
YapTab: A Tabling Engine
Designed to Support Parallelism

Ricardo Rocha Fernando Silva Vı́tor Santos Costa

DCC-FC & LIACC, University of Porto, Portugal

�

ricroc,fds

�

@ncc.up.pt

COPPE Systems Engineering, Federal University of Rio de Janeiro, Brazil
vitor@cos.ufrj.br



YapTab: A Tabling Engine Designed to Support Parallelism

Overview

Tabling and Parallelism
Motivation, approach and integration issues.

Extending Yap to Support Tabling
Tabled nodes, leader nodes, completion and answer resolution.

Initial Performance Evaluation
Running times on a set of tabled and non tabled benchmarks.

Conclusions

TAPD 2000 - Tabulation in Parsing and Deduction Slide 1



YapTab: A Tabling Engine Designed to Support Parallelism

Tabling and Parallelism: Motivation

In tabling we still exploit alternatives for solving goals:

� We need to search like in Prolog;

� We can parallelise the search like in or-parallel Prolog;

� Advantages:

– Search both tabled and non-tabled goals in parallel;

– Reuse or-parallel technology.

� Problems:

– Tabled suspensions and completion detection must work with parallelism.

Develop an efficient or-parallel tabling system

TAPD 2000 - Tabulation in Parsing and Deduction Slide 2



YapTab: A Tabling Engine Designed to Support Parallelism

Tabling and Parallelism: How to?

Our Starting Points:

� Or-Parallel Models:

– Environment Copying (Muse)

– Binding Arrays (Aurora)

� Tabling Models:

– SLG-WAM (XSB)

– Chat (XSB)

Our Approach:

OPTYap = YapOr + YapTab + Tabling/Parallelism Integration

TAPD 2000 - Tabulation in Parsing and Deduction Slide 3



YapTab: A Tabling Engine Designed to Support Parallelism

Tabling and Parallelism: The OPTYap Model

Separate tabling and parallelism as much as possible:

� Run separate YapTab engines in parallel;

� Each YapTab engine operates the stacks, i.e.:

– allocates all types of nodes;
– fully implements suspension of tabled subgoals;
– resumes subcomputations to consume newly found answers;
– completes private subgoals.

� YapOr is triggered to:

– assign work to the YapTab engines (stack-copying);
– synchronize access to shared branches;
– complete shared subgoals.

Parallelism stems from both tabled and non-tabled subgoals.

TAPD 2000 - Tabulation in Parsing and Deduction Slide 4



YapTab: A Tabling Engine Designed to Support Parallelism

Tabling and Parallelism: Integration

Potential sources of overhead:

� Data related with tabling suspensions;

� Completion stack.

The dependency frame data structure:

� Keeps track of all data related with a particular tabling suspension;

� Reduces the number of extra fields in tabled choice points;

� Eliminates the need for a completion stack area;

� Very useful for parallelism.

TAPD 2000 - Tabulation in Parsing and Deduction Slide 5



YapTab: A Tabling Engine Designed to Support Parallelism

From SLG-WAM To YapTab

SLG-WAM Consumer CP

SLG-WAM Generator CP

GCP(B_FZ)

GCP(H_FZ)

GCP(TR_FZ)

GCP(E_FZ)

GCP(subgoal_fr)

WAM CP fields

CCP(last_answer)

CCP(next)

CCP(subgoal_fr)

WAM CP fields
Dependency Frame

YapTab Generator CP

YapTab Consumer CP

GCP(subgoal_fr)

WAM CP fields

CCP(dependency_fr)

WAM CP fields

DepFr(last_answer)

DepFr(leader_cp)

DepFr(consumer_cp)

DepFr(subgoal_fr)

DepFr(next)

TAPD 2000 - Tabulation in Parsing and Deduction Slide 6



YapTab: A Tabling Engine Designed to Support Parallelism

YapTab Organization

Choice Point
Stack

Table Space Dependency Space

Subgoal Frame

Answer Trie
 Structure

Dependency Frame

Top Dependency Frame

Consumer CP

Generator CP

Interior CP

Consumer CP

Dependency Frame

TAPD 2000 - Tabulation in Parsing and Deduction Slide 7



YapTab: A Tabling Engine Designed to Support Parallelism

Computing the Leader Node Information

b L= N2

DEP-FR

a

b

b L= N2

DEP-FR

a

b

a

b

b L= N2

DEP-FR

a L= N1

DEP-FR

a L= N1

DEP-FR

b L= N1

DEP-FR

a

b

N1

N2

N3

N4

N5

Generator Node

Consumer Node

TAPD 2000 - Tabulation in Parsing and Deduction Slide 8



YapTab: A Tabling Engine Designed to Support Parallelism

Leader Nodes

b L= N2

DEP-FR

a

b

b L= N2

DEP-FR

a

b

a

b

b L= N2

DEP-FR

a L= N1

DEP-FR

a L= N1

DEP-FR

b L= N1

DEP-FR

a

b

N1

N2

N3

N4

N5

Current Leader Node

GN is a Leader Node?

� There are no younger consumer nodes;

� GN is the leader node referred in the top dependency frame.

TAPD 2000 - Tabulation in Parsing and Deduction Slide 9



YapTab: A Tabling Engine Designed to Support Parallelism

Completion and Answer Resolution Instructions

Completion Instruction in GN � GN is a leader node ?

� No � Backtrack

� Yes � Younger consumer node CN with unconsumed answers ?

– Yes � Resume computation to CN
– No � Perform completion operation

Answer Resolution Instruction in CN � Unconsumed answers ?

� Yes � Load the next available answer and proceed execution

� No � First time that backtracking from CN takes place ?

– Yes � Backtrack
– No � Resume computation to the younger node of

� Previous consumer node with unconsumed answers

� Last leader node when the completion instruction was executed

TAPD 2000 - Tabulation in Parsing and Deduction Slide 10



YapTab: A Tabling Engine Designed to Support Parallelism

Initial Performance Evaluation

Running Times (in milliseconds) on a Set of Non Tabled Benchmarks

Benchmark YapTab Yap Prolog XSB Prolog
9-queens 740 740(1.00) 1819(2.46)
cubes 210 210(1.00) 589(2.80)
ham 460 430(0.93) 1139(2.48)
nsort 390 370(0.95) 1101(2.82)
puzzle 2430 2120(0.87) 5819(2.39)

Average (0.95) (2.59)

� Results obtained on a 200 MHz PentiumPro, 128 MB RAM, 256 KB cache, Linux-2.2.5 kernel.

� YapTab is based on the Yap4.2.1 engine.

� Same compilation flags for Yap and for YapTab.

� XSB version 2.2 with the default configuration and the default execution parameters (chat engine
and batched scheduling).

TAPD 2000 - Tabulation in Parsing and Deduction Slide 11



YapTab: A Tabling Engine Designed to Support Parallelism

Initial Performance Evaluation

Running Times (in milliseconds) on a Four Version Tabled Benchmark

Benchmark YapTab XSB Prolog
binary tree (depth 10) 440 451(1.03)
chain (64 nodes) 120 399(3.33)
cycle (64 nodes) 380 1121(2.95)
grid (4x4 nodes) 1270 5740(4.52)

Average (2.96)

Tries without hashing

Benchmark YapTab XSB Prolog
binary tree (depth 10) 180 451(2.50)
chain (64 nodes) 130 399(3.06)
cycle (64 nodes) 390 1121(2.87)
grid (4x4 nodes) 1330 5740(4.31)

Average (3.18)

Tries using hashing optimization

TAPD 2000 - Tabulation in Parsing and Deduction Slide 12



YapTab: A Tabling Engine Designed to Support Parallelism

Conclusions

� We presented the design and implementation of YapTab, an extension of the Yap
Prolog system that implements sequential tabling.

� YapTab reuses the principles of the SLG-WAM engine, but innovates in introduc-
ing the dependency space and in proposing a new completion detection algorithm.

� YapTab first results are very encouraging. Overheads over standard Yap are low
and performance in tabling benchmarks is quite satisfactory.

� YapTab includes all the machinery required to extend the system to execute tabled
programs in or-parallel.

� We have obtained very initial timings for parallel execution on a shared memory
PentiumPro machine. The results show significant speedups for a tabled applica-
tion increasing up to the four processors.

TAPD 2000 - Tabulation in Parsing and Deduction Slide 13


