
Concurrent Hash Maps Under Pressure:

Revisiting the Separate Chaining Mechanism

with Linked Lists and Dynamic Arrays

Ana Castro, Miguel Areias, and Ricardo Rocha

CRACS & INESC TEC, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{ana-castro,miguel-areias,ricroc}@dcc.fc.up.pt

Abstract. Hash maps are a widely used and e�cient data structure for
storing and accessing data. One of the main challenges in hash map im-
plementation is the management of collisions. Arguably, separate chain-

ing is among the most well-known strategies for collision resolution. In
this paper, we present a comprehensive study comparing two common
approaches to implementing separate chaining - linked lists and dynamic

arrays - in a multithreaded environment using a lock-based concurrent
hash map design. Our study includes a performance analysis covering
parameters such as cache behavior, energy consumption, contention un-
der concurrent access, and resizing overhead. Experimental results show
that dynamic arrays maintain more predictable memory access and lower
energy consumption in multithreaded environments.

1 Introduction

Hash maps [15] are widely valued for their nearly constant average-case time
complexity of O(1) for insertion, deletion, and lookup operations. As a result,
they play a crucial role in a broad range of applications, including symbol ta-
bles [2], dynamic programming [5], and database indexing mechanisms [13]. A
key aspect of hash map design is the management of collisions. Separate chain-
ing [16, 12] is a widely adopted strategy for collision resolution, typically imple-
mented using either linked lists or dynamic arrays.

Concurrent hash maps aim to retain the advantages of their non-concurrent
counterparts while ensuring correctness and high performance in multi-threaded
environments [8]. In particular, a good collision management strategy is vital
under concurrent hash maps designs [14]. Performance evaluation of concurrent
hash maps typically focuses on throughput, latency, and scalability. Common
metrics include operations per second, speedup relative to sequential baselines,
and contention overhead. In addition, energy e�ciency has become an increas-
ingly important metric, particularly on architectures with deep memory hier-
archies and non-uniform memory access patterns [10]. However, to the best of
our knowledge, there is no comprehensive study that performs an in-depth com-
parison between separate chaining mechanisms, linked lists-based and dynamic

2 Ana Castro, Miguel Areias, and Ricardo Rocha

arrays-based, within a context of a lock-based concurrent hash map design. De-
spite their widespread use, the trade-o�s between these two approaches - par-
ticularly in terms of cache behavior, contention under concurrent access, and
resizing overhead - remain largely unexplored.

The remainder of the paper is organized as follows. We begin by introducing
the necessary background and providing an overview of the two separate chaining
approaches. Next, we provide a detailed description of the key algorithms we im-
plemented from scratch to facilitate the reproduction of our work by others. We
then present a comprehensive experimental study designed to evaluate the per-
formance of both approaches. To this end, we employ measurement tools such as
Intel's Running Average Power Limit (RAPL) [11] and Linux performance coun-
ters [1] to quantify relevant metrics, with particular emphasis on analyzing the
energy and cache performance trade-o�s. Finally, we conclude by summarizing
our contributions and outlining potential directions for future work.

2 Background

Hash maps are a common and e�cient data structure for storing and accessing
data organized as key-value pairs. The mapping between a key K and a value
V is provided by a hash function, which deterministically maps K to a speci�c
index (or bucket) within an array-based structure. This bucket indicates the
location where the corresponding value V is stored.

One of the main challenges in hash map implementation is the management
of collisions, which occur when di�erent keys are mapped to the same bucket.
Common strategies for collision resolution include separate chaining, where each
bucket references a secondary data structure to store multiple entries, and open
addressing, in which alternative locations within the array are systematically
probed to resolve con�icts [16, 12]. Chaining remains e�ective under moderate
to high load factors (the ratio of stored elements to available buckets), although
it introduces additional memory overhead and may degrade performance when
chains grow long. Open addressing uses less memory but is more sensitive to
clustering and requires careful tuning of the load factor to maintain performance.

When implementing chaining, linked lists and dynamic arrays are two com-
mon approaches. Linked lists o�er stable performance (linear complexity under
key collisions), but they tend to scale poorly on modern hardware architectures
- characterized by load/store execution models and multi-level caches - due to
poor spatial locality. Linked list nodes are not stored contiguously in memory,
and pointer dereferencing incurs frequent cache misses. Dynamic arrays mitigate
this problem to some extent by o�ering better spatial locality and cache perfor-
mance. However, they introduce additional complexity in resizing and shifting
operations, particularly as the number of elements grows or when insertions are
highly interleaved with lookup and delete operations [7, 18].

We refer to the dynamic growth characteristic of separate chaining approaches
as horizontal expansion. In contrast, when the load factor exceeds a prede�ned
threshold, a vertical expansion occurs, involving the allocation of a new, larger

Concurrent Hash Maps Under Pressure: Linked Lists vs Dynamic Arrays 3

array of buckets (often sized to a prime number or a power of two), followed by
the rehashing of all existing keys. Although vertical expansion incurs signi�cant
cost during the reallocation and rehashing process, this overhead is amortized
over time, enabling the hash map to maintain constant average-case time com-
plexity in the long run.

In concurrent environments, a major challenge is maintaining both correct-
ness and performance during vertical expansion. Common strategies include
double-bu�ering, where a new hash map is constructed in parallel and buck-
ets are migrated one by one; and incremental expansion, where the rehashing is
performed gradually as threads access individual buckets.

3 Separate Chaining Designs by Example

This section outlines the design choices behind our concurrent hash map im-
plementation of the two alternative separate chaining approaches for collision
resolution. Both approaches share the same underlying structure of a hash array
of buckets and di�er only in how the chaining mechanism is implemented.

3.1 Linked Lists

We begin by presenting the key aspects of the linked list approach. Figure 1
illustrates a simple example of how concurrent insertion is handled in this con-
text. The �gure depicts the standard hash map con�guration, which is formed
by a header structure that stores common information such as the number of
bucket entries or the number of key-value pairs currently stored in the hash. It
is also formed by a bucket array of entries, where each bucket contains a lock
�eld L and a pointer reference. A bucket entry begins with a Null reference,
and during execution it can store either a reference to a second hash level, if the
current hash has been (vertically) expanded, or a reference to a chain of nodes
representing hash collisions for that entry.

K1 K2
bucket
entries K1K1

(b) (c)

LBk

Header

...

...

LBk

Header

...

...

LBk

Header

...

...

(a)

Fig. 1. Concurrent insertion with linked lists

Figure 1(a) shows that Bk represents a particular bucket entry that already
contains a node with key K1. For simplicity, only the keys are shown in the
�gures. Figure 1(b) shows the hash con�guration before inserting a new node in
Bk, which requires acquiring the lock for the bucket (represented by the black
background). Figure 1(c) shows the hash con�guration after inserting nodeK2 in

4 Ana Castro, Miguel Areias, and Ricardo Rocha

Bk and before releasing the lock. New nodes are inserted at the end of the chain.
Each node contains a reference to the next node in the chain and the last node
contains a Null reference. When the number of nodes in a chain reaches a given
threshold, the hash map is checked for vertical expansion. If the total number of
nodes stored in and registered with the hash header exceeds a prede�ned load
factor, the hash map expands to a second hash level. Figure 2 shows how nodes
are concurrently expanded to a second hash level.

...
Header

(a) (b)

LBm

LBn

...

...

K1 K2

Header

...

...

LBk

K1

K2

Header

...

...

LBk

...
Header

LBm

LBn

...

...

Fig. 2. Concurrent vertical expansion with linked lists

The thread responsible for performing vertical expansion begins by allocating
a new hash level with twice the number of bucket entries. It then iterates over
all buckets in the original array to rehash and redistribute the existing keys into
the new level. For each bucket, the thread acquires the corresponding lock and
transfers the chain nodes, one by one, to the appropriate buckets in the new
hash. Figure 2(a) illustrates the con�guration after acquiring the lock on bucket
Bk, but before moving nodes K1 and K2 to the new hash level. Figure 2(b)
shows node K1 being moved to bucket Bm and node K2 to bucket Bn in the
new level. Once all nodes have been moved, bucket Bk is updated to reference
the new hash level, indicating that future operations on Bk should be performed
at the new level from this point onwards.

Once all buckets have been processed, the global entry point of the hash map
is also updated to reference the new hash level, ensuring that all subsequent
operations are performed on the new level.

Regarding the deletion operation, it also begins by acquiring the lock for the
corresponding bucket. The chain is then traversed in search of the target key to
be deleted. If a node N containing the key is found, N is deleted from the chain,
the chain is updated accordingly, and N is subsequently freed.

3.2 Dynamic Arrays

For the dynamic array approach, we also begin with a simple example that il-
lustrates how concurrent insertion works, as shown in Fig. 3. This �gure depicts
the same hash map structure as before. As with linked lists, each bucket entry
initially contains a Null reference. During execution, this reference may be up-
dated to point either to a second hash level or to a dynamic array representing
hash collisions for that entry. In addition, bucket entries in this approach include
two numeric �elds: one indicating the size of the dynamic array (zero if no array
is allocated), and another representing the number of elements stored in it.

Concurrent Hash Maps Under Pressure: Linked Lists vs Dynamic Arrays 5

bucket
entries K1LBk

Header

...

...

(a)

2
2 K2 K1LBk

Header

...

...

(c)

4
3 K2 K3 --K1LBk

Header

...

...

(b)

2
2 K2

K1 K2

Fig. 3. Concurrent insertion with dynamic arrays

Figure 3(a) illustrates a bucket entry Bk that already contains a fully al-
located dynamic array of size 2, storing keys K1 and K2. Figure 3(b) shows
the hash map con�guration just before inserting a new key K3, which requires
acquiring the lock for that bucket. Finally, Fig. 3(c) depicts the con�guration
after inserting K3 into Bk and before releasing the lock. Since the original array
was full, a new array with double the capacity (size 4 in this example) had to
be allocated (horizontal expansion). The existing elements were copied into the
new array, key K3 was inserted, and the old array was then released. As before,
when the number of elements in a dynamic array reaches a prede�ned threshold,
the hash map checks whether vertical expansion is necessary. Figure 4 illustrates
how concurrent vertical expansion is handled with dynamic arrays.

...
Header

(a) (b)

Bm

Bn

...

...

K1LBk

Header

...

...

4
3 K2

L
0
0

L
0
0

LBk

Header

...

...

0
0

...
Header

Bm

Bn

...

...

L
2
1

L
2
2

K3 --

K1 --

K2 K3

Fig. 4. Concurrent vertical expansion with dynamic arrays

Figure 4(a) shows the con�guration after acquiring the lock on bucket Bk and
before moving keys K1, K2, and K3 to the new hash level. Figure 4(b) illustrates
key K1 being moved to bucket Bm, while keys K2 and K3 are moved to bucket
Bn in the new hash level. Once all keys have been moved, Bk is updated to
reference the new hash level.

Finally, the deletion operation also begins by acquiring the lock for the bucket
and searching for the target key K to be deleted. If K is found in the dynamic
array, the last element of the array is copied into K's position, and the element
count is decremented by one. It is important to note that the dynamic array is
not deallocated, even when the number of stored elements reaches zero.

3.3 Optimizations

As mentioned earlier, vertical expansion is triggered when the total number of
elements recorded in the hash header exceeds a prede�ned load factor. Since
this count can change with every insertion or deletion, frequent updates to the

6 Ana Castro, Miguel Areias, and Ricardo Rocha

shared counter may cause signi�cant contention under high thread concurrency.
To reduce this overhead, each thread maintains a local counter to track its own
successful insertions and deletions, updating the shared counter only after a �xed
number of local operations. We refer to this optimization as delayed updates.

Moreover, for vertical expansion, we adopt a double-bu�ering strategy in
which a new hash map is built in parallel and the buckets are migrated one by
one. To accelerate this process, we implement a form of incremental rehashing
where non-expanding threads assist by relocating individual buckets as they
access them. We refer to this optimization as cooperative expansion.

4 Algorithms

We now present the algorithms that detail the core mechanisms of our two
approaches, which we fully implemented from scratch. We begin with Alg. 1,
which provides the pseudo-code for inserting a given (K,V) pair into a hash
map H. Brie�y, the InsertOnHash() algorithm begins by computing the hash
of key K to determine the appropriate bucket B within hash level H (line 1).
It then attempts to acquire exclusive access to bucket B (line 2) and reads the
current reference R stored at that location (line 3). If R indicates that B has
already been expanded into a second hash level, the algorithm recursively invokes
itself on that new hash level (lines 4�7).

Algorithm 1 InsertOnHash(hash H, key K, Value V)

1: B ← Bucket(H,Hash(K,Size(H)))
2: Lock(Mutex(B))
3: R← EntryRef(B)
4: if IsHashRef(R) then // R refers to a second hash level
5: nextH ← UnmaskHashRef(R)
6: Unlock(Mutex(B))
7: return InsertOnHash(nextH,K, V)
8: else if IsHashExpanding(H) then // cooperative expansion
9: nextH ← NextHash(H)
10: AdjustBucket(B,nextH)
11: EntryRef(B)←MaskAsHashRef(nextH)
12: Unlock(Mutex(B))
13: return InsertOnHash(nextH,K, V)
14: else
15: N ← InsertOnBucket(B,K, V)
16: Unlock(Mutex(B))
17: return N

Otherwise, the algorithm checks whether the hash level H is currently being
expanded by another thread to a new hash level, nextH. If so, the current thread
assists by expanding the current bucket B into nextH using the AdjustBucket()
procedure (lines 8�13). After the expansion, it updates B to reference nextH and
recursively calls itself on the new hash level. The MaskAsHashRef() procedure
(line 11) applies a bitmask to mark a reference as pointing to a hash structure,

Concurrent Hash Maps Under Pressure: Linked Lists vs Dynamic Arrays 7

while the corresponding UnmaskHashRef() procedure (line 5) removes this
marker to retrieve the original reference.

If no expansion has been performed or is in progress, the algorithm proceeds
to safely insert (K,V) into bucket B. This is achieved by invoking the auxiliary
procedure InsertOnBucket(), which returns the updated number of key-value
pairs in the bucket upon a successful insertion, or 0 if insertion fails (lines 15�17).

The InsertOnBucket() procedure, shown in Alg. 2, assumes that the sepa-
rate chaining mechanism uses linked lists. Due to space limitations, the array-
based version is omitted; however, it is expected that the reader can easily grasp
it. Conversely, for the delete procedure in Alg. 3, we provide the pseudo-code for
the array-based implementation and omit the version based on linked lists.

Algorithm 2 InsertOnBucket(bucket B, key K, Value V) // for linked links

1: S ← 0 // size of the bucket chain
2: if EntryRef(B) = NULL then // bucket is empty
3: EntryRef(B)← AllocNewNode(K,V)
4: else
5: R← EntryRef(B)
6: repeat

7: if Key(R) = K ∧ V alue(R) = V then

8: return 0 // the pair (K,V) was found
9: else

10: S ← S + 1
11: Prev ← R
12: R← NextRef(R)
13: until R 6= NULL
14: NextRef(Prev)← AllocNewNode(K,V)
15: return S + 1

The InsertOnBucket() algorithm begins by initializing a counter S to track
the number of key-value pairs in the bucket (line 1). If the bucket is empty, a
new node representing the pair (K,V) is allocated and initialized (lines 2�3).
Otherwise, the algorithm enters a search phase, traversing the chain to locate
the pair (K,V) (lines 5�13). If the pair is found, the procedure returns 0 to
indicate that no insertion was performed (lines 7�8). If the pair is not present,
a new node is allocated and appended to the end of the chain (line 14). Finally,
the updated number of key-value pairs in the bucket is returned (line 15).

The deletion algorithm follows a structure similar to that of insertion. The
DeleteOnHash() algorithm begins by checking whether a second hash level ex-
ists or if it can assist in expanding the current bucket entry. In either case, as
with insertion, it recursively calls itself on the next hash level. If no expansion
has occurred or is in progress, the algorithm proceeds to safely delete the given
(K,V) pair from bucket B by invoking the DeleteOnBucket() procedure.

The DeleteOnBucket() algorithm, shown in Alg. 3, assumes that separate
chaining uses dynamic arrays. It starts by checking whether the given bucket B
is empty, returning false if it is. Otherwise, it enters search mode, scanning the
array A referenced by B for the target pair (K,V) (lines 4�10). If the pair is
found at position A[i], the array size S is decremented by one; the last element in

8 Ana Castro, Miguel Areias, and Ricardo Rocha

the array is moved to position A[i], overwriting the target pair; and the updated
size S is stored in B. The algorithm then returns true to indicate a successful
deletion. If the pair is not found, it returns false (line 11).

Algorithm 3 DeleteOnBucket(bucket B, key K, value V) // for dynamic arrays

1: if EntryRef(B) = NULL then // bucket is empty
2: return False
3: else
4: (A,S)← EntryRef(B)
5: for i = 0 to S − 1 do
6: if Key(A[i]) = K ∧ V alue(A[i]) = V then

7: S ← S − 1
8: A[i]← A[S]
9: EntryRef(B)← (_, S)
10: return True
11: return False

Finally, Alg. 4 presents the pseudo-code for the vertical expansion procedure
applied to a given hash H. Recall that vertical expansion is triggered after a
successful insertion when both of the following conditions are satis�ed: (i) the
number of nodes in a chain reaches a speci�ed threshold; and (ii) the total
number of elements recorded in the hash header exceeds a prede�ned load factor.

Algorithm 4 VerticalExpansion(hash H)

1: if IsHashExpanding(H) then // check for ongoing vertical expansion on H
2: return

3: if TryLock(Mutex(H)) then // try do expansion
4: if IsHashExpanding(H) then // recheck for ongoing vertical expansion on H
5: Unlock(Mutex(H))
6: return

7: S ← Size(H)
8: NextHash(H)← AllocNewHash(2× S)
9: IsHashExpanding(H)← True // mark as ongoing vertical expansion on H
10: Unlock(Mutex(H))
11: nextH ← NextHash(H)
12: for i = 0 to S − 1 do
13: B ← Bucket(H, i)
14: Lock(Mutex(B))
15: R← EntryRef(B)
16: if not IsHashRef(R) then // not expanded yet
17: AdjustBucket(B,nextH)
18: EntryRef(B)←MaskAsHashRef(nextH)
19: Unlock(Mutex(B))

To ensure that only one thread performs the hash expansion operation for a
given hash H, the V erticalExpansion() algorithm begins by checking whether
an expansion is already in progress (line 1). If not, it attempts to acquire exclusive
access to H (line 2). After acquiring the lock, it rechecks whether an expansion
has started in the meantime and aborts if that is the case (lines 4�6). Note that
if the call to TryLock() fails, the thread proceeds without blocking and will

Concurrent Hash Maps Under Pressure: Linked Lists vs Dynamic Arrays 9

retry the operation in a subsequent attempt. If access is successfully granted,
the algorithm proceeds to allocate a new hash with double the size of H, marks
H as being in expansion, and then releases the lock (lines 7�10). The algorithm
then iterates over the buckets of H, expanding each bucket B that has not yet
been processed into the new hash nextH using the AdjustBucket() procedure,
and updates B to reference nextH (lines 11�19).

We conclude with Alg. 5, which presents the AdjustBucket() procedure for
dynamic arrays. The algorithm iterates over the elements of the array A refer-
enced by the given bucket B, re-inserting each element into the next-level hash
H. Once all elements have been reinserted, the current array A is deallocated.

Algorithm 5 AdjustBucket(bucket B, hash H) // for dynamic arrays

1: (A,S)← EntryRef(B)
2: for i = 0 to S − 1 do
3: InsertOnHash(H, key(A[i]), V alue(A[i]))
4: FreeArray(A)
5: return

5 Experimental Results

The experimental environment was based on a NUMA architecture with an Intel
Core i9-10920X processor with 12 physical cores (24 hyperthreads) running at
3.50GHz. The system included 384KiB L1d + L1i (2 x 12 instances), 12MiB
L2 (12 instances), 19.3MiB L3 (1 instance), and 251GB of main memory. It
ran the Linux kernel 6.1.140 with GLIBC 2.36 (for the POSIX threads). All
programs were compiled with GCC 13.3.0 and linked with the jemalloc memory
allocator (version 5.3) [6]. To quantify the relevant metrics, particularly energy
and cache performance trade-o�s of both approaches, we used Linux's pro�ling
tools with performance counters [1] powered by Intel's Running Average Power
Limit (RAPL) interface [11].

5.1 Methodology

To evaluate the performance and energy behavior of separate chaining mecha-
nisms in concurrent hash maps, we designed a set of benchmarks that explores
various con�gurations using 1, 2, 4, 8, 12, 16, and 20 threads. Each benchmark
was executed with a �xed workload of 8,388,608 operations and every con�gura-
tion was repeated 10 times. We measured execution time, throughput (operations
per second), energy consumption (via Intel RAPL), and, for cache behavior using
perf, we collected statistics on cache-references, cache-misses, L1-dcache-load-
misses, and LastLevelCache-load-misses. To ensure fairness, preparation steps,
such as populating the hash map prior to lookup or delete operations, were ex-
cluded from execution time and energy measurements. Both implementations
were carefully aligned to 64-byte cache lines to avoid alignment faults, which we
veri�ed using perf. Additionally, global synchronization �ags were used to ensure
that all threads started simultaneously.

10 Ana Castro, Miguel Areias, and Ricardo Rocha

5.2 Performance Analysis

To simulate realistic usage patterns, we adopted a methodology inspired by the
YCSB benchmarking framework [4], where each workload scenario is de�ned by
a speci�c combination of operation ratios. Speci�cally, we evaluated both designs
under four representative workloads: (i) 100% insertions; (ii) 100% lookups; (iii)
80% lookups combined with 10% insertions and 10% deletions; and (iv) 60%
lookups combined with 20% insertions and 20% deletions. These combinations
re�ect a spectrum of access patterns ranging from write-heavy to read-dominant
workloads, and align with widely adopted experimental practices in the liter-
ature [17, 9, 14]. Each hash map was further evaluated under load factors of 3
and 5, resulting in four variants: LL-3 and LL-5 for the linked list approach, and
DA-3 and DA-5 for the dynamic array approach.

Figure 5 presents the results for the 100% insertions benchmark, which is use-
ful for analyzing the impact of both horizontal and vertical expansion. Through-
put scales well with the number of threads for all variants, but dynamic arrays
grow more sharply. In terms of energy consumption, all variants show a steady
upward trend, but LL-3 reaches a peak at 12 threads before dropping, indicating
non-linear performance/power behavior. This can be attributed to LL-3's poor
cache performance at 12 threads, as con�rmed by the remaining �gures, which
focus on cache-related metrics.1 Overall, both linked list variants consistently
exhibit higher cache miss rates across all cache levels compared to their dynamic
array counterparts.

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000
Throughput (Ops/Second) - higher is better

LL-3
LL-5
DA-3
DA-5

50

75

100

125

150

175

200

225
Energy Consumption (Watts - Joules/Second) - lower is better

40,000,000

45,000,000

50,000,000

55,000,000

60,000,000

65,000,000

70,000,000
Cache Misses - lower is better

130,000,000

140,000,000

150,000,000

160,000,000

170,000,000

180,000,000

190,000,000

200,000,000

210,000,000
Cache References - lower is better

1 2 4 8 12 16 20
Threads

130,000,000

140,000,000

150,000,000

160,000,000

170,000,000

180,000,000

190,000,000

200,000,000

210,000,000

L1-Cache Data Load Misses - lower is better

1 2 4 8 12 16 20
Threads

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

45,000,000

Last Level Cache Load Misses - lower is better

Fig. 5. Lists vs Arrays - 100% Insertions

Figure 6 presents the results for the 100% lookups benchmark. The high-
est throughput is achieved by DA-3, closely followed by DA-5. The linked list
variants consistently performs worse. As expected, dynamic arrays bene�t from

1 This e�ect may be related to the underlying CPU architecture and requires further
study. Note that the host CPU has 12 physical cores and supports 24 hyperthreads.

Concurrent Hash Maps Under Pressure: Linked Lists vs Dynamic Arrays 11

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

Throughput (Ops/Second) - higher is better
LL-3
LL-5
DA-3
DA-5

200

400

600

800

1000
Energy Consumption (Watts - Joules/Second) - lower is better

20,000,000

22,500,000

25,000,000

27,500,000

30,000,000

32,500,000

35,000,000

37,500,000

Cache Misses - lower is better

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000
Cache References - lower is better

1 2 4 8 12 16 20
Threads

45,000,000

50,000,000

55,000,000

60,000,000

65,000,000

70,000,000

75,000,000

L1-Cache Data Load Misses - lower is better

1 2 4 8 12 16 20
Threads

12,000,000

14,000,000

16,000,000

18,000,000

20,000,000

22,000,000

24,000,000

26,000,000

Last Level Cache Load Misses - lower is better

Fig. 6. Lists vs Arrays - 100% Lookups

better cache locality, especially under read-heavy workloads like this one. On
the other hand, linked lists su�er from pointer chasing, which leads to more
cache references, poor spatial locality, and consequently higher cache miss rates.
One can observe that LL-5 performs signi�cantly worse than all other variants.
Interestingly, LL-3's cache performance approaches that of DA-5 when using 20
threads, suggesting that in this particular benchmark, the negative impact of
pointer chasing in LL-3 becomes negligible at high thread counts.

Next, Figures 7 and 8 show how results evolve as the proportion of lookup
operations decreases and the share of insertion and deletion operations increases.

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

Throughput (Ops/Second) - higher is better
LL-3
LL-5
DA-3
DA-5

100

200

300

400

500

600

700

800

900

Energy Consumption (Watts - Joules/Second) - lower is better

20,000,000

22,500,000

25,000,000

27,500,000

30,000,000

32,500,000

35,000,000

37,500,000
Cache Misses - lower is better

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

Cache References - lower is better

1 2 4 8 12 16 20
Threads

45,000,000

50,000,000

55,000,000

60,000,000

65,000,000

70,000,000

75,000,000

L1-Cache Data Load Misses - lower is better

1 2 4 8 12 16 20
Threads

12,000,000

14,000,000

16,000,000

18,000,000

20,000,000

22,000,000

24,000,000

26,000,000

Last Level Cache Load Misses - lower is better

Fig. 7. Lists vs Arrays - 80% Lookups + 10% Insertions/Deletions

Across both workloads, dynamic arrays consistently outperform linked lists,
especially as the number of threads increases. Dynamic arrays exhibit better

12 Ana Castro, Miguel Areias, and Ricardo Rocha

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000
Throughput (Ops/Second) - higher is better

LL-3
LL-5
DA-3
DA-5

100

200

300

400

500

600

700

800

Energy Consumption (Watts - Joules/Second) - lower is better

20,000,000

22,000,000

24,000,000

26,000,000

28,000,000

30,000,000

32,000,000

34,000,000

36,000,000
Cache Misses - lower is better

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

110,000,000
Cache References - lower is better

1 2 4 8 12 16 20
Threads

50,000,000

55,000,000

60,000,000

65,000,000

70,000,000

75,000,000

80,000,000
L1-Cache Data Load Misses - lower is better

1 2 4 8 12 16 20
Threads

14,000,000

16,000,000

18,000,000

20,000,000

22,000,000

24,000,000

26,000,000
Last Level Cache Load Misses - lower is better

Fig. 8. Lists vs Arrays - 60% Lookups + 20% Insertions/Deletions

scalability, whereas linked lists, particularly LL-5, lag behind. In terms of en-
ergy consumption, dynamic arrays generally consume less energy, with the gap
increasing at higher thread counts. This suggests that the better spatial locality
of arrays reduces both memory and energy consumption, even when updates
occur frequently. Analyzing cache behavior, both �gures show that dynamic ar-
rays have lower cache misses, both L1 data and last-level, compared to linked
lists. This advantage is especially visible in Fig. 7, where the high proportion
of lookup operations ampli�es the overhead of pointer chasing in linked lists. In
particular, LL-5 has more cache references and misses, likely due to longer chains
and increased memory traversal. In contrast, dynamic arrays store elements con-
tiguously, reducing memory indirection and improving cache e�ciency.

6 Conclusions & Further Work

This work o�ers a comprehensive comparison of linked lists and dynamic arrays
for separate chaining in multithreaded lock-based hash maps, evaluating them
in terms of throughput, multi-level cache performance, and energy e�ciency.

Experimental results consistently show that dynamic arrays o�er more pre-
dictable memory access patterns and lower energy consumption in multithreaded
scenarios. Dynamic arrays achieve higher throughput across all thread counts,
with better scalability and reduced cache overhead. This advantage stems from
improved spatial locality, which minimizes L1 and last-level cache misses and
enhances memory e�ciency. In contrast, linked lists su�er from pointer-chasing
and fragmentation, particularly under high load factors.

As further work, we plan to extend our study by investigating how di�er-
ent synchronization mechanisms, such as read-write locks, lock-free designs, and
lock-free locks [3], impact the performance of the dynamic arrays approach.

Concurrent Hash Maps Under Pressure: Linked Lists vs Dynamic Arrays 13

Acknowledgments

This work is funded by national funds through FCT � Fundação para a Ciência
e a Tecnologia, I.P., under the support UID/50014/2023 (https://doi.org/
10.54499/UID/50014/2023). Ana Castro was supported by a BII grant from
INESC TEC.

References

1. perf: Linux pro�ling with performance counters. https://perf.wiki.kernel.org
(2024), accessed June 2025

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison-Wesley Longman, USA (2006)

3. Ben-David, N., Blelloch, G.E., Wei, Y.: Lock-free locks revisited. In: ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. p. 278�293.
ACM (2022)

4. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: ACM Symposium on Cloud Computing. p.
143�154. ACM (2010)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press (2009)

6. Evans, J.: A scalable concurrent malloc (3) implementation for FreeBSD. In: BS-
DCan Conference (2006)

7. Farach-Colton, M., Krapivin, A., Kuszmaul, W.: Optimal Bounds for Open Ad-
dressing Without Reordering. In: Symposium on Foundations of Computer Science.
pp. 594�605 (2024)

8. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming, Revised Reprint.
Morgan Kaufmann (2012)

9. Hu, D., Chen, Z., Wu, J., Sun, J., Chen, H.: Persistent memory hash indexes: an
experimental evaluation. VLDB Endowment 14(5), 785�798 (2021)

10. Katsaragakis, M., Baloukas, C., Papadopoulos, L., Kantere, V., Catthoor, F.,
Soudris, D.: Energy Consumption Evaluation of Optane DC Persistent Memory
for Indexing Data Structures. In: IEEE International Conference on High Perfor-
mance Computing, Data, and Analytics. pp. 75�84 (2022)

11. Khan, K.N., Hirki, M., Niemi, T., Nurminen, J.K., Ou, Z.: RAPL in Action: Expe-
riences in Using RAPL for Power Measurements. ACM Transactions on Modeling
and Performance Evaluation of Computing Systems 3(2) (2018)

12. Knuth, D.E.: The art of computer programming, volume 3: (2nd ed.) sorting and
searching. Addison-Wesley Longman (1998)

13. Lehman, T.J., Carey, M.J.: A Study of Index Structures for Main Memory
Database Management Systems. In: International Conference on Very Large Data
Bases. p. 294�303. Morgan Kaufmann (1986)

14. Maier, T., Sanders, P., Dementiev, R.: Concurrent Hash Tables: Fast and Gen-
eral(?)! ACM Transactions on Parallel Computing 5(4), 1�32 (2019)

15. Maurer, W.D., Lewis, T.G.: Hash Table Methods. ACM Computing Surveys 7(1),
5�19 (1975)

16. Tenenbaum, A.M., Langsam, Y., Augenstein, M.J.: Data Structures Using C. Pren-
tice Hall (1990)

14 Ana Castro, Miguel Areias, and Ricardo Rocha

17. Wang, C., Hu, J., Yang, T., Liang, Y., Yang, M.: SEPH: Scalable, E�cient, and
Predictable Hashing on Persistent Memory. In: USENIX Symposium on Operating
Systems Design and Implementation. pp. 479�495. USENIX Association (2023)

18. Xu, S., Liu, D.: Comparison of Hash Table Performance with Open Addressing
and Closed Addressing: An Empirical Study. International Journal of Networked
and Distributed Computing 3(1), 60�68 (2015)

