
On Applying Program Transformation
to Implement

Suspension-Based Tabling in Prolog

Ricardo Rocha, Cláudio Silva and Ricardo Lopes
DCC-FC & LIACC

University of Porto, Portugal
ricroc@ncc.up.pt ccaldas@dcc.online.pt rslopes@ncc.up.pt

ICLP 2007, Porto, Portugal, September 2007



On Applying Program Transformation to Implement Suspension-Based Tabling in Prolog Ricardo Rocha, Cláudio Silva and Ricardo Lopes

Tabling Implementations

ä The common approach used to include tabling support into existing Prolog
systems is to modify and extend the low-level engine.

© More efficient implementations.
© Not easily portable to other Prolog systems (requires changing important

components of the system).



On Applying Program Transformation to Implement Suspension-Based Tabling in Prolog Ricardo Rocha, Cláudio Silva and Ricardo Lopes

Tabling Implementations

ä The common approach used to include tabling support into existing Prolog
systems is to modify and extend the low-level engine.

© More efficient implementations.
© Not easily portable to other Prolog systems (requires changing important

components of the system).

ä A different approach is to apply source level transformations to a tabled pro-
gram and then use external tabling primitives to implement tabled evaluation.

© Source level transformations can be written in Prolog.
© Tabling primitives can be implemented using the C language interface available

in most Prolog systems.
© Less efficient implementations.

ICLP 2007, Porto, Portugal, September 2007 1



On Applying Program Transformation to Implement Suspension-Based Tabling in Prolog Ricardo Rocha, Cláudio Silva and Ricardo Lopes

Our Approach
ä A suspension-based tabling mechanism based on program transformation with

tabling primitives implemented in C.

ICLP 2007, Porto, Portugal, September 2007 2



On Applying Program Transformation to Implement Suspension-Based Tabling in Prolog Ricardo Rocha, Cláudio Silva and Ricardo Lopes

Our Approach

ä The program transformation module is fully written in Prolog.

ä The tabling primitives module uses the C language interface of the Yap Prolog
system. It implements a local scheduling search strategy and uses tries to
implement the table space.

ä Suspension is implemented by leaving the continuation call for the current
computation in the table entry corresponding to the variant call being suspended.
During this process and as further new answers are found, they are stored in
their tables and returned to all variant calls by calling the previously stored
continuation calls.

ICLP 2007, Porto, Portugal, September 2007 3



On Applying Program Transformation to Implement Suspension-Based Tabling in Prolog Ricardo Rocha, Cláudio Silva and Ricardo Lopes

Program Transformation

% original tabled predicate
p(X,Z) :- e(X,Y), p(Y,Z).
p(X,Z) :- e(X,Z).

% transformed predicate
p(X,Z) :- tabled_call(p(X,Z),Sid,_,p0,true),

consume_answer(p(X,Z),Sid).

p0(p(X,Z),Sid) :- e(X,Y), tabled_call(p(Y,Z),Sid,[X,Z,Y],p0,p1).
p1(p(Y,Z),Sid,[X,Z,Y]) :- new_answer(p(X,Z),Sid).

p0(p(X,Z),Sid) :- e(X,Z), new_answer(p(X,Z),Sid).

ICLP 2007, Porto, Portugal, September 2007 4



On Applying Program Transformation to Implement Suspension-Based Tabling in Prolog Ricardo Rocha, Cláudio Silva and Ricardo Lopes

Experimental Results

ä We ran our approach against the YapTab system that implements tabling support
at the low-level engine. YapTab also implements a suspension-based mechanism,
uses tries to implement the table space and is implemented on top of Yap.

Predicate
Binary Tree Cycle Grid

12 14 16 200 300 400 10x10 15x15 20x20

p right first/2 4.00 3.73 3.62 4.36 3.99 3.89 7.75 6.41 6.11

p right last/2 3.73 3.59 3.70 4.56 4.00 3.98 8.55 6.27 6.42

p left first/2 2.65 2.39 2.34 3.05 2.65 2.26 3.11 2.46 2.12
p left last/2 5.00 4.31 4.25 5.13 4.34 4.24 5.67 4.73 4.15

p doubly first/2 8.13 7.72 7.68 10.45 11.57 11.22 10.34 9.66 10.40

p doubly last/2 15.05 13.96 13.68 20.36 22.23 21.72 19.74 18.25 19.53

Overheads over the YapTab running times

ICLP 2007, Porto, Portugal, September 2007 5



On Applying Program Transformation to Implement Suspension-Based Tabling in Prolog Ricardo Rocha, Cláudio Silva and Ricardo Lopes

Concluding Remarks

ä As expected, YapTab outperformed our mechanism in all programs tested. Best
performance was achieved for left recursive tabled predicates with the recursive
clause first, with an average overhead between 2 and 3.

ä Considering that Yap and YapTab are two of the fastest Prolog and tabling
engines currently available, these results are very interesting and very promising.

ä We thus argue that our approach is a good alternative to incorporate tabling into
other Prolog systems with a C language interface. Currently, we have already
a port of our implementation running as a module of the Ciao Prolog system
[CICLOPS 2007].

ICLP 2007, Porto, Portugal, September 2007 6


