does not eliminate altogether modifications to the
abstract machine, but it does greatly simplify and encapsulate them, and it also facilitates
experimenting with different alternative models of parallelism.

This approach also supports the implementation of flexible solutions for some of the
main problems found in And-parallel implementations. In fact, the solutions presented
by Chico de Guzmán et al. (2011; 2012) have all been implemented taking advantage of
the flexibility afforded by this new approach. The experiments also show that, although
such source-level implementation of parallelism introduces overheads, the performance
penalties are reasonable, especially if paired with some form of granularity control. This
is the (unrestricted) IAP implementation supported currently by the Ciao Prolog system.

Unrestricted And-Parallelism. Another interesting aspect of the approach by Casas et al.
is that it facilitates the implementation of alternative models of And-parallelism. In
particular, this approach has facilitated the exploration of unrestricted And-Parallelism,
i.e., a form of IAP which does not follow the traditional fork-join structure used in
the previous IAP systems. This flexibility has served as target for new parallelizers
for unrestricted IAP (see Section 4.3). This work also shows that the availability of
unrestricted parallelism contributes to improved parallel performance.

The high-level level primitives used in this system to express unrestricted And-
parallelism are those described in the papers by Hermenegildo et al. (1995), Cabeza
and Hermenegildo (1996), and Cabeza (2004):

• G &> H schedules subgoal G for parallel execution and continues with the code
after G. H is a handle that provides access to the state of subgoal G.

• H <& waits for the subgoal associated with H (G, in the previous item) to finish. At

22 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

that point, all bindings G could possibly generate are ready, since G has reached
a solution. Assuming subgoal independence between G and the calls performed
while G was being executed, no binding conflicts will arise. This point is also the
“anchor” for any backtracking performed by G.

Note that, with the previous definitions, the &/2 operator can be expressed as:
A & B :- A &> H, call(B), H <&.

The approach shares some similarities with the concept of futures in parallel functional
languages (Flanagan and Felleisen 1995; Halstead Jr. 1985). A future is meant to hold
the return value of a function so that a consumer can wait for its complete evaluation.
However, the notions of “return value” and “complete evaluation” do not make sense
when logic variables are present. Instead, H <&waits for the moment when the producer
subgoal has completed execution, and the “received values” (typically a tuple) will be
whatever (possibly partial) instantiations have been produced by such subgoal.

The new operators are very flexible, allowing the encoding of And-parallel executions
which are not tied to the fork-join model implicit in the & operator. In particular, one
can interleave execution of subgoals to ensure that variables are bound and thus enable
an increasing level of parallelism. For example, in a computation where it has been
determined (through, e.g., global analysis) that p(A,B) produces the values for A,B, q(C)
produces the value for C, while r(A) and s(C,B) consume such values, the following
encoding provides a higher degree of parallelism than a traditional fork-join structure:

q(C), p(A,B) &> H1,

r(A) &> H2,

H1 <&,

s(C,B), H2 <&.

The &-Prolog engine implemented these constructs natively offering high parallel per-
formance. The Ciao Prolog system includes the higher-level (Prolog) management of
threads (Casas et al. 2008a; Casas et al. 2008b); for example, the &> operator can be
encoded as:

Goal &> Handle :- add_goal(Goal, nondet, Handle),

undo(cancellation(Handle)),

release_suspended_thread.

which adds the Goal to a goal queue and enables one thread if available.
In closing, let us observe that these constructs are very general and can be used to

explore a wide variety of parallelization schemes, including schemes that do not respect
the original observable semantics of Prolog.

4.2.3 Dependent And-Parallelism

The concept of dependent And-parallelism has not been extensively investigated beyond
the ideas already presented in the previous survey by Gupta et al. (2001) and briefly
reviewed in Section 3. The state-of-the-art at the beginning of 2000 is represented by
systems like ACE with the introduction of the filtered binding model (Gupta and Pontelli

Parallel Logic Programming: A Sequel 23

1997), which supports the dynamic management of producer and consumer subgoals
for variables shared among And-parallel subgoals. Models like this and previously
proposed ones (e.g., the DDAS model (Shen 1996)) suffer from high complexity of
implementation, which complicates their maintenance and evolution. While not further
explored, we envision the extension of models like those proposed in Section 4.2.2 to
represent a more viable approach for implementation of dependent And-parallelism, as
hinted at already, e.g., by Hermenegildo et al. (1995).

On the other hand, the techniques for dependent And-parallelism developed for
Prolog have found use and extension in logic programming systems which have evolved
from Prolog, such as Mercury and the EAM, as described in the following sections.

Mercury. A simplified architecture for dependent And-parallelism can be found in the
parallel implementation of Mercury (Conway 2002). The proposed architecture uses
a multi-threaded implementation to create a number of workers, which concurrently
execute different subgoals. The implementation takes advantage of the fact that the
Mercury language requires each variable to have a single producer designated at compile
time. Thus, in a legal Mercury program, it is guaranteed that only a single point in
the code will try to bind a given free variable. As a result, producers and consumers
are known at time of execution and do not require a complex dynamic management
for shared variables. This architecture introduces sophisticated mechanisms to support
context switch of suspended subgoals. At the language level, Mercury is extended with
an & operator analogous to the one used in And-parallel Prolog systems, to identify
subgoals meant for parallel execution.

The initial parallel implementation of Mercury restricted the parallel execution to non-
communicating subgoals (Conway 2002). This was later extended to an implementation
that supports communication between subgoals (Bone 2012). The work by Bone provides
a number of architectural extensions and optimizations. The system proposed by Bone
et al. (2011; 2012) replaces the use of a single centralized task queue with a collection of
distributed local work queues and work-stealing models, similarly to other And-parallel
implementations of Prolog. This was dictated by the need to reduce the bottleneck caused
by a single-access centralized task queue. Another component of this system is the use
of a Mercury-specific cost analysis to detect, at compile-time, promising subgoals for
parallel execution.

Extended Andorra Model. Basic and Extended Andorra Model (EAM) are presented at
the end of Section 3. In simple terms, the EAM allows subgoals to proceed concur-
rently as long as they are deterministic or as long as they do not request to bind non-
deterministically an external variable (this has can also be seen as a fine-grain form of
independence). When non-determinism in the latter case is present, the computation
can split (in a form of Or-parallelism).

The computation in the EAM can be described as a series of rewriting operations
applied to an and-or tree. The tree includes two types of boxes: and-boxes, representing
conjunctions of subgoals, and or-boxes, representing alternative clauses for a selected
literal. The BEAM (Lopes et al. 2003; Lopes et al. 2004) is a parallel implementation of such
a rewriting process, enhanced with a collection of control rules to enhance efficiency (e.g.,
by delaying splitting, the operation which realizes Or-parallelism, until no deterministic

24 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

steps are possible). The BEAM provides a shared-memory realization of the EAM, using
an approach called RAINBOW (Rapid And-parallelism with INdependence Built upon
Or-parallel Work). The BEAM supports independent And-parallelism enhanced with
determinacy, along with different implementation models of Or-parallelism (e.g., version
vectors and binding arrays).

4.3 Static Analysis for Parallelism

Static analysis, generally based on Cousots’ theory of abstract interpretation (Cousot and
Cousot 1977), is a supporting technology in a number of areas related to parallelism
in logic programming, and especially in the process of automatic parallelization of
logic programs to exploit And-parallelism. In fact, logic programming pioneered the
development of abstract interpretation-based analyzers —such as MA3 and Ms (Warren
et al. 1988), PLAI (Muthukumar and Hermenegildo 1990;1992;Garcı́a de la Banda et al.
1996), or GAIA (Le Charlier and Van Hentenryck 1994), and the extension of this style of
analysis to CLP/CHCs (Garcı́a de la Banda and Hermenegildo 1993; Garcı́a de la Banda
et al. 1996; Kelly et al. 1998). Arguably, the MA3 and PLAI parallelizers for independent
And-parallelism were the first complete, practical applications of abstract interpretation
in a working compiler (see, e.g., Van Roy (1994)).

Static analysis is an area that has seen significant progress in this period. In this section
we briefly focus on the advances made in static analysis for parallelism in logic programs
since the survey paper by Gupta et al. (2001), with a quick view on main older results.

Sharing analyses. One of the main instrumental properties for automatic (And-)parallel-
ization is the safe approximation of the sharing (aliasing) patterns between variables.
Apart from being necessary for obtaining analyses that are at the same time precise
and correct, variable sharing is a basic component of essentially all notions of indepen-
dence (Hermenegildo and Rossi 1995; Bueno et al. 1999; Muthukumar et al. 1999; Marriott
et al. 1994; Garcı́a de la Banda et al. 1995;2000). The main abstract domains developed
for detecting independence typically seek to capture either set-sharing (Muthukumar
and Hermenegildo 1989;1991;1992;Jacobs and Langen 1989; Codish et al. 2000; Hill et al.
2002) or pair-sharing (Søndergaard 1986; Lagoon and Stuckey 2002; Bueno and Garcı́a
de la Banda 2004).

Results in this area implied the development of widenings (Cousot and Cousot 1977)
and/or alternative more efficient representations and abstract domain operations for
sharing domains. Widenings are used in abstract interpretation-based analyses to sup-
port infinite abstract domains and also to reduce the cost of complex domains, such
as sharing. In both cases the essence of the technique is to lose precision in return for
reduced analysis time (at the limit, termination) by generalizing at some point in the
analysis to a larger abstract value. This implies arriving at fixpoints that are less precise
than the minimal fixpoint, but still safe approximations of the concrete values.

In this line, widenings of sharing have been proposed for example by Zaffanella et al.
(1999), by performing a widening switch to a modification of Fecht’s domain (Fecht 1996)
and incorporating other techniques such as combining with the Pos domain. Navas et al.
(2006) proposed an encoding of sharing that represents sets of variables that have total
sharing (which gives rise to large sharing sets) in a compact way and also widens

Parallel Logic Programming: A Sequel 25

abstract values to this representation when they are close to total sharing. Li et al. (2006)
developed a lazy technique that postpones computations of sharing sets until they are
really needed. Trias et al. (2008) proposed an encoding that uses negative information
representation techniques to switch to a dual representation for certain variables when
there is a high degree of sharing among them. Also, Méndez-Lojo et al. (2008) proposes
and studies a representation using ZBDDs.

Determinism and non-failure analyses. Inference of determinacy (Lopez-Garcia et al. 2010)
and non-failure (Bueno et al. 2004), including multivariant (i.e., context/path-sensitive)
analyses, based on the PLAI framework have been investigated. These analyses are
instrumental in And-parallelism, since if goals can be determined to not fail and/or
be deterministic, significant simplifications can be performed in the handling of their
parallel execution. This is due to the inherent complexity in handling backtracking across
parallel goals (Section 4.2), significant parts of which can be avoided if such information
is available.

Cost analysis and granularity control. The advances in determinism and non-failure analy-
ses are also useful for improving the precision of cost analysis (Debray et al. 1990;1994;1997),
which is instrumental in parallelism for performing task granularity control (Debray
et al. 1990; Lopez-Garcia et al. 1996; Lopez-Garcia 2000). Such analyses have been ex-
tended to estimate actual execution time (Mera et al. 2008), rather than steps, as in
previous work, which is arguably more relevant to automatic parallelization and granu-
larity control. Techniques have also been developed for fuzzy granularity control (Trigo
de la Vega et al. 2010). Another important related line of work has been the static in-
ference of the cost of parallelized programs (Klemen et al. 2020). The base cost analyses
have also been extended to be parametric (Navas et al. 2007) (where the analysis can
track user-defined resources and compound resources) and multivariant, formulated as
an abstract domain (Serrano et al. 2014).

Static analysis for parallelization algorithms. There has also been progress in the develop-
ment of improved, static analysis-based parallelization algorithms that allow automatic
parallelization for non-restricted And-parallelism (Casas et al. 2007; Casas 2008) (i.e.,
not limited to fork-join structures, as supported by Casas et al. (2008a), see Section 4.2.2).
Also, improved parallelization algorithms for non-strict independence (Hermenegildo
and Rossi 1995) using sharing and freeness information have been proposed (Cabeza
and Hermenegildo 2009).

In another line of work, by Vidal (2012), a novel technique has been presented for
generating annotations for independent And-parallelism based on partial evaluation.
A partial evaluation procedure is augmented with (run-time) groundness and variable
sharing information so that parallel conjunctions are added to the residual clauses when
the conditions for independence are met. The results are parallel annotated programs
which are shown to be capable of achieving interesting speedups.

Improvements in static analysis related to scalability are directly relevant to improving
the practicality of automatic parallelization techniques. In this context, much work has
been done in improving these aspects for LP and CLP analyses, including combined

26 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

modular and incremental analysis, assertion-guided multivariant analysis, and analysis
of programs with assertions and open predicates (Garcia-Contreras et al. 2018;20192020).

Run-time checking overhead. The reduction of the overhead implied by run-time tests
(through caching techniques (Stulova et al. 2015; Stulova 2018) and also static analy-
sis (Stulova et al. 2018), similarly to what done in the works by Bueno et al. (1999) and
Puebla and Hermenegildo (1999)), as well as in generating static performance guaran-
tees for programs with run-time checks (Klemen et al. 2018), have been subject of active
research. This work was done in the context of run-time tests for assertions but it is
directly relevant to run-time checking for conditional And-parallelism.

Applications to other paradigms and areas. The techniques developed for LP/CLP paral-
lelization have been used to support the parallelization of other paradigms (Hermenegildo
2000). This is a large topic that goes beyond the scope of this survey, but examples in-
clude the application of pair-sharing (Secci and Spoto 2005) and set-sharing (Méndez-
Lojo and Hermenegildo 2008) to object-oriented programs, sharing analysis of arrays,
collections, and recursive structures (Marron et al. 2008), identifying logically related
heap regions (Marron et al. 2009), identification of heap-carried dependencies (Marron
et al. 2008), or context-sensitive shape analysis (Marron et al. 2006;2008).

As stated before, the demand for precise global analysis and transformation stem-
ming from automatic parallelization spurred the development of the first abstract
interpretation-based “production” analyzers. Having these systems readily available
led to the early realization that analysis and transformation are very useful also in
program verification and static debugging, as illustrated by the pioneering Ciao Pro-
log system (Bueno et al. 1997;Hermenegildo et al. 199920052012). During the past
two decades, the analysis and verification of a large variety of other programming
paradigms —including imperative, functional, object-oriented, and concurrent ones—
using LP/CLP-related analysis techniques, has received significant interest, and many
verification approaches and tools have recently been implemented which are based in
one way or another in a translation into LP/CLP (referred to in this context as Constrained
Horn Clauses –CHCs) (Peralta et al. 1998;Henriksen and Gallagher 2006;Méndez-Lojo
et al. 2007;Navas et al. 2008;2009;Albert et al. 2007;Gómez-Zamalloa et al. 2009;Greben-
shchikov et al. 2012;Gurfinkel et al. 2015;De Angelis et al. 2015;Kahsai et al. 2016;Lopez-
Garcia et al. 2018;Liqat et al. 2014;2016;Gallagher et al. 2020). The main reason is that
LP and CLP are effective as languages for specifying program semantics and program
properties. De Angelis et al. 2022 offers an up-to-date, comprehensive survey of this
approach.

4.4 Parallelism and Tabling

Tabling, introduced by Chen and Warren (1996), is a powerful implementation tech-
nique that overcomes some limitations of traditional Prolog systems in dealing with
recursion and redundant sub-computations. Tabling has become a popular and success-
ful technique thanks to the ground-breaking work in the XSB Prolog system and in the
SLG-WAM engine (Sagonas and Swift 1998). The success of SLG-WAM led to several
alternative implementations that differ in the execution rule, in the data-structures used

Parallel Logic Programming: A Sequel 27

to implement tabling, and in the changes to the underlying Prolog engine (Swift and
Warren 2012; Santos Costa et al. 2012; Zhou 2012; Guo and Gupta 2001; Somogyi and
Sagonas 2006; Chico de Guzmán et al. 2008; Desouter et al. 2015; Zhou et al. 2015).

Tabling is a refinement of SLD resolution that stems from one simple idea: programs
are evaluated by saving intermediate answers for tabled subgoals so that they can be
reused when a similar call appears during the resolution process. First calls to tabled
subgoals are considered generators and are evaluated as usual, using SLD resolution,
but their answers are stored in a global data space, called the table space. Similar calls
are called consumers and are resolved by consuming the answers already stored for the
corresponding generator, instead of re-evaluating them against the program clauses.
During this process, as further new answers are found, they are stored in their table
entries and later returned to all similar calls. Call similarity thus determines if a subgoal
will produce their own answers or if it will consume answers from a generator call.

A key procedure in tabled evaluation is the completion procedure, which determines
whether a subgoal is completely evaluated. A subgoal is said to be completely evaluated
when all its possible resolutions have been performed, i.e., when no more answers can
be generated and all consumers have consumed all the available answers. A number
of subgoals may be mutually dependent, forming a strongly connected component (SCC),
and therefore can only be completed together. In this case, completion is performed by
the leader of the SCC, which is the oldest generator subgoal in the SCC, when all possible
resolutions have been made for all subgoals in the SCC (Sagonas and Swift 1998).

4.4.1 Parallel Tabling

The first proposal on how to exploit implicit parallelism in tabling is due to Freire et al.
(1995) that has been not implemented later in available systems. More recent approaches
are based on reordering the execution of alternatives corresponding to multiple clauses
that match a goal in the search tree (Zhou et al. 2008; Guo and Gupta 2001). Guo and
Gupta’s approach is a tabling scheme based on dynamic reordering of alternatives with
variant calls: both the answers to tabled subgoals and the (looping) alternatives leading
to variant calls are tabled. After exploiting all matching clauses, the subgoal enters a
looping state, where the looping alternatives start being tried repeatedly until a fix-point
is reached. The process of retrying alternatives may cause redundant recomputations of
the non-tabled subgoals that appear in the body of a looping alternative. It may also cause
redundant consumption of answers if the body of a looping alternative contains several
variant subgoal call. Within this model, the traditional forms of parallelism can still
be exploited and the looping alternatives can be seen as extra unexplored choice point
alternatives. However, parallelism may not come so naturally as for SLD evaluations as,
by nature, tabling implies sequentiality – an answer can not be consumed before being
found and consuming an answer is a way to find new ones – which can lead to more
recomputations of the looping alternatives until reaching a fix-point.

The first system to implement support for the combination of tabling with some form
of parallelism was the YAP Prolog system (Santos Costa et al. 2012). A first design,
named the OPTYap design (Rocha et al. 1999a), combines the tabling-based SLG-WAM
execution model with implicit Or-parallelism using shared memory processes. A second
design supports explicit concurrent tabled evaluation using threads (Areias and Rocha

28 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

2012), where from the threads point of view the tables are private, but at the engine
level the tables are shared among threads using a common table space. To the best of our
knowledge, YAP’s designs are the only effective implementations with experimental
results showing good performance on shared-memory parallel architectures.

The XSB system also implements some sort of explicit concurrent tabled evaluation
using threads that extends the default SLG-WAM execution model with a shared tables
design (Marques and Swift 2008). It uses a semi-naive approach that, when a set of
subgoals computed by different threads is mutually dependent, then a usurpation opera-
tion synchronizes threads and a single thread assumes the computation of all subgoals,
turning the remaining threads into consumer threads. The design ensures the correct
execution of concurrent sub-computations but the experimental results showed some
limitations (Marques et al. 2010).

Other proposals for concurrent tabling relies on a distributed memory model. Hu
(1997) was the first to formulate a method for distributed tabled evaluation termed
Multi-Processor SLG (SLGMP). As in the approach of Freire et al. (1995), each worker
gets a single subgoal and it is responsible for fully exploiting its search tree and obtain
the complete set of answers. One of the main contributions of SLGMP is its controlled
scheme of propagation of subgoal dependencies in order to safely perform distributed
completion.

A different approach for distributed tabling was proposed by Damásio (2000). The
architecture for this proposal relies on four types of components: a goal manager that
interfaces with the outside world; a table manager that selects the clients for storing tables;
table storage clients that keep the consumers and answers of tables; and prover clients
that perform the evaluation. An interesting aspect of this proposal is the completion
detection algorithm. It is based on a classical credit recovery algorithm (Mattern 1989)
for distributed termination detection. Dependencies among subgoals are not propagated
and, instead, a controller client, associated with each SCC, controls the credits for its SCC
and detects completion if the credits reach the zero value. An implementation prototype
has also been developed, but further analysis is required.

4.4.2 YAP Prolog

We focus here on the already cited YAP Prolog system that provides the ground technol-
ogy for both implicit and explicit concurrent tabled evaluation, but separately. From the
user’s point of view, tabling can be enabled through the use of single directives of the
form “:- table p/n”, meaning that common sub-computations for p/n will be synchronized
and shared between workers at the engine level, i.e., at the level of the tables where
the results for such sub-computations are stored. Implicit concurrent tabled evaluation
can be triggered if using the OPTYap design (Rocha et al. 2005), which exploits implicit
Or-parallelism using shared memory processes. Explicit concurrent tabled evaluation
can be triggered if using the thread-based implementation (Areias and Rocha 2012); in
this case, the user still needs to implement the thread management and scheduler policy
for task distribution.

Implicit Or-Parallel Tabled Evaluation. The OPTYap system builds on the YapOr (Rocha
et al. 1999b) and YapTab (Rocha et al. 2000) engines. YapOr extends YAP’s sequential

Parallel Logic Programming: A Sequel 29

G

L

a b

b a

W1 W2

Least common generator?

Least common ancestor?

Fig. 4: Public completion scheme. Black nodes are public nodes, rectangle nodes are
generators, rhombus nodes are consumers. W1 and W2 are the workers.

engine to support implicit Or-parallelism based on the environment copying model.
YapTab extends YAP’s execution model to support (sequential) tabled evaluation. In
the OPTYap design, tabling is the base component of the system as, most of the time,
each worker behaves as a full sequential tabling engine. The Or-parallel component of
the system is triggered to allow synchronized access to the shared region of the search
space or to schedule work. Work sharing is implemented through stack copying with
incremental copying of the stacks (Ali and Karlsson 1990a).

Workers exploiting the public (shared) region of the search space must synchronize to
ensure the correctness of the tabling operations. Synchronization is required: (i) when
backtracking to public generator or interior (non-tabled) nodes to take the next available
alternative; (ii) when backtracking to public consumer nodes to take the next uncon-
sumed answer; or, (iii) when inserting new answers into the table space. Moreover, since
Or-parallel systems can execute alternatives early, the relative positions of generator and
consumer nodes are not as clear as for sequential tabling. As a result, it is possible that
generators will execute earlier, and in a different branch than in sequential execution.
Or that different workers may execute the generator and the consumer calls. Or, in the
worst case, workers may have consumer nodes while not having the corresponding gen-
erators in their branches. This induces complex dependencies between workers, hence
requiring a more elaborated and specific public completion operation (Rocha et al. 2001).

Figure 4 illustrates this kind of dependencies. Starting from a common public node,
worker W1 takes the leftmost alternative while worker W2 takes the rightmost. While
exploiting their alternatives, W1 calls a tabled subgoal a and W2 calls a tabled subgoal b.
As this is the first call to both subgoals, a generator node is stored for each one. Next,
each worker calls the tabled subgoal firstly called by the other, and consumer nodes are
therefore allocated. At that point, we may question at which (leader) node should we
check for completion? In OPTYap, public completion is performed at the least common
ancestor node (node L in Figure 4). But that leader node can be any type of node and not
necessarily a generator node as in the case of sequential tabling.

Consider now the case where W1 has explored all its private work and backtracks to the
public leader node L common to W2. Since work is going on below L, W1 cannot complete

30 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

its current SCC (which includes L, the generator node for a and the consumer node for b).
The reason for this is that W2 can still influence W1’s branch, for instance, by finding new
answers for subgoal b. On the other hand, we would like to move W1 in the tree, say
to node N, where there is available work and, for that, we may need to reset the stacks
to the values in N. As a result, in order to allow W1 to continue execution, it becomes
necessary to suspend the SCC at hand. This is the only case where Or-parallelism and
tabling conflict in OPTYap (a worker needs to move in the tree above an uncompleted
leader node). OPTYap’s solution is to save the SCC’s stacks to a proper space, leaving
in L a reference to where the stacks were saved. These suspended computations are
considered again when the remaining workers check for completion at L. To resume a
suspended SCC a worker needs to copy the saved stacks to the correct position in its
own stacks, and thus, it has to suspend its current SCC first. To minimize that, OPTYap
adopts the strategy of resuming suspended SCCs only when the worker finds itself at a
leader node, since this is a decision point where the worker either completes or suspends
its current SCC. OPTYap’s public completion algorithm and associated data structures
is one of the major contributions of OPTYap’s design.

Explicit Concurrent Tabled Evaluation. In YAP, threads run independently within their
own execution stacks. For tabling, this means that each thread evaluation depends only
on the computations being performed by itself, i.e., from the thread point of view, each
thread has its own private tables but, at the engine level, YAP uses a common table space
shared among all threads.

Figure 5 shows the general table space organization for a tabled predicate in YAP. At
the entry level is the table entry data structure where the common information for the
predicate is stored. This structure is allocated when a tabled predicate is being compiled,
so that a pointer to the table entry can be included in the compiled code. This guarantees
that further calls to the predicate will access the table space starting from the same point.
Below the table entry, is the subgoal trie structure. Each different tabled subgoal call to
the predicate at hand corresponds to a unique path through the subgoal trie structure,
always starting from the table entry, passing by several subgoal trie data units, the
subgoal trie nodes, and reaching a leaf data structure, the subgoal frame. The subgoal frame
stores additional information about the subgoal and acts like an entry point to the answer
trie structure. Each unique path through the answer trie data units, the answer trie nodes,
corresponds to a different answer to the entry subgoal. To deal with multithreading
tabling, YAP implements several designs with different degrees of sharing of the table
space data structures.

We report here the main features of three sharing designs proposed in (Areias and
Rocha 2012): No-Sharing (NS), Subgoal-Sharing (SS), and Full-Sharing (FS).

NS was the starting design for multithreading tabling support in YAP: each thread
allocates fully private tables and the table entry is extended with a thread array, where
each thread has its own entry, which then points to the private subgoal tries, subgoal
frames and answer tries for the thread.

In the SS design, the threads share part of the table space, namely, the subgoal trie
structures are now shared among the threads and the leaf data structure in each subgoal
trie path, instead of referring a subgoal frame, it now points to a thread array. Each
entry in this array then points to private subgoal frames and answer trie structures. In

Parallel Logic Programming: A Sequel 31

Tabled Predicate
compiled code

Table Entry

Subgoal Trie Structure

Subgoal
Frame

call1

Subgoal
Frame

call2

. . .
Subgoal
Frame
calln

Answer
Trie

Structure

Answer
Trie

Structure
. . .

Answer
Trie

Structure

Fig. 5: YAP’s table space organization

this design, concurrency among threads is restricted to the allocation of trie nodes on
the subgoal trie structures. Tabled answers are still stored in the private answer trie
structures of each thread. The Partial Answer Sharing (PAS) design (Areias and Rocha
2017) extends the SS design to allow threads to share answers. The idea is as follows:
whenever a thread calls a new tabled subgoal, first it searches the table space to lookup
if any other thread has already computed the full set of answers for that subgoal. If so,
then the thread reuses the available answers, thus avoiding recomputing the subgoal
call from scratch. Otherwise, it computes the subgoal itself. The first thread completing
a subgoal call, shares the results by making them available (public) to the other threads.
The PAS design avoids the usage of the thread array and instead it uses a list of private
subgoal frames corresponding to the threads evaluating the subgoal call. In order to
find the subgoal frame corresponding to a thread, we may have to pay an extra cost for
navigating in the list but, once a subgoal frame is completed and made public, its access
is immediate since it is moved to the beginning of the list.

Finally, the FS design tries to maximize the amount of data structures being shared. In
this design, the answer tries and part of the subgoal frame information are also shared
among threads. A new subgoal entry data structure stores the shared information for the
subgoal, which includes access to the shared answer trie and to the thread array that
keeps pointing to the subgoal frames, where the remaining private information is kept.
In this design, concurrency among threads includes the access to the new subgoal entries
and the allocation of tries nodes on the answer trie structures. Memory usage is reduced
to a minimum and, since threads share the answer tries, answers inserted by a thread
for a particular subgoal call are automatically made available to all other threads when
they call the same subgoal. However, since different threads can be inserting answers in
the same answer trie, when an answer already exists, it is not possible to determine if
the answer is new or repeated for a particular thread without further support. This can
be a problem if the tabling engine implements a batched scheduling strategy (Freire et al.
1996). To mitigate this problem, the Private Answer Chaining (PAC) design (Areias and

32 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Rocha 2015) extends the FS design to keep track of the answers that were already found
and propagated per thread and subgoal call.

4.4.3 Perspective on the Future

We believe that a challenging goal for the combination of tabling with parallelism is the
design of a framework that integrates both implicit and explicit concurrent tabled eval-
uation, as described earlier, in a single tabling engine. This is a very complex task since
we need to combine the explicit control required to launch, assign and schedule tasks
to workers, with the built-in mechanisms for handling tabling and implicit concurrency,
which cannot be controlled by the user.

In such a framework, a program begins as a single worker that executes sequentially
until reaching a parallel construct. A parallel construct can then be used to trigger implicit
or explicit concurrent tabled evaluation. If the parallel construct identifies a request for
explicit concurrent evaluation, the execution model launches a set of additional workers
to exploit concurrently a set of independent sub-computations (which may include
tabled and non-tabled predicates). From the workers’ point of view, each concurrent sub-
computation computes its tables but, at the implementation level, the tables can be shared
following YAP’s design presented above. Otherwise, if the construct requires implicit
concurrent evaluation, the execution model launches a set of additional workers to exploit
in parallel a common sub-computation. Parallel execution is then handled implicitly by
the execution model taking into account possible directive restrictions. For example, we
may have directives to define the number of workers, the scheduling strategy to be used,
load balancing policies, etc. By taking advantage of these parallel constructs, a user can
write parallel logic programs from scratch or parallelize existing sequential programs,
by incrementally pinpointing the sub-computations that can benefit from parallelism,
using the available directives to test and fine tune the program in order to achieve the
best performance. Combining the inherent implicit parallelism of Prolog with high-
level parallel constructs will clearly enhance the expressiveness and declarative style of
tabling and simplify concurrent programming.

5 Parallelism and Answer Set Programming

Answer Set Programming is a programming paradigm for knowledge representation
and reasoning based on some key points: the use of negation as failure, the semantics
based on stable models (also known as answer sets), and a bottom-up model computation
on a ground version of the program. Many solvers for Answer Set Programming became
available in the last decades. The work by Gebser et al. (2018) is a recent survey on ASP
systems.

The presentation in this section starts with a quick review of parallelism in Datalog, the
language for deductive Databases. Even though pure Datalog lacks negation (which is a
crucial starting point for ASP) and uses implementation techniques which are different
from ASP, we opt to start our conversation from Datalog as the original logic program-
ming paradigm based on a bottom-up model computation—i.e., a paradigm where the
result of the computation is the desired (i.e., minimal) model of a logic program. We then
focus on extraction of parallelism from the ASP computation; in particular, we consider

Parallel Logic Programming: A Sequel 33

parallelization of the search process used by ASP, parallelization of the grounding phase,
the exploitation of portfolio parallelism, and conclude with some final considerations
on other opportunities for parallelism in ASP. For other details on this topic the reader is
referred to the survey by Dovier et al. (2018). Various forms of parallelism have been im-
plemented in modern ASP solvers and experimented with in ASP Competitions (Gebser
et al. 2020).

5.1 Parallelism and Datalog

Research on parallelization of Datalog inherited results and techniques developed in
the field of relational DBMS, such as parallelization of relational operations and of
SQL query evaluation. Particularly relevant are the approaches to parallelization of
natural join operations, as they are at the core of the naive and semi-naive bottom-up
computation in Datalog, and query optimization; the literature has explored such issues
in the context of a variety of computing architectures (Wang et al. 2018; Diamos et al.
2013; Zeuch 2018; Zinn et al. 2016; Shehab et al. 2017).

Initial attempts towards the parallelization of Datalog appeared early in literature.
Among many, we mention the works by Wolfson and Silberschatz (1988), Ganguly et
al. (1992), and Zhang et al. (1995) which explore the execution of Datalog on distributed
memory architectures. These approaches are mainly restricted to definite programs or,
in the case of programs with negation, to stratified programs. The core idea consists in
parallelizing the computation of the minimum model of a Datalog program, computed
using the semi-naive bottom-up technique. Program rules are partitioned and assigned
to the distributed workers. Communication between workers is implemented through
explicit message passing. The different early proposals differ on the techniques used to
distribute sets of rules different workers and management of the communication, used
to exchange components of the minimal model as it is computed.

Similar approaches have been developed to operate on multi-core shared-memory
machines—by exploring hash functions to partition computation of relations that guar-
antee the avoidance of locks (Yang et al. 2015). Significant speedups can be obtained by
using as little synchronization as possible during the program evaluation. An example
is the work by Martinez-Angeles et al. (2014), where the load of computing the model is
distributed among the various GPU threads that can access and modify the data in the
GPU shared memory.

In more recent years, various tools and systems have been developed to evaluate
Datalog programs in parallel or distributed settings. Some of such parallel/distributed
engines have been mainly designed to support declarative reasoning in application
domains like declarative networking, program analysis, distributed social networking,
security, and graph/data analytic. These approaches often extend plain Datalog with
some form of aggregation and negation to meet the needs of the specific application
domain.

Moustafa et al. (2016) propose Datalography, a bottom-up evaluation engine for Datalog
tailored to graph analytics. The system enables the distributed evaluation of Datalog
queries, also involving aggregates; the target architecture for this implementation is a
BSP-style graph processing engine. Queries are compiled into sets of rules that can be

34 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

executed locally by the distributed workers. Optimizations are applied to partition the
work and to minimize communication between workers.

A different approach to large-scale Datalog applications is adopted in the Soufflé system
(Jordan et al. 2016; Nappa et al. 2019; Zhao et al. 2020). Efficient Datalog evaluation is
obtained by compiling declarative specifications into C++ programs involving openMP
directives that enable parallel execution on shared-memory multi-core architectures.

The BigDatalog system (Condie et al. 2018; Das and Zaniolo 2019; Shkapsky et al.
2016) supports scalable analytics and can be executed on distributed and multi-core
architectures. The notion of “pre-mappability” (Zaniolo et al. 2017) is exploited to extend
Datalog’s fixpoint semantics in order to enable aggregates in recursion.

Seo et al. (2013) describe Distributed SociaLite, an extension of the SociaLite system for
parallel and distributed large-scale graph analysis. In this case, users can specify how
data should be partitioned and shared across workers in a cluster of multi-cores. The
system optimizes the communication needed between workers.

In the Myria system (Wang et al. 2015) for large-scale data analytics, Datalog queries,
possibly involving aggregates and recursion, are translated into parallel query plans to
be executed in a shared-nothing multi-core cluster. Both synchronous and asynchronous
evaluation schemes are possible.

Concerning the exploitation of parallelism in Datalog-based approaches to data anal-
ysis, we also mention RecStep (Fan et al. 2019), an implementation of a general-purpose
Datalog engine built on top of a parallel RDBMS. The target architecture is a single-node
multi-core system and the language extension of plain Datalog offers aggregates and
stratified negation. Yedalog (Chin et al. 2015) extends Datalog to enable computations
and analysis on large collections of semi-structured data. The DeALS system (see the
paper by Shkapsky (2016) and the references therein) which supports standard SQL-like
aggregates as well as user-defined aggregates, combined with (stratified) negation, has
been ported to both multicore platforms and distributed memory systems (using the
Spark library).

In Sections 6 and 7 we will also show other approaches to Datalog parallelism.

5.2 Search (Or-) Parallelism in ASP

The most popular ASP solvers proposed in the literature implement search processes
that explore the search space of possible truth value assignments to the atoms of the
ground program—directly or indirectly (e.g., through activation of program rules). This
has prompted the study of parallelization of the search process, by supporting the
concurrent exploration of different parts of the search space. This form of parallelization
resembles the exploitation of Or-Parallelism in Prolog, as discussed earlier.

5.2.1 General Design

The concept of Or-parallelism (or Search parallelism) in ASP emerged early on in the his-
tory of the paradigm—the first popular ASP solvers appeared around 1997 (e.g., Smodels
(Niemela and Simons 1997), DLV (Citrigno et al. 1997)) and the first reports of parallel
ASP solvers were presented in 2001 (El-Khatib and Pontelli 2000; Finkel et al. 2001; Pon-
telli 2001). These first Or-parallel ASP implementations originated from modifications

Parallel Logic Programming: A Sequel 35

of the Smodels inference engine. The intuitive structure of the algorithm underlying
Smodels is illustrated in Algorithm 2. The procedure incrementally constructs a partial
interpretation by identifying atoms as being true (added to S+) or false (added to S−).
If all atoms of the Herbrand base of the program P (BP) are assigned, the solution is
returned. The Expand procedure is used to deterministically expand the partial interpreta-
tion constructed so far, using the clauses of the program to infer the truth value of other
atoms. Intuitively, if ⟨S+,S−⟩ is the current partial interpretation, the Expand procedure
determines a subset of

⟨{A | P ∪ S+ ∪ {¬B | B ∈ S−} |= A}, {A | P ∪ S+ ∪ {¬B | B ∈ S−} |= ¬A}⟩

The implementation of Expand in Smodels uses inference rules which are equivalent to
the computation of the well-founded model of the program P∪S+∪{← p|p ∈ S−}} (similar
to the program transformations proposed by Brass et al. (2001)). The Select Atom function
heuristically selects an unassigned atom to assign next, while the Choose function cre-
ates a non-deterministic choice between the two following alternatives. Or-parallelism
arises from the concurrent exploration of the alternatives generated by Choose—see also
Figure 6.

Algorithm 2: Intuition of Smodels.
Input: A ground program P
Output: Answer Set

1 ⟨S+,S−⟩ = ⟨∅, ∅⟩
2 loop forever
3 ⟨S+,S−⟩ = Expand(P, ⟨S+,S−⟩)
4 if (S+ ∩ S− , ∅) then
5 return Fail

6 if (S+ ∪ S− = BP) then
7 return ⟨S+,S−⟩

8 p = Select Atom(P, ⟨S+,S−⟩)
9 Choose:

10 1: S+ = S+ ∪ {p}
11 2: S− = S− ∪ {p}

⟨S+,S−⟩

Expand

Select Atom

p
⟨S+ ∪ {p},S−⟩ ⟨S+,S− ∪ {p}⟩

Expand Expand

Worker A Worker B

Fig. 6: Intuition of Or-Parallelism in
ASP

The model proposed by Finkel et al. (2001) relies on a centralized scheduling structure,
with a single central master and a collection of slave workers. The master is responsible
for coordinating the distribution of unexplored parts of the search tree among workers.
Paths in the search tree are described as binary strings (i.e., a 0 represent a left child while
a 1 represents a right child). Initially, each worker receives the complete ASP program
and a binary string which is used to deterministically choose its position in the search
tree (Figure 7). A similar model has been adapted for execution on distributed memory
architectures in the claspar system (Ellguth et al. 2009; Schneidenbach et al. 2009). The
claspar system adds the ability of organizing workers in a deeper hierarchical structure
and the ability to exchange learned nogoods across parallel computations.

36 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

The binary search tree created by the execution of Smodels is irregular—thus leading
to an unbalanced distribution of work among workers. When a worker has exhausted its
assigned search tree, it requests a new branch to the master; in turn, the master requests
work from a randomly chosen worker. The selected worker will transfer the highest (i.e.,
closest to the root) choice point with open alternatives to the master for redistribution,
marking it as fully explored. This approach avoids the risk of different workers exploring
the same branch of the search tree. Selecting unexplored choices closer to the root is a
known heuristic aimed at increasing the chance of assigning to a worker a potentially
large task.

a1

a2

a3

a4

a5

Worker: 1011

a1

a2

a3

a4

a5

Worker: 0001

Fig. 7: Examples of initial distribution in ParStab: 0 left child, 1 right child

The system initially proposed by El-Khatib and Pontelli (2000) and Pontelli (2001), and
later fully developed by Balduccini et al. (2005) and Pontelli et al. (2010), represents a fully
Or-parallel implementation of Smodels with symmetric workers—without the presence
of a master serving as broker for distribution of unexplored tasks. Each worker explores
parts of the search tree as well as participates in the distribution of unexplored parts
of the search tree to other, idle, workers. Thus, each worker alternates (1) computation
steps (corresponding to the execution of Smodels), and (2) load balancing steps to relocate
workers to branches of the search tree with unexplored alternatives. The design has
been developed on both shared memory systems (Pontelli 2001; Balduccini et al. 2005)
as well as on Beowulf clusters (Pontelli et al. 2010). The two implementations have a
similar design, where branches of the search tree are represented locally within the data
structures of each worker (i.e., a complete Smodels solver).

5.2.2 Scheduling and Heuristics

The process of load-balancing is essential to allow workers to remain busy and in-
crease the degree of parallelism exploited. Load balancing is composed of two activities:
(1) scheduling, which is used to identify the location in the search tree where an idle
worker should be moved, and (2) task sharing, which is the actual process of moving the
worker to the new location.

Several dimensions have been explored for both scheduling and task sharing, and
experimental comparisons have been presented by Le et al. (2005; 2007; 2010). While
significant performance differences can be observed, thus making it hard to identify a
clear winning strategy, on average the most effective methodology for scheduling and

Parallel Logic Programming: A Sequel 37

task sharing is the Recomputation with Reset strategy (Figure 8). Intuitively, scheduling
is based on selecting the highest node in the tree with unexplored alternatives. The
process of task sharing is realized by restoring the state of the worker to the root of
the tree (Figure 8 top left) and repeating the computation from the root to the selected
node of the tree (Figure 8 top right). The latter operation can be performed efficiently
using a single Expand operation. The idle worker is then able to restart the computation
with an unexplored alternative from the selected node (Figure 8 bottom). The idea of
recomputation in Or-parallelism is not novel—it has been explored in the context of
Or-parallelism in Prolog by several systems, such as the Delphi model (Clocksin and
Alshawi 1988) and the Randomized Parallel Backtracking model (Janakiram et al. 1988;
Lin 1989).

Fig. 8: Recomputation with Reset

5.3 Parallel Grounding

In this section we focus on the parallelization of the grounding stage that transforms
the first order logic program P into an equivalent propositional program ground(P). P
uses a finite set of constant symbols C. A rule using n different variables should, in
principle, be replaced by |C|n ground clauses where variables are replaced by elements
of C in all possible ways. This simple idea can be easily parallelized; however it might
lead to a ground program of unacceptable size. Since the first grounder Lparse (Simons
et al. 2002) this problem has been addressed by splitting program-defined predicates
into two classes: domain and non-domain predicates. The precise definition of domain

38 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

predicates has been changed in the evolution of grounders, but the idea is that they are
those predicates that can be extensionally computed deterministically using a bottom-up
procedure. In particular, all predicates extensionally defined by ground facts are domain
predicates. Every variable occurring in a rule should occur in the argument of a positive
atom in the body as well to help grounding (domain/range restriction). This introduces
a partial ordering between parts of the program. This ordering has been exploited by
parallel grounders, as well. Precisely, parallelism for grounding can be implemented at
three different levels:

1. Components Level parallelism is based on the analysis of the strongly connected
components (SCC) of the dependency graph G(P). The program is split in mod-
ules and the grounding follows the topological ordering of the SCC. Independent
modules can be managed in parallel and synchronization points are used to control
the overall process.

2. Rules Level parallelism. Each rule can be, in principle, grounded in parallel. Non-
recursive rules are grounded first. Grounding of rules involved in recursion are
delayed. Their grounding follows the bottom-up fixpoint procedure (precisely, the
semi-naive evaluation procedure developed for Datalog) that ends when no new
ground clauses are generated.

3. Single Rule Level parallelism takes care of parallelizing into different threads the
grounding of a single rule. Assume a rule contains n different variables X1, . . . ,Xn.
Each variable Xi, i ∈ {1, . . . ,n}, occurs in an atom based on a domain predicate and
we know that Xi ranges in the set of constant symbols Ci ⊆ C. The grounding of
the rule producesΠn

i=1|Ci| ground instances. It is expected that |Ci| ≪ |C| but, in any
case, the number of instances grows exponentially with n. Thus, implementing
this form of parallelism is crucial for rules containing several variables.

The research in parallel grounding can be traced back to the work of Balduccini et
al. (2005), where authors exploited the property of range restrictedness of Lparse pro-
grams and implemented single rule parallelization following a static partition of rules.
Let us observe that each parallel processor is assumed to be aware of the domain predi-
cates used in the rule. The group of University of Calabria has deeply investigated the
multilevel parallelism hierarchy described above (see, for instance, the work by Calimeri
et al. (2008) and by Perri et al. (2013)) with outstanding performance improvements. An
interesting observation of these works is the evidence that, in the majority of the ex-
plored benchmarks, single rule level parallelism represents the dominating component
for performance improvement.

5.4 Other Forms of Parallelism

Alternative forms of parallelism have also been explored in the context of ASP.
Lookahead parallelism has been considered as a technique to improve performance of

the deterministic steps of the ASP computation. Lookahead is an optimization technique
introduced in the Smodels system. Lookahead is part of the Select Atom operation.
Before selecting a chosen atom, the lookahead operation performs a quick set of Expand
operations (which are typically very efficient) on undefined atoms: given a partial answer
set ⟨S+,S−⟩ and a set of atoms A such that A ∩ (S+ ∪ S−) = ∅, for each x ∈ A the

Parallel Logic Programming: A Sequel 39

system executes both Expand(P, ⟨S+ ∪ {x},S−⟩) and Expand(P, ⟨S+,S− ∪ {x}⟩). If both of
them leads to failure, then backtracking should be initiated; if only one of them leads to
failure, then x can be added to the partial answer set and the process continue; if both
operations succeed without failure, then the element can be considered as an option
for the non-deterministic choice. The intuition of parallel lookahead is to perform such
tests concurrently to eliminate unsuitable options for choice. Balduccini et al. (2005)
demonstrate speedups in the range from 5 to 24 using 50 processors on a variety of
benchmarks.

5.5 Portfolio Parallelism

ASP solvers, constraint solvers (used in CLP), and SAT solvers (used as auxiliary solvers
in logic programming languages such as Picat (Zhou and Kjellerstrand 2016)) are com-
posed of many distinguished parts, but they share a common scheme: (1) choice of a not
yet instantiated variable/literal, (2) choice of the value (e.g., true/false for ASP and SAT
solvers, a domain element in many constraint solvers), (3) deterministic propagation of
the value chosen that allows us to reduce the remaining part of the search space. When
the assignments made so far cause a conflict (e.g., a rule/clause/constraint unsatisfied),
a (4) backtracking/backjumping activity starts, possibly after a (deterministic) analysis
of the conflict that might lead to (5) learning new clauses/constraints. These clauses are
implied by the problem and therefore from a logic point of view they are redundant, but
their explicit addition can speed up the remaining part of the search, thanks to the new
inference power they support. Moreover, the search can be sometimes restarted (6) from
the beginning but new parts of the search tree are visited thanks to the new constraints.

This general scheme supports many variants, especially for the choices (1), (2), and (6).
Thus, one could use different solvers (a portfolio of algorithms (Gomes and Selman 2001)) or
a solver with many parameters that can, in principle, be tuned to the particular instance
of the problem to provide the best possible performance (algorithm configuration). A solver
has a set of parameters with values in discrete or continuous domains. Even if continuous
domains are discretized, the number of possible tuples of parameter values would
make a manual optimization infeasible. The algorithm configuration approach applies
statistical techniques to automatically find an “optimal” configuration for a family of
problem instances that follow a certain distribution. This is usually implemented by
iterating a local search routine starting from an initial solution and verifying it in a set
of training instances.

An easy way of exploiting parallelism in this context could be simply that of using a set
of (fixed) algorithms and run them in parallel, and taking the first solution generated by
one of the parallel threads. In the case of algorithm configuration, local search techniques
can be run in parallel (with different random choices) and the best solution in a finite
amount of time is retrieved. Thus, algorithm portfolio and configuration activities will
benefit from a parallel architecture.

The research in the area has been rather active in the last years showing excellent
performances. The heuristics that drive to the choices (1) and (2) can be static (computed
only at the beginning of the search) or dynamic (updated during the search) and based
on the analysis of some features. Typical features are of the following types (as described
by Maratea et al. (2014)):

40 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Problem size features number of rules r, number of atoms a, ratios r/a and ratios recip-
rocal a/r of the ground program.

Balance features ratio of positive and negative atoms in each rule body, ratio of positive
and negative occurrences of each variable, fraction of unary, binary, and ternary rules,
etc

Proximity to Horn features fraction of Horn rules and number of atoms occurrences in
Horn rules.

ASP peculiar features number of true and disjunctive facts, fraction of normal rules
and constraints, head sizes, occurrences of each atom in heads, bodies and rules,
occurrences of true negated atoms in heads, bodies and rules, sizes of the SCCs of
G(P), number of Head-Cycle Free (HCF) and non-HCF, etc

Moreover, dynamic features can consider the ratio of the variables currently assigned by
propagation vs those assigned non-deterministically, the number of restarts, the number
of rules learned since the last restart, and so on. Modern solvers offer a number of built-in
sets of parameter configurations. For instance, the heuristics frumpy of the ASP solver
clasp (Gebser et al. 2011) sets the following parameters

--eq=5 --heuristic=Berkmin --restarts=x,100,1.5

--deletion=basic,75 --del-init=3.0,200,40000

--del-max=400000 --contraction=250

--loops=common --save-p=180 --del-grow=1.1

--strengthen=local --sign-def-disj=pos

In particular, it uses the variable selection rule developed for the SAT solver Berkmin
(Goldberg and Novikov 2007). Furthermore, clasp allows the user to choose the auto
option that select the most promising configuration based on the features of the current
instance or to input a precise configuration from a file.

The selection of the algorithm is implemented using supervised and unsupervised
machine learning techniques. In the case of algorithm configuration, instead, parameters
are often tuned using local search technique. We give a brief summary here of the
approaches in the area of SAT, ASP, and Constraint Programming (a complete and
up-to-date survey can be found in the paper by Tarzariol (2019)).

SATzilla (Xu et al. 2008) is the first algorithm selection implementation in the area
of SAT solving. Several versions follow its first prototype adding new statistical tech-
niques and obtaining much more performances. CLASPfolio (Gebser et al. 2011) executes
algorithm selection among a set of twelve configurations of the clasp solver with “com-
plementary strengths” using support vector regression techniques. A static approach
is made by ME–ASP (Maratea et al. 2014) analyzing a set of parameters as explained
above.

A common experience in problem-solving is that (often) a solver either solves a prob-
lem in few seconds or does not solve it in days. Then, the idea is to use the algorithm
portfolio with a limited time and analyze the output for selecting the best algorithm and
repeat this several times during the search. This technique is called algorithm scheduling.
In this case, it is crucial that the portfolio selection is made in parallel. This technique
has been implemented and applied with success in Constraint Programming by SUNNY
—SUbset of portfolio solvers by using k-Nearest Neighbor technique to define a lazY learning

Parallel Logic Programming: A Sequel 41

model—(Amadini et al. 2014), in ASP by aspeed (Hoos et al. 2015) that is based on
the clasp solver, and in SAT by Malitsky et al. (2012). All the three proposals exploit
multi-core architectures and parallelism.

Portfolio parallelism has been considered in the second revision of claspar (Schnei-
denbach et al. 2009). Portfolio parallelism is realized by instructing a pool of workers to
attempt to solve the same problem but with different configurations of the solver—e.g.,
different heuristics and different parameters to guide search. This allows the workers to
“compete” in the resolution of a problem by creating different organizations of the search
space and exploring them in parallel. Schneidenbach et al. (2009) provided speedups of
the order of 2 using this technique.

Some systems combine algorithm portfolio and configuration. CLASPfolio 2 (Hoos
et al. 2014) improves the selection technique of CLASPfolio by defining a static pre-
solving scheduling that may intervene if the learned selection model performs poorly.
AutoFolio (Lindauer et al. 2015) executes Algorithm Configuration over CLASPfolio 2,
choosing the optimal learning techniques with its optimal parameters configuration.

As a final observation, the use of portfolio techniques may have an impact on the
“observable semantics” of a system in some situations. In the context of solving op-
timization problems or in determining all models of a program, portfolio techniques
will not modify the behavior of the system; on the other hand, if the system is used to
determine one answer set, then portfolio techniques may lead to a different answer set
than the one found by a sequential system.

6 Going Large: Logic Programming and Big Data Frameworks

The scalability of logic programming technologies has been a constant focus of attention
for the research community. Scalability in terms of speed has been well understood and
materialized in a number of highly efficient systems. Scalability in terms of memory
consumption, instead, is still an open challenge. There are several examples offered in
the literature that capture this challenge. For example,

• In the domain of planning using ASP, scalability in terms of solving large planning
problem instances is negatively impacted by the large grounding produced by
the combination of the number of actions and plan length. For example, in the
encoding of the popular Biochemical Pathway planning benchmarks, from the
International Planning Competitions, ASP can ground only instances with less
than 70 actions (instances 1–4), running out of memory with Instance 5 (which
contains 163 actions) (Son and Pontelli 2007).

• The use of logic programming techniques for processing knowledge bases (e.g.,
RDF stores) faces the need for smart preprocessing techniques or interfaces with
external databases in order to cope with the sheer size of large repositories—e.g.,
as in the case of the CDAOStore, an ASP-based system for phylogenetic inference
over a repository with 5 Billion triples, stored in 957 GB (Chisham et al. 2011;
Pontelli et al. 2012).

These challenges have prompted a number of research directions, ranging from the
use of interfaces between logic programming systems and external repositories (e.g., to
avoid the need for fully in-memory reasoning), as in the DLV-HEX system (Eiter et al.

42 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

2018), to systems working with lazy-grounding or non-ground computations (Bonatti
et al. 2008; Dal Palù et al. 2009; Leutgeb and Weinzierl 2017). An alternative approach
relies on the use of distributed programming techniques to address scalability.

6.1 Introduction to Large Scale Data Paradigms

The literature has offered access to popular infrastructures and paradigms to facilitate
the development of applications on distributed platforms, taking advantage of both the
parallelism and the ability to distribute data over the memory hierarchies of multiple
machines. In this section, we will briefly review some of the fundamentals of such
distributed programming infrastructures (see, e.g., Hadoop and Spark documentation
(White 2015; Karau et al. 2015) for further insights).

Distributed File Systems (DFS) are designed to provide a scalable and highly fault-tolerant
file system, which can be deployed on a collection of machines using possibly low-cost
hardware. The Hadoop Distributed File System (HDFS) represents a popular implementa-
tion of a DFS (Apache 2020a). It adopts a master-slave architecture. NameNodes (masters)
regulate access to files, track data files, and store metadata. File content is partitioned
into small chunks (blocks) of data distributed across the network. Chunks may range in
size (typically, from 16 MB to 64 MB) and replicated to provide redundancy and seam-
less recovery in case of hardware failures. An HDFS instance may consist of thousands
of server machines and provides hardware failure detection, a write-once-read-many
access model, and streaming data access.

Map-Reduce is a distributed programming paradigm designed to analyze and process
large data sets. The foundations of the concept of Map-Reduce can be traced back to
fundamental list operations in functional programming. However, the concept gained
popularity as a rigid paradigm for distributed programming, piloted by Google and
popularized in implementations as in the Apache Hadoop framework (Ullman 2010;
Apache 2020a). The Map-Reduce paradigm provides a basic interface consisting of two
methods (see Figure 9–left):

• map() that maps a function over a collection of objects. It outputs a collection of
“key-value” tuples;

• reduce() that takes as input a collection of key-value pairs and merges the values
of all entries with the same key.

The map method is usually performed in order to transform and filter a collection,
while the reduce method usually performs a summary (e.g., counting the elements of a
collection, or the word frequencies in a text).

Extended implementations of Map-Reduce have been devised to allow the iterative
execution (Figure 9–right) of Map-Reduce cycles optimizing communication (Bu et al.
2010; Ekanayake et al. 2010).

Graphs Primitives are made available for HDFS within the framework Apache Spark (Ka-
rau et al. 2015). Spark is an in-memory data processing engine that allows for streaming,
data processing, machine learning and SQL functionalities; it relies on the concept of

Parallel Logic Programming: A Sequel 43

Fig. 9: Map-Reduce paradigm

Resilient Distributed Dataset (RDD). A RDD is an immutable, fault-tolerant distributed
collection of objects, a read-only, partitioned collection of records, organized into logical
partitions, that may be located and processed on different nodes of the HDFS. Among
the libraries built on top of Spark Core, GraphX (Apache 2020b) has been developed for
graphs modeling and graph-parallel computation. GraphX takes full advantage of the
RDD data structure and extends it providing a distributed property multigraph abstrac-
tion. Property graphs are directed multigraphs with user-defined objects associated to
vertices and edges. They are encoded by pairs of RDDs containing the properties for
vertices and edges, and, therefore, inherit RDDs features, such as map, filter, and reduce.

GraphX also gives access to a complete interface for dealing with graphs, as well to an
implementation of the Pregel API (Malewicz et al. 2010). Pregel is a programming model
for large-scale graph problems and for fix-point computations over graphs. A typical
Pregel computation consists of a sequence of super-steps. Within each super-step, vertices
may interact with their neighbors by sending messages. Each vertex analyzes the set of
messages received in the previous super-step (if any) and alters its content according to a
user-defined function. In turn, each node can generate new messages to the neighboring
nodes. A Pregel computation stops when a super-step does not generate any messages or
when other halting conditions are encountered (e.g., a maximum number of iterations).

6.2 Large Scale Computing in Datalog

Computing Natural Joins Using Map-Reduce. The underlying core component of most
implementations of logic programming using Map-Reduce is the ability to scale the
computation of natural join operations over large datasets, as originally studied by
Afrati et al. (2010; 2011).

Let us start considering the basic case of a 2-way join between two relations R and
S, denoted by R \ S. Let us assume, for the sake of simplicity, that R and S are binary
and that the second attribute name of the former is also the first attribute name of the
latter (briefly, it can be denoted as R(A,B) \ S(B,C)). A Map-Reduce computation can
be achieved as follows:

• Each Map task receives tuples drawn from the two relations R and S and produces
key-values pairs where the key is the value of the common argument B and the
values are the remaining component of the tuple. Namely, (a, b) ∈ R is mapped to

44 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

the pair ⟨b, (a,R)⟩, and (b, c) ∈ S is mapped to ⟨b, (c,S)⟩ (R and S are here the names
of the two relations).

• Each Reduce task receives a pair with one value of the common argument and a list
of all tuples containing such value, e.g., ⟨b,L⟩, with L = [(a,R), (a′,R), (c,S), (c′,S), . . .]
and outputs a resulting (ternary) relation RS with tuples (x, b, y) ∈ RS for each
(x,R), (y,S) in the list L.

Thus, the Reduce task exploits data parallelism, using one worker for every singe element
of the common domain.

This can be extended to the case of multi-way joins, e.g., R(A,B) \ S(B,C) \ T(C,D),
without the need of cascading two-way joins (which could lead to very large intermediate
relations). The model explored relies on the use of hashing. Let us adopt a hash function h
for the attribute B, partitioned in β buckets, and a hash function g for the common
attribute C, partitioned in γ buckets.

• Each Map task performs the following hash operations: (1) each tuple (x, y) ∈ R is
mapped to ⟨(h(y), c), (R, x, y)⟩ for each 1 ≤ c ≤ γ; (2) each tuple (y, z) ∈ S is mapped
to ⟨(h(y), g(z)), (S, y, z)⟩; (3) each tuple (z,w) ∈ T is mapped to ⟨(b, g(z)), (T, z,w)⟩ for
each 1 ≤ b ≤ β.

• For each pair (b, c) ∈ {1, . . . , β} × {1, . . . , γ} there is a reduce task taking care of pairs
of the form ⟨(b, c),L⟩. It outputs the relation RST with tuples (x, y, z,w) for every
triple of triples (R, x, y), (S, y, z), (T, z,w) in L.

In this case the distribution of the work is split in βγworkers, and β and γ can be defined
arbitrarily, thus determining the amount of parallelism we would like to exploit.

Distributed Computation in Datalog. Distributing the computing of the join is the basis
for the general computation of bottom-up semantics. In particular, the WebPIE system
(Urbani et al. 2012) has been designed to support reasoning over RDF stores. The pro-
posed system is capable of determining inferences according to RDFS semantics and the
OWL ter Horst fragment (ter Horst 2005). The approach adopted consists of encoding
the inference rules capturing these semantics as Datalog rules. The computation of the
least fixpoint of the set of rules given a collection of RDF triples is achieved as an iterated
Map-Reduce computation, which captures the bottom-up application of the inference
rules. The WebPIE system takes advantage of the specific format of the resulting Datalog
rules. In the case of RDFS, the system takes advantage of the following factors:

• Each rule has at most two subgoals in the body—thus allowing the use of the
Map-Reduce method to compute 2-way natural joins to capture the bottom-up
application of each rule;

• In most rules, one of the two subgoals is one of the triples from the RDF store—
allowing to optimize the computation by keeping the original triples in memory
and matching them with generated ones;

• In most cases, it is possible to order the application of the rules to perform the
computation using only three phases of Map-Reduce.

The generalization to arbitrary Datalog programs has been investigated in a variety
of works (e.g., those by Afrati et al. (2011) and by Afrati and Ullman (2012)). While

Parallel Logic Programming: A Sequel 45

different approaches have provided a variety of optimizations, based on special types
of rules (e.g., transitive closures) and size of the definitions of different predicates in
the extensional database, they all build on the principles of iterated execution of Map-
Reduce workflows, using approaches like HaLoop (Bu et al. 2010).

This work direction has been expanded to consider Datalog with a stratified use of
negation, as a natural iteration of the approaches described earlier (Tachmazidis and
Antoniou 2013). Following the lexicographical sort of the G(P), the computation can
proceed by iterating the standard Datalog computation (implementing the TP using
joins and exploiting Map-Reduce). The extra ingredient here is handling of negated
literals where anti-join needs to be implemented.

For example, given a rule of the type

h(A,B):-p(A,C), q(C,B), not r(B).

the inference is realized using two Map-Reduce processes:

1. The first implements a natural join to derive the consequences of p(A,C), q(C,B),
as discussed earlier (e.g., producing a temporary relation pq(A,C,B));

2. The second Map-Reduce phase performs an anti-join—with analogous structure as
the natural join, with the exception that the reduce step is used to filter out those
tuples with matching values in the pq relation and the r relation.

Strong performance results have been presented, thanks also to a broad range of opti-
mizations based on special cases present in the program clauses, such as lack of common
arguments in the body of a rule (Tachmazidis and Antoniou 2013).

The approach can be extended to support the computation of the well-founded seman-
tics of logic programs with negation (c.f. Section 2.1), as demonstrated by Tachmazidis
et al. (2014).

Recent approaches for increasing the speedup of Datalog distributed computation
introduce new data structures (Jordan et al. 2019) and exploit network topology (Blanas
et al. 2020) for increasing the speedup of Datalog distributed computation.

A similar methodology was also used to support inferences in stratified Datalog with
defeasible reasoning (Tachmazidis et al. 2012). In simplified terms, a theory is composed
of a Datalog program with two types of rules:

head← body
non-defeasible

head⇐ body
defeasible

along with an ordering among defeasible rules. The work by Tachmazidis et al. (2012)
explores the use of Map-Reduce in the case of stratified defeasible theories—i.e., theories
where the dependency graph is acyclic—and thus organized in strata (e.g., the top
stratum includes predicates with no outgoing edges, the preceding one contains the
predicates with links to the top stratum, etc.). The computation requires two Map-
Reduce phases for each stratum, starting with the lowest one. The first Map-Reduce is
used to identify applicable rules, using multi-way joins as discussed earlier, recording for
each derivable element the producing rule and the defeasible nature of the derivation.
The second phase, which is primarily composed of a Reduce step, compares derived
rules based on the ordering of defeasible rules to identify undefeated conclusions.

46 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

6.3 Large Scale Computing and ASP

The use of Map-Reduce and related paradigms to support the execution of ASP has
been only recently considered and with only very preliminary results. The extension of
the previously mentioned approaches to the case of ASP is not trivial, due to the switch
from a bottom-up computation leading to a single minimal model, as in Datalog, to the
case of a non-deterministic computation leading to possibly multiple models.

The foundation of the methodology considered for the distributed computation of ASP
lies in the ability of modeling the computation of the semantics of logic programming
in terms of operations of graphs (Konczak et al. 2006), and taking advantage of existing
models for large scale distributed computations over graphs. This idea was piloted by
Maiterth (2012).

Basically, from a ground logic program P, a graph akin to the rule dependency graph
G(P) is computed. The idea is of looking for a coloring of the nodes with two colors;
colors encode the fact that the body of a rule is activated (by the tentative model) and
therefore its head should be in the model, as well, or not. A correspondence between
these colorings and answer sets has been established and therefore the computation is
delegated to graph operations that can be parallelized exploiting the library GraphX of
Apache.

These concepts have been used to develop a preliminary ASP solver, using the Pregel
support of Apache Spark (Igne et al. 2018; De Bortoli et al. 2019). The approach al-
lows dealing with programs with huge grounding that could not be stored in a single
memory. However, answer set computation based on coloring can not exploit the many
heuristics and the conflict driven clause learning techniques commonly implemented
in ASP solvers and the running time is not comparable. Map-Reduce has been experi-
mented with a general parallel approach for distributed computation of the fixpoint and
of the well-founded semantics using always an approach based on distributed graph
computation (De Bortoli et al. 2019). However, the algorithms proposed are general,
architecture-independent and do not exploit any possible optimization. Thus, even if
running time scales with the number of processors the performances are not comparable
to those of traditional methods in a single processor.

7 Going Small: Logic Programming and GPUs

Graphical Processing Units (GPUs) are massively parallel devices, originally developed to
efficiently implement graphics pipelines for the rendering of 2D and 3D scenes. The use
of GPUs has become pervasive in general-purpose applications that are not directly re-
lated to computer graphics, but demand massive computational power to process large
amounts of data, such as molecular dynamics, data mining, genome sequencing, com-
putational finance, etc. Vendors such as AMD and NVIDIA provide dedicated APIs and
promote frameworks such as OpenCL (Khronos Group Inc 2015) and CUDA (Computing
Unified Device Architecture) (NVIDIA Corporation 2021) to support GPU-computing. In
this section we focus on the efforts made to exploit this type of parallelism in logic
programming.

Parallel Logic Programming: A Sequel 47

7.1 GPU-Based Parallelism

GPUs are designed to execute a very large number of concurrent threads on multiple
data. The underlying conceptual parallel model is defined as Single-Instruction Multiple-
Thread (SIMT). In the CUDA framework, threads are organized and executed in groups
of 32 threads called warps. Cores are grouped in a collection of Streaming MultiProcessors
(SMs) of the same size and warps are scheduled and executed on the SMs. Threads
in the same warp are expected (but not forced) to follow the same program address.
Whenever two (or more) groups of threads belonging to the same warp fetch/execute
different instructions, thread divergence occurs. In this case the execution of the different
groups is serialized and the overall performance decreases.

From the programmer’s perspective, threads are logically grouped in 3D blocks and
blocks are organized in 3D grids. Each thread in a grid executes an instance of the same
kernel (namely, a C/C++ or Fortran procedure). A typical CUDA program includes parts
meant for execution on the CPU (the host) and parts meant for parallel execution on the
GPU (the device). The host program contains instructions for device data initialization,
grids/blocks/threads configuration, kernel launch, and retrieval of results. GPUs also
exhibit a hierarchical memory organization. The threads in the same block share data
using high-throughput on-chip shared memory organized in banks of equal dimension.
Threads of different blocks can only share data through the off-chip global memory.

To take full advantage of GPU architecture, one has to:

• proficiently distribute the workload among the cores to maximize GPU occupancy
(exploit all available device resources, such as SMs, registers, shared memory,...)
and minimize thread divergence;

• achieve the highest possible throughput in memory accesses—namely, (1) adopt
strided access pattern to shared memory to minimize bank conflicts (i.e., accesses to
locations in the same bank by threads of the same block. In this case accesses are
serialized); (2) employ coalesced accesses to global memory (see Figure 10), as this
minimizes the number of memory transactions.

These requirements make the model of parallelization used on GPUs deeply different
from those employed in more “conventional” parallel architectures. Existing serial or
parallel solutions need substantial re-engineering to become profitably applicable in the
context of GPUs.

The design of parallel engines for logic programming taking full advantage of com-
putational power of modern massively parallel graphic accelerators, posed a number of
challenges typically found in irregular applications. Briefly, applications are considered
irregular when the exploitation of parallelism changes while the execution proceeds.
Irregularity appears both in data accesses and in control flow. It is mainly due to the
intrinsic nature of the data, often represented through pointer-based data structures
such as lists and graphs, and to the concurrency patterns of the related algorithms. Be-
cause of data-dependencies these applications frequently produce concurrent activity
per data element, require unpredictable fine-grain communications, and exhibit peculiar
load imbalances (Lumsdaine et al. 2007). Needless to say, the presence of irregularity
makes it hard to maximize GPU occupancy and memory throughput, while minimiz-
ing thread divergence and bank conflicts. This makes the development of solutions to

48 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Fig. 10: Memory-access patterns on an array data-structure by a group of four threads
t0 − t3. Coalesced access pattern (left) and strided access pattern (right).

irregular applications a difficult task, where high performance and scalability are not
an obvious outcome. This is especially true when porting to GPUs serial algorithms or
even solutions originally targeted at more traditional parallel/distributed architectures,
such as cluster and multi-core systems. Parallel graph algorithms constitute significant
examples, that, like SAT/ASP solving, are characterized by the need to process large,
sparse, and unstructured data, and exhibit irregular and low-arithmetic intensity com-
bined with data-dependent control flow and memory access patterns (Dal Palù et al.
2015; Formisano et al. 2017; Dovier et al. 2019; Formisano et al. 2021).

7.2 GPU-Based Datalog

Datalog engines can be obtained by exploiting (parallel) implementations of relational
algebra operations select, join, and projection. This approach is, in principle, viable also
for GPU-based parallelism or, more generally, for the case of parallel/distributed hetero-
geneous architectures (i.e., systems encompassing different devices, such as multi-cores,
GPUs, FPGAs, etc). Several proposals appeared in literature enabling the mechanization
on (multi-)GPUs systems and heterogeneous architectures, of relational operators and
SQL, also including aggregate operators (Huang and Chen 2015; Wang et al. 2018; Rui
and Tu 2017; Diamos et al. 2013; Saeed et al. 2015).

Concerning Datalog, Martinez-Angeles et al. (2014; 2016) design a GPU-based engine
by exploiting GPU-accelerated relational algebra operators. The computation order is
driven by the dependency graph of the Datalog program and fixpoint procedures are
employed in case of recursive predicates. The host preprocesses the program, converting
each rule into an internal numerical representation; the host decides which relational-
algebra operators are needed for each rule, while their executions are delegated to
the device. In particular, select is implemented using three different device function
executions. The first one marks the rows of a matrix that satisfy the selection predicate,
the second one performs a prefix sum on the marks to determine the size of the results
buffer and the location where each GPU thread must write the results, and the last
device function writes the results. The projection operator simply moves the elements
of each required column to a different location. Concerning join, the authors adopted a
standard Indexed Nested Loop Join algorithm. We refer the reader to the mentioned works
by Martinez-Angeles et al. for the details on the CUDA implementation and a report on
experimental evaluations showing significant speedups of the GPU-based engine with
respect to engines running on single and multi-core CPUs. The experiments demonstrate
scalability in presence of extensional databases with several million of tuples.

Parallel Logic Programming: A Sequel 49

The Datalog-like language LogiQL is used as front-end in the Red Fox system (Wu
et al. 2014). LogiQL is a variant of Datalog including aggregations, arithmetic, integrity
constraints and active rules. Red Fox provides an environment enabling relational query
processing on GPUs, through compilation of LogiQL queries into optimized GPU-based
relational operations. Then, an optimized query plan is generated and executed on the
device. The approach is demonstrated to be faster than the corresponding (commercial)
CPU-oriented implementation of LogiQL.

Nguyen et al. (2018) propose a different approach to Datalog parallelization, not
directly relying on parallelization of relational algebra. In this work, the computation
of the least model of a definite program is obtained by first translating the program
into a linear algebra problem. Then, the multi-linear problem is solved on GPU by
using standard CUDA libraries for matrix computations. The solution of the multi-
linear problem identifies the model of the program. A similar approach is also viable
to compute stable models of disjunctive logic programs. The approach demonstrates
encouraging performance results for randomly generated programs with over 20,000
rules.

7.3 GPU-Based ASP

The first attempt in exploiting GPU parallelism for ASP solving has been described
by Dovier et al. (2015; 2016; 2019), proposing the solver yasmin. The authors design
a conflict-driven ASP-solver reminiscent of the conventional structure of sequential
conflict-driven ASP solvers (Gebser et al. 2012). However, substantial differences lay
in both the implemented algorithms and in the specific solutions adopted to optimize
GPU occupancy, minimize thread divergence, and maximizing memory throughput.
To this aim, difficult to parallelize and intrinsically sequential components of serial
solvers have been replaced by parallel counterparts. More specifically, (1) the notion
of ASP computations (Liu et al. 2010) is exploited to avoid the introduction of loop
formulas and the need of performing unfounded set checks (Gebser et al. 2012); (2) a parallel
conflict analysis procedure is used as an alternative to the sequential resolution-based
technique used in clasp. Memory accesses have been regularized by suitably sorting
input data with respect to size of rules, by storing them using Compressed Sparse Row
(CSR) format, and by designing specific device functions, each one tailored to process
groups of rules of homogeneous size. All this enables efficient balanced mapping of data
to threads. Moreover, to maximize device performance, the authors exploited specific
features supported by CUDA framework, such as shuffling (a high efficient intra-warp
communication mechanism) and stream-based parallelism (a support to concurrent kernels
asynchronous execution available in the CUDA programming framework).

GPU-based parallelism can be combined with host parallelism by exploiting host
POSIX pthreads and CUDA streams. In particular, Algorithm 3 (simplified form of the
ASP-solver designed by Dovier et al. (2019)) shows the main part of the host code of the
multi-pthread procedure pthreaded yasminwhich first splits (line 1) the given problem
into a number Npb of subproblems by applying some heuristics/criteria. The simplest
possibility would be to apply Or-parallelism and split the search space by assigning
in different ways the truth values of a subset of the input atoms. Then, the procedure
(lines 2–3) spawns a pool of N host POSIX threads. Note that these pthreads share host

50 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Algorithm 3: Host code of the main procedure pthreaded yasminof the pthreaded
ASP-solver yasmin (simplified)

Input: Ground ASP program P
Input: Number of subproblems Npb and number of pthreads N
Output: Stable models

1 Parts← partition problem(P,Npb,Opts)
/* spawns N concurrent instances of yasmin launcher(): */

2 for (pth← 0; pth < N; pth++) do
3 pths[pth]← pthread create(yasmin launcher(pth))

4 for (pth← 0; pth < N; pth++) do
5 pthread join(pths[pth]) /* wait for pthread’s completion */

6 cudaDeviceSynchronize () /* wait for termination of all device code */
7 outputStableModels ()

Algorithm 4: Host code of yasmin launcher, called in Algorithm 3 (simplified)
Input: Pthread ID pth
Output: Stable models (stored in global device memory)

1 while exists S ∈ Parts do /* repeat while there are subproblems */

2 Parts← Parts \ {S}
3 yasmin(S, pth)
4 cudaStreamSynchronize () /* wait for operations in the stream */

5 pthread exit() /* pthread ends and joins the main pthread */

variables (such as P, Parts,...), but each pthread issues device commands in a different
CUDA stream. Each pthread created in line 3 runs an instance of the host procedure
yasmin launcher (described in Algorithm 4). After the termination of all issued device
commands (lines 4-6) results are collected and output (line 7).

Algorithm 4 describes the procedure yasmin launcher executed by each concurrent
pthread. Such procedure iterates by extracting (in mutual exclusion) one of the unsolved
subproblems (line 2) and by running an instance of the CUDA solver in a dedicated
CUDA stream (line 3). Notice that, since each pthread runs an instance of the solver
in a private CUDA stream, each of them proceeds by issuing commands (memory
transfers, kernel launches, etc) in such stream, independently and concurrently with the
other solver instances. This helps in maximizing GPU occupancy, because it permits
overlapping between computation and memory transfers and allows scheduling of
warps on all available SMs.

The combination of host-parallelism and device-parallelism opens up further refine-
ments, such as the introduction of techniques like parallel lookahead (Dovier et al. 2018),
the development of more powerful multiple learning schemes (Formisano and Vella 2014),
and paves the way to the exploitation of multi-GPU and heterogeneous architectures in
ASP-solving.

Parallel Logic Programming: A Sequel 51

8 Conclusion

We have presented a review of the “second twenty years” of research in parallelism
and logic programming. The choice of the period is motivated by the availability of
a comprehensive survey of the first twenty years, published in 2001, that has served
as a fundamental reference to researchers and developers since. While the contents of
this classic survey are quite valid today, we have attempted to gather herein the later
evolution in the field, which has continued at a fast pace, driven by the high speed
of technological evolution, that has led to innovations including very large clusters,
the wide diffusion of multi-core processors, the game-changing role of general-purpose
graphic processing units, or the ubiquitous adoption of cloud computing. In particular,
after a quick review of the major milestones of the first 20 years, we have reviewed the re-
cent progress in parallel execution of Prolog, including Or-parallelism, And-parallelism,
static analysis, and the combination with tabling. We have covered the significant amount
of work done in the context of parallelism and Answer Set Programming and Datalog,
including search parallelism, other forms of parallelism, parallel grounding, or portfolio
parallelism. Finally, we have addressed the connections with big data frameworks and
graphical processing units.

This new survey highlights once more the wide diversity of techniques explored by
the logic programming community to promote the efficient exploitation of parallelism
within the various variants of the paradigm that have been emerging. Over these years,
we have seen the emergence of more declarative styles of logic programming, such as
Answer Set Programming, as well as an evolution in this same direction within the other
languages that follow the Prolog-style line. Nevertheless, the experiences reported in the
survey show that many of the techniques developed in the early days of parallel logic
programming are still applicable and have paved the way to the efficient parallelization
of these more modern logic programming variants. These lessons have also not been
limited to the domain of logic programming but have also benefited exploitation of par-
allelism in other domains. This includes, e.g., the static analysis examples in Section 4.3
or the conceptual models used in or-parallelism, which have supported work on par-
allel planning (e.g., (Tu et al. 2009)). We expect the general principles of parallel logic
programming to remain valid and benefit broader efforts to parallelism in even more
domains.

Some of the works summarized in this survey are in their infancy, but they are expected
to become dominant trends in the years to come. Just as the use of GPUs has provided the
backbone to success of paradigms like machine learning, we expect GPUs to gain an even
more prominent role in parallel logic programming—e.g., supporting more complex
heuristics and novel extensions (such as the integration of Answer Set Programming
with constraint satisfaction and optimization). The role of multi-platforms is going to
become prominent, especially with the growing emphasis on edge-to-cloud computing.

We hope to have put together a worthy continuation of the classic survey, covering
these last twenty years, and hope that it will serve not only as a reference for researchers
and developers of logic programming systems, but also as engaging reading for anyone
interested in logic and as a useful source for researchers in parallel systems outside
logic programming. The interested reader will find details of the performance results

52 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

obtained using a diversity of coding techniques, architectures and benchmarks, in the
original contributions cited in this paper.

References

Afrati, F. N., Borkar, V. R., Carey, M. J., Polyzotis, N., and Ullman, J. D. 2011. Map-Reduce ex-
tensions and recursive queries. In 14th International Conference on Extending Database Technology.
ACM, New York, 1–8.

Afrati, F. N. and Ullman, J. D. 2010. Optimizing joins in a Map-Reduce environment. In 13th
International Conference on Extending Database Technology. ACM, New York, 99–110.

Afrati, F. N. and Ullman, J. D. 2012. Transitive closure and recursive Datalog implemented
on clusters. In 15th International Conference on Extending Database Technology. ACM, New York,
132–143.

Albert, E., Arenas, P., Genaim, S., Puebla, G., and Zanardini, D. 2007. Cost analysis of Java
bytecode. In 16th European Symposium on Programming, ESOP’07, R. D. Nicola, Ed. Lecture
Notes in Computer Science, vol. 4421. Springer, Heidelberg, Germany, 157–172.

Ali, K. A. M. and Karlsson, R. 1990a. The Muse approach to Or-parallel Prolog. International
Journal of Parallel Programming 19, 2, 129–162.

Ali, K. A. M. and Karlsson, R. 1990b. The Muse Or-parallel Prolog model and its performance.
In 1990 N. American Conf. on Logic Prog. MIT Press, Cambridge, MA, USA, 757–776.

Ali, K. A. M. and Karlsson, R. 1992. Scheduling speculative work in Muse and performance
results. International Journal of Parallel Programming 21, 6, 449–476.

Amadini, R., Gabbrielli, M., andMauro, J. 2014. SUNNY: a lazy portfolio approach for constraint
solving. Theory and Practice of Logic Programming 14, 4-5, 509–524.

Amdahl, G. M. 1967. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the AFIPS ’67 Spring Joint Computer Conference. AFIPS Conference
Proceedings, vol. 30. AFIPS / ACM / Thomson Book Company, Washington DC, 483–485.

Apache. 2020a. The Apache Software Foundation: Apache Hadoop. Tech. rep., https://hadoop.
apache.org/.

Apache. 2020b. The Apache Software Foundation: GraphX programming guide. Tech. rep.,
http://spark.apache.org/docs/latest/graphx-programming-guide.html.

Applied Logic Systems, Inc. 2021. ALS Prolog. Tech. rep., https://alsprolog.com/.
Areias, M. andRocha, R. 2012. Towards multi-threaded local tabling using a common table space.

Theory and Practice of Logic Programming, International Conference on Logic Programming, Special
Issue 12, 4 & 5, 427–443.

Areias, M. and Rocha, R. 2015. Batched evaluation of full-sharing multithreaded tabling. In
Post-Proceedings of the 4th Symposium on Languages, Applications and Technologies. Number 563 in
CCIS. Springer, Heidelberg, Germany, 113–124.

Areias, M. andRocha, R. 2017. On scaling dynamic programming problems with a multithreaded
tabling system. Journal of Systems and Software 125, 417–426.

Balduccini, M., Pontelli, E., El-Khatib, O., and Le, H. 2005. Issues in parallel execution of
non-monotonic reasoning systems. Parallel Computing 31, 6, 608–647.

Baral, C. 2003. Knowledge representation, reasoning and declarative problem solving. Cambridge
University Press, UK.

Barklund, J. 1990. Parallel unification. Ph.D. thesis, Uppsala University. Uppsala Theses in
Computing Science 9.

Beaumont, A. J. andWarren, D. H. D. 1993. Scheduling speculative work in Or-parallel Prolog
systems. In Proceedings of the International Conference on Logic Programming, D. S. Warren, Ed.
MIT Press, Cambridge, MA, USA, 135–149.

https://hadoop.apache.org/
https://hadoop.apache.org/
http://spark.apache.org/docs/latest/graphx-programming-guide.html
https://alsprolog.com/

Parallel Logic Programming: A Sequel 53

Blanas, S., Koutris, P., and Sidiropoulos, A. 2020. Topology-aware parallel data processing:
Models, algorithms and systems at scale. In CIDR 2020, 10th Conference on Innovative Data
Systems Research. www.cidrdb.org, 1–8.

Bonatti, P., Pontelli, E., and Son, T. C. 2008. Credulous resolution for answer set programming.
In National Conference on Artificial Intelligence (AAAI). AAAI Press, 418–423.

Bone, P. 2011. Automatic parallelism in Mercury. In Technical Communications of the 27th Interna-
tional Conference on Logic Programming. Vol. 11. LIPICS, 251–254.

Bone, P. 2012. Automatic parallelization for Mercury. Ph.D. thesis, University of Melbourne.
Bone, P., Somogyi, Z., and Schachte, P. 2012. Controlling loops in parallel Mercury code. In

Proceedings of the POPL 2012 Workshop on Declarative Aspects of Multicore Programming. ACM,
New York, 11–20.

Brass, S., Dix, J., Freitag, B., and Zukowski, U. 2001. Transformation-based bottom-up computa-
tion of the well-founded model. Theory and Practice of Logic Programming 1, 5, 497–538.

Bu, Y., Howe, B., Balazinska, M.,andErnst, M. D. 2010. HaLoop: Efficient iterative data processing
on large clusters. Proceedings of the VLDB Endowment 3, 1, 285–296.

Bueno, F., Debray, S. K., Garcı́a de la Banda, M., andHermenegildo, M. V. 1994. QE-Andorra: A
Quiche–Eating implementation of the basic Andorra model. Technical Report CLIP13/94.0, TU
of Madrid (UPM).

Bueno, F., Deransart, P., Drabent, W., Ferrand, G., Hermenegildo, M. V., Maluszynski, J., and
Puebla, G. 1997. On the role of semantic approximations in validation and diagnosis of constraint
logic programs. In Proc. of the 3rd Int’l. WS on Automated Debugging–AADEBUG. U. Linköping
Press, 155–170.

Bueno, F. andGarcı́a de la Banda, M. 2004. Set-sharing is not always redundant for pair-sharing.
In 7th International Symposium on Functional and Logic Programming (FLOPS 2004). Number 2998
in Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, Germany, 117–131.

Bueno, F., Garcı́a de la Banda, M., and Hermenegildo, M. V. 1999. Effectiveness of abstract in-
terpretation in automatic parallelization: A case study in logic programming. ACM Transactions
on Programming Languages and Systems 21, 2, 189–238.

Bueno, F., Lopez-Garcia, P., and Hermenegildo, M. V. 2004. Multivariant non-failure analysis
via standard abstract interpretation. In 7th International Symposium on Functional and Logic
Programming (FLOPS 2004). Number 2998 in Lecture Notes in Computer Science. Springer-
Verlag, Heidelberg, Germany, 100–116.

Cabeza, D. 2004. An extensible, global analysis friendly logic programming system. Ph.D. the-
sis, Universidad Politécnica de Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del
Monte, Madrid-Spain.

Cabeza, D. and Hermenegildo, M. V. 1996. Implementing distributed concurrent constraint
execution in the CIAO system. In Proc. of the AGP’96 Joint Conference on Declarative Programming.
67–78.

Cabeza, D. and Hermenegildo, M. V. 2009. Non-strict independence-based program paralleliza-
tion using sharing and freeness information. Theoretical Computer Science 410, 46, 4704–4723.

Calegari, R., Denti, E., Mariani, S., and Omicini, A. 2018. Logic programming as a service.
Theory and Practice of Logic Programming 18, 5-6, 846–873. Special Issue “Past and Present (and
Future) of Parallel and Distributed Computation in (Constraint) Logic Programming”.

Calimeri, F., Perri, S., and Ricca, F. 2008. Experimenting with parallelism for the instantiation of
ASP programs. J. Algorithms 63, 1-3, 34–54.

Carlsson, M. andMildner, P. 2012. SICStus Prolog – the first 25 years. Theory and Practice of Logic
Programming 12, 1-2, 35–66.

Carro, M. 2001. Some contributions to the study of parallelism and concurrency in logic pro-
gramming. Ph.D. thesis, Universidad Politécnica de Madrid (UPM), Facultad Informatica UPM,
28660-Boadilla del Monte, Madrid-Spain.

54 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Carro, M. and Hermenegildo, M. V. 1999. Concurrency in Prolog using threads and a shared
database. In 1999 International Conference on Logic Programming. MIT Press, Cambridge, MA,
USA, 320–334.

Casas, A. 2008. Automatic unrestricted independent And-parallelism in declarative multi-
paradigm languages. Ph.D. thesis, University of New Mexico (UNM), Electrical and Computer
Engineering Department, University of New Mexico, Albuquerque, NM 87131-0001 (USA).

Casas, A., Carro, M., and Hermenegildo, M. V. 2007. Annotation algorithms for unrestricted
independent And-parallelism in logic programs. In 17th International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR’07). Number 4915 in Lecture Notes in Computer
Science. Springer-Verlag, The Technical University of Denmark, 138–153.

Casas, A., Carro, M., and Hermenegildo, M. V. 2008a. A high-level implementation of non-
deterministic, unrestricted, independent And-parallelism. In 24th International Conference on
Logic Programming (ICLP’08), M. Garcı́a de la Banda and E. Pontelli, Eds. Lecture Notes in
Computer Science, vol. 5366. Springer-Verlag, Heidelberg, Germany, 651–666.

Casas, A., Carro, M., and Hermenegildo, M. V. 2008b. Towards a high-level implementation
of execution primitives for non-restricted, independent And-parallelism. In 10th International
Symposium on Practical Aspects of Declarative Languages (PADL’08), D. S. Warren and P. Hudak,
Eds. Lecture Notes in Computer Science, vol. 4902. Springer-Verlag, Heidelberg, Germany,
230–247.

Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic programs.
Journal of the ACM 43, 1, 20–74.

Chico de Guzmán, P., Carro, M., Hermenegildo, M. V., Silva, C., and Rocha, R. 2008. An
improved continuation call-based implementation of tabling. In International Symposium on
Practical Aspects of Declarative Languages. Number 4902 in Lecture Notes in Computer Science.
Springer, Heidelberg, Germany, 197–213.

Chico deGuzmán, P., Casas, A., Carro, M., andHermenegildo, M. V. 2011. Parallel backtracking
with answer memoing for independent And-parallelism. Theory and Practice of Logic Program-
ming, 27th Int’l. Conference on Logic Programming (ICLP’11) Special Issue 11, 4–5, 555–574.

Chico deGuzmán, P., Casas, A., Carro, M., andHermenegildo, M. V. 2012. A segment-swapping
approach for executing trapped computations. In PADL’12, N.-F. Zhou and C. Russo, Eds.
Lecture Notes in Computer Science, vol. 7149. Springer Verlag, Heidelberg, Germany, 138–152.

Chin, B., von Dincklage, D., Ercegovac, V., Hawkins, P., Miller, M. S., Och, F. J., Olston, C.,
and Pereira, F. 2015. Yedalog: Exploring knowledge at scale. In 1st Summit on Advances in
Programming Languages, SNAPL 2015, May 3-6, 2015, Asilomar, California, USA, T. Ball, R. Bodı́k,
S. Krishnamurthi, B. S. Lerner, and G. Morrisett, Eds. LIPICS, vol. 32. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 63–78.

Chisham, B., Wright, B., Le, T., Son, T. C., and Pontelli, E. 2011. CDAO-Store: Ontology-driven
data integration for phylogenetic analysis. BMC Bioinformatics 12, 98.

Ciancarini, P. 1990. Blackboard programming in shared Prolog. In Languages and Compilers for
Parallel Computing, D. Gelernter, A. Nicolau, and D. Padua, Eds. MIT Press, Cambridge, MA,
USA, 170–185.

Citrigno, S., Eiter, T., Faber, W., Gottlob, G., Koch, C., Leone, N., Mateis, C., Pfeifer, G., and
Scarcello, F. 1997. The DLV system: Model generator and application frontends. In Twelfth
Workshop Logic Programming, WLP 1997, 17-19 September 1997, München, Germany, Technical Report
PMS-FB-1997-10. Ludwig Maximilians Universität München, 128–137.

Clark, K.andGregory, S. 1986. Parlog: Parallel programming in logic. Transactions on Programming
Languages and Systems 8, 1, 1–49.

Clocksin, W. and Alshawi, H. 1988. A method for efficiently executing Horn clause programs
using multiple processors. New Generation Computing 6, 5, 361–36.

Codish, M., Lagoon, V., and Bueno, F. 2000. An algebraic approach to sharing analysis of logic
programs. Journal of Logic Programming 42, 2, 111–149.

Parallel Logic Programming: A Sequel 55

Codish, M. and Shapiro, E. Y. 1986. Compiling Or-parallelism into And-parallelism. In Third
International Conference on Logic Programming. Number 225 in Lecture Notes in Computer Science.
Imperial College, Springer-Verlag, Heidelberg, Germany, 283–298.

Condie, T., Das, A., Interlandi, M., Shkapsky, A., Yang, M., and Zaniolo, C. 2018. Scaling-up
reasoning and advanced analytics on BigData. Theory and Practice of Logic Programming 18, 5–6,
806–845.

Conway, T. 2002. Towards parallel Mercury. Ph.D. thesis, University of Melbourne.
Cousot, P. and Cousot, R. 1977. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Conference Records of the ACM
Symposium on Principles of Programming Languages. ACM Press, New York, 238–252.

Dal Palù, A., Dovier, A., Formisano, A., and Pontelli, E. 2015. CUD@SAT: SAT solving on gpus.
J. of Experimental & Theoretical Artificial Intelligence (JETAI) 27, 3, 293–316.

Dal Palù, A., Dovier, A., Pontelli, E., and Rossi, G. 2009. GASP: Answer set programming with
lazy grounding. Fundamenta Informaticae 96, 3, 297–322.

Damásio, C. V. 2000. A distributed tabling system. In Conference on Tabulation in Parsing and
Deduction (TAPD2000), Proceedings. University of Vigo, 65–75.

Das, A. and Zaniolo, C. 2019. A case for stale synchronous distributed model for declarative
recursive computation. Theory and Practice of Logic Programming 19, 5–6, 1056–1072.

De Angelis, E., Fioravanti, F., Gallagher, J. P., Hermenegildo, M. V., Pettorossi, A., , and Proi-
etti, M. 2022. Analysis and transformation of constrained horn clauses for program verification.
Theory and Practice of Logic Programming (to appear).

DeAngelis, E., Fioravanti, F., Pettorossi, A., and Proietti, M. 2015. Semantics-based generation
of verification conditions by program specialization. In 17th International Symposium on Principles
and Practice of Declarative Programming. ACM, New York, 91–102.

De Bortoli, M., Igne, F., Tardivo, F., Totis, P., Dovier, A., and Pontelli, E. 2019. Towards dis-
tributed computation of answer sets. In Proceedings of the 34th Italian Conference on Computational
Logic. CEUR Workshop Proceedings, vol. 2396. CEUR-WS.org, Aachen, 316–326.
de Castro Dutra, I. 1994. Strategies for scheduling and- and or-parallel work in parallel logic

programming systems. In Logic Programming, Proceedings of the 1994 International Symposium,
Ithaca, New York, USA, November 13-17, 1994, M. Bruynooghe, Ed. MIT Press, Cambridge, MA,
USA, 289–304.

Debray, S. K., Lin, N.-W., and Hermenegildo, M. V. 1990. Task granularity analysis in logic
programs. In Proc. 1990 ACM Conf. on Programming Language Design and Implementation (PLDI).
ACM Press, New York, 174–188.

Debray, S. K., Lopez-Garcia, P., Hermenegildo, M. V., and Lin, N.-W. 1994. Estimating the
computational cost of logic programs. In SAS’94. Number 864 in Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, Germany, 255–265.

Debray, S. K., Lopez-Garcia, P., Hermenegildo, M. V., and Lin, N.-W. 1997. Lower bound cost
estimation for logic programs. In 1997 International Logic Programming Symposium. MIT Press,
Cambridge, MA, USA, 291–305.

DeGroot, D. 1984. Restricted and-parallelism. In Proceedings of the International Conference on Fifth
Generation Computer Systems, FGCS 1984, Tokyo, Japan, November 6-9, 1984. OHMSHA Ltd. Tokyo
and North-Holland, 471–478.

Desouter, B., vanDooren, M., and Schrijvers, T. 2015. Tabling as a library with delimited control.
Theory and Practice of Logic Programming 15, 4 & 5, 419–433.

Diamos, G. F., Wu, H., Wang, J., Lele, A., and Yalamanchili, S. 2013. Relational algorithms for
multi-bulk-synchronous processors. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’13, Shenzhen, China, February 23-27, 2013, A. Nicolau, X. Shen, S. P.
Amarasinghe, and R. W. Vuduc, Eds. ACM, New York, 301–302.

Dovier, A., Formisano, A., and Pontelli, E. 2018. Parallel answer set programming. In Handbook
of Parallel Constraint Reasoning, Y. Hamadi and L. Sais, Eds. Springer, Heidelberg, Germany,
237–282.

56 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Dovier, A., Formisano, A., Pontelli, E., and Vella, F. 2015. Parallel execution of the ASP
computation. In Tech.Comm. of ICLP 2015, M. De Vos, T. Eiter, Y. Lierler, and F. Toni, Eds. Vol.
1433. CEUR-WS.org, Aachen.

Dovier, A., Formisano, A., Pontelli, E., and Vella, F. 2016. A GPU implementation of the ASP
computation. In PADL 2016, M. Gavanelli and J. H. Reppy, Eds. Lecture Notes in Computer
Science, vol. 9585. Springer, Heidelberg, Germany, 30–47.

Dovier, A., Formisano, A., and Vella, F. 2019. GPU-based parallelism for ASP-solving. In
Declarative Programming and Knowledge Management - Conference on Declarative Programming,
DECLARE 2019, Unifying INAP, WLP, and WFLP, Cottbus, Germany, September 9-12, 2019, Revised
Selected Papers, P. Hofstedt, S. Abreu, U. John, H. Kuchen, and D. Seipel, Eds. Lecture Notes in
Computer Science, vol. 12057. Springer, Heidelberg, Germany, 3–23.

Eiter, T., Germano, S., Ianni, G., Kaminski, T., Redl, C., Schüller, P., and Weinzierl, A. 2018.
The DLVHEX system. Künstliche Intell. 32, 2-3, 187–189.

Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J., and Fox, G. C. 2010. Twister:
A runtime for iterative Map-Reduce. In Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing,. ACM Press, New York, 810–818.

El-Khatib, O. and Pontelli, E. 2000. Parallel evaluation of answer sets programs preliminary re-
sults. In Workshop on Parallelism and Implementation Technologies for (Constraint) Logic Programming
Languages. London, UK.

Ellguth, E., Gebser, M., Gusowski, M., Kaufmann, B., Kaminski, R., Liske, S., Schaub, T., Schnei-
denbach, L.,and Schnor, B. 2009. A simple distributed conflict-driven answer set solver. In Logic
Programming and Non-Monotonic Reasoning. Springer Verlag, Heidelberg, Germany, 490–495.

Fan, Z., Zhu, J., Zhang, Z., Albarghouthi, A., Koutris, P., and Patel, J. M. 2019. Scaling-up
in-memory Datalog processing: Observations and techniques. Proceedings of the VLDB Endow-
ment 12, 6, 695–708.

Fecht, C. 1996. An efficient and precise sharing domain for logic programs. In PLILP, H. Kuchen
and S. D. Swierstra, Eds. Lecture Notes in Computer Science, vol. 1140. Springer, Heidelberg,
Germany, 469–470.

Finkel, R., Marek, V., Moore, N., andTruszczyński, M. 2001. Computing stable models in parallel.
In Proceedings of the AAAI Spring Symposium on Answer Set Programming, A. Provetti and S. C.
Tran, Eds. AAAI/MIT Press, Cambridge, MA, USA, 72–75.

Flanagan, C. and Felleisen, M. 1995. The semantics of Future and its use in program optimiza-
tion. In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Francisco, California, USA, January 23-25, 1995, R. K. Cytron and
P. Lee, Eds. ACM Press, 209–220.

Fonseca, N. A., Silva, F. M. A., and Camacho, R. 2006. April - an inductive logic programming
system. In European Conference on Logics in Artificial Intelligence. Number 4160 in Lecture Notes
in Artificial Intelligence. Springer, Heidelberg, Germany, 481–484.

Fonseca, N. A., Srinivasan, A., Silva, F. M. A., andCamacho, R. 2009. Parallel ILP for distributed-
memory architectures. Mach. Learn. 74, 3, 257–279.

Formisano, A., Gentilini, R., and Vella, F. 2017. Accelerating energy games solvers on modern
architectures. In Proc. of the 7th Workshop on Irregular Applications: Architectures and Algorithms,
IA3@SC. ACM, New York, 12:1–12:4.

Formisano, A., Gentilini, R., and Vella, F. 2021. Scalable energy games solvers on GPUs. IEEE
Trans. Parallel Distributed Syst. 32, 12, 2970–2982.

Formisano, A. and Vella, F. 2014. On multiple learning schemata in conflict driven solvers. In
Proc. of ICTCS., S. Bistarelli and A. Formisano, Eds. CEUR Workshop Proceedings, vol. 1231.
CEUR-WS.org, Aachen, 133–146.

Freire, J., Hu, R., Swift, T., andWarren, D. S. 1995. Exploiting parallelism in tabled evaluations. In
International Symposium on Programming Languages: Implementations, Logics and Programs. Num-
ber 982 in Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 115–132.

Parallel Logic Programming: A Sequel 57

Freire, J., Swift, T., andWarren, D. S. 1996. Beyond depth-first: Improving tabled logic programs
through alternative scheduling strategies. In International Symposium on Programming Language
Implementation and Logic Programming. Number 1140 in Lecture Notes in Computer Science.
Springer, Heidelberg, Germany, 243–258.

Futó, I. 1993. Prolog with communicating processes: From T-Prolog to CSR-Prolog. In International
Conference on Logic Programming. The MIT Press, Cambridge, MA, USA, 3–17.

Futó, I. and Kacsuk, P. 1989. CS-PROLOG on multi-transputer systems. Microprocessors and
Microsystems 13, 2, 103–112.

Gallagher, J. P., Hermenegildo, M. V., Kafle, B., Klemen, M., Lopez-Garcia, P., andMorales, J. F.
2020. From big-step to small-step semantics and back with interpreter specialization (invited
paper). In International WS on Verification and Program Transformation (VPT 2020). EPTCS. Open
Publishing Association, 50–65.

Ganguly, S., Silberschatz, A., and Tsur, S. 1992. Parallel bottom-up processing of Datalog queries.
Journal of Logic Programming 14, 1-2, 101–126.

Garcia-Contreras, I., Morales, J. F., and Hermenegildo, M. V. 2018. Towards incremental and
modular context-sensitive analysis. In Technical Communications of the 34th International Confer-
ence on Logic Programming (ICLP 2018). OpenAccess Series in Informatics (OASIcs). Dagstuhl
Press. (Extended Abstract).

Garcia-Contreras, I., Morales, J. F., and Hermenegildo, M. V. 2019. Multivariant assertion-
based guidance in abstract interpretation. In Proceedings of the 28th International Symposium on
Logic-based Program Synthesis and Transformation (LOPSTR’18). Number 11408 in Lecture Notes
in Computer Science. Springer-Verlag, Heidelberg, Germany, 184–201.

Garcia-Contreras, I., Morales, J. F., andHermenegildo, M. V. 2020. Incremental analysis of logic
programs with assertions and open predicates. In Proceedings of the 29th International Symposium
on Logic-based Program Synthesis and Transformation (LOPSTR’19). Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, Germany, 36–56.

Garcı́a de la Banda, M. 1994. Independence, global analysis, and parallelism in dynamically
scheduled constraint logic programming. Ph.D. thesis, Universidad Politecnica de Madrid.

Garcı́a de la Banda, M. and Hermenegildo, M. V. 1993. A practical approach to the global
analysis of constraint logic programs. In 1993 International Logic Programming Symposium. MIT
Press, Cambridge, MA, USA, 437–455.

Garcı́a de la Banda, M., Hermenegildo, M. V., Bruynooghe, M., Dumortier, V., Janssens, G.,
and Simoens, W. 1996. Global analysis of constraint logic programs. ACM Transactions on
Programming Languages and Systems 18, 5, 564–615.

Garcı́a de la Banda, M., Hermenegildo, M. V., and Marriott, K. 2000. Independence in CLP
languages. ACM Transactions on Programming Languages and Systems 22, 2, 269–339.

Garcı́a de la Banda, M., Marriott, K., and Stuckey, P. J. 1995. Efficient analysis of constraint
logic programs with dynamic scheduling. In 1995 International Logic Programming Symposium.
MIT Press, Cambridge, MA, USA, 417–431.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2012. Answer Set Solving in Practice. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T., and Ziller, S. 2011. A
portfolio solver for answer set programming: Preliminary report. In Logic Programming and
Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada, May
16-19, 2011. Proceedings, J. P. Delgrande and W. Faber, Eds. Lecture Notes in Computer Science,
vol. 6645. Springer, Heidelberg, Germany, 352–357.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., and Schneider, M. 2011.
Potassco: The Potsdam answer set solving collection. AI Commun. 24, 2, 107–124.

Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., and Schaub, T. 2018. Evaluation tech-
niques and systems for answer set programming: a survey. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Swe-
den, J. Lang, Ed. ijcai.org, 5450–5456.

58 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Gebser, M., Maratea, M., and Ricca, F. 2020. The seventh answer set programming competition:
Design and results. Theory Pract. Log. Program. 20, 2, 176–204.

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach. Cambridge University Press, UK.

Gent, I. P., Miguel, I., Nightingale, P., McCreesh, C., Prosser, P., Moore, N. C. A., andUnsworth,
C. 2018. A review of literature on parallel constraint solving. Theory and Practice of Logic
Programming 18, 5-6, 725–758.

Goldberg, E. and Novikov, Y. 2007. Berkmin: A fast and robust sat-solver. Discret. Appl.
Math. 155, 12, 1549–1561.

Gomes, C. P. and Selman, B. 2001. Algorithm portfolios. Artif. Intell. 126, 1-2, 43–62.
Gómez-Zamalloa, M., Albert, E., and Puebla, G. 2009. Decompilation of Java bytecode to Prolog

by partial evaluation. JIST 51, 1409–1427.
Grebenshchikov, S., Lopes, N. P., Popeea, C., and Rybalchenko, A. 2012. Synthesizing software

verifiers from proof rules. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, J. Vitek, H. Lin, and F. Tip, Eds. ACM, New York, 405–416.

Guo, H.-F. and Gupta, G. 2001. A simple scheme for implementing tabled logic programming
systems based on dynamic reordering of alternatives. In International Conference on Logic Pro-
gramming. Number 2237 in Lecture Notes in Computer Science. Springer, Heidelberg, Germany,
181–196.

Gupta, G. and Jayaraman, B. 1990. On criteria for Or-parallel execution models of logic programs.
In 1990 N. American Conf. on Logic Prog. MIT Press, Cambridge, MA, USA, 604–623.

Gupta, G. and Pontelli, E. 1997. Extended dynamic dependent and-parallelism in ACE. In
Proceedings of the 2nd International Workshop on Parallel Symbolic Computation, PASCO 1997, July
20-22, 1997, Kihei, Hawaii, USA, H. Hong, E. Kaltofen, and M. A. Hitz, Eds. ACM, New York,
68–79.

Gupta, G. and Pontelli, E. 1999. Stack-splitting: A simple technique for implementing Or-
parallelism and And-parallelism on distributed machines. In International Conference on Logic
Programming, D. De Schreye, Ed. MIT Press, Cambridge, MA, USA, 290–304.

Gupta, G., Pontelli, E., Ali, K. A. M., Carlsson, M., and Hermenegildo, M. V. 2001. Paral-
lel execution of Prolog programs: a survey. ACM Transactions on Programming Languages and
Systems 23, 4, 472–602.

Gupta, G.andWarren, D. H. D. 1992. An interpreter for the extended Andorra model (preliminary
report). Technical report, Univ. of Bristol, UK.

Gurfinkel, A., Kahsai, T., Komuravelli, A., and Navas, J. A. 2015. The SeaHorn verification
framework. In International Conference on Computer Aided Verification, CAV 2015. Number 9206
in Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 343–361.

Gustafson, J. L. 1988. Reevaluating Amdahl’s Law. Commun. ACM 31, 5, 532–533.
Halstead Jr., R. H. 1985. Multilisp: A language for concurrent symbolic computation. ACM Trans.

Program. Lang. Syst. 7, 4, 501–538.
Haridi, S. and Brand, P. 1988. Andorra Prolog: An integration of Prolog and committed choice

languages. In Proceedings of the International Conference on Fifth Generation Computer Systems,
FGCS 1988, Tokyo, Japan, November 28-December 2, 1988. OHMSHA Ltd. Tokyo and Springer-
Verlag, 745–754.

Haridi, S. and Janson, S. 1990. Kernel Andorra Prolog and its computation model. In Proceedings
of the International Conference on Logic Programming, D. H. D. Warren and P. Szeredi, Eds. MIT
Press, Cambridge, MA, USA, 31–46.

Hausman, B., Ciepielewski, A., and Haridi, S. 1987. Or-parallel Prolog made efficient on shared
memory multiprocessors. In Symposium on Logic Programming. IEEE Computer Society, USA,
69–79.

Henriksen, K. S. andGallagher, J. P. 2006. Abstract interpretation of PIC programs through logic
programming. In SCAM ’06. IEEE Computer Society, USA, 184–196.

Parallel Logic Programming: A Sequel 59

Hermenegildo, M. V. 1986a. An abstract machine based execution model for computer architecture
design and efficient implementation of logic programs in parallel. Ph.D. thesis, U. of Texas at
Austin.

Hermenegildo, M. V. 1986b. An abstract machine for restricted And-parallel execution of logic
programs. In Third International Conference on Logic Programming. Number 225 in Lecture Notes
in Computer Science. Imperial College, Springer-Verlag, Heidelberg, Germany, 25–40.

Hermenegildo, M. V. 2000. Parallelizing irregular and pointer-based computations automatically:
Perspectives from logic and constraint programming. Parallel Computing 26, 13–14, 1685–1708.

Hermenegildo, M. V., Bueno, F., Carro, M., Lopez-Garcia, P., Mera, E., Morales, J. F., and
Puebla, G. 2012. An overview of CIAO and its design philosophy. Theory and Practice of Logic
Programming 12, 1–2, 219–252.

Hermenegildo, M. V., Bueno, F., Garcı́a de la Banda, M., and Puebla, G. 1995. The CIAO
multi-dialect compiler and system: An experimentation workbench for future (C)LP systems.
In Proceedings of the ILPS’95 Workshop on Visions for the Future of Logic Programming. Portland,
Oregon, USA. Available from http://www.cliplab.org/.

Hermenegildo, M. V., Cabeza, D., and Carro, M. 1995. Using attributed variables in the im-
plementation of concurrent and parallel logic programming systems. In ICLP’95. MIT Press,
Cambridge, MA, USA, 631–645.

Hermenegildo, M. V. and Nasr, R. I. 1986. Efficient management of backtracking in And-
parallelism. In Third International Conference on Logic Programming, E. Y. Shapiro, Ed. Number
225 in Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, Germany, 40–54.

Hermenegildo, M. V., Puebla, G., and Bueno, F. 1999. Using global analysis, partial specifications,
and an extensible assertion language for program validation and debugging. In The Logic
Programming Paradigm: a 25–Year Perspective. Springer-Verlag, Heidelberg, Germany, 161–192.

Hermenegildo, M. V., Puebla, G., Bueno, F.,andGarcia, P. L. 2005. Integrated program debugging,
verification, and optimization using abstract interpretation (and the CIAO system preprocessor).
Science of Computer Programming 58, 1–2, 115–140.

Hermenegildo, M. V. and Rossi, F. 1995. Strict and non-strict independent And-parallelism in
logic programs: Correctness, efficiency, and compile-time conditions. Journal of Logic Program-
ming 22, 1, 1–45.

Hill, P. M., Bagnara, R., and Zaffanella, E. 2002. Soundness, idempotence and commutativity
of set-sharing. Theory and Practice of Logic Programming 2, 2, 155–201.

Hoos, H. H., Kaminski, R., Lindauer, M., and Schaub, T. 2015. aspeed: solver scheduling via
answer set programming. Theory and Practice of Logic Programming 15, 1, 117–142.

Hoos, H. H., Lindauer, M., and Schaub, T. 2014. claspfolio 2: Advances in algorithm selection for
answer set programming. Theory and Practice of Logic Programming 14, 4-5, 569–585.

Hu, R. 1997. Efficient tabled evaluation of normal logic programs in a distributed environment.
Ph.D. thesis, Department of Computer Science, State University of New York.

Huang, Y. and Chen, W. 2015. Parallel query on the in-memory database in a CUDA platform.
In 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2015,
Krakow, Poland, November 4-6, 2015, F. Xhafa, L. Barolli, F. Messina, and M. R. Ogiela, Eds. IEEE
Computer Society, USA, 236–243.

Igne, F., Dovier, A., and Pontelli, E. 2018. MASP-Reduce: A proposal for distributed compu-
tation of stable models. In Technical Communications of the 34th International Conference on Logic
Programming. OASICS 64, Schloss Dagstuhl, 8:1–8:4.

Jacobs, D. and Langen, A. 1989. Accurate and efficient approximation of variable aliasing in logic
programs. In 1989 North American Conference on Logic Programming. MIT Press, Cambridge, MA,
USA.

Janakiram, V., Agrawal, D., andMehrotra, R. 1988. A Randomized Parallel Backtracking Algo-
rithm. IEEE Transactions on Computers 37, 12, 1665–1676.

http://www.cliplab.org/

60 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Jordan, H., Scholz, B., and Subotic, P. 2016. Soufflé: On synthesis of program analyzers. In
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part II, S. Chaudhuri and A. Farzan, Eds. Lecture Notes in Computer
Science, vol. 9780. Springer, Heidelberg, Germany, 422–430.

Jordan, H., Subotic, P., Zhao, D., and Scholz, B. 2019. A specialized B-tree for concurrent Datalog
evaluation. In Proceedings of the 24th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2019, Washington, DC, USA, February 16-20, 2019, J. K. Hollingsworth and
I. Keidar, Eds. ACM, New York, 327–339.

Kahsai, T., Rümmer, P., Sanchez, H., and Schäf, M. 2016. JayHorn: A framework for verifying
Java programs. In Computer Aided Verification - 28th International Conference, CAV 2016, S. Chaud-
huri and A. Farzan, Eds. Lecture Notes in Computer Science, vol. 9779. Springer, Heidelberg,
Germany, 352–358.

Karau, H., Konwinski, A., Wendell, P., and Zaharia, M. 2015. Learning Spark. O’Reilly, USA.
Kelly, A., Marriott, K., Søndergaard, H., and Stuckey, P. J. 1998. A practical object-oriented

analysis engine for CLP. Software: Practice and Experience 28, 2, 188–224.
Khronos Group Inc. 2015. OpenCL: The open standard for parallel programming of heterogeneous

systems. http://www.khronos.org.
Klemen, M., Lopez-Garcia, P., Gallagher, J. P., Morales, J. F., and Hermenegildo, M. V. 2020.

A general framework for static cost analysis of parallel logic programs. In Proceedings of the
29th International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’19),
M. Gabbrielli, Ed. Lecture Notes in Computer Science, vol. 12042. Springer-Verlag, Heidelberg,
Germany, 19–35.

Klemen, M., Stulova, N., Lopez-Garcia, P., Morales, J. F., and Hermenegildo, M. V. 2018. Static
performance guarantees for programs with run-time checks. In 20th Int’l. ACM SIGPLAN
Symposium on Principles and Practice of Declarative Programming (PPDP’18). ACM Press, New
York.

Konczak, K., Linke, T., and Schaub, T. 2006. Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming 6, 1-2, 61–106.

Körner, P., Leuschel, M., Barbosa, J., Santos Costa, V., Dahl, V., Hermenegildo, M., Morales,
J., Wielemaker, J., Diaz, D., Abreu, S., and Ciatto, G. 2022. A Multi-Walk Through the Past,
Present and Future of Prolog. Theory and Practice of Logic Programming (to appear).

Kowalski, R. A. 1979. Logic for Problem Solving. Elsevier North-Holland Inc.
Lagoon, V. and Stuckey, P. J. 2002. Precise pair-sharing analysis of logic programs. In Principles

and Practice of Declarative Programming. ACM Press, New York, 99–108.
Le, H. and Pontelli, E. 2005. An investigation of sharing strategies for answer set solvers and

SAT solvers. In Euro-Par. Springer Verlag, Heidelberg, Germany, 750–760.
Le, H. and Pontelli, E. 2007. Dynamic scheduling in parallel answer set programming solvers. In

Proceedings of the 2007 Spring Simulation Multiconference, SpringSim 2007. ACM Press, New York,
367–374.

LeCharlier, B. andVanHentenryck, P. 1994. Experimental evaluation of a generic abstract inter-
pretation algorithm for Prolog. ACM Transactions on Programming Languages and Systems 16, 1,
35–101.

Leutgeb, L. and Weinzierl, A. 2017. Techniques for efficient lazy-grounding ASP solving. In
Declarative Programming and Knowledge Management - Conference on Declarative Programming.
Lecture Notes in Computer Science, vol. 10997. Springer, Heidelberg, Germany, 132–148.

Li, X., King, A., and Lu, L. 2006. Lazy set-sharing analysis. In 8th. Int’l. Symp. on Functional
and Logic Programming, P. Wadler and M. Hagiya, Eds. Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, Germany, 177–191.

Lin, Z. 1989. Expected performance of the randomized parallel backtracking method. In Pro-
ceedings of the North American Conference on Logic Programming. The MIT Press, Cambridge, MA,
USA, 677–696.

Parallel Logic Programming: A Sequel 61

Lindauer, M., Hoos, H. H., Hutter, F., and Schaub, T. 2015. AutoFolio: An automatically config-
ured algorithm selector. J. Artif. Intell. Res. 53, 745–778.

Liqat, U., Georgiou, K., Kerrison, S., Lopez-Garcia, P., Hermenegildo, M. V., Gallagher, J. P.,
and Eder, K. 2016. Inferring parametric energy consumption functions at different software
levels: ISA vs. LLVM IR. In Foundational and Practical Aspects of Resource Analysis: 4th International
Workshop, FOPARA 2015, London, UK, April 11, 2015. Revised Selected Papers, M. V. Eekelen and
U. D. Lago, Eds. Lecture Notes in Computer Science, vol. 9964. Springer, Heidelberg, Germany,
81–100.

Liqat, U., Kerrison, S., Serrano, A., Georgiou, K., Lopez-Garcia, P., Grech, N., Hermenegildo,
M. V., and Eder, K. 2014. Energy consumption analysis of programs based on XMOS ISA-
level models. In Logic-Based Program Synthesis and Transformation, 23rd International Symposium,
LOPSTR 2013, Revised Selected Papers, G. Gupta and R. Peña, Eds. Lecture Notes in Computer
Science, vol. 8901. Springer, Heidelberg, Germany, 72–90.

Liu, L., Pontelli, E., Son, T. C.,andTruszczyński, M. 2010. Logic programs with abstract constraint
atoms: The role of computations. Artificial Intelligence 174, 3-4, 295–315.

Lloyd, J. W. 1987. Foundations of Logic Programming. Springer-Verlag, Heidelberg, Germany.
Lopes, R., Santos Costa, V., and Silva, F. M. A. 2003. On the BEAM implementation. In 11th

Portuguese Conference on Artificial Intelligence, EPIA 2003. Springer Verlag, Heidelberg, Germany,
131–135.

Lopes, R., Santos Costa, V., and Silva, F. M. A. 2004. Exploiting parallelism in the extended
Andorra model. In Proceedings of the IASTED International Conference on Parallel and Distributed
Computing and Networks. IASTED/ACTA, 483–489.

Lopes, R., SantosCosta, V., and Silva, F. M. A. 2012. A design and implementation of the extended
Andorra model. Theory and Practice of Logic Programming 12, 3, 319–360.

Lopez-Garcia, P. 2000. Non-failure analysis and granularity control in parallel execution of logic
programs. Ph.D. thesis, Universidad Politécnica de Madrid (UPM), Facultad Informatica UPM,
28660-Boadilla del Monte, Madrid-Spain.

Lopez-Garcia, P., Bueno, F., andHermenegildo, M. V. 2010. Automatic inference of determinacy
and mutual exclusion for logic programs using mode and type information. New Generation
Computing 28, 2, 117–206.

Lopez-Garcia, P., Darmawan, L., Klemen, M., Liqat, U., Bueno, F., andHermenegildo, M. V. 2018.
Interval-based resource usage verification by translation into Horn clauses and an application
to energy consumption. Theory and Practice of Logic Programming, Special Issue on Computational
Logic for Verification 18, 2, 167–223. arXiv:1803.04451.

Lopez-Garcia, P., Hermenegildo, M. V., and Debray, S. K. 1996. A methodology for granularity
based control of parallelism in logic programs. Journal of Symbolic Computation, Special Issue on
Parallel Symbolic Computation 21, 4–6, 715–734.

Lumsdaine, A., Gregor, D., Hendrickson, B., and Berry, J. 2007. Challenges in parallel graph
processing. Parallel Processing Letters 17, 01, 5–20.

Lusk, E., Butler, R., Disz, T., Olson, R., Stevens, R., Warren, D. H. D., Calderwood, A., Szeredi,
P., Brand, P., Carlsson, M., Ciepielewski, A., Hausman, B., and Haridi, S. 1990. The Aurora
Or-parallel Prolog system. New Generation Computing 7, 2/3, 243–271.

Maiterth, M. 2012. Parallel Datalog on Pregel. M.S. thesis, Ludwig-Maximilians Universitat
Munchen.

Malewicz, G., Austern, M. H., Bik, A. J. C., Dehnert, J. C., Horn, I., Leiser, N., and Czajkowski,
G. 2010. Pregel: a system for large-scale graph processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June
6-10, 2010, A. K. Elmagarmid and D. Agrawal, Eds. ACM, New York, 135–146.

Malitsky, Y., Sabharwal, A., Samulowitz, H.,andSellmann, M. 2012. Parallel SAT solver selection
and scheduling. In Principles and Practice of Constraint Programming - 18th International Conference,
CP 2012, Québec City, QC, Canada. Proceedings, M. Milano, Ed. Lecture Notes in Computer Science,
vol. 7514. Springer, Heidelberg, Germany, 512–526.

62 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Maratea, M., Pulina, L.,andRicca, F. 2014. A multi-engine approach to answer-set programming.
Theory and Practice of Logic Programming 14, 6, 841–868.

Marques, R. and Swift, T. 2008. Concurrent and local evaluation of normal programs. In Inter-
national Conference on Logic Programming. Number 5366 in Lecture Notes in Computer Science.
Springer, Heidelberg, Germany, 206–222.

Marques, R., Swift, T., andCunha, J. C. 2010. A simple and efficient implementation of concurrent
local tabling. In International Symposium on Practical Aspects of Declarative Languages. Number
5937 in Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 264–278.

Marriott, K., Garcı́a de la Banda, M., andHermenegildo, M. V. 1994. Analyzing logic programs
with dynamic scheduling. In 20th. Annual ACM Conf. on Principles of Programming Languages.
ACM, New York, 240–254.

Marron, M., Hermenegildo, M. V., Kapur, D., and Stefanovic, D. 2008. Efficient context-sensitive
shape analysis with graph-based heap models. In International Conference on Compiler Construc-
tion (CC 2008), L. Hendren, Ed. Lecture Notes in Computer Science. Springer, Heidelberg,
Germany, 245–259.

Marron, M., Kapur, D., and Hermenegildo, M. V. 2009. Identification of logically related heap
regions. In ISMM’09: Proceedings of the 8th international symposium on Memory management. ACM
Press, New York, 89–98.

Marron, M., Kapur, D., Stefanovic, D., andHermenegildo, M. V. 2006. A static heap analysis for
shape and connectivity. In Languages and Compilers for Parallel Computing (LCPC’06), G. Almási,
C. Cascaval, and P. Wu, Eds. Lecture Notes in Computer Science, vol. 4382. Springer, Heidelberg,
Germany, 345–363.

Marron, M., Kapur, D., Stefanovic, D., and Hermenegildo, M. V. 2008. Identification of heap-
carried data dependence via explicit store heap models. In 21st Int’l. WS on Languages and
Compilers for Parallel Computing (LCPC’08). Lecture Notes in Computer Science. Springer-Verlag,
Heidelberg, Germany, 94–108.

Marron, M., Méndez-Lojo, M., Hermenegildo, M. V., Stefanovic, D., andKapur, D. 2008. Sharing
analysis of arrays, collections, and recursive structures. In ACM WS on Program Analysis for
Software Tools and Engineering (PASTE’08). ACM, New York, 43–49.

Martinez-Angeles, C. A., de Castro Dutra, I., Santos Costa, V., and Buenabad-Chávez, J. 2014.
A Datalog engine for GPUs. In Declarative Programming and Knowledge Management - Declarative
Programming Days, KDPD 2013, Unifying INAP, WFLP, and WLP, Kiel, Germany, September 11-13,
2013, Revised Selected Papers, M. Hanus and R. Rocha, Eds. Lecture Notes in Computer Science,
vol. 8439. Springer, Heidelberg, Germany, 152–168.

Martinez-Angeles, C. A., Wu, H., de CastroDutra, I., Santos Costa, V., and Buenabad-Chávez,
J. 2016. Relational learning with GPUs: Accelerating rule coverage. Int. J. Parallel Program. 44, 3,
663–685.

Mattern, F. 1989. Global quiescence detection based on credit distribution and recovery. Informa-
tion Processing Letters 30, 4, 195–200.

Méndez-Lojo, M. and Hermenegildo, M. V. 2008. Precise set sharing analysis for Java-style
programs. In 9th International Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI’08). Number 4905 in Lecture Notes in Computer Science. Springer-Verlag, Heidelberg,
Germany, 172–187.

Méndez-Lojo, M., Lhoták, O., andHermenegildo, M. V. 2008. Efficient set sharing using ZBDDs.
In 21st Int’l. Workshop on Languages and Compilers for Parallel Computing (LCPC’08). Lecture Notes
in Computer Science, vol. 5335. Springer-Verlag, Heidelberg, Germany, 94–108.

Méndez-Lojo, M., Navas, J., and Hermenegildo, M. V. 2007. A flexible (C)LP-based approach to
the analysis of object-oriented programs. In LOPSTR. Lecture Notes in Computer Science, vol.
4915. Springer-Verlag, Heidelberg, Germany, 154–168.

Mera, E., Lopez-Garcia, P., Carro, M., and Hermenegildo, M. V. 2008. Towards execution time
estimation in abstract machine-based languages. In 10th Int’l. ACM SIGPLAN Symposium on
Principles and Practice of Declarative Programming (PPDP’08). ACM Press, New York, 174–184.

Parallel Logic Programming: A Sequel 63

Moustafa, W. E., Papavasileiou, V., Yocum, K., and Deutsch, A. 2016. Datalography: Scaling
Datalog graph analytics on graph processing systems. In 2016 IEEE International Conference on
Big Data, BigData 2016, Washington DC, USA, December 5-8, 2016, J. Joshi, G. Karypis, L. Liu,
X. Hu, R. Ak, Y. Xia, W. Xu, A. Sato, S. Rachuri, L. H. Ungar, P. S. Yu, R. Govindaraju, and
T. Suzumura, Eds. IEEE Computer Society, USA, 56–65.

Muthukumar, K., Bueno, F., Garcı́a de la Banda, M., andHermenegildo, M. V. 1999. Automatic
compile-time parallelization of logic programs for restricted, goal-level, independent And-
parallelism. Journal of Logic Programming 38, 2, 165–218.

Muthukumar, K. and Hermenegildo, M. V. 1989. Determination of variable dependence infor-
mation through abstract interpretation. In Logic Programming, Proceedings of the North American
Conference 1989, Cleveland, Ohio, E. L. Lusk and R. A. Overbeek, Eds. MIT Press, Cambridge,
MA, USA, 166–185.

Muthukumar, K. and Hermenegildo, M. V. 1990. Deriving a fixpoint computation algorithm
for top-down abstract interpretation of logic programs. Technical Report ACT-DC-153-90,
Microelectronics and Computer Technology Corporation (MCC), Austin, TX 78759.

Muthukumar, K.andHermenegildo, M. V. 1991. Combined determination of sharing and freeness
of program variables through abstract interpretation. In Logic Programming, Proceedings of the
Eigth International Conference, Paris, France, K. Furukawa, Ed. MIT Press, Cambridge, MA, USA,
49–63.

Muthukumar, K.andHermenegildo, M. V. 1992. Compile-time derivation of variable dependency
using abstract interpretation. Journal of Logic Programming 13, 2/3, 315–347.

Nappa, P., Zhao, D., Subotic, P.,and Scholz, B. 2019. Fast parallel equivalence relations in a Datalog
compiler. In 28th International Conference on Parallel Architectures and Compilation Techniques, PACT
2019, Seattle, WA, USA, September 23-26, 2019. IEEE, USA, 82–96.

Navas, J., Bueno, F., andHermenegildo, M. V. 2006. Efficient top-down set-sharing analysis using
cliques. In 8th International Symposium on Practical Aspects of Declarative Languages (PADL’06).
Number 2819 in Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, Germany,
183–198.

Navas, J., Méndez-Lojo, M., and Hermenegildo, M. V. 2008. Safe upper-bounds inference of
energy consumption for Java bytecode applications. In The Sixth NASA Langley Formal Methods
Workshop (LFM 08). NASA Langley Research Center, Hampton, Virginia, USA, 29–32. Extended
Abstract.

Navas, J., Méndez-Lojo, M., andHermenegildo, M. V. 2009. User-definable resource usage bounds
analysis for Java bytecode. Electronic Notes in Theoretical Computer Science 253, 5, 65–82.

Navas, J., Mera, E., Lopez-Garcia, P., and Hermenegildo, M. V. 2007. User-definable resource
bounds analysis for logic programs. In Proc. of ICLP’07. Lecture Notes in Computer Science,
vol. 4670. Springer, Heidelberg, Germany, 348–363.

Nguyen, H. D., Sakama, C., Sato, T., and Inoue, K. 2018. Computing logic programming semantics
in linear algebra. In Multi-disciplinary Trends in Artificial Intelligence - 12th International Conference,
MIWAI 2018, Hanoi, Vietnam, November 18-20, 2018, Proceedings, M. Kaenampornpan, R. Malaka,
D. D. Nguyen, and N. Schwind, Eds. Lecture Notes in Computer Science, vol. 11248. Springer,
Heidelberg, Germany, 32–48.

Niemela, I. and Simons, P. 1997. Smodels - an implementation of the stable model and well-
founded semantics for normal LP. In Logic Programming and Non-monotonic Reasoning. Springer
Verlag, Heidelberg, Germany, 421–430.

NVIDIA Corporation. 2021. NVIDIA CUDA Zone. https://developer.nvidia.com/cuda-zone.
Peralta, J. C., Gallagher, J. P., and Sağlam, H. 1998. Analysis of imperative programs through

analysis of constraint logic programs. In Static Analysis. 5th International Symposium, SAS’98,
Pisa, G. Levi, Ed. Lecture Notes in Computer Science, vol. 1503. Springer, Heidelberg, Germany,
246–261.

Pereira, L. M., Monteiro, L., Cunha, J., and Aparcio, J. N. 1986. Delta Prolog: A distributed

64 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

backtracking extension with events. In International Conference on Logic Programming, E. Shapiro,
Ed. Lecture Notes in Computer Science, vol. 225. Springer Verlag, Heidelberg, Germany, 69–83.

Pereira, L. M. andNasr, R. I. 1984. Delta-Prolog: A distributed logic programming language. In
Proceedings of the International Conference on Fifth Generation Computer Systems, FGCS 1984, Tokyo,
Japan. OHMSHA Ltd. Tokyo and North-Holland, 283–291.

Perri, S., Ricca, F., and Sirianni, M. 2013. Parallel instantiation of ASP programs: techniques and
experiments. Theory and Practice of Logic Programming 13, 2, 253–278.

Pollard, G. H. 1981. Parallel execution of Horn clause programs. Ph.D. thesis, Imperial College,
London. Dept. of Computing.

Pontelli, E. 2001. Experiments in parallel execution of answer set programs. In International
Parallel and Distributed Processing Symposium. IEEE Computer Society, USA, 20.

Pontelli, E. and Gupta, G. 1995. On the duality between And-parallelism and Or-parallelism. In
Proceedings of EuroPar, S. Haridi and P. Magnusson, Eds. Springer Verlag, Heidelberg, Germany,
43–54.

Pontelli, E. and Gupta, G. 1997. Parallel symbolic computation in ACE. Annals of Mathematics
and Artificial Intelligence 21, 2-4, 359–395.

Pontelli, E. and Gupta, G. 1999. A simulation study of distributed execution of constraint logic
programs with stack splitting. Tech. rep., New Mexico State University.

Pontelli, E. and Gupta, G. 2001. Backtracking in independent And-parallel implementations of
logic programming languages. Transactions on Parallel and Distributed Systems 12, 11, 1169–1189.

Pontelli, E., Gupta, G., and Hermenegildo, M. V. 1995. &ACE: A high-performance parallel
Prolog system. In Proceedings of the International Parallel Processing Symposium. IEEE Computer
Society, USA, 564–571.

Pontelli, E., Gupta, G., Pulvirenti, F.,andFerro, A. 1997. Automatic compile-time parallelization
of Prolog programs for dependent And-parallelism. In Proc. of the Fourteenth International
Conference on Logic Programming, L. Naish, Ed. MIT Press, Cambridge, MA, USA, 108–122.

Pontelli, E., Gupta, G., Tang, D., Carro, M., and Hermenegildo, M. V. 1996. Improving the
efficiency of nondeterministic And–parallel systems. The Computer Languages Journal 22, 2/3,
115–142.

Pontelli, E., Le, H., and Son, T. C. 2010. An investigation in parallel execution of answer set
programs on distributed memory platforms. Computer Languages, Systems and Structures 36, 2,
158–202.

Pontelli, E., Le, T., Nguyen, H., and Son, T. C. 2012. ASP at work: An ASP implementation of
PhyloWS. In Technical Communications of the 28th International Conference on Logic Programming,
ICLP 2012, Budapest, Hungary, A. Dovier and V. Santos Costa, Eds. LIPICS, vol. 17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 359–369.

Pontelli, E., Ranjan, D., and Dal Palù, A. 2002. An optimal data structure to handle dynamic
environments in non-deterministic computations. Computer Languages 28, 2, 181–201.

Pontelli, E., Villaverde, K., Guo, H.-F., and Gupta, G. 2006. Stack splitting: A technique for
efficient exploitation of search parallelism on share-nothing platforms. Journal of Parallel and
Distributed Computing 66, 10, 1267–1293.

Pontelli, E., Villaverde, K., Guo, H.-F., andGupta, G. 2007. PALS: Efficient Or-parallel execution
of Prolog on Beowulf clusters. Theory and Practice of Logic Programming 7, 6, 633–695.

Puebla, G. andHermenegildo, M. V. 1999. Abstract multiple specialization and its application to
program parallelization. Journal of Logic Programming 41, 2&3, 279–316.

Ranjan, D., Pontelli, E., andGupta, G. 1999. On the complexity of Or-parallelism. New Generation
Computing 17, 3, 285–308.

Rocha, R., Silva, F. M. A., and Martins, R. 2003. YapDss: An Or-parallel prolog system for
scalable Beowulf clusters. In 11th Portuguese Conference on Artificial Intelligence, EPIA 2003,.
Springer Verlag, Heidelberg, Germany, 136–150.

Parallel Logic Programming: A Sequel 65

Rocha, R., Silva, F. M. A., and Santos Costa, V. 1999a. Or-parallelism within tabling. In Inter-
national Workshop on Practical Aspects of Declarative Languages. Number 1551 in Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, 137–151.

Rocha, R., Silva, F. M. A., and Santos Costa, V. 1999b. YapOr: an Or-parallel prolog system
based on environment copying. In Portuguese Conference on Artificial Intelligence. Number 1695
in Lecture Notes in Artificial Intelligence. Springer, Heidelberg, Germany, 178–192.

Rocha, R., Silva, F. M. A., and Santos Costa, V. 2000. A tabling engine for the Yap Prolog system.
In APPIA-GULP-PRODE Joint Conference on Declarative Programming, La Habana, Cuba, Dec 4–6.
Cuba.

Rocha, R., Silva, F. M. A., and Santos Costa, V. 2001. On a tabling engine that can exploit Or-
parallelism. In International Conference on Logic Programming. Number 2237 in Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, 43–58.

Rocha, R., Silva, F. M. A., and Santos Costa, V. 2005. On applying Or-parallelism and tabling to
logic programs. Theory and Practice of Logic Programming 5, 1 & 2, 161–205.

Rui, R. and Tu, Y. 2017. Fast equi-join algorithms on GPUs: Design and implementation. In
Proceedings of the 29th International Conference on Scientific and Statistical Database Management,
Chicago, IL, USA, June 27-29, 2017. ACM, New York, 17:1–17:12.

Saeed, I., Young, J., and Yalamanchili, S. 2015. A portable benchmark suite for highly parallel
data intensive query processing. In Proceedings of the 2nd Workshop on Parallel Programming for
Analytics Applications. ACM, New York, 31–38.

Sagonas, K. and Swift, T. 1998. An abstract machine for tabled execution of fixed-order stratified
logic programs. ACM Transactions on Programming Languages and Systems 20, 3, 586–634.

Santos, J. and Rocha, R. 2013. Or-parallel Prolog execution on clusters of multicores. In 2nd
Symposium on Languages, Applications and Technologies, J. P. Leal, R. Rocha, and A. Simões, Eds.
OpenAccess Series in Informatics (OASIcs), vol. 29. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 9–20.

Santos, J. and Rocha, R. 2016. On the implementation of an Or-parallel prolog system for clusters
of multicores. Theory and Practice of Logic Programming 16, 5-6, 899–915.

Santos Costa, V., de Castro Dutra, I., and Rocha, R. 2010. Threads and Or-parallelism unified.
Theory and Practice of Logic Programming 10, 4-6, 417–432.

Santos Costa, V., Rocha, R., and Damas, L. 2012. The YAP Prolog system. Theory and Practice of
Logic Programming 12, 1-2, 5–34.

Santos Costa, V., Warren, D. H. D., and Yang, R. 1991a. Andorra-I: A parallel Prolog system that
transparently exploits both And- and Or-parallelism. In Proceedings of the ACM Symposium on
Principles and Practice of Parallel Programming. ACM Press, New York, 83–93.

Santos Costa, V., Warren, D. H. D., and Yang, R. 1991b. The Andorra-I engine: a parallel
implementation of the basic Andorra model. In Proceedings of the International Conference on
Logic Programming, K. Furukawa, Ed. MIT Press, Cambridge, MA, USA, 825–839.

Santos Costa, V., Warren, D. H. D., and Yang, R. 1991c. The Andorra-I preprocessor: Supporting
full Prolog on the basic Andorra model. In Proceedings of the International Conference on Logic
Programming, K. Furukawa, Ed. MIT Press, Cambridge, MA, USA, 443–456.

Schneidenbach, L., Schnor, B., Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2009.
Experiences running a parallel answer set solver on blue gene. In 16th European PVM/MPI
Users’ Group Meeting. Springer Verlag, Heidelberg, Germany, 64–72.

Secci, S. and Spoto, F. 2005. Pair-sharing analysis of object-oriented programs. In 12th International
Symposium Static Analysis Symposium (SAS’05). Lecture Notes in Computer Science, vol. 3672.
Springer, Heidelberg, Germany, 320–335.

Seo, J., Park, J., Shin, J., and Lam, M. S. 2013. Distributed SociaLite: A Datalog-based language for
large-scale graph analysis. Proceedings of the VLDB Endowment 6, 14, 1906–1917.

Serrano, A., Lopez-Garcia, P., and Hermenegildo, M. V. 2014. Resource usage analysis of logic
programs via abstract interpretation using sized types. Theory and Practice of Logic Programming,
ICLP’14 Special Issue 14, 4-5, 739–754.

66 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Shapiro, E. Y. 1987. Concurrent Prolog: Collected Papers. MIT Press, Cambridge, MA, USA.
Shapiro, E. Y. 1989. The family of concurrent logic programming languages. ACM Computing

Suveys 21, 3, 413–510.
Shehab, E., Algergawy, A., and Sarhan, A. M. 2017. Accelerating relational database operations

using both CPU and GPU co-processor. Comput. Electr. Eng. 57, 69–80.
Shen, K. 1996. Overview of DASWAM: Exploitation of dependent And-parallelism. Journal of

Logic Programming 29, 1/3, 245–293.
Shen, K. and Hermenegildo, M. V. 1996. Flexible scheduling for non-deterministic, And-parallel

execution of logic programs. In Proceedings of EuroPar’96. Number 1124 in Lecture Notes in
Computer Science. Springer-Verlag, Heidelberg, Germany, 635–640.

Shkapsky, A. 2016. A declarative language for advanced analytics and its scalable implementation.
Ph.D. thesis, University of California, Los Angeles, USA.

Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., and Zaniolo, C. 2016. Big data
analytics with Datalog queries on Spark. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016,
F. Özcan, G. Koutrika, and S. Madden, Eds. ACM, New York, 1135–1149.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and implementing the stable model
semantics. Artif. Intell. 138, 1-2, 181–234.

Singhal, A. andPatt, Y. N. 1989. Unification parallelism: How much can we exploit? In Proceedings
of the North American Conference on Logic Programming, E. Lusk and R. Overbeek, Eds. MIT Press,
Cambridge, MA, USA, 1135–1147.

Somogyi, Z. and Sagonas, K. 2006. Tabling in Mercury: Design and implementation. In Interna-
tional Symposium on Practical Aspects of Declarative Languages. Number 3819 in Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, 150–167.

Son, T. C. and Pontelli, E. 2007. Planning for biochemical pathways: A case study of answer
set planning in large planning problem instances. In Proceedings of the First International SEA’07
Workshop, Tempe, Arizona, USA, 14th May 2007, M. D. Vos and T. Schaub, Eds. CEUR Workshop
Proceedings, vol. 281. CEUR-WS.org, Aachen.

Søndergaard, H. 1986. An application of abstract interpretation of logic programs: Occur check
reduction. In European Symposium on Programming. Number 123 in Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, Germany, 327–338.

Stulova, N. 2018. Improving run-time checking in dynamic programming languages. Ph.D.
thesis, Escuela Técnica Superior de Ingenieros Informáticos, UPM.

Stulova, N., Morales, J. F., and Hermenegildo, M. V. 2015. Practical run-time checking via
unobtrusive property caching. Theory and Practice of Logic Programming, 31st Int’l. Conference on
Logic Programming (ICLP’15) Special Issue 15, 04-05, 726–741.

Stulova, N., Morales, J. F., and Hermenegildo, M. V. 2018. Some trade-offs in reducing the
overhead of assertion run-time checks via static analysis. Science of Computer Programming 155,
3–26.

Swift, T. andWarren, D. S. 2012. XSB: Extending Prolog with tabled logic programming. Theory
and Practice of Logic Programming 12, 1 & 2, 157–187.

Tachmazidis, I. andAntoniou, G. 2013. Computing the stratified semantics of logic programs over
big data through mass parallelization. In Theory, Practice, and Applications of Rules on the Web - 7th
International Symposium, RuleML 2013, L. Morgenstern, P. S. Stefaneas, F. Lévy, A. Z. Wyner, and
A. Paschke, Eds. Lecture Notes in Computer Science, vol. 8035. Springer, Heidelberg, Germany,
188–202.

Tachmazidis, I., Antoniou, G., and Faber, W. 2014. Efficient computation of the well-founded
semantics over big data. Theory and Practice of Logic Programming 14, 4-5, 445–459.

Tachmazidis, I., Antoniou, G., Flouris, G., Kotoulas, S., and McCluskey, L. 2012. Large-scale
parallel stratified defeasible reasoning. In European Conference on Artificial Intelligence (ECAI).
IOS Press.

Parallel Logic Programming: A Sequel 67

Tarzariol, A. 2019. Evolution of algorithm portfolio for solving strategies. In Proceedings of the
34th Italian Conference on Computational Logic, Trieste, Italy, June 19-21, 2019, A. Casagrande and
E. G. Omodeo, Eds. CEUR Workshop Proceedings, vol. 2396. CEUR-WS.org, Aachen, 327–341.
ter Horst, H. J. 2005. Completeness, decidability and complexity of entailment for RDF schema

and a semantic extension involving the OWL vocabulary. Journal of Web Semantics 3, 2-3, 79–115.
Tick, E. 1995. The deevolution of concurrent logic programming languages. Journal of Logic

Programming 23, 2, 89–123.
Trias, E., Navas, J., Ackley, E. S., Forrest, S., and Hermenegildo, M. V. 2008. Negative ternary

set-sharing. In International Conference on Logic Programming, ICLP. Number 5366 in Lecture
Notes in Computer Science. Springer-Verlag, Heidelberg, Germany, 301–316.

Trigo de laVega, T., Lopez-Garcı́a, P., andMuñoz-Hernández, S. 2010. Towards fuzzy granular-
ity control in parallel/distributed computing. In International Conference on Fuzzy Computation
(ICFC 2010). SciTePress, 43–55.

Truszczynski, M. 2018. An introduction to the stable and well-founded semantics of logic pro-
grams. In Declarative Logic Programming: Theory, Systems, and Applications, M. Kifer and Y. A.
Liu, Eds. ACM /Morgan & Claypool, USA, 121–177.

Tu, P. H., Pontelli, E., Son, T. C.,andTo, S. T. 2009. Applications of parallel processing technologies
in heuristic search planning: methodologies and experiments. Concurrency and Computation:
Practice and Experience 21, 15, 1928–1960.

Ueda, K. 1986. Guarded Horn clauses. Ph.D. thesis, University of Tokyo.
Ullman, J. D. 2010. Cluster Computing and Datalog. In Datalog 2.0: The Resurgence of Datalog in

Academia and Industry. http://datalog20.org/.
Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., and Bal, H. 2012. WebPIE: A web-scale

parallel inference engine using MapReduce. Journal of Web Semantics 10, 59–75.
Van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics for general logic

programs. Journal of the ACM 38, 3, 620–650.
Van Roy, P. 1994. 1983-1993: The Wonder Years of Sequential Prolog Implementation. Journal of

Logic Programming 19/20, 385–441.
Vidal, G. 2012. Annotation of logic programs for independent and-parallelism by partial evalua-

tion. Theory and Practice of Logic Programming 12, 4-5, 583–600.
Vieira, R., Rocha, R., and Silva, F. M. A. 2012. On comparing alternative splitting strategies for

Or-parallel Prolog execution on multicores. In Colloquium on Implementation of Constraint and
Logic Programming Systems. 71–85.

Villaverde, K.andPontelli, E. 2004. An investigation of scheduling in distributed constraint logic
programming. In Proceedings of the ISCA 17th International Conference on Parallel and Distributed
Computing Systems. ISCA, 98–103.

Villaverde, K., Pontelli, E., Guo, H.-F., and Gupta, G. 2001a. Incremental stack splitting mecha-
nisms for efficient parallel implementation of search-based systems. In International Conference
on Parallel Processing. IEEE Computer Society, USA, 287–294.

Villaverde, K., Pontelli, E., Guo, H.-F., andGupta, G. 2001b. PALS: An Or-parallel implementa-
tion of Prolog on Bewoulf architectures. In Procs. International Conference on Logic Programming.
Springer Verlag, Heidelberg, Germany, 27–42.

Villaverde, K., Pontelli, E., Guo, H.-F., and Gupta:, G. 2003. A methodology for order-sensitive
execution of non-deterministic languages on Beowulf platforms. In Euro-Par 2003. Parallel
Processing, 9th International Euro-Par Conference. Springer Verlag, Heidelberg, Germany, 694–703.

Wang, H., Xiong, F., Li, J., Shi, S., Li, J., and Gao, H. 2018. Data management on new processors:
A survey. Parallel Comput. 72, 1–13.

Wang, J., Balazinska, M., and Halperin, D. 2015. Asynchronous and fault-tolerant recursive
Datalog evaluation in shared-nothing engines. Proceedings of the VLDB Endowment 8, 12, 1542–
1553.

http://datalog20.org/

68 Dovier, Formisano, Gupta, Hermenegildo, Pontelli, Rocha

Warren, D. H. D. 1990. The extended Andorra model with implicit control. In Parallel Logic
Programming Workshop, Sverker Jansson, Ed. SICS, Box 1263, S-163 13 Spanga, SWEDEN.

Warren, D. S. 1984. Efficient Prolog memory management for flexible control strategies. In
International Symposium on Logic Programming. IEEE Computer Society, USA, 198–203.

Warren, R., Hermenegildo, M. V., and Debray, S. K. 1988. On the practicality of global flow
analysis of logic programs. In Fifth International Conference and Symposium on Logic Programming.
MIT Press, Cambridge, MA, USA, 684–699.

White, T. 2015. Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale (4. ed., revised &
updated). O’Reilly, USA.

Wielemaker, J., Schrijvers, T., Triska, M., and Lager, T. 2012. SWI-Prolog. Theory and Practice of
Logic Programming 12, 1-2, 67–96.

Wolfson, O. and Silberschatz, A. 1988. Distributed processing of logic programs. In Proceedings
of the SIGMOD International Conference on Management of Data, H. Boral and P. Larson, Eds. ACM
Press, New York, 329–336.

Wu, H., Diamos, G. F., Sheard, T., Aref, M., Baxter, S., Garland, M., and Yalamanchili, S. 2014.
Red Fox: An execution environment for relational query processing on GPUs. In 12th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO 2014, Orlando, FL,
USA, February 15-19, 2014, D. R. Kaeli and T. Moseley, Eds. ACM, New York, 44.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. 2008. Satzilla: Portfolio-based algorithm
selection for SAT. J. Artif. Intell. Res. 32, 565–606.

Yang, M., Shkapsky, A., and Zaniolo, C. 2015. Parallel bottom-up evaluation of logic programs:
DeALS on shared-memory multicore machines. In Proceedings of the Technical Communications
of the 31st International Conference on Logic Programming (ICLP) 2015, Cork, Ireland, M. D. Vos,
T. Eiter, Y. Lierler, and F. Toni, Eds. CEUR Workshop Proceedings, vol. 1433. CEUR-WS.org,
Aachen.

Zaffanella, E., Bagnara, R., and Hill, P. M. 1999. Widening sharing. In Principles and Practice
of Declarative Programming, G. Nadathur, Ed. Lecture Notes in Computer Science, vol. 1702.
Springer-Verlag, Heidelberg, Germany, 414–432.

Zaniolo, C., Yang, M., Das, A., Shkapsky, A., Condie, T., and Interlandi, M. 2017. Fixpoint
semantics and optimization of recursive Datalog programs with aggregates. Theory and Practice
of Logic Programming 17, 5–6, 1048–1065.

Zeuch, S. 2018. Query execution on modern CPUs. Ph.D. thesis, Humboldt University of Berlin,
Germany.

Zhang, K. 1993. Exploiting Or-parallelism in logic programs: A review. Future Generation Comput-
ing Systems 9, 3, 259–280.

Zhang, W., Wang, K., and Chau, S.-C. 1995. Data partition and parallel evaluation of Datalog
programs. IEEE Transactions on Knowledge and Data Engineering 7, 163–176.

Zhao, D., Subotic, P., and Scholz, B. 2020. Debugging large-scale Datalog: A scalable provenance
evaluation strategy. ACM Trans. Program. Lang. Syst. 42, 2, 7:1–7:35.

Zhou, N., Sato, T., and Shen, Y. 2008. Linear tabling strategies and optimizations. Theory and
Practice of Logic Programming 8, 1, 81–109.

Zhou, N.-F. 2012. The language features and architecture of B-Prolog. Theory and Practice of Logic
Programming 12, 1 & 2, 189–218.

Zhou, N.-F. andKjellerstrand, H. 2016. The Picat-SAT compiler. In Practical Aspects of Declarative
Languages - 18th International Symposium, PADL 2016, St. Petersburg, FL, USA, January 18-19, 2016.
Proceedings, M. Gavanelli and J. H. Reppy, Eds. Lecture Notes in Computer Science, vol. 9585.
Springer, Heidelberg, Germany, 48–62.

Zhou, N.-F., Kjellerstrand, H., and Fruhman, J. 2015. Constraint Solving and Planning with Picat.
Springer, Heidelberg, Germany.

Zinn, D., Wu, H., Wang, J., Aref, M., and Yalamanchili, S. 2016. General-purpose join algorithms
for large graph triangle listing on heterogeneous systems. In Proceedings of the 9th Annual

Parallel Logic Programming: A Sequel 69

Workshop on General Purpose Processing using Graphics Processing Unit, GPGPU@PPoPP 2016,
Barcelona, Spain, March 12 - 16, 2016, D. R. Kaeli and J. Cavazos, Eds. ACM, New York, 12–21.

	Introduction
	Background
	Logic Programming
	Parallelism and Speedups

	The First 20 Years of Parallel Logic Programming: A Quick Review
	Explicit Parallelism
	Implicit Parallelism

	Parallel Execution of Prolog
	Or-Parallelism
	And-Parallelism
	Static Analysis for Parallelism
	Parallelism and Tabling

	Parallelism and Answer Set Programming
	Parallelism and Datalog
	Search (Or-) Parallelism in ASP
	Parallel Grounding
	Other Forms of Parallelism
	Portfolio Parallelism

	Going Large: Logic Programming and Big Data Frameworks
	Introduction to Large Scale Data Paradigms
	Large Scale Computing in Datalog
	Large Scale Computing and ASP

	Going Small: Logic Programming and GPUs
	GPU-Based Parallelism
	GPU-Based Datalog
	GPU-Based ASP

	Conclusion
	References

