
YapDss: an Or-Parallel Prolog System
for Scalable Beowulf Clusters

Ricardo Rocha Fernando Silva Rolando Martins
{ricroc,fds,rolando}@ncc.up.pt

DCC-FC & LIACC
University of Porto, Portugal



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Why Parallelism?



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Why Parallelism?

➤ Performance

♦ The ability to speedup Prolog execution is fundamental for real world appli-
cations.

♦ Better performance can be achieved by:
∗ Improving the efficiency of sequential implementations.
∗ Developing efficient parallel execution models.



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Why Parallelism?

➤ Performance

♦ The ability to speedup Prolog execution is fundamental for real world appli-
cations.

♦ Better performance can be achieved by:
∗ Improving the efficiency of sequential implementations.
∗ Developing efficient parallel execution models.

➤ Implicit Parallelism

♦ Prolog’s execution model allows parallelism to be exploited implicitly, without
extra input from the programmer to express or manage parallelism.

♦ This makes parallel logic programming as easy as logic programming.

1



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Main Forms of Implicit Parallelism

➤ And-Parallelism

♦ It appears when more than one subgoal is present in the query or in the body
of a clause. It corresponds to the parallel execution of such subgoals.

a(X,Y) :- b(X,Z), c(Z,Y).



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Main Forms of Implicit Parallelism

➤ And-Parallelism

♦ It appears when more than one subgoal is present in the query or in the body
of a clause. It corresponds to the parallel execution of such subgoals.

a(X,Y) :- b(X,Z), c(Z,Y).

➤ Or-Parallelism

♦ It appears when a subgoal call unifies with more than one of the clauses
defining the subgoal predicate. It corresponds to the parallel execution of the
bodies of alternative matching clauses.

a(X,Y) :- b(X), c(Y).
a(X,Y) :- d(X,Y), e(Y).
a(X,Y) :- f(X,Z), g(Z,Y).



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Main Forms of Implicit Parallelism

➤ And-Parallelism

♦ It appears when more than one subgoal is present in the query or in the body
of a clause. It corresponds to the parallel execution of such subgoals.

a(X,Y) :- b(X,Z), c(Z,Y).

➤ Or-Parallelism

♦ It appears when a subgoal call unifies with more than one of the clauses
defining the subgoal predicate. It corresponds to the parallel execution of the
bodies of alternative matching clauses.

a(X,Y) :- b(X), c(Y).
a(X,Y) :- d(X,Y), e(Y).
a(X,Y) :- f(X,Z), g(Z,Y).

♦ The least complexity of or-parallelism (alternative matching clauses are inde-
pendent of each other) makes it more attractive at a first step.

2



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Or-Parallelism: Main Problems

➤ Multiple Bindings

♦ Alternative branches have to be organized in such a way that conflicting
bindings for shared variables can be easily discernible.

X

X <- 3 X <- 5

♦ Private areas to store the bindings for each branch are required.



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Or-Parallelism: Main Problems

➤ Multiple Bindings

♦ Alternative branches have to be organized in such a way that conflicting
bindings for shared variables can be easily discernible.

X

X <- 3 X <- 5

♦ Private areas to store the bindings for each branch are required.

➤ Scheduling

♦ Work scheduling is a complex problem because of the dynamic nature of work
in or-parallel systems, as in fact, unexploited branches arise irregularly.

♦ Careful scheduling strategies are required.

3



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

The YapDss System

➤ Our Goal: design and implement an Or-Parallel Prolog system for a new type
of distributed memory platforms, the Beowulf PC clusters.

♦ Build from off-the-shelf components
♦ Low-cost
♦ Scalable
♦ Viable alternative to traditional shared memory platforms



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

The YapDss System

➤ Our Goal: design and implement an Or-Parallel Prolog system for a new type
of distributed memory platforms, the Beowulf PC clusters.

♦ Build from off-the-shelf components
♦ Low-cost
♦ Scalable
♦ Viable alternative to traditional shared memory platforms

➤ Our Approach: extend the Yap Prolog system to support stack splitting, a
refined version of the environment copying model.



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

The YapDss System

➤ Our Goal: design and implement an Or-Parallel Prolog system for a new type
of distributed memory platforms, the Beowulf PC clusters.

♦ Build from off-the-shelf components
♦ Low-cost
♦ Scalable
♦ Viable alternative to traditional shared memory platforms

➤ Our Approach: extend the Yap Prolog system to support stack splitting, a
refined version of the environment copying model.

♦ In copying, sharing is done by copying the execution stacks between workers.
To avoid redundant computations this requires further synchronization.

♦ Stack splitting (PALS system) introduces a heuristic that when sharing, work
is split beforehand, in such a way that no further synchronization is needed.

4



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

The YapDss System: Main Contributions

➤ Diagonal Stack Splitting

♦ Better work load balance among the computing workers.

➤ Branch Array

♦ Simple scheme to determine the bottommost common node between the
branches of two workers.

➤ Work Load

♦ The work load of a worker is calculated exactly, it is not an estimate.

5



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Vertical Stack Splitting

➤ Each worker is given all the untried alternatives in alternate choice points,
starting from worker P with its current choice point.

a2

a1

b2

b4

b3

b1

c2
c3

c1

d2

d4

d3

d1

QP

before

Depois a1

b2

b4

b3

b1

c1

d2

d4

d3

d1
Q

P

a2

a1

b1

c2
c3

after vertical splitting

6



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Horizontal Stack Splitting

➤ The untried alternatives in each choice point are alternatively split between the
requesting worker Q and the sharing worker P.

a2

a1

b2

b4

b3

b1

c2
c3

c1

d2

d4

d3

d1

QP

a1

b3

b1

c3

c1

d3

d1

QP

a2

a1

b2

b4b1

c2

c1

d2
d4

before after horizontal splitting

7



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Diagonal Stack Splitting

➤ The set of untried alternatives in all choice points are alternatively split between
both workers.

a2

a1

b2

b4

b3

b1

c2
c3

c1

d2

d4

d3

d1

QP

before

Depois
a2

a1

b3

b1

c2

c1

d3

d1

QP

a1

b1

c3

c1

d2
d4

b2

b4

after diagonal splitting

8



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

How to Split?

➤ Extend choice points with an extra field, CP OFFSET, to mark the offset of the
next untried alternative belonging to the choice point.

➤ For private choice points CP OFFSET is always 1.

Worker P

CP_OFFSET= 1

CP_ALT= a2

... a2 a3 a4 a5 a6



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

How to Split?

➤ Extend choice points with an extra field, CP OFFSET, to mark the offset of the
next untried alternative belonging to the choice point.

➤ For private choice points CP OFFSET is always 1.

Worker P

CP_OFFSET= 1

CP_ALT= a2

... a2 a3 a4 a5 a6

➤ When sharing a choice point we double the value in the CP OFFSET.

➤ The worker that do not start the partitioning updates the CP ALT field of its
choice point to refer to the next available alternative.

9



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

How to Split?

Worker P Worker X

CP_OFFSET= 2

CP_ALT= a2

...

CP_OFFSET= 2

CP_ALT= a3

...

P sharing work with X

a3 a5a2 a4 a6



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

How to Split?

Worker P Worker X

CP_OFFSET= 2

CP_ALT= a2

...

CP_OFFSET= 2

CP_ALT= a3

...

P sharing work with X

a3 a5a2 a4 a6

P sharing work with Y

Worker P Worker Y

CP_OFFSET= 4

CP_ALT= a4

...

CP_OFFSET= 4

CP_ALT= a2

...a4 a2 a6

Worker P Worker X

CP_OFFSET= 2

CP_ALT= a2

...

CP_OFFSET= 2

CP_ALT= a3

...

P sharing work with X

a3 a5a2 a4 a6

10



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

How to Split?

➤ When splitting we need to know if the number of available alternatives in a
choice point is odd or even in order to decide which worker starts the partitioning
in the upper choice point.



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

How to Split?

➤ When splitting we need to know if the number of available alternatives in a
choice point is odd or even in order to decide which worker starts the partitioning
in the upper choice point.

➤ A possibility is to follow the list of available alternatives and count its number.



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

How to Split?

➤ When splitting we need to know if the number of available alternatives in a
choice point is odd or even in order to decide which worker starts the partitioning
in the upper choice point.

➤ A possibility is to follow the list of available alternatives and count its number.

➤ YapDss takes advantage of the compiler to include information about the number
of remaining alternatives starting from an alternative.

code code code

inst_1

alt_2

3

code

inst_2

alt_3

2

inst_3

alt_4

1

inst_4

NULL

0

alt_1

REM_ALT

NEXT_ALT

11



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Branch Array
➤ To minimize overheads during copying we need to support incremental copying.



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Branch Array
➤ To minimize overheads during copying we need to support incremental copying.

➤ To support incremental copying we need a mechanism that allows us to quickly
find the bottommost common node between two workers.



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Branch Array
➤ To minimize overheads during copying we need to support incremental copying.

➤ To support incremental copying we need a mechanism that allows us to quickly
find the bottommost common node between two workers.

➤ YapDss uses a private branch array to uniquely represent the position of each
worker. The depth of a choice point identifies its offset in the branch array.

a3

b1

c3

c2

d3

d1

P

a3

b3

b2

b4

Q

c4

1

3

2

3

1

1

0

Bottommost
Common

Node

1

1

0

1

3

2

3

branch
array

branch
array

12



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Sharing Work

➤ Q makes a sharing request to P

♦ Q sends a message to P that includes its branch array

➤ P decides to share work with Q

♦ P calculates the bottommost common node
♦ P computes the stack segments to be copied to Q
♦ P packs all the information in a message and sends it back to Q

➤ Q receives a positive answer

♦ Q copies the stack segments in the message to the proper space in its
execution stacks

➤ P and Q apply diagonal splitting

13



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Initial Performance Evaluation

Number of Workers
Programs 2 4 6 8

queens12 38.93(1.99) 19.63(3.94) 13.36(5.80) 10.12(7.66)
nsort 124.24(1.98) 63.14(3.90) 42.44(5.80) 33.06(7.45)
puzzle4x4 34.00(1.99) 17.34(3.91) 11.83(5.73) 9.41(7.20)
magic 15.50(1.99) 7.88(3.92) 5.58(5.53) 4.38(7.05)

cubes7 0.67(1.96) 0.40(3.26) 0.33(3.90) 0.23(4.80)
ham 0.17(1.75) 0.10(2.81) 0.09(3.13) 0.10(2.95)

Average (1.94) (3.62) (4.98) (6.19)

➤ PC cluster with 4 dual Pentium II nodes interconnected by Myrinet-SAN switches

➤ All benchmarks find all solutions for the problem

➤ YapDss is on average 16% slower than Yap

14



YapDss: an Or-Parallel Prolog System for Scalable Beowulf Clusters R. Rocha, F. Silva, R. Martins

Conclusion and Further Work

➤ Design and implementation of YapDss

♦ Diagonal stack splitting
♦ Branch array

➤ Initial performance evaluation

♦ Low overhead over sequential execution
♦ Excellent speedups for applications with coarse-grained parallelism and quite

good results globally

➤ Further work

♦ More detailed system evaluation and performance tuning
♦ Support speculative execution with cuts
♦ Integration with the official Yap distribution

15


