
Paulo Moura
Dep. of Computer Science

University of Beira Interior, Portugal 
pmoura@di.ubi.pt

Center for Research in Advanced Computing Systems
INESC–Porto, Portugal

References
Ertel, W.: Performance Analysis of Competitive Or-Parallel Theorem Proving. Technical report fki-162-91, Technische Universitat Munchen (1991)
Shapiro, E.: The Family of Concurrent Logic Programming Languages. ACM Computing Surveys 21(3) (1989) 413–510
González, A.: Speculative Threading: Creating New Methods of Thread-Level Parallelization. Technology@Intel Magazine (2005)
Moura, P.: ISO/IEC DTR 13211–5:2007 Prolog Multi-threading Support Available from http://logtalk.org/plstd/threads.pdf
Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.V.: Parallel Execution of Prolog Programs: A Survey. ACM Transactions on Programming Languages and 
Systems 23(4) (2001) 472–602
Moura, P.: Logtalk – Design of an Object-Oriented Logic Programming Language. PhD thesis, Dep. of Computer Science, University of Beira Interior (2003)
Ali, K., Karlsson, R.: The Muse Approach to OR-Parallel Prolog. International Journal of Parallel Programming 19(2) (1990) 129–162

Acknowledgments
This work has been partially supported by the FCT research projects STAMPA (PTDC/EIA/67738/2006) and MOGGY (PTDC/EIA/70830/2006). We are grateful to Jan 
Wielemaker, Vítor Costa, Terrance Swift, and Rui Marques for their groundwork implementing Prolog multi-threading core support and for helpful discussions on the 
subject of this work.

Thread-Based Competitive Or-Parallelism
Ricardo Rocha

Dep. of Computer Science
University of Porto, Portugal
ricroc@dcc.fc.up.pt

Center for Research in Advanced Computing Systems
INESC–Porto, Portugal

Sara C. Madeira
Dep. of Computer Science

University of Beira Interior, Portugal 
smadeira@di.ubi.pt 

Knowledge Discovery and Bioinformatics Group 
INESC–ID, Portugal 

The concept of thread-based competitive or-parallelism combines the original idea of competitive or-parallelism with committed-choice 
nondeterminism and speculative threading. In thread-based competitive or-parallelism, an explicit disjunction of subgoals is interpreted as a set of 
concurrent alternatives, each running in its own thread. The subgoals compete for providing an answer and the first successful subgoal leads to the 
termination of the remaining ones. Thread-based competitive or-parallelism is implemented in Logtalk, an object-oriented logic programming 
language that can use most Prolog implementations as a back-end compiler.

1 Main Concept

Table 1 shows the running times, in seconds, when 5-liter and 9-liter jugs 
were used to measure from 1 to 14 liters of water. It allows us to compare 
the running times of single-threaded depth-first (DF), breadth-first (BF), and 
hill-climbing (HC) search strategies with the competitive or-parallelism 
(COP) multi-threaded call where one thread is used for each individual 
search strategy. The results show the average of thirty runs. The fastest 
method for each measure is highlighted. The last column shows the number 
of steps of the solution found by the competitive or-parallelism call. The 
maximum solution length was set to 14 steps for all strategies.
Our experimental setup used Logtalk 2.33.0 with SWI-Prolog 5.6.59 64 bits 
as the back-end compiler on an Intel-based computer with four cores 
running Fedora Core 8 64 bits.

3 An Example: The Generalized Water Jug Problem Table 1. Measuring from 1 to 14 liters with 5-liter and 9-liter jugs.

Liters DF HC BF COP Overhead Steps

1 26.373951 0.020089 0.007044 0.011005 0.003961 5
2 26.596118 12.907172 8.036822 8.324970 0.288148 11
3 20.522287 0.000788 1.412355 0.009158 0.008370 9
4 20.081001 0.000241 0.001437 0.002624 0.002383 3
5 0.000040 0.000240 0.000484 0.000907 0.000867 2
6 3.020864 0.216004 0.064097 0.098883 0.034786 7
7 3.048878 0.001188 68.249278 0.008507 0.007319 13
8 2.176739 0.000598 0.127328 0.007720 0.007122 7
9 2.096855 0.000142 0.000255 0.003799 0.003657 2
10 0.000067 0.009916 0.004774 0.001326 0.001295 4
11 0.346695 5.139203 0.587316 0.404988 0.058293 9
12 14.647219 0.002118 10.987607 0.010785 0.008667 14
13 0.880068 0.019464 0.014308 0.029652 0.015344 5
14 0.240348 0.003415 0.002391 0.010367 0.007976 4

5 Conclusions and Future Work

We have presented the logic programming concept of thread-based competitive
or-parallelism supported by an implementation in the object-oriented logic pro-
graming language Logtalk. This concept is orthogonal to the object-oriented fea-
tures of Logtalk and can be implemented in plain Prolog and in non-declarative
programming languages supporting the necessary threading primitives. Future
work will include exploring the role of tabling in competitive or-parallelism calls
and implementing a load-balancing mechanism. We also plan to apply com-
petitive or-parallelism to non-trivial problems, seeking real-world experimental
results allowing us to improve and expand our current implementation.

References

1. Ertel, W.: Performance Analysis of Competitive Or-Parallel Theorem Proving.
Technical report fki-162-91, Technische Universität München (1991)

2. Shapiro, E.: The Family of Concurrent Logic Programming Languages. ACM Com-
puting Surveys 21(3) (1989) 413–510

3. González, A.: Speculative Threading: Creating New Methods of Thread-Level Par-
allelization. Technology@Intel Magazine (2005)

4. Moura, P.: ISO/IEC DTR 13211–5:2007 Prolog Multi-threading Support Available
from http://logtalk.org/plstd/threads.pdf.

5. Gupta, G., Pontelli, E., Ali, K., Carlsson, M., Hermenegildo, M.V.: Parallel Execu-
tion of Prolog Programs: A Survey. ACM Transactions on Programming Languages
and Systems 23(4) (2001) 472–602

6. Moura, P.: Logtalk – Design of an Object-Oriented Logic Programming Language.
PhD thesis, Department of Computer Science, University of Beira Interior (2003)

7. Ali, K., Karlsson, R.: The Muse Approach to OR-Parallel Prolog. International
Journal of Parallel Programming 19(2) (1990) 129–162

4 Pros and Cons
Pros: Simple to use. Simple semantics. Simple and portable implementation. Most useful when combined with other forms of parallelism. Potential 
performance boost when combined with tabling. Concept orthogonal to the object-oriented features of Logtalk.
Cons: Inherent multi-threading overhead. Thread cancellation issues. Requires a minimum of a processing core per thread for effective results. No 
load-balancing mechanism in the current implementation (other than the native operating-system mechanism).

Our approach: Implement high-level parallelism programming constructs in Logtalk 
using the core Prolog multi-threading support found in several compilers, which are 
available for most operating-systems. Logtalk provides a single built-in predicate, 
threaded/1, supporting both independent and-parallelism and competitive or-
parallelism.
Motivation: Many applications need simple, high-level programming constructs for 
running some tasks concurrently. Programmers prefer to avoid low-level, error prone 
implementation details such as creating or synchronizing threads. Powerful multi-core 
personal computing systems are increasingly available.

Problem: Plenty of high quality research on logic programming parallel systems. However, most parallel systems described in the literature are no 
longer available, due to the complexity of maintaining and porting their implementations.

Background2

Pthreads

Back-end Prolog compiler

Logtalk

Multi-threaded application

Core, low-level threads API

High-level thread primitives

Low-level POSIX threads API

mailto:pmoura@di.ubi.pt
mailto:pmoura@di.ubi.pt
http://logtalk.org/plstd/threads.pdf
http://logtalk.org/plstd/threads.pdf
mailto:ricroc@dcc.fc.up.pt
mailto:ricroc@dcc.fc.up.pt
mailto:smadeira@di.ubi.pt
mailto:smadeira@di.ubi.pt

