
Meta-Predicate Semantics

Paulo Moura

Dep. of Computer Science, University of Beira Interior, Portugal
Center for Research in Advanced Computing Systems, INESC–TEC, Portugal

pmoura@di.ubi.pt

Abstract. We describe and compare design choices for meta-predicate
semantics, as found in representative Prolog predicate-based module sys-
tems and in Logtalk. We look at the consequences of these design choices
from a pragmatic perspective, discussing explicit qualification semantics,
computational reflection support, expressiveness of meta-predicate di-
rectives, meta-predicate definitions safety, portability of meta-predicate
definitions, and meta-predicate performance. We also describe how to
extend the usefulness of meta-predicate definitions. Our aim is to pro-
vide useful insights to discuss meta-predicate semantics and portability
issues based on actual implementations and common usage patterns.

Keywords: meta-predicates, predicate-based module systems, objects.

1 Introduction

Prolog and Logtalk [1, 2] meta-predicates are predicates with one or more ar-
guments that are either goals or closures1 used for constructing goals, which
are called in the body of a predicate clause. Common examples are all-solutions
meta-predicates such as setof/32 and list mapping predicates. Prolog implemen-
tations may also classify predicates as meta-predicates whenever the predicate
arguments need to be module-aware. Examples include built-in database predi-
cates, such as assertz/1 and retract/1, and built-in reflection predicates, such
as current_predicate/1 and predicate_property/2.

Meta-predicates provide a mechanism for reusing programming patterns. By
encapsulating meta-predicate definitions in library modules or library objects,
exported and public meta-predicates allow client modules or client objects to
reuse these patterns, customized by calls to local predicates.

In order to compare meta-predicate semantics, as found in representative
Prolog predicate-based module systems and in Logtalk, a number of design
choices can be considered. These include explicit qualification semantics, compu-
tational reflection support, expressiveness of meta-predicate directives, safety of
meta-predicate definitions, portability of meta-predicate definitions, and meta-
predicate performance.

1 In Prolog and Logtalk, a closure is defined as a callable term used to construct a
goal by appending one or more additional arguments.

2 Following common practice, predicates are referenced by their predicate indicators,
i.e. by compound terms with the format Functor/Arity.



When discussing meta-predicate semantics, it is useful to define the contexts
where a meta-predicate is defined, called, and executed. The following definitions
extend those found on [3] and will be used in this paper:

Definition context This is the object or module containing the meta-predicate
definition.

Calling context This is the object or module from which a meta-predicate is
called. This can be the object or module where the meta-predicate is defined
in the case of a local call or another object or module assuming that the
meta-predicate is within scope.

Execution context This includes both the calling context and the definition
context. It is comprised by all the information required by the language
runtime to correctly execute a meta-predicate call.

In this paper, we make use of an additional definition:

Lookup context This is the object or module where we start looking for the
meta-predicate definition (note that the definition can always be reexported
from another module or inherited from another object).

This paper is organized as follows. Section 2 describes meta-predicate di-
rectives. Section 3 discusses the consequences of using explicit qualified meta-
predicate calls and the transparency of control constructs when using explicit
qualification. Section 4 describes computational reflection support for meta-
predicates. Section 5 describes a set of compilation rules aimed to prevent the use
of meta-predicates to break module or object encapsulation. Section 6 discusses
the portability of meta-predicate directives and meta-predicate definitions. Sec-
tion 7 describes how lambda expressions can be used to extend the usefulness of
meta-predicate definitions. Section 8 presents some remarks on meta-predicate
performance. Section 9 summarizes our conclusions and discusses future work.

2 Meta-Predicate Directives

Meta-predicate directives are required for proper compilation of meta-predicates
in both Logtalk and Prolog predicate-based module systems in order to avoid
forcing the programmer to explicitly qualify all meta-arguments. Meta-predicate
directives are also useful for compilers to optimize meta-predicate calls (e.g.
when using lambda expressions as meta-arguments) and to be able to check
meta-predicate calls for errors (e.g. using a non-callable term in place of a meta-
argument) and potential errors (e.g. arity mismatches when working with clo-
sures). The design choices behind the current variations of meta-predicate direc-
tives translate to different trade-offs between simplicity and expressiveness. The
meta-predicate template information declared via meta-predicate directives can
usually be programmatically retrieved using built-in reflection predicates such
as predicate_property/2, as we will discuss in Section 4.



2.1 The ISO Prolog Standard metapredicate/1 Directive

The ISO Prolog standard for Modules [4] specifies a metapredicate/1 directive
that allows us to describe which meta-predicate arguments are normal argu-
ments and which are meta-arguments using a predicate template. In this tem-
plate, the atom * represents a normal argument while the atom : represents
a meta-argument. We are not aware of any Prolog module system implement-
ing this directive. The standard does allow for alternative meta-predicate direc-
tives, providing solely as an example a meta/1 directive that takes a predicate
indicator as argument. This alternative directive is similar to the tool/2 and
module_transparent/1 directives discussed below. However, from the point-of-
view of standardization and code portability, allowing for alternative directives
is harmful, not helpful.

2.2 The Prolog meta_predicate/1 Directive

The ISO Prolog specification of a meta-predicate directive suffers from one major
shortcoming [5]: it doesn’t distinguish between goals and closures. The de facto
standard solution for specifying closures is to use a non-negative integer repre-
senting the required number of additional arguments.3 By interpreting a goal
as a closure requiring zero additional arguments, we can reserve the atom : to
represent arguments that need to be module-aware without necessarily referring
to a predicate. This convention is found in recent B-Prolog, GNU Prolog, Qu-
Prolog, SICStus Prolog, SWI-Prolog, and YAP versions and is being adopted by
XSB and other Prolog compilers. In Prolog compilers without a module system,
or with a module system where module expansion only needs to distinguish be-
tween normal arguments and meta-arguments, using an integer for representing
closures can be useful for cross-reference tools and allows portable modulariza-
tion extensions (such as Logtalk) to properly parse calls to proprietary built-in
meta-predicates.

Despite being able to specify closure meta-arguments, there is still a known
representation shortcoming. Some predicates accept a list of options where one or
more options are module-aware. For example, the third argument of the predicate
thread_create/3 [7] is a list of options that can include an at_exit/1 option. This
option specifies a goal to be executed when a thread terminates. In this case,
the argument is not a meta-argument but may contain a sub-term that will be
used as a meta-argument. Although we could devise (a most likely cumbersome)
syntax for these cases, the elegant solution for this representation problem is
provided by the tool/2 and module_transparent/1 directives discussed below.

A minor limitation with the ISO Prolog metapredicate/1 directive, which is
solved by the meta_predicate/1 directive, is the representation of the instantia-
tion mode of the normal arguments. For representing the instantiation mode of

3 This notation was first introduced on Quintus Prolog [6] in order to support meta-
qualification and cross-referencing tools.



normal arguments, the atoms +, ?, @, and - are commonly used,4 as specified in
the ISO Prolog standard [8]. However, using mode indicators in meta_predicate/1

directives is no replacement for a mode directive. Consider the following two
meta_predicate/1 directives for the standard once/1 meta-predicate and the de
facto standard forall/2 meta-predicate:

:- meta_predicate(forall(0, 0)).

:- meta_predicate(once(0)).

For forall/2, 0 means @.5 For once/1, 0 means +.6 Thus, using mode indicators in
meta-predicate directives is inherently ambiguous (but still common practice).

2.3 The Logtalk meta_predicate/1 Directive

Logtalk uses a meta_predicate/1 directive, based on the Prolog meta_predicate/1

directive described above, extended with meta-predicate mode indicators for
representing a predicate indicator, (/), a list of predicate indicators, [/], a list
of goals, [0], and an existentially qualified goal, ^.7 In addition, the atom :

is replaced by :: for consistency with the message sending operator. Logtalk
uses this information to verify meta-predicate definitions, as discussed in [3]. As
Logtalk supports a mode/2 predicate directive8 for specifying the instantiation
mode and the type of predicate arguments (plus the predicate determinism), the
atom * is used to represent normal arguments in meta_predicate/1 directives.

The extended set of meta-predicate mode indicators allows Logtalk to spec-
ify accurate meta-predicate templates for virtually all proprietary built-in meta-
predicates found on all compatible Prolog compilers. This allows Logtalk to cope
with the absence, limitations, differences, and sometimes ambiguity of meta-
predicate templates in those Prolog compilers. Unfortunately, some Prolog com-
pilers still don’t implement the meta_predicate/1 predicate property, while some
other Prolog compilers return ambiguous meta-predicate templates due to the
use of the : meta-predicate mode indicator for any kind of meta-argument.

2.4 The Ciao Prolog meta_predicate/1 Directive

Ciao Prolog uses a meta_predicate/1 directive that supports an extensive set of
meta-predicate mode indicators [9] that, although apparently not adopted else-

4 The meaning of these mode indicators atoms is as follows: + – argument must be in-
stantiated; - – argument must be a variable; ? – argument can be either instantiated
or a variable; @ – argument will not be (further) instantiated.

5 The forall/2 meta-predicate implements a generate and test loop using negation.
Thus, no variable bindings are returned when calling it.

6 The once/1 meta-predicate proves its argument, possibly further instantiating it,
and committing to the first solution found.

7 This meta-predicate mode indicator was originally suggested by Jan Wielemaker
and first implemented on SWI-Prolog 5.11.25. It is useful when defining wrappers
for the bagof/3 and setof/3 built-in meta-predicates whenever the goal argument
may use the ^/2 existential quantifier.

8 http://logtalk.org/manuals/refman/directives/mode2.html



where, subsumes in expressive power the sets of meta-predicate mode indicators
found on other Prolog compilers and in Logtalk. For example, it is possible to
specify that a meta-argument should be a clause or, more specifically, a fact,
using the mode indicators clause and fact. Moreover, a list(Meta) mode indi-
cator, where Meta is itself a mode indicator, allows easy specification of lists of
e.g. goals, predicate-indicators, or clauses.

2.5 The tool/2 and module_transparent/1 Directives

An alternative to the meta_predicate/1 directive, found in ECLiPSe [10] and
SWI-Prolog [11], is to declare meta-predicates as module transparent, forgoing
the specification of which arguments are normal arguments and which arguments
are meta-arguments. For this purpose, ECLiPSe provides a tool/2 directive while
SWI-Prolog provides a (apparently deprecated) module_transparent/1 directive.
These directives take predicate indicators as arguments and thus support a sim-
pler, user-friendlier, solution when compared with the meta_predicate/1 direc-
tive. More important, these directives allow the definition and encapsulation of
meta-predicate definitions that cannot be (unambiguously) expressed using the
alternative meta_predicate/1 directive. Consider the following example, adapted
from AutoBayes9, an open-source NASA application:

cases(Pattern, [(Pattern -> Action)| _]) :-

!,

once(Action).

cases(Pattern, [_ | Cases]) :-

cases(Pattern, Cases).

The cases/2 meta-predicate is described as implementing a C-style pattern
matching switch. The AutoBayes application is coded in plain Prolog. Thus,
in the absence of an encapsulation mechanism, no meta-predicate directive is
required. But if we attempt to modularize this code, using either a Prolog
predicate-based module system or Logtalk, the meta_predicate/1 directive can
only express that somewhere in the second argument of the cases/2 predicate
there is a sub-term that is a meta-argument:

:- meta_predicate(cases(*, ::)). % using Logtalk syntax

The inherent ambiguity is that, in general, the body of a library meta-predicate
definition can contain both meta-calls to local predicates and meta-calls to client
predicates. In the absence of explicit qualification, a system needs to know,
for each meta-call, if it is going to executed in the context of the caller or
in the context of the callee. The ECLiPSe tool/2 directive and the SWI-Prolog
module_transparent/1 directive can be interpreted as assuming that all meta-calls
are to client predicates.10 This is a strong but fair assumption, which allows e.g.

9 http://ti.arc.nasa.gov/tech/rse/synthesis-projects-applications/autobayes/
10 Given that meta-calls and meta-arguments can always be explicitly qualified, this

assumption does not prevent the definition of meta-predicates that perform local
meta-calls.



the encapsulation and reuse of the cases/2 meta-predicate above. In fact, this
assumption is true for most common meta-predicate definitions. However, we
have shown in [3] that distinguishing between goals and closures and specifying
the exact number of closure additional arguments is necessary to avoid misusing
meta-predicate definitions to break module and object encapsulation.

3 Explicit Qualification Semantics

The semantics of explicit qualification is perhaps the most significant design deci-
sion on meta-predicate semantics. This section compares two different semantics,
found on actual implementations, for the explicit qualification of meta-predicates
and control constructs.

3.1 Explicit Qualification of Meta-Predicate Calls

Given an explicit qualified meta-predicate call, we have two choices for the cor-
responding semantics:

1. The explicit qualification sets only the initial lookup context for the meta-
predicate definition. Therefore, all meta-arguments that are not explicitly-
qualified are called in the meta-predicate calling context.

2. The explicit qualification sets both the initial lookup context for the meta-
predicate definition and the meta-predicate calling context. Therefore, all
meta-arguments that are not explicitly-qualified are called in the meta-
predicate lookup context (usually the same as the meta-predicate definition
context).

These two choices for explicit qualification semantics are also described in
the ISO Prolog standard for modules. This standard specifies a read-only flag,
colon_sets_calling_context, which would allow a programmer to query the se-
mantics of a particular module implementation.11

Logtalk and the ECLiPSe module system implement the first choice. Prolog
module systems derived from the Quintus Prolog module system [6], including
those found on SICStus Prolog, SWI-Prolog, and YAP, implement the second
choice (the native XSB module system is atom-based, not predicate-based).

In order to illustrate the differences between the two choices above, consider
the following example, running on Prolog module systems implementing the
second choice. First, we define a meta-predicate library module:

:- module(library, [my_call/1]). % library exports my_call/1

11 The colon_sets_calling_context read-only flag also means that two Prolog im-
plementations could be fully compliant with ISO Prolog modules standard and still
meta-predicate definitions written for one implementation would not be usable in
the other implementation.



:- meta_predicate(my_call(0)). % my_call/1 takes a goal

my_call(Goal) :- % as meta-argument

write(’Calling: ’), writeq(Goal), nl,

call(Goal).

me(library). % me/1 is a local predicate

The my_call/1 meta-predicate simply prints a message before calling its argu-
ment (which is a goal, as declared in its meta-predicate directive). Second, we
define a simple client module that imports and calls our meta-predicate using a
local predicate, me/1, as its argument:

:- module(client, [test/1]). % client exports test/1

:- use_module(library, [my_call/1]). % import the meta-predicate

test(Me) :- % call the meta-predicate

my_call(me(Me)). % using implicit qualification

me(client). % me/1 is a local predicate

To test our code, we use the following query:

| ?- client:test(Me).

Calling: client:me(_)

Me = client

yes

This query provides the expected result: the meta-predicate argument is called
in the context of the client, not in the context of the meta-predicate definition.
But consider the following seemingly innocuous changes to the client module:

:- module(client, [test/1]).

test(Me) :- % call the meta-predicate

library:my_call(me(Me)). % using explicit qualification

me(client).

In this second version, instead of importing the my_goal/1 meta-predicate, we
use explicit qualification in order to call it. Repeating our test query now gives:12

| ?- client:test(Me).

Calling: library:me(_)

Me = library

yes

12 The test could not be performed using Ciao Prolog, which reports a bad module
qualification error in the explicit qualified call, complaining that the meta-predicate
is not imported, despite the library module being loaded. Importing the predicate
eliminates the error but also makes the interpretation of the test result ambiguous.



In order for a programmer to understand this result, he/she needs to be aware
that the :/2 operator both calls a predicate in another module and changes the
calling context of the predicate to that module. The first use is expected. The
second use is not intuitive, is not useful, and often not properly documented.
First, in other programming languages, the choice between implicitly-qualified
calls and explicitly-qualified calls is one of typing convenience to the programmer,
not one of semantics. Second, in the most common case where a client is reusing
a library meta-predicate, the client wants to customize the meta-predicate call
with its own local predicate. Different clients will customize the call to the li-
brary meta-predicate using different local predicates. In those cases where the
meta-predicate is defined and used locally, explicit qualification is seldom nec-
essary. We can, however, conclude that the meta-predicate definition still works
as expected as the calling context is set to the library module. If we still want
the me/1 predicate to be called in the context of the client module instead, we
need to explicitly qualify the meta-argument by writing:

test(Me) :-

library:my_call(client:me(Me)).

This is an awkward solution but it works as expected in the cases where
explicit qualification is required. It should be noted, however, that the idea of
the meta_predicate/1 directive is to avoid the need for explicit qualifications in
the first place. But that requires using use_module/1-2 directives for importing
the meta-predicates and implicit qualification when calling them. This explicit
qualification of meta-arguments is not necessary in Logtalk or in the ECLiPSe
module system, where explicit qualification of a meta-predicate call sets where
to start looking for the meta-predicate definition, not where to look for the
meta-arguments definitions.

The semantics of the :/2 operator in Prolog module systems (derived from
the Quintus Prolog module system) is rooted in optimization goals.13 When a
directive use_module/1 is used, most (if not all) Prolog compilers require the
definition of the imported module to be available, thus resolving the call at
compilation time. However, that does not seem to be required when compiling
an explicitly qualified module call. For example, using recent versions of SICStus
Prolog, SWI-Prolog, and YAP, the following code compiles without errors or
warnings (despite the fact that the module fictitious does not exist):

:- module(client, [test/1]).

test(X) :-

fictitious:predicate(X).

Thus, in this case, the fictitious:predicate/1 call is resolved at runtime. In
our example above with the explicit call to the my_call/1 meta-predicate, the

13 The goal of the original Quintus Prolog module system, according to former devel-
opers at Quintus, was to design a system with zero overhead over plain Prolog.



implementation of the :/2 operator propagates the module prefix to the meta-
arguments that are not explicitly qualified at runtime. This runtime propagation
results in a performance penalty. Therefore, and not surprisingly, the use of
explicit qualification is discouraged by the Prolog implementers. In fact, until
recently, most Prolog implementations provided poor performance for :/2 calls
even when the necessary module information was available at compile time.

Logtalk and ECLiPSe illustrate the first choice for the semantics of explicitly-
qualified meta-predicate calls. Consequently, both systems provide the same se-
mantics for implicitly and explicitly qualified meta-predicate calls. Consider the
following objects, corresponding to a Logtalk version14 of the Prolog module
example used in the previous section:

:- object(library).

:- public(my_call/1).

:- meta_predicate(my_call(0)).

my_call(Goal) :-

write(’Calling: ’), writeq(Goal), nl,

call(Goal),

sender(Sender), write(’Sender: ’), writeq(Sender).

me(library).

:- end_object.

:- object(client).

:- public(test/1).

test(Me) :- % call the meta-predicate

library::my_call(me(Me)). % using explicit qualification

me(client).

:- end_object.

Our test query becomes:

| ?- client::test(Me).

Calling: me(_)

Sender: client

Me = client.

yes

That is, meta-arguments are always called in the context of the meta-predicate
call. Logtalk also implements common built-in meta-predicates such as call/1-N,

14 We extend the definition of the my_call/1 meta-predicate to also print the sender
of the my_call/1 message by using Logtalk’s built-in predicate sender/1.



\+/1, findall/3, and phrase/3 with the same semantics as user-defined meta-
predicates. In order to avoid misinterpretations, these built-in meta-predicates
are implemented as private predicates.15 Thus, the following call is illegal and
results in a permission error:

| ?- an_object::findall(T, g(T), L).

error(permission_error(access, private_predicate, findall(T,g(T),L)),

an_object::findall(T, g(T), L),

user)

The correct call would be:

| ?- findall(T, an_object::g(T), L).

3.2 Transparency of Control Constructs

One of the design choices regarding meta-predicate semantics is the transparency
of control constructs to explicit qualification. The relevance of this topic is that
most control constructs can also be regarded as meta-predicates. In fact, there
is a lack of agreement in the Prolog community on which language elements are
control constructs and which language elements are predicates. For the purposes
of our discussion, we use the classification found on the ISO Prolog standard,
which specifies the following control constructs: call/1, conjunction, disjunction,
if-then, if-then-else, and catch/3. The standard also specifies true/0, fail/0, !/0,
and throw/1 as control constructs but none of these can be interpreted as a meta-
predicate.

When a control construct is transparent to explicit qualification, the qualifi-
cation propagates to all the control constructs arguments that are not explicitly
qualified. For example, the following equivalences hold for most Prolog module
systems16 (left column) and Logtalk (right column):17

M:(A, B) ⇔ (M:A, M:B) O::(A, B) ⇔ (O::A, O::B)

M:(A; B) ⇔ (M:A; M:B) O::(A; B) ⇔ (O::A; O::B)

M:(A -> B; C) ⇔ (M:A -> M:B; M:C) O::(A -> B; C) ⇔ (O::A -> O::B; O::C)

In Prolog module systems where the :/1 operator sets both the meta-predicate
lookup context and the meta-arguments calling context, the above equivalences
are consistent with the explicit qualification semantics of meta-predicates de-
scribed in the previous section. For example:

15 Logtalk supports private, protected, and public predicates. A predicate may also be
local if no scope directive is present, making the predicate invisible to the built-in
reflection predicates (current_predicate/1 and predicate_property/2).

16 Note, however, that some Prolog compilers, such as Ciao and ECLiPSe, don’t support
explicit qualification of control constructs.

17 Although both columns seem similar, the ::/2 Logtalk operator is a message-sending
operator whose semantics differ from the module :/2 explicit-qualification operator.



M:findall(T, G, L) ⇔ findall(T, M:G, L)

M:assertz(A) ⇔ assertz(M:A)

This is also true for user-defined meta-predicates. For the example presented in
the previous section, the following equivalence holds:

library:my_call(me(Me)) ⇔ my_call(library:me(Me))

Thus, the different semantics of implicitly and explicitly qualified meta-predicate
calls allows the semantics of explicitly qualified control constructs to be consis-
tent with the semantics of explicitly qualified meta-predicate calls.

In Logtalk, where explicit qualification of meta-predicates calls only sets the
lookup context, the semantics of control constructs are different: the above equiv-
alences are handy, supported, and can be interpreted as a shorthand notation
for sending a set of messages to the same object. ECLiPSe implements a simpler
design choice, disallowing the above shorthands, and thus treating control con-
structs and meta-predicates uniformly. We can conclude that ensuring the same
semantics for implicitly and explicitly qualified meta-predicate calls requires ei-
ther disallowing explicit qualification of control constructs (as found on e.g. Ciao
and ECLiPSe) or different semantics for explicitly qualified control constructs,
and thus a clear distinction between control constructs and predicates.

4 Computational Reflection Support

Computational reflection allows us to perform computations about the structure
and the behavior of an application. For meta-predicates, structural reflection al-
lows us to find where the meta-predicate is defined and about the meta-predicate
template, while behavioral reflection allows us to access the meta-predicate ex-
ecution context. As described in Section 1, a meta-predicate execution context
includes information about from where the meta-predicate is called. This is only
meaningful, however, in the presence of a predicate encapsulation mechanism
such as modules or objects. Access to the execution-context is usually not re-
quired for common user-level meta-predicate definitions but can be necessary
when meta-predicates are used to extend sytem meta-call features. In Logtalk,
full access to predicate execution context is provided by the sender/1, self/1,
this/1, and parameter/2 built-in predicates. For Prolog compilers supporting
predicate-based module systems, the following table provides an overview of the
available reflection built-in predicates:

Prolog compiler Built-in reflection predicates
Ciao 1.10 predicate_property/2 (in library prolog_sys)
ECLiPSe 6.1 get_flag/3

SICStus Prolog 4.2 predicate_property/2

SWI-Prolog 5.10.4 context_module/1, predicate_property/2, strip_module/3
YAP 6.2 context_module/1, predicate_property/2, strip_module/3



From this table we conclude that the most common built-in predicate is
predicate_property/2. Together with the ECLiPSe get_flag/3 and the SWI-
Prolog and YAP context_module/1 predicates, these built-ins only provide struc-
tural reflection. Specifically, information about the meta-predicate template and
the definition context of the meta-predicate. SWI-Prolog and YAP are the only
systems that provide built-in access to the meta-predicate calling context us-
ing the predicate strip_module/3. As a simple example of using this predicate
consider the following module:

:- module(m, [mp/2]).

:- meta_predicate(mp(0, -)).

mp(Goal, Caller) :-

strip_module(Goal, Caller, _),

call(Goal).

After compiling and loading this module, the following queries illustrate both the
functionality of the strip_module/3 predicate and the consequences of explicit
qualification of the meta-predicate call:

| ?- mp(true, Caller).

Caller = user

yes

| ?- m:mp(true, Caller).

Caller = m

yes

For Prolog compiler module systems descending from the Quintus Prolog module
system, it is possible to access the meta-predicate calling context by looking into
the implicit qualification of a meta-argument:

:- module(m, [mp/2]).

:- meta_predicate(mp(0, -)).

mp(Goal, Caller) :-

Goal = Caller:_,

call(Goal).

After compiling and loading this module, we can reproduce the results illustrated
by the queries above for the SWI-Prolog/YAP version of this module. One pos-
sible caveat would be if the Prolog compiler fails to ensure that there is always a
single qualifier for a goal. That is, that terms such as M1:(M2:(M3:G)) are never
generated internally when propagating module qualifications.

In the case of ECLiPSe, a built-in predicate for accessing the meta-predicate
calling context is not necessary. The tool/2 directive works by connecting a
meta-predicate interface with its implementation, which is extended with an
extra argument that carries the meta-predicate calling context:



:- module(m).

:- export(mp/2). % due to the tool/2 directive, the

:- tool(mp/2, mp/3). % ECLiPSe runtime system passes the

mp(Goal, Caller, Caller) :- % calling context of mp/2 in the

call(Goal). % third argument of mp/3

After loading this module, repeating the above queries illustrates the difference
in explicit qualification semantics between ECLiPSe and the other compilers:

[eclipse 16]: mp(true, Caller).

Caller = eclipse

Yes (0.00s cpu)

[eclipse 17]: m:mp(true, Caller).

Caller = eclipse

Yes (0.00s cpu)

Note that the module eclipse is the equivalent of the module user in other
Prolog compilers.

5 Secure Meta-Predicate Definitions

Meta-predicate definitions should not provide a mechanism for calling client
predicates other than the ones intended by the meta-predicate calls. This, how-
ever, is mostly meaningful for languages such as Logtalk and for Prolog module
systems, such as ECLiPSe and Ciao [12], that aim to enforce object and mod-
ule predicate scope rules. The following set of compilation rules, discussed and
illustrated in detail in [3], contribute to make meta-predicate definitions secure:

1. The meta-arguments of a meta-predicate clause head must be variables.
2. Meta-calls whose arguments are not variables appearing in meta-argument

positions in the clause head must be compiled as calls to local predicates.
3. Meta-predicate closures must be used within a call/2-N built-in predicate

call that complies with the corresponding meta-predicate directive.

These rules are implemented in Logtalk. For Prolog module systems whose
design allows any module predicate to be called using explicit module qualifica-
tion, these rules may be regarded as best practice for writing meta-predicates
and thus useful for checking meta-predicate definitions for possible errors (e.g. as
part of lint checkers). Note that the third compilation rule above requires a meta-
predicate directive capable of representing the number of additional arguments
taken by a closure. The reader is invited to consult [3] for full details.

6 Portability of Meta-Predicate Definitions

The portability of meta-predicate definitions depends on three main factors:
the use of implicit qualification when calling meta-predicates in order to avoid



the different semantics for explicitly qualified calls discussed in Section 3, the
portability of the meta-predicate directives, and the portability of the meta-call
primitives used when implementing the meta-predicates. Other factors that may
impact portability are the preprocessing solutions for improving meta-predicate
performance, described in Section 8, and the mechanisms for computational
reflection about meta-predicate definition and execution, discussed in Section 4.

6.1 The call/1-N Control Constructs

The call/1 control construct is specified in the ISO Prolog standard [8]. This
control construct is implemented by virtually all Prolog compilers. The call/2-N

control constructs18, whose use is strongly recommended for meta-predicates
working with closures [3], is included in the latest revision of the ISO Prolog
Core standard. A growing number of Prolog compilers implement these control
constructs but with different maximum values for N, which can raise some porta-
bility problems. Ideally, the call/1-N control constructs would support N up to
the maximum predicate arity. That depends, however, on the design decisions
of a Prolog compiler implementation. For the Prolog systems listed in the table
below, only five out of twelve systems support a value of N up to the maximum
predicate arity. From a pragmatic point-of-view, it is not common that user writ-
ten code (but not necessarily user generated code) would require a large upper
limit of N. Despite some lack of agreement, the only portability issue is Pro-
log compilers only supporting an arguably small value of N. The following table
summarizes the implementations of the call/2-N control construct on selected
Prolog compilers:

System N Notes
B-Prolog 7.4 10/65535 (interpreted/compiled i.e. maximum arity)
Ciao 1.10 255 (maximum arity using the hiord library)
CxProlog 0.95.0 9 —
ECLiPSe 6.1#68 255 (maximum arity)
GNU Prolog 1.3.1 11 —
JIProlog 3.0.2 5 —
K-Prolog 6.0.4 9 —
Qu-Prolog 8.12 9 —
SICStus Prolog 4.2 255 (maximum arity)
SWI-Prolog 5.10.4 8/1024 (interpreted/compiled i.e. maximum arity)
XSB 3.3 11 —
YAP 6.2 12 —

This table only lists built-in support for call/2-N control construct. While
this control construct can be defined by the programmer using the built-in pred-

18 A call(Closure, Arg1, ...) goal is true iff call(Goal) is true where Goal is con-
structed by appending Arg1, ... additional arguments to the arguments (if any) of
the callable term Closure.



icate =../2 and an append/3 predicate, such definitions provide relative poor
performance due to the construction and appending of temporary lists.

6.2 Specification of Closures and Instantiation Modes in
Meta-Predicate Directives

The main portability issue of meta-predicate directives is the use of non-negative
integers to specify closures and the atoms used to specify the instantiation mode
of normal arguments. Although the use of non-negative integers comes from
Quintus Prolog, it was historically regarded as a way to provide information to
cross-reference and documentation tools, with Prolog compilers accepting this
notation only for backward-compatibility with existing code. Other Prolog com-
pilers such as Ciao define alternative but incompatible syntaxes for specifying
closures. There is also some variation in the atoms used for representing the in-
stantiation modes of normal arguments. Some Prolog compilers use an extended
set of atoms for documenting argument instantiation modes compared to the ba-
sic set (+, ?, @, and -) found in the ISO Prolog standard. It is therefore tempting
to use these extended sets in meta-predicate directives, which will likely raise
portability issues. Hopefully, recent Prolog standardization initiatives, specially
the development of portable libraries, will lead to a de facto standard meta-
predicate directive derived from the extended directive described in Section 2.2.

7 Extending Meta-Predicate Definitions Usefulness

The usefulness of meta-predicate definitions can be extended by adding support
for lambda expressions. In the same way meta-predicates avoid the repeated
coding of common programming patterns, lambda expressions avoid the defini-
tion of auxiliary predicates whose sole purpose is to be used as arguments in
meta-predicate calls. Consider the following example (using Logtalk lambda ex-
pression syntax19) where we compute the distance to the origin for each point
in a list using a mapping meta-predicate:

| ?- meta::map([(X,Y),Z]>>(Z is sqrt(X*X+Y*Y)),[(1,4),(2,5),(8,3)],Ds).

Ds = [4.1231056256176606,5.3851648071345037,8.5440037453175304]

yes

Without lambda expressions, it would be necessary to define an auxiliary pred-
icate to compute the distance from a point to the origin:

distance((X, Y), Distance) :-

Distance is sqrt(X*X+Y*Y).

| ?- meta::map(distance, [(1,4),(2,5),(8,3)], Ds).

Ds = [4.1231056256176606,5.3851648071345037,8.5440037453175304]

yes

19 http://logtalk.org/manuals/refman/grammar.html#grammar_lambdas



This example also illustrates an additional issue when using meta-predicates: the
map/3 list mapping meta-predicate accepts as first argument a closure that is ex-
tended by appending two arguments. Thus, an existing predicate for calculating
the distance, e.g. distance(X, Y, Distance), cannot not be used without writing
an auxiliary predicate for the sole purpose of packing the first two arguments.

Native support for lambda expressions can be found in e.g. λProlog [13],
Qu-Prolog, and Logtalk. For Prolog compilers supporting a module system, a
library is available [14] that adds lambda expressions support. There is, however,
a lack of community agreement on lambda expression syntax. But the main issue
of taking advantage of lambda expressions is the performance penalty resulting
from the runtime processing of lambda parameters. In the case of Logtalk, recent
releases include a preprocessor for both meta-predicates and lambda expressions
that eliminate the performance penalty when compared with hand-coded and
optimized (non-meta-predicate) alternative solutions.

8 Meta-Predicate Performance

Considering that meta-programming is often touted as a major feature of Pro-
log, the relative poor performance of meta-calls often drive programmers to
avoid using meta-predicates in production code where performance is crucial. A
common solution is to interpret meta-predicate definitions as high-level macros
and to preprocess meta-predicate calls in order to replace them with calls to
automatically generated auxiliary predicates whose definitions that do not con-
tain meta-calls. This preprocessing is usually only performed on stable code as
the auxiliary predicates often complicate debugging. The preprocessing code is
often implemented in optional libraries, which can be found on Logtalk and
several Prolog compilers such as ECLiPSe, SWI-Prolog, and YAP. Consider as
an example adding 1 to every integer in the list [1..100000] using a simple
recursive predicate, a mapping meta-predicate using a closure, and a mapping
meta-predicate using a lambda expression, with and without preprocessing.20

Using Logtalk 2.43.2 with YAP 6.3.0 we get (times in seconds):

Non-optimized Optimized
Recursive predicate 0.002 0.002

Mapping predicate with a closure 0.072 0.008

Mapping predicate with a lambda expression 0.119 0.004

Equivalent results are obtained using Prolog implementations of this example
with meta-predicate and preprocessing libraries. A performance penalty of one
order of magnitude is commonly observed when comparing hand-optimized code
with meta-predicate alternatives without any preprocessing. The use of lambda
expressions adds another source of performance penalty. As illustrated above,

20 The full source code of this example is available at http://trac.logtalk.org/

browser/trunk/examples/lambdas (no preprocessing) and http://trac.logtalk.

org/browser/trunk/examples/lambdas_compiled (using preprocessing).



preprocessing both the meta-predicate calls and the lambda expressions closes
the performance gap. But the preprocessing libraries require custom code for
each meta-predicate. Thus, user-defined meta-predicates will fail to match the
performance of library-supported meta-predicates unless the user also writes its
own custom preprocessing code. A more generic solution for preprocessing meta-
predicate definitions, based on more powerful compile time code analysis and
partial evaluation techniques, is needed to make meta-predicate programming
patterns more appealing for applications where performance is crucial.

9 Conclusions and Future Work

We presented and discussed a comprehensive set of meta-predicate design deci-
sions based on current practice in Logtalk and in Prolog predicate-based module
systems. An interesting result is that none of the two commonly implemented
semantics for explicitly qualified calls provides an ideal solution that both meets
user expectations and allows the distinction between meta-predicates and con-
trol constructs to be waived. By describing the consequences of these design
decisions we provided useful insight to discuss meta-predicate semantics, often a
difficult subject for inexperienced programmers and a source of misunderstand-
ings when porting applications and discussing Prolog standardization. From the
point-of-view of writing portable code (including portable libraries), the cur-
rent state of meta-predicate syntax and semantics across Prolog compilers is
still a challenge, despite recent community efforts. We hope that this paper
contributes to a convergence of meta-predicate directive syntax, meta-predicate
semantics, and meta-predicate related reflection built-in predicates among Pro-
log compilers. But the main obstacle to improving the de facto standardization
of meta-predicate syntax and semantics is backwards compatibility. Understand-
ably, most Prolog implementers are wary of making changes that would break
compatibility with existing applications and upset long time users. Nevertheless,
we recommend that Prolog module systems make the semantics of implicitly-
and explicitly-qualified meta-predicate calls the same (as found in Logtalk and
ECLiPSe) and forbid the explicit qualification of control constructs (as found in
ECLiPSe and Ciao) and built-in meta-predicates (as found in Logtalk). These
changes would contribute to simpler and more uniform semantics while avoid
programming constructs with unclear meaning for novice programmers.

Future work will include comparing Logtalk and Prolog predicate-based mod-
ule systems with Prolog atom-based module system and derived object-oriented
extensions. The most prominent example of a Prolog compiler featuring an atom-
based module system is XSB [15] (which is used in the implementation of the
object-oriented extension Flora [16]). XSB does not support a meta-predicate
directive. Explicit-qualification of meta-arguments is used whenever the atom-
based semantics fail to provide the desired behavior for the implementation of a
specific meta-predicate. Interestingly, although atom-based module systems ap-
pear to solve or avoid some the issues discussed along this paper, predicate-based
module systems are the most common implementation choice. This may be due



to historical reasons but a deep understanding of the pros and cons of atom-based
systems, at both the conceptual and implementation levels, will be required to
perform a detailed comparison with the better known predicate-based systems.

Acknowledgements. We are grateful to Joachim Schimpf, Ulrich Neumerkel,
Jan Wielemaker, and Richard O’Keefe for their feedback on explicitly-qualified
meta-predicate call semantics in predicate-based module systems. We thank also
the anonymous reviewers for their informative comments. This work was par-
tially supported by the LEAP (PTDC/EIA-CCO/112158/2009) research project.

References

1. Moura, P.: Logtalk – Design of an Object-Oriented Logic Programming Language.
PhD thesis, Department of Computer Science, University of Beira Interior, Portu-
gal (September 2003)

2. Moura, P.: Logtalk 2.43.2 User and Reference Manuals. (October 2011)
3. Moura, P.: Secure Implementation of Meta-predicates. In Gill, A., Swift, T.,

eds.: Proceedings of the Eleventh International Symposium on Practical Aspects
of Declarative Languages. Volume 5418 of Lecture Notes in Computer Science.,
Berlin Heidelberg, Springer-Verlag (January 2009) 269–283

4. ISO/IEC: International Standard ISO/IEC 13211-2 Information Technology —
Programming Languages — Prolog — Part II: Modules. ISO/IEC (2000)

5. O’Keefe, R.: An Elementary Prolog Library. http://www.cs.otago.ac.nz/

staffpriv/ok/pllib.htm

6. Swedish Institute for Computer Science: Quintus Prolog User’s Manual (Release
3.5). Swedish Institute for Computer Science. (December 2003)

7. Moura, P. (editor): ISO/IEC DTR 13211–5:2007 Prolog Multi-threading predi-
cates. http://logtalk.org/plstd/threads.pdf

8. ISO/IEC: International Standard ISO/IEC 13211-1 Information Technology —
Programming Languages — Prolog — Part I: General core. ISO/IEC (1995)

9. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M.V., López, P., Puebla, G.:
Ciao Prolog System Manual

10. Cheadle, A.M., Harvey, W., Sadler, A.J., Schimpf, J., Shen, K., Wallace, M.G.:
ECLiPSe: A tutorial introduction. Technical Report IC-Parc-03-1, IC-Parc, Impe-
rial College, London (2003)

11. Wielemaker, J.: An overview of the SWI-Prolog programming environment. In
Mesnard, F., Serebenik, A., eds.: Proceedings of the 13th International Workshop
on Logic Programming Environments, Heverlee, Belgium, Katholieke Universiteit
Leuven (December 2003) 1–16 CW 371.

12. Gras, D.C., Hermenegildo, M.V.: A New Module System for Prolog. In: CL’00:
Proceedings of the First International Conference on Computational Logic, Lon-
don, UK, Springer-Verlag (2000) 131–148

13. Nadathur, G., Miller, D.: An Overview of λProlog. In: Fifth International Logic
Programming Conference, Seattle, MIT Press (August 1988) 810–827

14. Neumerkel, U.: Lambdas in ISO Prolog. http://www.complang.tuwien.ac.at/

ulrich/Prolog-inedit/ISO-Hiord

15. Group, T.X.R.: The XSB Programmer’s Manual: version 3.3. (April 2011)
16. Yang, G., Kifer, M.: Flora-2: User’s manual (2001)


