
A Tabling Engine for the Yap Prolog System

Ricardo Rocha Fernando Silva Vı́tor Santos Costa

DCC-FC & LIACC, University of Porto, Portugal

�

ricroc,fds

�

@ncc.up.pt

COPPE Systems Engineering, Federal University of Rio de Janeiro, Brazil
vitor@cos.ufrj.br



A Tabling Engine for the Yap Prolog System

Overview

Tabling and Parallelism
Motivation, approach and integration issues.

Tabling Concepts
Execution model, tabled nodes and completion.

Extending Yap to Support Tabling
Data structures, leader nodes, completion and answer resolution.

Initial Performance Evaluation
Running times on a set of tabled and non tabled benchmarks.

Conclusions

AGP 2000 - Joint Conference on Declarative Programming Slide 1



A Tabling Engine for the Yap Prolog System

Tabling and Parallelism: Motivation

Tabling (SLG resolution) has the advantage over Prolog (SLD resolution) in that:

� Avoids redundant subcomputations

� Deals with infinite loops

In tabling we still exploit alternatives for solving goals:

� We need to search like in Prolog;

� We can parallelise the search like in or-parallel Prolog:

– Search both tabled and non-tabled goals in parallel;

– Reuse or-parallel technology.

Develop an efficient or-parallel tabling system

AGP 2000 - Joint Conference on Declarative Programming Slide 2



A Tabling Engine for the Yap Prolog System

Tabling and Parallelism: How to?

Key Ideas:

� Extract parallelism from both tabled and non-tabled subgoals;

� Separate tabling and parallelism as much as possible.

Starting Points:

� Or-Parallel Models: Environment Copying (Muse) / Binding Arrays (Aurora)

� Tabling Models: SLG-WAM / Chat (XSB)

OPTYap = YapOr + YapTab + Tabling/Parallelism Integration

AGP 2000 - Joint Conference on Declarative Programming Slide 3



A Tabling Engine for the Yap Prolog System

Tabling Concepts I

Basic Execution Model

� Whenever a tabled subgoal is called for the first time, a new entry is allocated in
the table space. This entry will collect all the answers generated for the subgoal.

� Variant calls to tabled subgoals are resolved by consuming the answers already
stored in the table.

� Meanwhile, as new answers are founded, they are inserted into the table and re-
turned to all variant subgoals.

Nodes Classification

� Generator: nodes that first call a tabled subgoal.

� Consumer: nodes that consume answers from the table space.

� Interior: nodes that are evaluated by the standard resolution.

AGP 2000 - Joint Conference on Declarative Programming Slide 4



A Tabling Engine for the Yap Prolog System

Tabling Concepts II

Completion Operation

� A tabled subgoal is said to be completely evaluated when all possible resolutions
have been made:

– no more answers can be generated;

– the variant subgoals have consumed all the available answers.

� A number of subgoals may be mutually dependent, forming a strongly connected
component (SCC). In such case, the SCC is said to be completely evaluated when
each subgoal belonging to the SCC is completely evaluated.

� The completion operation is performed by the leader node, i.e., the generator
node corresponding to:

– the oldest subgoal in a SCC;

– the subgoal, if not in a SCC.

AGP 2000 - Joint Conference on Declarative Programming Slide 5



A Tabling Engine for the Yap Prolog System

Running Example I

AGP 2000 - Joint Conference on Declarative Programming Slide 6



A Tabling Engine for the Yap Prolog System

Running Example II

AGP 2000 - Joint Conference on Declarative Programming Slide 7



A Tabling Engine for the Yap Prolog System

Running Example III

AGP 2000 - Joint Conference on Declarative Programming Slide 8



A Tabling Engine for the Yap Prolog System

Designing YapTab to Support Parallelism

Main Problems:

� Tabling suspensions management;

� Completion detection.

Potential sources of overhead:

� Data related with tabling suspensions;

� Completion stack.

The dependency frame data structure:

� Keeps track of all data related with a particular tabling suspension;

� Reduces the number of extra fields in tabled choice points;

� Eliminates the need for a completion stack area;

� Very useful for parallelism.

AGP 2000 - Joint Conference on Declarative Programming Slide 9



A Tabling Engine for the Yap Prolog System

From SLG-WAM To YapTab

SLG-WAM Consumer CP

SLG-WAM Generator CP

GCP(B_FZ)

GCP(H_FZ)

GCP(TR_FZ)

GCP(E_FZ)

GCP(subgoal_fr)

WAM CP fields

CCP(last_answer)

CCP(next)

CCP(subgoal_fr)

WAM CP fields
Dependency Frame

YapTab Generator CP

YapTab Consumer CP

GCP(subgoal_fr)

WAM CP fields

CCP(dependency_fr)

WAM CP fields

DepFr(last_answer)

DepFr(leader_cp)

DepFr(consumer_cp)

DepFr(subgoal_fr)

DepFr(next)

AGP 2000 - Joint Conference on Declarative Programming Slide 10



A Tabling Engine for the Yap Prolog System

YapTab Organization

Choice Point
Stack

Table Space Dependency Space

Subgoal Frame

Answer Trie
 Structure

Dependency Frame

Top Dependency Frame

Consumer CP

Generator CP

Interior CP

Consumer CP

Dependency Frame

AGP 2000 - Joint Conference on Declarative Programming Slide 11



A Tabling Engine for the Yap Prolog System

Computing the Leader Node Information

b L= N2

DEP-FR

a

b

b L= N2

DEP-FR

a

b

a

b

b L= N2

DEP-FR

a L= N1

DEP-FR

a L= N1

DEP-FR

b L= N1

DEP-FR

a

b

N1

N2

N3

N4

N5

Generator Node

Consumer Node

Current Leader Node

AGP 2000 - Joint Conference on Declarative Programming Slide 12



A Tabling Engine for the Yap Prolog System

Completion and Answer Resolution Instructions

Completion Instruction in GN � GN is a leader node ?

� No � Backtrack

� Yes � Younger consumer node CN with unconsumed answers ?

– Yes � Resume computation to CN

– No � Perform completion operation

Answer Resolution Instruction in CN � Unconsumed answers ?

� Yes � Load the next available answer and proceed execution

� No � Resume computation to the younger node of

– Previous consumer node with unconsumed answers

– Last leader node when the completion instruction was executed

AGP 2000 - Joint Conference on Declarative Programming Slide 13



A Tabling Engine for the Yap Prolog System

Initial Performance Evaluation
Benchmark YapTab Yap Prolog XSB Prolog
9-queens 740 740(1.00) 1819(2.46)
cubes 210 210(1.00) 589(2.80)
ham 460 430(0.93) 1139(2.48)
nsort 390 370(0.95) 1101(2.82)
puzzle 2430 2120(0.87) 5819(2.39)

Average (0.95) (2.59)
Running Times (in milliseconds) on a Set of Non Tabled Benchmarks.

Benchmark YapTab XSB Prolog
binary tree (depth 10) 180 451(2.50)
chain (64 nodes) 130 399(3.06)
cycle (64 nodes) 390 1121(2.87)
grid (4x4 nodes) 1330 5740(4.31)

Average (3.18)
Running Times (in milliseconds) on a Four Version Tabled Benchmark.

Results obtained on a 200 MHz PentiumPro, 128 MB RAM, 256 KB cache, Linux-2.2.5 kernel.

AGP 2000 - Joint Conference on Declarative Programming Slide 14



A Tabling Engine for the Yap Prolog System

Conclusions

� We presented the design and implementation of YapTab, an extension of the Yap
Prolog system that implements sequential tabling.

� YapTab reuses the principles of the SLG-WAM engine, but innovates in introduc-
ing the dependency space and in proposing a new completion detection algorithm.

� YapTab first results are very encouraging. Overheads over standard Yap are low
and performance in tabling benchmarks is quite satisfactory.

� YapTab includes all the machinery required to extend the system to execute tabled
programs in or-parallel.

� We have obtained very initial timings for parallel execution on a shared memory
PentiumPro machine. The results show significant speedups for a tabled applica-
tion increasing up to the four processors.

AGP 2000 - Joint Conference on Declarative Programming Slide 15


