Or-Parallelism within Tabling

Ricardo Rocha Fernando Silva Vitor Santos Costa
{ricroc,fds,vsc} @ncc.up.pt

Department of Computer Sciences & LIACC
University of Porto
Portugal

Or-Parallelism within Tabling

Summary

Parallel Execution of Tabled Programs
The fundamental issues in supporting parallelism for tabling systems.

Alternative approaches
Two computational models to combine or-parallelism and tabling.

e Or-Parallelism within Tabling (OPT)
e Tabling unified with Or-Parallelism (TOP)

Implementing the OPT Approach
Data areas, data structures, leader nodes and public completion.

Conclusions

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide1

Or-Parallelism within Tabling

Parallel Execution of Tabled Programs

An important advantage of LP is that parallelism can be exploited implicitly:

e Or-Parallelism
e And-Parallelism

An interesting observation is that tabling is still about exploiting alternatives for
solving goals:

e It should be amenable for parallel execution within traditional parallel models;
e No need to restrict parallelism to tabled or non-tabled subgoals.

Our Goal: exploit maximum parallelism and take maximum advantage of current
technology for parallel and tabling systems.

Problems: synchronization within tabling operations and scheduling strategies.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 2

Or-Parallelism within Tabling

Or-Parallelism within Tabling (OPT)

OPT = Sequential Tabling Engine + Parallel Component

Tabling is the base component of the system: workers spend most of their time
executing as If they were sequential tabling engines.

Parallel exploitation: all unexploited alternatives should be amenable for parallel
execution, be they from generator, consumer or interior nodes.

Parallel tabling synchronization: accomplished by a new data structure to form a
dependency graph between consumer nodes to efficiently check for resumption and
completion points.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 3

Or-Parallelism within Tabling

Tabling unified with Or-Parallelism (TOP)

TOP = Standard Prolog + Tabling/Parallel Component

Workers are considered WAM engines: they only manage a logical branch, not a
whole part of the tree.

The notion of suspension is unified: the system handles suspensions from paral-
lelism and from tabling in the same framework. A branch can be suspended because:

e It Is speculative;
e It is not leftmost;
e It contains consumer nodes waiting for solutions.

Suspended branches are public branches: when a worker suspends a consumer
node, the corresponding branch becomes shared work that anyone can take.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide4

Or-Parallelism within Tabling

TOP Advantages

Workers have a clearly defined state
A worker always occupies the tip of a single branch in the search tree.

Less memory should be spent
A suspended branch will only appear once, instead of possibly several times for sev-
eral workers.

TOP Disadvantages

A suspended branch is a public branch
Large amount of tabling suspensions may increase overheads.

A different tabling engine is required
To efficiently support the unified suspension and to reduce the overlap between par-
allelism and tabling.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 5

Or-Parallelism within Tabling

Overview of OPTYAP

OPTYAP extends the YapOr environment copy or-parallel system to support tabling
In a manner close to the SLG-WAM engine.

A set of workers will execute a tabled program by traversing its search tree, whose
nodes are entry points for parallelism:

e Each worker physically owns a copy of the environment and shares a large area
related to tabling and scheduling;

e The incremental copy technique is used when the workers with unexploited pri-
vate alternatives or unconsumed answers share work

e \WWhenever a worker backtracks to a public node it synchronizes to guarantee the
correctness of the sequential tabling execution;

e \When there are no alternatives or no unconsumed answers left in a shared node,
the public completion operation may be executed.

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 6

Or-Parallelism within Tabling

Running Example

tabled_subgoal_call a(X)
tabiéd_subgoal_call b(Y)
tabl.éd_subgoal_call b(Y)
tabl'éd_subgoal_call a(Xx)

generator node
for first a(X) cal

generator node
for first b(Y) call

consumer node

for second b(Y) call

consumer node

for second a(X) call

din=1

sg_fr_ptr

subgoal frame
for call
t(var 0)

dfn=2

sg_fr_ptr

subgoal frame
for call
v(var 0)

dfn=3

previous dep fr |---1--1--

last_answer

subgoal_frame

consumer_node

dep fr_ptr

leader_dfn=2

dfin=4

previous dep fr

last_answer

dep_fr_ptr

subgoal_frame

Y

Y

consumer_node

L

leader dfin=1

First International Workshop on Practical Aspects of Declarative Languages (PADL’99)

Slide 7

Or-Parallelism within Tabling

Dependency Frames

Key data structure to control suspension, resumption and completion of subgoals.

Designed to:

e Save information about suspension points;

e Connect consumer nodes with the table space;

e Search for and pick up new answers;

e Form a dependency graph between consumer nodes;

e Efficiently check for leader nodes and perform completion.

— previous dep fr [--------- -
dfn=3 o s
subgoa frame |--------- -

consumer_node
dep_frJJtr \/ |e€der_dfn =2

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 8

Or-Parallelism within Tabling

_eader Nodes

Definition
A leader node is a node where a worker can perform completion.

_eader Detection

OO NN ONE

Remark
In parallel tabling, all kinds of nodes can be leaders in a worker’s branch.

Slide 9

First International Workshop on Practical Aspects of Declarative Languages (PADL’99)

Or-Parallelism within Tabling

Public Completion

Fundamental Idea

Avoid explicit communication between workers and reduce suspension points.

Basic Consideration

When a leader node is public and contains consumer nodes below it, this means that

It depends on branches explored by other workers.

Conseqguence
In certain conditions, it becomes neces- @ generalor generator
sary to suspend the leader branch. a(X) aX)
Completion Conditions @ generator generator
. b(X b(X
e Be the last worker in the node; 9)
e No hidden workers in the node; consumer consumer
W (e w0 | [
e No suspended branches to resume.
First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 10

Or-Parallelism within Tabling

Conclusions

Presentation
We suggested two major approaches to combine or-parallelism and tabling.

We presented the fundamental concepts on the design and implementation of the OPT
approach.

Current and Further Work
Currently, we have sequential tabling and or-parallelism functioning separately within
the same system.

We are now working on adjusting the system, mainly the basic or-scheduler, to sup-
port parallel tabling execution.

Practical Significance
“..although I believe that the potential practical significance of the work is substan-
tial, the current practical significance is quite limited.”

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 11

Or-Parallelism within Tabling

OPT Example

Generator Node a(Xx) a(Xx)

Consumer Node

Q Interior Node

. b(X)
Private Branch >

Completed Branch

Shared Branch v
W1 W1 W2

New Answer

One Worker (W1) Two workers (W1 and W2)

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 12

Or-Parallelism within Tabling

TOP Example
Generator Node a(x) a(x)
<> Consumer Node
Q Interior Node
b(X b(X
— Private Branch @ X @ %)
/ /
X=1 // X=1 //
———- Completed Branch / @ /
/ /
/ /
—— Shared Branch v v
W1 W2 W1
Q New Answer
One Worker (W1) Two workers (W1 and W2)

First International Workshop on Practical Aspects of Declarative Languages (PADL’99) Slide 13

Or-Parallelism within Tabling

Public Completion Pseudo-Code

public_conpletion (node N)

I f (last worker in node N)
for all suspension branches SB stored in node N
I f (exists unconsunmed answers for any consuner node in SB)
collect (SB) /* to be resuned |ater */
if (Nis a | eader node)
I f (exists unconsuned answers for any consunmer node bel ow node N)
backtrack t hrough new answers() /* as in sequential tabling */
I f (suspension branches coll ected)
suspend_current _branch()
resune (a suspension branch)
else if (not |last worker in node N)
suspend_current _branch()
else if (hidden workers in node N)
suspend_current _branch()
el se
conplete_all ()
el se [* not | eader */
I f (consuner nodes bel ow node N)
I ncrenment hi dden workers in node N
backt rack

First International Workshop on Practical Aspects of Declarative Languages (PADL’99)

Slide 14

