Handling Incomplete and Complete Tables
in Tabled Logic Programs

Ricardo Rocha
DCC-FC & LIACC
University of Porto, Portugal
ricroc@ncc.up.pt

ICLP 2006, Seattle, Washington, USA, August 2006



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Motivation

This work was motivated by our recent attempt of applying tabling to Inductive
Logic Programming (ILP) [Rocha et al., ECML'05].

ILP applications are an excellent case study for tabling because they have huge
search spaces and do a lot of re-computation.

In particular, in this work we focus on the table space and how to efficiently
handle incomplete and complete tables.

ICLP 2006, Seattle, Washington, USA, August 2006 1



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Tabling and ILP: Incomplete Tables

Tabling is about storing answers for subgoals so that they can be reused when a
repeated call appears.

On the other hand, most ILP algorithms are interested in query satisfiability, not
in the answers: query evaluation stops as soon as an answer is found. This is
usually implemented by pruning at the Prolog level.



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Tabling and ILP: Incomplete Tables

Tabling is about storing answers for subgoals so that they can be reused when a
repeated call appears.

On the other hand, most ILP algorithms are interested in query satisfiability, not
in the answers: query evaluation stops as soon as an answer is found. This is
usually implemented by pruning at the Prolog level.

Pruning over tabled computations results in incomplete tables: we may have
found several answers but not the complete set.



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Tabling and ILP: Incomplete Tables

Tabling is about storing answers for subgoals so that they can be reused when a
repeated call appears.

On the other hand, most ILP algorithms are interested in query satisfiability, not
in the answers: query evaluation stops as soon as an answer is found. This is
usually implemented by pruning at the Prolog level.

Pruning over tabled computations results in incomplete tables: we may have
found several answers but not the complete set.

Thus, when a repeated call appears we cannot simply trust the answers from
an incomplete table because we may loose part of the computation.



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Tabling and ILP: Incomplete Tables

Tabling is about storing answers for subgoals so that they can be reused when a
repeated call appears.

On the other hand, most ILP algorithms are interested in query satisfiability, not
in the answers: query evaluation stops as soon as an answer is found. This is
usually implemented by pruning at the Prolog level.

Pruning over tabled computations results in incomplete tables: we may have
found several answers but not the complete set.

Thus, when a repeated call appears we cannot simply trust the answers from
an incomplete table because we may loose part of the computation.

A common approach is to throw away the already found answers and restart
the evaluation from the beginning when a repeated call appears.

ICLP 2006, Seattle, Washington, USA, August 2006 2



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Incomplete Tables: Our Approach

By default, we keep incomplete tables for pruned subgoals.
Then, when a repeated call appears, we start by consuming the available

answers from its incomplete table.
If the table is exhausted, then we restart the evaluation from the beginning.



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Incomplete Tables: Our Approach

By default, we keep incomplete tables for pruned subgoals.
Then, when a repeated call appears, we start by consuming the available

answers from its incomplete table.
If the table is exhausted, then we restart the evaluation from the beginning.

Avoid re-computation when the answers in an incomplete table are enough
to evaluate repeated calls.

ICLP 2006, Seattle, Washington, USA, August 2006 3



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Tabling and ILP: Complete Tables

When we use tabling for applications that build very many or very large tables,
we can quickly run out of memory.

A common approach is to have a set of primitives that the programmer can use
to dynamically abolish some of the tables.



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Tabling and ILP: Complete Tables

When we use tabling for applications that build very many or very large tables,
we can quickly run out of memory.

A common approach is to have a set of primitives that the programmer can use
to dynamically abolish some of the tables.

However, this can be hard to use and very difficult to decide what are the
potentially useless tables that should be deleted.

ICLP 2006, Seattle, Washington, USA, August 2006 4



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Complete Tables: Our Approach

A memory management strategy based on a least recently used algorithm,
that dynamically recovers space from the least recently used tables when
the system runs out of memory.



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Complete Tables: Our Approach

A memory management strategy based on a least recently used algorithm,
that dynamically recovers space from the least recently used tables when
the system runs out of memory.

The programmer can still force the deletion of particular tables, but can also
rely on the effectiveness of our memory management algorithm to completely
avoid the problem of deciding what potentially useless tables should be deleted.

ICLP 2006, Seattle, Washington, USA, August 2006 5



Handling Incomplete and Complete Tables in Tabled Logic Programs Ricardo Rocha

Concluding Remarks

Our proposals have been implemented in the YapTab tabling system with
minor changes to the original design.

Preliminaries results using the April ILP system showed very substantial perfor-
mance gains and a substantial increase of the size of the problems that can be
solved by combining ILP with tabling.

The problems and proposals presented in this work are not restricted to ILP
applications and can be generalised and applied to any other application.

ICLP 2006, Seattle, Washington, USA, August 2006 6



