
Coupling OPTYap
with a Database System

Michel Ferreira Ricardo Rocha
{michel,ricroc}@ncc.up.pt

DCC-FC & LIACC
University of Porto, Portugal



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Motivation

Obtain an efficient Deductive Database System by coupling OPTYap with MySQL.



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Motivation

Obtain an efficient Deductive Database System by coupling OPTYap with MySQL.

➤ Deductive databases are logic programming systems designed for applications
with large amounts of data. Deductive databases generalise relational databases
by exploiting the expressive power of (potentially recursive) logical rules, greatly
simplifying the task of application programmers.



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Motivation

Obtain an efficient Deductive Database System by coupling OPTYap with MySQL.

➤ Deductive databases are logic programming systems designed for applications
with large amounts of data. Deductive databases generalise relational databases
by exploiting the expressive power of (potentially recursive) logical rules, greatly
simplifying the task of application programmers.

➤ OPTYap is a state-of-the-art system that builds on the high-performance Yap
Prolog compiler and combines the power of tabling with support for implicit
parallel execution of Prolog goals in shared-memory machines.

♦ OPTYap allows tabled evaluation of Prolog goals, which can support the
efficient resolution of recursive queries.

♦ OPTYap also supports or-parallel execution of Prolog clauses, which is inte-
resting to concurrently evaluate database queries.



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Motivation

Obtain an efficient Deductive Database System by coupling OPTYap with MySQL.

➤ Deductive databases are logic programming systems designed for applications
with large amounts of data. Deductive databases generalise relational databases
by exploiting the expressive power of (potentially recursive) logical rules, greatly
simplifying the task of application programmers.

➤ OPTYap is a state-of-the-art system that builds on the high-performance Yap
Prolog compiler and combines the power of tabling with support for implicit
parallel execution of Prolog goals in shared-memory machines.

♦ OPTYap allows tabled evaluation of Prolog goals, which can support the
efficient resolution of recursive queries.

♦ OPTYap also supports or-parallel execution of Prolog clauses, which is inte-
resting to concurrently evaluate database queries.

➤ MySQL is a widely used database management system (DBMS), known for its
high performance.

1



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Interface between OPTYap and MySQL

OPTYap Prolog

?- consult(optyap2mysql).
?- db_open(...).
?- db_import(...).
?- ...
?- db_close(...).

MySQL Database

edge_r relation

source dest

... ...

optyap2mysql.c

db_connect/5
db_disconnect/1
db_assert/3
db_query/3
db_row/2

sqlcompiler.pl

translate/3

optyap2mysql.pl

:- load_foreign_files([optyap2mysql],[],init_predicates).
:- consult(sqlcompiler).
db_open/5
db_close/1
db_import/3
db_view/3

➤ Development tools:

♦ Yap Prolog C API
♦ MySQL C API
♦ Prolog to SQL compiler (Christoph Draxler, 1991)

2



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Accessing Database Tuples Through Backtracking

➤ When mapping a database relation into a Prolog predicate we use the Yap
interface functionality that allows defining backtrackable predicates, in such a
way that every time the computation backtracks to such predicates, the tuples
in the database are fetched one-at-a-time.



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Accessing Database Tuples Through Backtracking

➤ When mapping a database relation into a Prolog predicate we use the Yap
interface functionality that allows defining backtrackable predicates, in such a
way that every time the computation backtracks to such predicates, the tuples
in the database are fetched one-at-a-time.

➤ To implement this approach, we dynamically construct the clause for the pre-
dicate being mapped. For example, if we call db import(edge r,edge,my conn)
the following clause is asserted:

edge(A,B) :-
get_value(my_conn,ConnHandler),
db_query(ConnHandler,’SELECT * FROM edge_r’,ResultSet),
db_row(ResultSet,[A,B]).



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Accessing Database Tuples Through Backtracking

➤ When mapping a database relation into a Prolog predicate we use the Yap
interface functionality that allows defining backtrackable predicates, in such a
way that every time the computation backtracks to such predicates, the tuples
in the database are fetched one-at-a-time.

➤ To implement this approach, we dynamically construct the clause for the pre-
dicate being mapped. For example, if we call db import(edge r,edge,my conn)
the following clause is asserted:

edge(A,B) :-
get_value(my_conn,ConnHandler),
db_query(ConnHandler,’SELECT * FROM edge_r’,ResultSet),
db_row(ResultSet,[A,B]).

➤ Note that the db row/2 predicate may fail. For example, if we call edge(1,B),
this turns A ground when passed to db row/2.

3



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Transferring Unification to the Database Engine

➤ Instead of using Prolog unification to select the matching tuples for the generic
SELECT * FROM query, bindings of goal arguments are used to dynamically
construct specific SQL queries to match the call.



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Transferring Unification to the Database Engine

➤ Instead of using Prolog unification to select the matching tuples for the generic
SELECT * FROM query, bindings of goal arguments are used to dynamically
construct specific SQL queries to match the call.

➤ To implement this approach we use the translate/3 predicate from Draxler’s
compiler. If we consider the previous example, the following clause will now be
asserted.

edge(A,B) :-
get_value(my_conn,ConnHandler),
translate(proj_term(A,B),edge(A,B),Query),
db_query(ConnHandler,Query,ResultSet),
db_row(ResultSet,[A,B]).

➤ When we call edge(1,B), the translate/3 predicate constructs the specific query
SELECT 1, dest FROM edge r WHERE source = 1.

4



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Transferring Unification to the Database Engine

➤ We can also transfer the joining process of more than one database goal to
the MySQL engine. Consider, for example, the following predicate and query
goal:

direct_cycle(A,B) :- edge(A,B), edge(B,A).

?- direct_cycle(A,B).



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Transferring Unification to the Database Engine

➤ We can also transfer the joining process of more than one database goal to
the MySQL engine. Consider, for example, the following predicate and query
goal:

direct_cycle(A,B) :- edge(A,B), edge(B,A).

?- direct_cycle(A,B).

➤ For the first goal, translate/3 generates a query SELECT * FROM edge r, that
will access all tuples sequentially. For the second goal, it gets the bindings of
the first goal and generates a query of the form SELECT 1, 2 FROM edge r
WHERE source = 1 AND dest = 2.

➤ This approach has a substantial overhead of generating, running and storing a
SQL query for each tuple of the first goal. To avoid this, we can also benefit
from the translate/3 predicate to define views.

5



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

View-Level Access

➤ We can define views by using the db view/3 predicate. For example, if we
call db view((edge(A,B),edge(B,A)),direct cycle(A,B),my conn) the following
clause is asserted:

direct_cycle(A,B) :-
get_value(my_conn,ConnHandler),
translate(proj_term(A,B),(edge(A,B),edge(B,A)),Query),
db_query(ConnHandler,Query,ResultSet),
db_row(ResultSet,[A,B]).

➤ When later we call direct cycle(A,B), only a single query is generated: SELECT
A.source, A.dest FROM edge r A, edge r B WHERE B.source = A.dest AND
B.dest = A.source.

6



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Using Tabling to Solve Recursive Queries

➤ Recursive queries can often be non-terminating and tend to recompute the
same answers. Consider, for example, the predicate path/2 that computes the
transitive closure of the edge relation.

path(A,B) :- edge(A,B).
path(A,B) :- path(A,C), edge(C,B).



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Using Tabling to Solve Recursive Queries

➤ Recursive queries can often be non-terminating and tend to recompute the
same answers. Consider, for example, the predicate path/2 that computes the
transitive closure of the edge relation.

path(A,B) :- edge(A,B).
path(A,B) :- path(A,C), edge(C,B).

➤ If we use Prolog standard resolution, a call like path(1,B) will lead to an infinite
computation because it calls itself recursively in the second clause.

➤ On the other hand, the OPTYap tabling mechanism easily detects the recursive
call and avoids its re-evaluation. To evaluate a predicate using tabling we simply
need to use the table directive.

:- table path/2.
path(A,B) :- edge(A,B).
path(A,B) :- path(A,C), edge(C,B).

7



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Some Performance Results

Approach/Query
Tuples (Facts)

50,000 100,000 500,000

Prolog Backtracking (index on first argument)

edge(A,B),fail. 0.02 0.03 0.16

edge(A,B),edge(B,A),fail. 0.54 2.17 10.94

SQL + Backtracking (primary index on (source))

edge(A,B),fail 0.18 0.37 1.95

edge(A,B),edge(B,A),fail. 39.88 119.84 1,779.26

edge(A,B),edge(B,A),fail. (view-level) 6.94 26.18 142.14

SQL + Backtracking (primary index on (source,dest))

edge(A,B),fail 0.22 0.44 2.18

edge(A,B),edge(B,A),fail. 23.29 69.81 1,272.81

edge(A,B),edge(B,A),fail. (view-level) 0.35 0.82 4.78

➤ The MySQL tuple by tuple communication is around 10 times slower

➤ View-level access introduces significant speed-ups

➤ Extended indexing capabilities of MySQL can be very useful

8



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Conclusions and Further Work

➤ Conclusions

♦ Accessing and processing result sets from external database systems can cause
a significant slowdown when compared with in-memory Prolog facts.

♦ In order to be efficient, we need to explore the available indexing schemes
of database management systems, together with view-level transformations
when accessing the database.



Coupling OPTYap with a Database System M. Ferreira and R. Rocha

Conclusions and Further Work

➤ Conclusions

♦ Accessing and processing result sets from external database systems can cause
a significant slowdown when compared with in-memory Prolog facts.

♦ In order to be efficient, we need to explore the available indexing schemes
of database management systems, together with view-level transformations
when accessing the database.

➤ Further Work

♦ Automatically detect the clauses that contain conjunctions of database predi-
cates and use view-level transformations to generate more efficient code.

♦ Further evaluation with more complex queries/applications that can, in parti-
cular, explore the or-parallel component of OPTYap.

9


