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ABSTRACT

Lock-free data structures are an important tool for the devel-
opment of concurrent programs as they provide scalability,
low latency and avoid deadlocks, livelocks and priority inver-
sion. However, they require some sort of additional support
to guarantee memory reclamation. The Optimistic Access
(OA) method has most of the desired properties for memory
reclamation, but since it allows memory to be accessed after
being reclaimed, it is incompatible with the traditional mem-
ory management model. This renders it unable to release
memory to the memory allocator/operating system, and, as
such, it requires a complex memory recycling mechanism. In
this paper, we extend the lock-free general purpose memory
allocator LRMalloc to support the OA method. By doing
so, we are able to simplify the memory reclamation method
implementation and also allow memory to be reused by other
parts of the same process. We further exploit the virtual
memory system provided by the operating system and hard-
ware in order to make it possible to release reclaimed memory
to the operating system.
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1 INTRODUCTION

With the recent developments in computer hardware focusing
on the increase of parallelism as the main way to improve
performance, it is key to have accompanying software capable
of taking advantage of such hardware. Lock-free data struc-
tures provide one of the most fundamental building blocks for
concurrent/parallel software, as the lock-freedom property
promotes scalability and guarantees immunity to livelocks,
deadlocks and priority inversion [12]. However, in comparison
to their lock-based counterparts, lock-free data structures
require additional support in order to manage memory recla-
mation. This can be delegated to a garbage collector, if the
programming runtime being used provides one, but such a
garbage collector is usually not lock-free causing the system
as a whole to lose the lock-freedom property [20].

An alternative is to use a memory reclamation method. The
most common methods, such as pass the buck [11] and hazard
pointers [17], are based on the idea of threads advertising their
coordinates in order to prevent other threads from reclaiming
the memory they are using. This idea however requires every
thread to constantly write its coordinates to memory and
perform expensive memory barriers in order to ensure that
such memory writes are visible. More sophisticated methods
try to amortize the memory writes and consequent memory
barrier usage. Some examples are drop the anchor [2], hazard
eras [21], interval based reclamation [25], and hazard hash
and level [19], among others. Dice et al. [7] also provide a
mechanism to reduce the cost of memory barriers, but such
mechanism requires hardware/operating system support.

Instead of having threads advertising their coordinates,
a more recent strategy, called Optimistic Access (OA) [5],
allows threads to optimistically access the memory they are
traversing and only after verify if the access is valid. In order
to be able to check the validity of a memory access, the OA
method moves the responsibility to the reclaiming threads
to advertise that memory reclamation has occurred. This
no longer requires threads to constantly write to memory to
advertise their locations, but only to do extra reads to check
if memory reclamation has occurred. These extra reads are
inexpensive, as they will target a cached memory location
most of the time, and require less expensive memory barriers.

An important disadvantage of existing OA based methods
is that they are unable to release memory to the memory
allocator/operating system. This happens due to the fact
that, at anytime, a thread may read memory that has already
been reclaimed. To work around this problem, these methods
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implement a recycling mechanism to manage the memory
being used. However, this prevents the memory used in this
manner from being reused in other parts of the same process
and from being released to the operating system.

In this work, we propose a solution to this problem without
having to make the whole application aware of the memory
reclamation method. Our proposal is to extend LRMalloc [14],
a lock-free general purpose memory allocator, in such a way
that we can guarantee memory allocations to be readable
even after we free such allocations.

No guarantees are given about the content of the memory,
or how it is reused by the rest of the application. This is
a good match for OA because it already ensures that the
contents of reads on possibly reclaimed memory are to be
ignored, and that memory to be written is protected from
reclamation by the use of hazard pointers.

We start by solving the problem at the memory allocator
level, by adapting LRMalloc such that it does not release
memory used by the OA method back to the operating
system. This allows us to simplify the implementation of
the OA memory reclamation method as we no longer need a
recycling mechanism in order to manage the distribution of
memory between threads. This task is now covered by the
memory allocator as it was designed for this task in a general
sense. We also gain the ability to reuse memory reclaimed
by the OA method across the whole process. As we will see,
all this is possible with minimal changes to the LRMalloc
memory allocator.

Then, to complete our solution, and have the ability to
release the memory used by the OA method to the operating
system, we exploit how current operating systems/hardware
use virtual memory. As we need the virtual addresses (pages)
to remain accessible after they have been used by the OA
method, but we do not care about the contents on the physical
memory (frames) they are mapped to, we map all these
multiple pages to the same frame. This allows us to free
all the frames our pages were previously mapped to while
keeping the pages still valid for access.

Modern operating systems apply similar strategies, e.g.,
when a memory request is made to the operating system,
no frame is immediately reserved, only the pages are made
valid by being all pointed to a single copy on write zero filled
frame. Only when a memory write is attempted in these
pages, is that the operating system copies the zero filled
frame to a new free frame and maps the page to it. This
all happens transparently to the application, which never
notices that the memory given to it at the start was not
actually backed by physical memory. One of the strategies
we propose to implement the remapping of pages exploits
this operating system behavior, while the other strategy will
do the remapping in a more explicit fashion using the shared
memory mechanisms of current operating systems.

The remainder of the paper is organized as follows. First,
we introduce relevant background. Then, we present in de-
tail the main ideas supporting our approach and discuss
its current limitations and its broader applicability to other
use cases. Next, we show a set of experiments comparing

our model against the original OA method. At the end, we
present conclusions and further work directions.

2 BACKGROUND

This section briefly introduces relevant background about
virtual memory and memory allocation systems and describes
in more detail the LRMalloc memory allocator and the OA
method.

2.1 Virtual Memory

Virtual memory is a memory management system that works
as an abstraction layer that allows for a multitude of opti-
mizations in modern operating systems. The main idea is
to have a translation layer between the memory addresses
viewed by a user process and the actual physical addresses
in main memory. The translation is done in hardware by
the memory management unit (MMU) and relies on a cache
named translation lookaside buffer (TLB). This introduces
an overhead, as with virtual memory, when trying to access a
memory location, one first needs to consult where the virtual
address resides in physical memory. This requires extra mem-
ory accesses in order to obtain the physical memory location,
however by the use of an efficient TLB this disadvantage is
mostly mitigated. Modern systems define the granularity of
a page/frame to be a power of 2, usually between 4KiB and
1GiB total size.

The main benefits provided by virtual memory are the
ability for processes to oversubscribe memory allowing them
to use more memory than what is physically available, the
ability of multiple processes having the same address space,
the ability to move unused pages from memory to persistent
storage when under memory pressure, and the ability to block
a process from accessing or modifying any memory that does
not belong to it. Virtual memory also allows memory to
be shared between processes, the most common case being
shared libraries, so multiple processes can use the same copy
of a library in physical memory but each have it in a different
memory address. Another important use case is efficient inter-
process communication, made possible by having two or more
processes mapping a single region of physical memory into
their own address spaces.

Further optimizations include the ability to only load
frames when they are needed, meaning that when a pro-
cess is loaded into memory, it does not need to be entirely
loaded, only the necessary frames are loaded as the corre-
sponding pages are accessed. For example, an error routine
that is never called would never actually be loaded into phys-
ical memory. When a process requests memory from the
operating system, a similar optimization can be done, every
page the process requests can be initially mapped to a single
zero filled frame and only mapped to free memory frames
when they are actually written to. As we will see later, this
is one of the features that we will take advantage of for our
proposal.
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2.2 Memory Allocation

Memory allocators serve as an interface between processes
and the operating system, satisfying memory requests of any
size in such a way that processes waste as little additional
memory and time as possible. To do so, a memory allocator
starts by acquiring pages from the operating system that
are then subsequently divided to satisfy smaller allocation
requests, and later combined in order to give complete pages
back to the operating system. Classic memory allocators [26]
tended to use strategies like best-fit, in which they find the
smallest block of contiguous memory that can satisfy the
request and, if such a block is still too big, it is split to
the right size so they can keep what remains to a future
allocation. Another strategy is first-fit, in which instead of
finding the smaller continuous block that satisfies a request,
they simple use the first block found. This strategy has a
speed advantage, but can increase memory waste.

A more modern strategy is to use size classes, where any
request is met by rounding up to the nearest size class. Blocks
of a size class are created by splitting a bigger block into many
blocks of the same size. The size classes need to be carefully
selected, therefore avoiding too many different classes and
possibly allocations of large blocks that result in a limited
amount of allocations from it, or too few classes and possibly
wasting memory by having to provide a much larger alloca-
tion than needed due to the nonexistence of a large enough
smaller size. Size classes are very time efficient and tend to
improve memory locality, therefore also improve the global
performance of applications beyond memory allocation.

With the advent of multi-core processors, in order to fur-
ther improve performance and scalability, different proposals
were adopted to minimize the amount of synchronization
between threads. These gave origin to mechanisms such as
private heaps [1], in which each thread has a private allocator
implementing specific strategies to deal with frees that occur
in threads different from the one where the memory was allo-
cated. These strategies can be used to kept the free memory
in the thread in which it was freed until it is allocated again;
to immediately give back the free memory to the thread it
was allocated on; or to give back only after a threshold is
met. An alternative mechanism is to use a per thread cache
on top of a shared heap [13].

2.3 LRMalloc

LRMalloc [14] is a modern lock-free memory allocator that
uses size classes and thread caches as described above. It
offers best performance in lock-free memory allocation, while
being competitive with state-of-the-art blocking allocators,
such as Jemalloc and TCMalloc. Due to relying on size classes,
it achieves no external fragmentation and 25% internal frag-
mentation, in the worst case. It also does not suffer from
blowup due to the use of thread caches.

LRMalloc has three main components: (i) the thread caches,
one per thread; (ii) the heap; and (iii) the pagemap. Figure 1
shows the relationship between these three components, the
user’s application and the operating system,

User Application

Operating System

malloc()
free()

mmap()
munmap()

Thread
Cache

Pagemap

Heap

CacheFill()
CacheFlush()

Figure 1: LRMalloc’s overview

The thread caches use a stack for every size class, so that a
memory request becomes simply a pop on the corresponding
size class stack, and a memory free becomes a stack push.
When a memory request is made and the corresponding stack
is empty, then the stack is filled from the heap, and when
a memory free happens and the stack is full, it is flushed
back to the heap. The size of the stack is limited in order
to prevent blowup [1]. The caches are local to a thread, so
they only synchronize with other threads when a fill or flush
from/to the heap occurs.

The heap is responsible for managing superblocks, which
are large blocks of memory obtained from the operating
system that are then divided into blocks of a size class to
be given to the thread caches. Superblocks are managed
through descriptors, an object that contains the superblock
metadata and that is never reclaimed. When a superblock is
released to the operating system, the associated descriptor is
added to a recycling pool in order to be reused for a future
superblock. The descriptor contains information, such as,
where the superblock begins, its associated size class, the
number of blocks it possesses, the index of the first free block
and the number of free blocks.

Superblocks can be in one of three states: (i) full, if all its
blocks are in use; (ii) empty, if all its blocks are available for
allocation; or (iii) partial, if it has available and allocated
blocks. The initial state of a superblock is always full, as
all its blocks are immediately used to fill a cache. Then it
becomes partial as some blocks are returned to it by cache
flushes, at which point it can either become full again, if a
threads uses it to fill its cache, or it can become empty, if
all blocks are returned to it. When a superblock becomes
empty, it cannot be used again and its memory is released
back to the operating system. When threads try to fill their
caches they give priority to partial superblocks and, if none is
available, a new superblock is created by requesting memory
from the operating system.
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The pagemap is a simple lock-free data structure that
stores metadata for each page in use. Taking into account that
superblocks are always aligned with pages and have a size that
is a multiple of the page size, blocks in the same page always
belong to the same superblock. So this metadata includes
the superblock that a page belongs to and its associated
descriptor. The main usage of the pagemap is to allow finding
the corresponding superblock for a block that is flushed from
the cache, or to allow finding the appropriate cache (with
the correct size class) when memory is receive from the
application through a call to the free() procedure.

2.4 Optimistic Access

A memory reclamation method for a lock-free data struc-
ture is a mechanism that detects when an node removed
from the data structure can no longer be referenced by any
running thread, and thus uses such information to free the
corresponding memory to the memory allocator/operating
system. Usually, such methods require some sort of validation
to avoid accessing memory that has been already reclaimed.

An alternative approach is the one followed by the OA
method [5], which, as the name implies, allows memory ac-
cesses before making sure the memory has not been reclaimed,
and only then checks the validity of the access by reading a
specific warning-bit. If the access corresponds to reclaimed
memory, the result is ignored and the procedure is restarted
from a memory location known to be valid. However, modify-
ing operations cannot be performed in an optimistic manner
as an optimistic Compare-and-Swap (CAS) could incorrectly
succeed due to an ABA problem [6]. For that, OA uses a
hazard pointer strategy, so before performing any atomic
CAS update operation, it first protects all memory addresses
involved by assigning hazard pointers to them and then
performs a single additional validity check by reading the
warning-bit, therefore ensuring that the memory was valid
when it was protected by the hazard pointers. These hazard
pointers are then used to prevent the recycling of the memory
they are assigned to.

The OA memory recycling mechanism is composed by
three pools: (i) the ready pool that contains all the nodes
ready to be allocated, (ii) the retire pool to which nodes are
added when they are retired from the data structure, and
(iii) the processing pool that holds the nodes that are in the
process of being recycled. The recycling mechanism works in
phases, and a new phase is triggered when the ready pool is
exhausted. At the start of a new phase, the nodes present
in the retire pool before the phase starts are moved to the
processing pool. Next, all threads are informed of the current
recycling by their warning-bit being set. Finally, the nodes
in the processing pool that are protected by hazard pointers
are moved back to the retire pool, the ones not protected
are moved to the ready pool. Threads that try to retire an
node during the process of moving nodes from the retire pool
to the processing pool need to help finish the move before
retiring the node. Threads that try to start a new recycling

phase while one is already in progress need to help finish the
current phase before starting a new one.

While the recycling mechanism is complex and time con-
suming, it is rarely executed, which mitigates its cost. For
the more frequent operations, such as the traversal of the
data structure, this method only needs to perform an extra
read per node traversed instead of a write, as it is the case for
the hazard pointers memory reclamation method, and it also
requires a much less expensive memory barrier, which in total
store ordering (TSO) architectures like x86-64, translates to
a simple compiler barrier and no additional hardware instruc-
tions are emitted. Also note that modifying operations can
set multiple hazard pointers and only after perform a single
validity check that requires an expensive memory barrier,
unlike the hazard pointers method that needs to validate
after every hazard pointer, and as such one expensive barrier
per hazard pointer. This effectively reduces the number of
expensive memory barriers in read only operations, from one
per node traversed to zero, and in modifying operations, from
one per node traversed to one per operation. These character-
istics make the OA memory reclamation method extremely
efficient and performant compared to the state-of-the-art,
while also having low memory bounds and not requiring any
specific support from the operating system.

A consequence of allowing optimistic accesses to possibly
reclaimed nodes is that nodes need to remain accessible after
being reclaimed. However, there is no need for the contents
of the node to be maintained, as the result of the access will
be ignored in the case it was invalid. To ensure the nodes are
accessible after being reclaimed, the recycling mechanism is
used, which allows nodes to be reused, but never released to
the memory allocator or the operating system.

3 OUR APPROACH

In this section, we start by introducing how we make LRMal-
loc compatible with the OA memory model and how we can
use it to simplify the OA method. Next, we present how we
can exploit virtual memory in order to allow memory to be
released to the operating system.

3.1 Memory Recycling at the Allocator
Level

Remember that the OA method allows memory to be read
even after being reclaimed because reads are validated. Writes
to reclaimed memory are prevented because memory is pro-
tected by hazard pointers. In a program using a lock-free data
structure in combination with the OA method, the memory
reclaimed can be reused by the same data structure but it
cannot be reused by other parts of the program, at least
without extensive modifications both to the memory recla-
mation method and to the rest of the program. Our solution
to avoid this restriction is to adapt the memory recycling
mechanism at the allocator level. To achieve this we extended
LRMalloc with a new persistent allocation function that we
named palloc().
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To implement palloc(), we follow the same process as in
a regular allocation, but the superblock that contains the
memory block being allocated is marked as persistent. This
mark is then used to guarantee that persistent superblocks
never reach the empty state, even if all its blocks are available.
This change ensures that memory allocated with palloc() is
never released to the operating system, but can still be reused
by future allocations anywhere on the same process. Figure 2
shows the state diagram for superblocks before and after
being marked as persistent.

Partial

Full Empty

Flush()

Flush()

Fill() Flush()

Operating System

(a) Non-persistent

Partial

Full

Flush()

Fill()

Operating System

(b) Persistent

Figure 2: State diagram for superblocks

By having an allocator that satisfies these properties, we
can now extensively simplify the memory reclamation method.
As we no longer need the memory recycling mechanism em-
ployed originally in the OA method, we can use a much
simper mechanism, similar to the one used by the hazard
pointers memory reclamation method, as shown in Alg. 1.

Algorithm 1 Retire(Node N)

LimboList.add(N)
if LimboList.full() then

for T in Threads do
T.warning bit.set()

end for
Reclaim(LimboList)

end if

The idea is as follows. When a node is retired, we add
it to the reclaiming thread’s limbo list, and when the list’s
size reaches a certain threshold, we perform the reclamation
procedure. During such procedure, we only need to set all
the other threads’ warning-bit and then free all nodes that
are not protected by a hazard pointer using the Reclaim()
procedure, as shown in Alg. 3.

This mechanism however is not ideal for data structures
with long chains, such as linked lists, since as we trigger
more warnings, more restarts are needed. These restarts are
inexpensive on data structures with short chains, such as
hash tables, but not so much in linked lists, not only because
the amount of work lost by a restart is high, but also because
the beginning of the chain is most likely out of the L1 cache
by the time of the restart.

To mitigate this issue, we implemented another warning
mechanism that is based on the one used in the Version Based
Reclamation (VBR) method [23]. In this mechanism instead
of having a warning bit per thread, in which a thread has to
set all other threads warning bit in order to send a warning,
we have a monotonic global variable that we increment when
we want to send a warning to all threads. Threads then
check for the warning by comparing the last value they saw
in the global variable with the current value, i.e., when a
thread detects an increment in the global variable, it knows
a warning has been sent to it and every other thread. With
this mechanism we can allow threads to piggy back of each
other warnings1, as we can forego sending a warning if one
has happened in the period between the time the node was
retired and the time we try to reclaim it. Note that we not
only take advantage of other threads warnings when we see
the increment in the global variable, but also when we try
to increment it with a CAS and it fails, which means that a
warning was successfully fired by another thread and we can
take advantage of it. The Retire() procedure based on this
alternative mechanism is shown in Alg. 2.

Algorithm 2 Retire(Node N)

if LimboList.full() then
if LastRetireTime = LocalClock then

CAS(GlobalClock, LocalClock, LocalClock + 1)
LocalClock ⇐ GlobalClock

end if
end if
if LastRetireTime < LocalClock and LimboList.size() >
X then

Reclaim(LimboList)
end if
LastRetireTime ⇐ LocalClock
LimboList.add(N)

GlobalClock represents the monotonic global variable that
can be updated by any thread sending a warning. LocalClock
is a thread local variable used to store the last seen value of
the global variable and thus can be updated in other functions
by the same thread, e.g., when a search is restarted due to
a warning. LastRetireTime is a local variable accessed only
by this procedure and used to take advantage of the other
threads warnings. We also reuse the Reclaim() procedure
introduced in Alg. 1 and described next in Alg. 3.

Algorithm 3 shows how nodes are freed, which is identical
to how nodes are freed in the hazard pointers method. We
start by issuing a memory barrier and by reading all the
hazard pointers and then we free all the nodes that are not
referenced by any hazard pointer.

As mentioned earlier, with this method we end up with
memory that we can never release to the operating system
throughout the lifetime of the process. In the case that a large
amount of memory is allocated with palloc(), that memory

1Note that this is not possible on Alg. 1 as the warnings are not atomic
with one warning-bit per thread.
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Algorithm 3 Reclaim(List LimboList)

MemoryBarrier()
for T in Threads do

HPSet.add(T.hazard pointers)
end for
for M in LimboList do

if not HPSet.contains(M) then
LimboList.remove(M)
Free(M)

end if
end for
HPSet.reset()

will continue in the process even if the amount of memory
it requires for the remainder of its lifetime is much lower.
The main advantage of this mechanism is that it requires no
additional features from the operating system or hardware
compared to any other lock-free memory allocator.

3.2 Using Virtual Memory

Now that we have made the memory allocator compatible
with the OA model, we next focus on the interaction with
the operating system. Remember that the memory alloca-
tor cannot release superblocks marked as persistent to the
operating system because they need to remain accessible.

If we take a closer look at this problem, taking into ac-
count the virtual memory system, we can observe that what
actually needs to remain accessible is the address range of
the superblocks marked as persistent and not the backing
physical memory, as there is no requirement regarding the
contents of the reclaimed memory. Thus, the problem can be
solved if we can release the physical memory associated with
such superblocks but maintain the addresses range accessi-
ble.2 To do so, we can remap the address range of a persistent
superblock becoming empty into a default pre-reserved frame.
Thus, independently of how many empty superblocks we have,
they will just consume a single frame of physical memory.
This single frame could even be a frame already in use by
the process, as long as we can ensure it will remain accessible
throughout the lifetime of the process. Figure 3 illustrates
this remapping process. In Fig. 3a we show multiple persistent
superblocks using 2 pages each, with each page mapped to a
different frame, and in Fig. 3b we show how the superblocks
can be remapped in order to release all their frames while
keeping the access to them valid.

However, we need to be careful as the virtual address space
is an abundant but limited resource. So, some mechanism
to recycle the virtual addresses of the remapped superblocks
still needs to be used. But this is almost already done by
LRMalloc when it needs to recycle the descriptors that con-
tain the metadata of a superblock. Remember that when
a non-persistent superblock becomes empty, the superblock
is unmapped and the descriptor is added to the recycling

2Note that now we are considering again that all superblocks can
become empty, i.e., ready to be released to the operating system.

SB2

SB3

SB1
Reserved

Virtual
Addresses

Physical
Memory

(a) Before

SB2

SB3

SB1
Reserved

Virtual
Addresses

Physical
Memory

(b) After

Figure 3: Memory mappings before and after the
remapping process

pool. Later, when a new superblock is requested, first, a
descriptor is obtained from the recycling pool, then a su-
perblock is mapped from the OS, and finally the metadata
in the descriptor is rewritten with the metadata of the new
superblock. So, if we use instead the address range stored
in the descriptor obtained from the recycling pool to map
the new superblock, we are effectively recycling the virtual
address space by piggy backing on the descriptor. In the ac-
tual implementation, we added an additional recycling pool
with this mechanism, which we give priority to obtain blocks
from, and keep the original for descriptors originated from
non-persistent superblocks. The reason for the second pool
will become clearer in section 4.

For the actual remapping process, we propose two meth-
ods. The first method is to advise the operating system
that the memory will not be needed. In Linux, this is ac-
complished by the use of the madvise() system call with
the MADV DONTNEED flag, which reverts the memory
mapping to a state similar to when the superblock was first
allocated, i.e., all pages are mapped to a single copy on write
zero filled frame. This frees all physical memory previously
associated with the map until it is written again. Note that
reads to these ranges of memory do not cause a page fault,
but only an actual read from the zero filled frame. With this
method, when we get a descriptor from the recycling pool,
we do not need to do any extra work for remapping as the
original address range is already valid and ready to use.

This first method has the advantage of being simpler and
more efficient, but has two main disadvantages. One disad-
vantage is that even though this system call and flag are
defined in the POSIX standard, the standard itself does not
imposes the behavior observed in Linux, which makes this
method not portable. Another disadvantage is that some OA
derived methods, like VBR [23], use Double-Width Compare-
and-Swap (DWCAS) on reclaimed memory, even though the
DWCAS is certain to fail3 as otherwise it would lead to
corruption, the operating system is unable to ascertain that
and faults a frame in through the copy on write mechanism.
This does not cause a correctness issue but could lead to

3It uses tagged pointers as an ABA prevention mechanism.
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some memory leaking, as some pages would be reserved for
unallocated superblocks.

The second method is to use the shared memory mecha-
nism. We start by defining a shared memory region and then,
when we want to deallocate a superblock, we map its address
range to the shared memory region. We can choose a size
for the shared memory region that varies from the size of
a page to the size of a superblock, which can lead to differ-
ent performance trade-offs as we need one system call to do
the remap if we choose the size of a superblock, two system
calls if we choose half the size of a superblock, and so on.
Note that the physical memory associated with the shared
memory region could be used to store something useful in
the meantime. For example, it could be used to store the
descriptors. Later, to reuse the virtual range of the superblock
we need to remap it again to new memory. Note that this
remap only requires one system call, independently of the
size of the shared memory region. In Linux, this method is
accomplished with the use of the mmap() system call with
the flags MAP FIXED and MAP SHARED to release the
physical memory, and MAP FIXED, MAP PRIVATE and
MAP ANON to reuse the superblock.

Although this method might look a bit abusive, it is sup-
ported by the POSIX standard. However, this support is not
explicit and, in Linux, the memory statistics report wrong
results, as it counts all the ranges mapped to the shared
mapping into the resident set size (RSS) of the process, even
though it only uses one shared mapping of physical memory.
This method can also be used in other operating systems
outside the POSIX world, and does not lead to memory leak-
age when CAS instructions are used on reclaimed memory. It
requires extra system calls but we were not able to measure
any performance degradation caused by them.

4 LIMITATIONS

The LRMalloc memory allocator uses a size class allocation
strategy, which means that allocations up to a reasonable size
(16KiB) are handled through this mechanism. For all size
class allocations, LRMalloc uses superblocks of the same size
(2MiB), which simplifies our remapping logic as we can reuse
retired superblock addresses to different size classes. Meaning
that memory obtained through palloc() can be reused in
any kind of allocation of any size class after being freed.
This is ideal in most scenarios, as most allocations fall into
the size class range. However, for allocations larger than
the biggest size class, it requires a different mechanism. For
such allocations, LRMalloc relies directly on the operating
system, as other lock-free memory allocators do [10, 15, 18,
22]. Relying on the operating system for large allocations
does not meaningfully impact performance as this kind of
allocations are uncommon. Large allocations work similarly
to size class allocations, but the thread caches are skipped
and a superblock with the exact size needed is mapped to
satisfy the allocation.

This way of dealing with large allocations is not ideal, as it
requires a different mechanism in order to recycle the range

of virtual addresses of such allocations. In this regard, we
have chosen to restrict the persistent memory allocation to
sizes that are compatible with the size classes. This is not a
problem in most situations as lock-free data structures tend
to either use small allocations for their internal structure, or
the large allocations last the lifetime of the data structure and
as such need no reclamation, one example being Michael’s
lock-free hash tables [16]. The exceptions are lock-free hash
maps that use large arrays that are resizable, as during the
resizing process they need to allocate a new array and reclaim
the old one. Data structures with these mechanisms are rather
uncommon as the resizing processes tend to be complex and
synchronization heavy, which leads to performance loss. As
such, we leave the resolution of this limitation to future work.

This limitation is also the reason why we need another
recycling pool for descriptors when a superblock becomes
empty. If the superblock is not marked as persistent4, the
superblock is unmapped and the descriptor is added to the
pool with the original behavior. If the superblock is marked
as persistent, we remap the superblock as shown in the
previous section and add the descriptor to the new pool.
When we need a new descriptor we try to obtain one using
the following priority: (i) the new pool that already has the
virtual range of the superblock associated with it and as such
is only compatible with superblocks intended for size class
allocations; (ii) the original pool that has generic descriptors;
and finally, (iii) we allocate a new descriptor. We only go
down the priority list if either the pool is incompatible or is
exhausted.

5 APPLICABILITY

In this section, we start by discussing the applicability of our
ideas to other memory allocators, and then we discuss other
possible use cases for the palloc() functionality in systems
outside the OA memory reclamation method.

5.1 Other Allocators

Most modern memory allocators, if not all, divide allocations
in two major classes: huge allocations, in which they rely
directly on the operating system to satisfy the allocations; and
regular allocations, in which they request blocks of memory
from the operating system that they then divide in order to
satisfy the allocations.

For regular allocations, as the blocks of memory requested
from the operating system tend to be all of a unique fixed size,
the same remapping strategies could be applied to such blocks
in order to make memory persistent. However, a mechanism to
mark such blocks as persistent is still required when allocating
memory through palloc(). This can trivially be implemented
by having an additional marking bit in the data structure
that manages such blocks. Another issue is the necessity to
recycle the virtual address space. In the worst case, this can
be solved by having an additional data structure to store the
virtual addresses of blocks freed through remapping, or by

4Note that only superblocks used for size class allocations can become
persistent.
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using the data structure that already manages the blocks. In
order to be able to do persistent allocations of any size, the
data structure that manages virtual addresses also needs to
be able to coalesce and split the virtual memory ranges.

Some memory allocators already rely (or can be configured
to rely) onMADV DONTNEED,MADV FREE or equivalent
modes of releasing memory to the operating system. For such
allocators, it would be easy to implement palloc() based on
advising the operating system as they already have all the
required structures.

5.2 Other Use Cases

Our allocator extension was developed with the OA memory
model in mind, but it can also be applied to other use cases.

One such case is the VBR method. As mentioned before,
VBR is another memory reclamation method based on opti-
mistic accesses. Instead of relying on hazard pointers, VBR
extends the optimistic access to write operations and, to
do so without suffering from ABA problems, it replaces all
atomic fields in the data structure with a tuple of the field
and a monotonic tag and uses DWCAS instead of CAS to up-
date both simultaneously. In order to replace VBR’s recycling
mechanism and be able to return memory to the memory allo-
cator/operating system, we could use our allocator extension
with a simplified method similar to the ones we presented for
the OA method although, as discussed previously in section
3.2, the madvise() approach can lead to memory leaks, while
the other approaches would be fully compatible.

Another example is the case of Software Transactional
Memory (STM) systems. As STM systems need to validate
every transaction before committing, it is possible to achieve
safe memory management just by relying on the palloc() and
free() procedures without the OA method. However, for this
to be possible, the STM system has to satisfy the following
properties: (i) it has to rely on lazy version management
(deferred update) as memory cannot be written to before the
transaction being validated/committed; and (ii) the memory
from the application and STM system needs to be segregated
(not obtained in the same allocation request), as the lifetime
and update semantics of the STM system memory can be
different from the application memory.

Word based STM and Object based STM by Fraser and
Harris [9], and the per stripe commit-time variants of Transac-
tional Locking STM by Dice and Shavit [8] and Transactional
Locking 2 by Dice et al. [8]5 are examples of STM systems
that could rely on palloc() to achieve safe application memory
management. We believe that any STM system that satis-
fies these properties is a good candidate to use our palloc()
implementation in order to achieve safe memory reclamation.

6 EXPERIMENTAL RESULTS

In order to evaluate the impact of our changes to the OA
method, we compare the results of our two implementations

5Note that on both Transactional Locking STM systems memory can
only be freed after all locks to such memory are released as our system
dos not allow writes to freed memory

of the OA method, the one with warning-bits and the one
with the monotonic global variable, against the original OA
method, and against no reclamation, in which memory is
never reclaimed, reused or freed. From this point onwards,
we will refer to the original OA method as just OA, our
simplified OA method with the warning-bit per thread as
OA-BIT, the alternative with the monotonic global variable
as OA-VER, and the no reclamation alternative as NR.

6.1 Methodology

The hardware used was a machine with 2 AMD Opteron(TM)
Processor 6274 with 16 cores each, 16KiB of L1 cache per
core, 2MiB of L2 cache per pair of cores and 12MiB of usable
shared L3 cache per CPU. It has a total of 32GiB of DDR3
memory. The machine used was running the Ubuntu 22.04.1
LTS GNU/Linux operating system with the Linux kernel
5.15.0-60-generic.

We benchmarked the four methods with the commonly
used Michael’s lock-free hash tables [16] and Harris-Michael’s
lock-free linked lists [17]. For all benchmarks, we use LRMal-
loc as the memory allocator, and although for our simplified
versions it uses the new palloc() procedure for allocation, for
both the original OA and no reclamation it uses the regular
malloc() procedure. Note that the OA method only uses the
allocator to create its memory pool before the benchmark
begins and performs no allocations during the benchmark
itself.

The benchmarks were run with varying ratios of searches,
inserts and removes, but we kept the ratio between inserts and
removes at 1:1 in order to keep the size of the data structure
constant throughout the benchmark. For linked lists, we ran
the benchmarks with 5K nodes pre-inserted. For hash tables,
we used both 10K and 1M nodes and a load factor of 0.75.
The results are the mean of 10 runs of 1 second each, and
we show the results in the form of throughput (number of
operations per second) for every combination of threads from
1 to 32.

For all these experiments, we are not showing compar-
isons between the different approaches to memory remapping
because we were unable to measure any difference in per-
formance (outside a margin of error) between keeping the
memory in the allocator, advising the operating system with
MADV DONTNEED and remapping with a shared memory
region.

6.2 Results

Figure 4 shows the results for the benchmark using linked lists
with 5K nodes pre-inserted. Figure 4a shows the case with
only modifying operations (50% inserts and 50% removes)
and Fig. 4b shows a more balanced set of operations (50%
searches, 25% inserts and 25% removes). Figures 5 and 6 then
show the results for the benchmarks using hash tables with
10K nodes and 1M nodes, respectively. For both benchmarks,
we also have the case with only modifying operations (50%
inserts and 50% removes) and with a more balanced set of
operations (50% searches, 25% inserts and 25% removes).
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Figure 4: Linked lists with 5K nodes

For linked lists with only modifying operations, the OA-
VER method shows significant improvements to the OA-BIT
method due to its ability to fire less warnings. This effect is
somewhat reduced for linked lists with 50% searches, as there
are less removes, and becomes negligible in both benchmarks
using hash tables (Figs. 5 and 6) due to the much shorter
chains.

For low amounts of threads, we can see that both OA-BIT
and OA-VER outperform the OA and even the NR method
for linked lists. This happens because with low amounts of
threads our methods use less memory, keeping most of the
memory used in lower level caches. With increasing number of
threads, our two methods start using more memory due to the
per thread caches of LRMalloc and thus loose this advantage
to the OA method that has a memory pool of a fixed size
and to the NR method that suffers from less overhead caused
by synchronisation between the many threads. A memory
allocator with different characteristics could show a different
behavior here. Linked lists are an unresting example to study
the behavior of the system but they are not the ideal tool
when performance matters due to their asymptotic complexity
characteristics.

The benchmarks using hash tables show a kind of inversion
of the results. In general, the OA method shows slightly better
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Figure 5: Hash Table with 10K nodes

performance than our methods for low amounts of threads,
but a clear lack of scalability for higher thread counts. Here,
since we are working with much higher throughputs and
larger amounts of memory, the weight of synchronization
becomes much more relevant compared to memory usage
and thus cache locality. The fixed size of the memory pool
in the OA method proves detrimental as it requires much
more recycling phases as the throughput and thread counts
increase, causing synchronization to increase as well. In both
our methods, we do not suffer from these drawbacks as the
thread caches in the allocator and private limbo lists allow
for less synchronization and thus better scalability.

Please remember that the main contribution of this paper
is the added ability of releasing memory to the memory allo-
cator/operating system and the simplification of the memory
reclamation method, not the performance and scalability
gains, even thought they are welcome.

7 RELATED AND FUTURE WORK

Since the proposal of the OA method, some other proposals
have been developed focusing on making OA easier to use
and compatible with more data structures. One such example
is the Automatic Optimistic Access (AOA) method [4], which
allows the data structure programmer to forego the retire
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Figure 6: Hash Table with 1M nodes

call by making use of garbage collector like techniques. A
second example is the Free Access (FA) method [3] that
requires the programmer to annotate the data structure
functions, which then, through a combination of garbage
collection techniques and compiler steps, is able to apply OA
like memory reclamation to the data structure without the
need for it be written in a normalized form [24]. Another
example is the VBR method [23] that is able to extend OA
to write operations through the use of DWCAS with tagged
pointers.

We already discussed how our modifications to LRMalloc
can be compatible with the optimistic DWCAS of VBR, so
we leave it to future work the simplification and adaptation
of VBR in order to also make it able to release memory back
to the memory allocator/operating system. We could also use
the extended LRMalloc in order to allow a dynamic resizing
of the memory pool (in a garbage collector like manner) both
in the AOA and FA methods, allowing the memory pool to
be shrunk by releasing it to the memory allocator/operating
system. Our results for the linked list benchmark show that
this could also lead to performance improvements.

Future work also includes the removal of the limitation
discussed in Section 4, which requires a mechanism capable of

splitting and coalescing virtual address ranges in a lock-free
manner.

Finally, we intend to further study how our allocator exten-
sions can be used to simplify and improve the performance of
STM systems and how other possible applications can benefit
from these extensions.

8 CONCLUSION

Starting from a lock-free general purpose memory allocator
named LRMalloc, we showed how to extend it to support
the memory model required by the OA memory reclamation
method in such a way that we can guarantee memory allo-
cations to be readable even after we free such allocations.
We were able to eliminate the major drawback of the OA
method while ensuring that it remains one of the most effi-
cient memory reclamation methods. While doing so, we were
also able to simplify the implementation of the OA method,
and obtain results showing performance improvements.
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