
On Applying Or-Parallelism to Tabled Evaluations

Ricardo Rocha Fernando Silva Vı́tor Santos Costa
{ricroc,fds,vsc}@ncc.up.pt

Departamento de Ciência de Computadores & LIACC
Universidade do Porto

Rua do Campo Alegre, 823
4150 Porto, Portugal



On Applying Or-Parallelism to Tabled Evaluations

Summary

• Related Work: Table-Parallelism.

• Or-Parallelism and Tabled Evaluations: the fundamental issues in supporting
or-parallelism for SLG resolution. Two alternative approaches:

– Or-Parallelism within Tabling (OPT)

– Tabling within Or-Parallelism (TOP)

• Implementing the OPT Approach: data areas, data structures and the public
completion algorithm required for this approach.

• Conclusions

International Workshop on Tabling in Logic Programming, 1997 Slide 1



On Applying Or-Parallelism to Tabled Evaluations

Related Work: Table Parallelism

[J. Freire et al.] presented a first proposal on how to exploit implicit parallelism in
tabling systems.

Basic idea:

• each tabled subgoal is associated with a new computational thread, called gener-
ator thread, that will generate answers and copy them into the table;

• threads that call a tabled subgoal will asynchronously consume answers as they
are added to the table by the generator thread.

Table-parallelism views the table as a shared data structure through which cooperating
agents may synchronize and communicate.

International Workshop on Tabling in Logic Programming, 1997 Slide 2



On Applying Or-Parallelism to Tabled Evaluations

Table Parallelism: Major Problems

• Ignores potential or-parallelism arising within tabled and non-tabled subgoals.

• Difficults scheduling and load balancing:

– different sizes of tabled subgoals search space;

– possibly small number of tabled subgoals;

– very intricate dependencies between tabled subgoals.

• Efficiency of the new completion algorithm is quite ambiguous:

– it simultaneously involves different generator threads;

– requires a considerable number of synchronizations.

International Workshop on Tabling in Logic Programming, 1997 Slide 3



On Applying Or-Parallelism to Tabled Evaluations

Or-Parallelism and Tabled Evaluations

An important advantage of Logic Programming is that parallelism can be exploited
implicitly:

• Or-Parallelism;

• And-Parallelism.

An interesting observation is that tabling is still about exploiting alternatives for solv-
ing goals:

• it should be amenable for parallel execution within traditional or-parallel execu-
tion models;

• no need to restrict parallelism to tabled subgoal calls.

International Workshop on Tabling in Logic Programming, 1997 Slide 4



On Applying Or-Parallelism to Tabled Evaluations

Or-Parallelism and Tabled Evaluations

Key idea: exploit maximum parallelism and take maximum advantage of current tech-
nology for or-parallel and tabling systems.

Base system: for efficiency reasons we are most interested in integrating the compu-
tation models of:

• Muse/Aurora (Or-parallel component) and

• XSB (Tabling component).

Main problems: synchronization within tabling operations and scheduling strategies.

Two major approaches to the problem: Or-Parallelism within Tabling (OPT) and
Tabling within Or-Parallelism (TOP).

International Workshop on Tabling in Logic Programming, 1997 Slide 5



On Applying Or-Parallelism to Tabled Evaluations

Or-Parallelism within Tabling (OPT)

Workers are considered full SLG-WAM engines: they will spend most of their time
executing as if they were sequential engines.

Parallel exploitation: when looking for work, workers take any unexplored alterna-
tives regardless of whether the node it originates from is a generator, active or interior
node.

Parallel synchronization: accomplished by extending shared or-frames to include
information regarding the SLG resolution. For example, it allows synchronization
when workers are executing the completion or answer return operations in
the public area.

This approach is close to the environment copy model, as used in the Muse system.

International Workshop on Tabling in Logic Programming, 1997 Slide 6



On Applying Or-Parallelism to Tabled Evaluations

Or-Parallelism within Tabling (OPT): an Example

:- table a/1.

a(X) :- a(X).
a(X) :- b(X).

b(1).
b(X) :- ...
b(X) :- ...

?- a(X).

Generator Node

Active Node

Interior Node

Private Branch

Shared Branch

New Answer

Completed Branch

One Worker (W1)

a(1)

a(X) b(X)

W1

a(X)

X=1

Two workers (W1 and W2)

W2
a(1)

a(X) b(X)

W1

a(X)

X=1

International Workshop on Tabling in Logic Programming, 1997 Slide 7



On Applying Or-Parallelism to Tabled Evaluations

Tabling within Or-Parallelism (TOP)

Workers are considered WAM engines: they only manage a logical branch, not a
whole part of the tree.

Suspended branches are public branches: when a worker suspends an active node,
the node stops being the responsibility of the worker and becomes, instead, shared
work that anyone can take. Before leaving the active node, the worker has to make
the whole branch public.

The notion of suspension is unified: the system can handle suspensions from or-
parallelism and from tabling in the same framework. The unified suspension mech-
anism must be sufficiently efficient to support all forms of suspension with minimal
overhead.

This approach seems closer to the SRI model, as used in the Aurora system.

International Workshop on Tabling in Logic Programming, 1997 Slide 8



On Applying Or-Parallelism to Tabled Evaluations

Tabling within Or-Parallelism (TOP): an Example

:- table a/1.

a(X) :- a(X).
a(X) :- b(X).

b(1).
b(X) :- ...
b(X) :- ...

?- a(X).

Two workers (W1 and W2)

W2
a(1)

a(X) b(X)

W1

a(X)

X=1

a(1)

One Worker (W1)

a(1)

a(X) b(X)

W1

a(X)

X=1

Generator Node

Active Node

Interior Node

Private Branch

Shared Branch

New Answer

Completed Branch

International Workshop on Tabling in Logic Programming, 1997 Slide 9



On Applying Or-Parallelism to Tabled Evaluations

TOP advantages over OPT:

The state of the worker is more clearly defined: a worker occupies the tip of a single
branch in the search tree.

Less memory should be spent: a suspended branch will only appear once, instead
of possibly several times for several workers.

TOP disadvantages in relation to OPT:

A new SLG engine is required: significant changes to the SLG-WAM engine are
required to support the unified suspension.

A suspended branch is a public branch: having a larger public part of the tree may
increase overheads.

Suspension must be a very efficient operation: hence this approach is more natural
for binding arrays models.

International Workshop on Tabling in Logic Programming, 1997 Slide 10



On Applying Or-Parallelism to Tabled Evaluations

Implementing the OPT Approach

Extend the YapOr system to support tabling in a manner close to the SLG-WAM en-
gine.

A set of workers will execute a tabled program by traversing its search tree, whose
nodes are entry points for parallelism:

• each worker physically owns a copy of the environment (that is SLG-WAM stacks)
and shares a large area related to tabling and scheduling;

• a worker with excess of work when prompted for work by other workers, makes
public some of their private nodes (using the incremental copy technique);

• whenever a worker backtracks to a public node it synchronizes to perform the op-
erations that SLG-WAM would execute.

International Workshop on Tabling in Logic Programming, 1997 Slide 11



On Applying Or-Parallelism to Tabled Evaluations

Memory Layout

The memory is divided into a large shared area and a number of private areas, corre-
sponding to the number of workers in the system.

Resume Frames Space

Suspension Frames Space

Table Space

Or-Frames Space

Saved Stacks Space

Suspension/Resume Space

Dependency Frames Space

SLG-WAM Stacks

SLG-WAM Stacks

Shared Memory

Private Memory (Worker X)

Private Memory (Worker Y)

International Workshop on Tabling in Logic Programming, 1997 Slide 12



On Applying Or-Parallelism to Tabled Evaluations

Shared Memory Areas

The shared area is divided into several sub-areas:

• Or-Frames Space which is inherited from the or-parallel implementation;

• Table Space which is inherited from the sequential tabling implementation;

• Suspension/Resume Space which holds information about the suspended branches
and about the collected suspended frames to be resumed;

• Dependency Frames Space. Each dependency frame holds information about an
active node and is shared by the workers that share the corresponding node. Each
worker maintains a list of dependency frames to keep track of the active nodes it
holds.

International Workshop on Tabling in Logic Programming, 1997 Slide 13



On Applying Or-Parallelism to Tabled Evaluations

Leader Node: DFN and DFNLink Fields

a

cd

DFN = 3

DFN = 4

DFNLink = 2

DFN = 3

DFN = 4

DFNLink = 2

DFN = 5

DFNLink = 1

Worker 1

Worker 2

DFN = 2

DFN = 1a

dc

b

In a worker branch, a node is leader when its DFN field is equal to the smallest DFN-
Link field found in the dependency frames of the active nodes below it.

Notice that all kinds of nodes can be leaders in a worker’s branch.

International Workshop on Tabling in Logic Programming, 1997 Slide 14



On Applying Or-Parallelism to Tabled Evaluations

Public Completion

Thepublic completion instruction implements the algorithm to synchronize the
completion operation in the public region and is executed by a worker when it back-
tracks to a shared node without alternatives or unconsumed answers left.

When a leader node is public and contains active nodes below it, this means that it
depends on branches explored by other workers.

Thus, after a worker finds a leader node, it may not execute the completion operation
immediately. As a result, it becomes necessary to suspend the leader branch.

A worker only completes a leader node when:

• it is the last worker in the node;

• there are no hidden workers in the node;

• there are no suspended branches to resume.

International Workshop on Tabling in Logic Programming, 1997 Slide 15



On Applying Or-Parallelism to Tabled Evaluations

How Public Completion Works

a

b

c

d

a

c

d

Worker 1 Worker 2

International Workshop on Tabling in Logic Programming, 1997 Slide 16



On Applying Or-Parallelism to Tabled Evaluations

Pseudo-code of the Public Completion Instruction
public_completion (node N)

if (last worker in node)
for all not collected suspension frames SF stored in node N

if (exists unconsumed answers for any dependency frame in SF)
collect (SF) /* to be resumed later */

if (leader on that node)
for all dependency frames DF below node N

if (DF have unconsumed answers)
backtrack_through_new_answers() /* as in SLG-WAM */

if (suspension frames collected)
suspend_current_branch()
resume (old collected suspension frame)

else if (N.HiddenWorkers != 0)
suspend_current_branch()

else if (last worker in node)
complete_all()

else
suspend_current_branch()

else /* not leader */
if (dependency frames below node N)

N.HiddenWorkers ++
backtrack

International Workshop on Tabling in Logic Programming, 1997 Slide 17



On Applying Or-Parallelism to Tabled Evaluations

Conclusions

We suggested that there are two major alternatives to tackle the problem of exploiting
full or-parallelism in tabling based logic programming systems:

• the Or-Parallelism within Tabling (OPT) approach;

• and the Tabling within Or-Parallelism (TOP) approach.

We presented the fundamental concepts of an environment copying based OPT ap-
proach that we believe offers advantages in terms of implementation simplicity and
efficiency.

Other then the issues discussed here, support for or-parallelism in tabling systems re-
quires further research in areas such as scheduling and table access.

International Workshop on Tabling in Logic Programming, 1997 Slide 18


