An External Module for Implementing
Linear Tabling in Prolog

Claudio Silva, Ricardo Rocha and Ricardo Lopes
DCC-FC & LIACC
University of Porto, Portugal
ccaldas@dcc.online.pt {ricroc,rslopes} @ncc.up.pt

ICLP 2006, Seattle, Washington, USA, August 2006



An External Module for Implementing Linear Tabling in Prolog Claudio Silva, Ricardo Rocha and Ricardo Lopes

Motivation

This work was motivated by our recent proposal of combining tabling with the
Extended Andorra Model (EAM) [Rocha et al., ICLP'2005].

The first task in that proposal was to develop an external module for implemen-
ting tabling primitives that provide direct control over the search strategy.

The external module will serve as the basis to study how tabling interacts with
the EAM and to detect in advance the potential integration problems before
incorporating tabling within the EAM environment.

ICLP 2006, Seattle, Washington, USA, August 2006 1



An External Module for Implementing Linear Tabling in Prolog Claudio Silva, Ricardo Rocha and Ricardo Lopes

Tabling Mechanisms

We can distinguish two main categories of tabling mechanisms:

where tabled calls can be suspended and later
resumed (we need to preserve the computation state of suspended calls).
where tabled calls always compute starting from the previous
call (only a single tree is maintained in the execution stacks).

Linear-based mechanisms are considered to be less efficient but are easier to
implement.

ICLP 2006, Seattle, Washington, USA, August 2006 2



An External Module for Implementing Linear Tabling in Prolog Claudio Silva, Ricardo Rocha and Ricardo Lopes

Our Module

Our module implements the two available mechanisms that, to the best of our
knowledge, implement linear tabling:

[Neng-Fa Zhou et al., PADL'2000]
[Hai-Feng Guo and G. Gupta, ICLP'2001]

The module uses the C language interface of the Yap Prolog system to define
the tabling primitives that implement each tabling mechanism.

To use the module, a tabled logic program is first transformed to include the
corresponding tabling primitives and only then the resulting program is compiled.

ICLP 2006, Seattle, Washington, USA, August 2006 3



An External Module for Implementing Linear Tabling in Prolog Claudio Silva, Ricardo Rocha and Ricardo Lopes

Module Architecture

External Module

Table Space
Primitives

Tries

Program
Transformation

Linear Tabling
Primitives

Transformed Pro

p(X.Z)- tabled_call(p(X.2), Tid,Cid), alt{Cid,Aid),

(Aid=0 -> !, consume_answer({p(X,Z),Cid} ;
copy_term({p(X,Z),T), sldt(T, Tid,Aid), SLDT DRA
consume_answer({p(X.,Z),Cid)).

sldt{p(X,Z), Tid,1):- e(X.,Y), p(Y,2),
new _answer(p(X.,Z),Tid).

sldt{p(X.Z),Tid,2):- e(X.Z), new_answer(p(X,Z), Tid).
sldi{p(X,Z), Tid,3):- completion(Tid).

Top Level Interface C Language Interface

Prolog Engine

\

ICLP 2006, Seattle, Washington, USA, August 2006 4



An External Module for Implementing Linear Tabling in Prolog Claudio Silva, Ricardo Rocha and Ricardo Lopes

Concluding Remarks

Our module is independent from the Yap Prolog's engine which makes it easily
portable to other Prolog systems with a C language interface.

Starting from these two tabling mechanisms, we are now working on a new
proposal that tries to combine the best features of both.

ICLP 2006, Seattle, Washington, USA, August 2006 5



