
Prolog System

Tabling Primitives

This work has been partially supported by Myddas (POSC/EIA/59154/2004) and by funds granted to LIACC through the Programa de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and Programa POSC.

On Applying Program Transformation to
Implement Suspension-Based Tabling in Prolog

Ricardo Rocha, Cláudio Silva and Ricardo Lopes
DCC-FC & LIACC, University of Porto, Portugal

Top Level Interface C Language Interface

tabled_call/5
consume_answer/2

new_answer/2

Transformed Program

Original Program

Program
Transformation

A common approach used to include tabling support into existing Prolog systems is to
modify and extend the low-level engine. Although this approach is ideal for run-time
efficiency, it is not easily portable to other Prolog systems as engine level modifications
are rather complex and time consuming. A different approach is to apply source level
transformations to a tabled program and then use external tabling primitives to provide
direct control over the search strategy.
We propose a suspension-based tabling mechanism based on program transformation
that uses the C interface of the Yap Prolog system to implement the tabling primitives.
The program transformation module is fully written in Prolog. The tabling primitives
module implements a local scheduling search strategy and uses tries to implement the
table space. Suspension is implemented by leaving the continuation call for the current
computation in the table entry corresponding to the variant call being suspended. During
this process and as further new answers are found, they are stored in their tables and
returned to all variant calls by calling the previously stored continuation calls.
We ran our approach against the YapTab system that implements tabling support at the
low-level engine. YapTab also implements a suspension-based mechanism, uses tries to
implement the table space and is implemented on top of Yap. This is thus a first and fair
comparison between the approach of supporting tabling at the low-level engine and the
approach of supporting tabling by applying source level transformations coupled with
tabling primitives.

Overheads over the YapTab running times

As expected, YapTab outperformed our mechanism in all programs tested. Best
performance was achieved for left recursive tabled predicates with the recursive clause
first, with an average overhead between 2 and 3. The results obtained suggested that
there is a cost in the execution time that is proportional to the number of redundant
answers, variant calls and continuation calls executed during an evaluation. In particular,
the number of continuation calls seems to be the most relevant factor that contributes to
this cost because continuation calls are not compiled, they are constructed and called in
run-time using the C language interface.
Considering that Yap and YapTab are two of the fastest Prolog and tabling engines
currently available, the results obtained are very interesting and very promising. We thus
argue that our approach is a good alternative to incorporate tabling into any Prolog
system. It requires neither advanced knowledge of the implementation details of tabling
nor time consuming or complex modifications to the low-level engine. Moreover, both
source level transformations and tabling primitives can be easily ported to other Prolog
systems with a C language interface. Currently, we have already a port of our
implementation running as a module of the Ciao Prolog system.

GridCycleBinary Tree
20x2015x1510x10400300200161412

Predicates

19.5318.2519.7421.7222.2320.3613.6813.9615.05p_doubly_last/2
10.409.6610.3411.2211.5710.457.687.728.13p_doubly_first/2

4.154.735.674.244.345.134.254.315.00p_left_last/2
2.122.463.112.262.653.052.342.392.65p_left_first/2
6.426.278.553.984.004.563.703.593.73p_right_last/2
6.116.417.753.893.994.363.623.734.00p_right_first/2

20. fail
(continuation call)

?- p(1,Z).

2. p0(p(1,Z),sid1).

3. e(1,Y), tabled_call(p(Y,Z),sid1,[1,Z,Y],p0,p1).

4. tabled_call(p(2,Z),sid1,[1,Z,2],p0,p1).

5. p0(p(2,Z),sid2).

6. e(2,Y), tabled_call(p(Y,Z),sid2,[2,Z,Y],p0,p1).

7. fail 8. tabled_call(p(1,Z),sid2,[2,Z,1],p0,p1).

9. fail
(continuation call)

11. fail

14. p1(p(2,1),sid1,[1,Z,2]).

15. new_answer(p(1,1),sid1).

16. p1(p(1,1),sid2,[2,Z,1]).

17. new_answer(p(2,1),sid2).

18. fail

21. fail

22. e(1,Y), new_answer(p(1,Z),sid1).

23. new_answer(p(1,2),sid1).

24. p1(p(1,2),sid2,[2,Z,1]).

25. new_answer(p(2,2),sid2).

26. p1(p(2,2),sid1,[1,Z,2]).

28. fail

32. complete
(Sid=sid1)

10. e(2,Y), new_answer(p(2,Z),sid2).

27. new_answer(p(1,2),sid1).

1. tabled_call(p(1,Z),Sid,_,p0,true), consume_answer(p(1,Z),Sid).

19. fail

13. fail

29. fail

30. fail

31. fail

33. consume_answer(p(1,Z),sid1).

4. tabled_call(p(2,Z),sid1,[1,Z,2],p0,p1).

1. tabled_call(p(1,Z),Sid,_,p0,true).

% original p/2 tabled predicate
p(X,Z) :- e(X,Y), p(Y,Z).
p(X,Z) :- e(X,Z).

% transformed p/2 predicate
p(X,Z) :- tabled_call(p(X,Z),Sid,_,p0,true), consume_answer(p(X,Z),Sid).

p0(p(X,Z),Sid) :- e(X,Y), tabled_call(p(Y,Z),Sid,[X,Z,Y],p0,p1).
p1(p(Y,Z),Sid,[X,Z,Y]) :- new_answer(p(X,Z),Sid).
p0(p(X,Z),Sid) :- e(X,Z), new_answer(p(X,Z),Sid).

e(1,2). e(2,1).

1. p(1,Z)

4. p(2,Z)

15. p(1,1)
23. p(1,2)
32. complete

12. p(2,1)
25. p(2,2)
32. complete

sid1

sid2 20. p1(?ANS?,sid1,[1,Z,2])

9. p1(?ANS?,sid2,[2,Z,1])

SubgoalSid Answers Continuation calls

12. new_answer(p(2,1),sid2).

34. Z=1 35. Z=2 36. no

