
On Improving the
Efficiency and Robustness of

Table Storage Mechanisms for

Tabled Evaluation

Ricardo Rocha
DCC-FC & LIACC

University of Porto, Portugal
ricroc@ncc.up.pt

PADL 2007, Nice, France, January 2007



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Motivation

ä This work was motivated by our recent attempt of applying tabling to Inductive
Logic Programming (ILP) [Rocha et al., ECML’05].

ä ILP applications are an excellent case study for tabling because they have huge
search spaces and do a lot of re-computation.

ä In particular, in this work we focus on the table space and we propose two
new implementation techniques that make tabling models more efficient when
dealing with incomplete tables and more robust when recovering memory.

PADL 2007, Nice, France, January 2007 1



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Tabling and ILP

ä Tabling is about storing answers for subgoals so that they can be reused when a
repeated call appears.

ä On the other hand, ILP systems are interested in evaluating hypotheses, and
not in finding answers for goals. This is usually implemented by pruning at the
Prolog level.



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Tabling and ILP

ä Tabling is about storing answers for subgoals so that they can be reused when a
repeated call appears.

ä On the other hand, ILP systems are interested in evaluating hypotheses, and
not in finding answers for goals. This is usually implemented by pruning at the
Prolog level.

ä For instance, to evaluate if the hypothesis

theory(X):- a1(X), a2(X,Y), a3(Y).

covers the example theory(p1) an ILP system executes the goal

once(a1(p1), a2(p1,Y), a3(Y)).

ä The once/1 primitive prunes over the search space preventing the unnecessary
search for further answers. It is usually defined as

once(Goal):- call(Goal), !.

PADL 2007, Nice, France, January 2007 2



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Tabling and ILP: Incomplete Tabling

ä Consider now that a2/2 is a tabled predicate and that our goal succeeds

once(a1(p1), a2(p1,Y), a3(Y)).

a2(p1,Y) will be removed from the execution stacks before being completed.



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Tabling and ILP: Incomplete Tabling

ä Consider now that a2/2 is a tabled predicate and that our goal succeeds

once(a1(p1), a2(p1,Y), a3(Y)).

a2(p1,Y) will be removed from the execution stacks before being completed.

ä Thus, when a repeated call to a2(p1,Y) appears, we cannot simply trust the
answers from its table, because we may loose part of the computation.



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Tabling and ILP: Incomplete Tabling

ä Consider now that a2/2 is a tabled predicate and that our goal succeeds

once(a1(p1), a2(p1,Y), a3(Y)).

a2(p1,Y) will be removed from the execution stacks before being completed.

ä Thus, when a repeated call to a2(p1,Y) appears, we cannot simply trust the
answers from its table, because we may loose part of the computation.

ä A common approach is to throw away incomplete tables and restart the
evaluation from the beginning when a repeated call appears.

PADL 2007, Nice, France, January 2007 3



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Tabling and ILP: Incomplete Tabling

ä How can we make tabling worthwhile in an environment that potentially generates
so many incomplete tables?



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Tabling and ILP: Incomplete Tabling

ä How can we make tabling worthwhile in an environment that potentially generates
so many incomplete tables?

ä We first studied this problem by using YapTab’s functionality that allows to
combine batched with local scheduling [Rocha et al., ICLP’05].

Our results showed best performance when we evaluated some subgoals using
batched scheduling and others using local scheduling.

The problem is that from the programmer’s point of view it is very difficult to
define beforehand the subgoals to table using one or another strategy.

PADL 2007, Nice, France, January 2007 4



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Incomplete Tabling: Our Approach

ä Main Goals

© Favor forward execution in order to quickly succeed with the evaluation of
the hypotheses.

© Reuse the already found answers in order to avoid re-computation.



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Incomplete Tabling: Our Approach

ä Main Goals

© Favor forward execution in order to quickly succeed with the evaluation of
the hypotheses.

© Reuse the already found answers in order to avoid re-computation.

ä Basic Idea

© By default, we keep incomplete tables for pruned subgoals.
© Then, when a repeated call appears, we start by consuming the available

answers from its incomplete table.
© If the table is exhausted, then we restart the evaluation from the beginning.
© Later, if the subgoal is pruned again, then the same process is repeated until

eventually the subgoal be completely evaluated.

PADL 2007, Nice, France, January 2007 5



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Incomplete Tabling: Implementation

Choice Point Stack Table Space

generator
choice point

CP_SgFr SgFr_state

answer
trie

structure

subgoal frame

SgFr_answers

ready
evaluating
complete

ä YapTab’s Original Design

© The CP SgFr field points to the corresponding subgoal frame.
© The SgFr state field indicates the state of the subgoal.
© The SgFr answers field points to where answers are stored.

PADL 2007, Nice, France, January 2007 6



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Incomplete Tabling: Implementation

Choice Point Stack Table Space

generator
choice point

CP_SgFr SgFr_state

answer
trie

structure

subgoal frame

SgFr_answers

ready
evaluating
complete
incomplete

SgFr_try_answer

CP_AP = table_try_answer

ä YapTab’s Extensions

© A new incomplete state.
© A new table try answer pseudo-instruction.
© A new SgFr try answer field marks the currently loaded answer.

PADL 2007, Nice, France, January 2007 7



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Incomplete Tabling: Implementation

tabled_subgoal_call(subgoal SG) {
sg_fr = search_table_space(SG) // get subgoal frame for SG
if (SgFr_state(sg_fr) == ready) {
...

} else if (SgFr_state(sg_fr) == evaluating) {
...

} else if (SgFr_state(sg_fr) == complete) {
...

} else if (SgFr_state(sg_fr) == incomplete) { // new block
gen_cp = store_generator_node(sg_fr)
CP_AP(gen_cp) = table_try_answer // new pseudo-instruction
first = get_first_answer(sg_fr)
load_answer(first)
SgFr_try_answer(sg_fr) = first // mark the loaded answer
SgFr_state(sg_fr) = evaluating

}
}

PADL 2007, Nice, France, January 2007 8



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Incomplete Tabling: Implementation

table_try_answer(generator GEN) {
sg_fr = CP_SgFr(GEN)
last = SgFr_try_answer(sg_fr) // get the last loaded answer
next = get_next_answer(last)
if (next) { // answers still available
load_answer(next)
SgFr_try_answer(sg_fr) = next // update the loaded answer

} else { // restart the evaluation from the first clause
load_compiled_code(sg_fr) // adjust the program counter
CP_AP(GEN) = failure_continuation_instr() // second clause

}
}

PADL 2007, Nice, France, January 2007 9



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Incomplete Tabling: Discussion

ä Now assume that a2(p1,Y) is called again when evaluating a different goal

once(a2(p1,Y), a4(Y)).



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Incomplete Tabling: Discussion

ä Now assume that a2(p1,Y) is called again when evaluating a different goal

once(a2(p1,Y), a4(Y)).

ä If a4(Y) succeeds with one of the previously found answers for a2(p1,Y), then
we take advantage of having maintained the incomplete table for a2(p1,Y).



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Incomplete Tabling: Discussion

ä Now assume that a2(p1,Y) is called again when evaluating a different goal

once(a2(p1,Y), a4(Y)).

ä If a4(Y) succeeds with one of the previously found answers for a2(p1,Y), then
we take advantage of having maintained the incomplete table for a2(p1,Y).

ä Otherwise, a2(p1,Y) will be reevaluated as a first call. This means that the
evaluation will fail for a2(p1,Y) until a non-repeated answer is eventually found.

We may not benefit from having maintained the incomplete table, but we do
not pay any cost either, because the computation time required to evaluate
the goal, with or without the incomplete table, is equivalent.

PADL 2007, Nice, France, January 2007 10



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Tabling and ILP: Memory Recovery

ä When we use tabling for applications that build very many or very large tables,
we can quickly run out of memory.

ä A common approach is to have a set of primitives that the programmer can use
to dynamically abolish some of the tables.

ä However, this can be hard to use and very difficult to decide what are the
potentially useless tables that should be deleted.

PADL 2007, Nice, France, January 2007 11



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Memory Recovery: Our Approach

ä Basic Idea

© A memory management strategy based on a least recently used algorithm,
that dynamically recovers space from the least recently used tables when
the system runs out of memory.

PADL 2007, Nice, France, January 2007 12



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Memory Recovery: Implementation

ä Active/Inactive Tabled Subgoals

© A tabled subgoal is said to be active if it is represented in the execution
stacks.

© Otherwise, it is said to be inactive. Inactive subgoals are only represented in
the table space.



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Memory Recovery: Implementation

ä Active/Inactive Tabled Subgoals

© A tabled subgoal is said to be active if it is represented in the execution
stacks.

© Otherwise, it is said to be inactive. Inactive subgoals are only represented in
the table space.

ä Knowing what subgoals are active or inactive is important when the system runs
out of memory.

© We should try to recover space from the inactive subgoals.

PADL 2007, Nice, France, January 2007 13



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Memory Recovery: Implementation

ä Subgoal’s States

© Ready → Inactive
© Evaluating → Active
© Complete → Active/Inactive
© Incomplete → Inactive



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Memory Recovery: Implementation

ä Subgoal’s States

© Ready → Inactive
© Evaluating → Active
© Complete → Active/Inactive
© Incomplete → Inactive

ä YapTab’s Extension

© Complete → Inactive
© Complete-Active → Active

ä With this simple extension, we can use the SgFr state field of the subgoal
frames to decide if a subgoal is active or inactive.

PADL 2007, Nice, France, January 2007 14



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Memory Recovery: Implementation

answer
trie

structure

answer
trie

structure

Table Space

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

subgoal frame subgoal frame subgoal frame

space that can be potentially recovered

Inact_recover

Inact_most

ready

empty trie yes/no answer

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

complete

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

incomplete

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

complete

space recovered

PADL 2007, Nice, France, January 2007 15



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Memory Recovery: Implementation

ä Inactive → Active

© We execute a first call to a non-completed subgoal (→ evaluating).
© We execute a first call to a completed subgoal (→ complete-active).

ä Active → Inactive

© The subgoal completes (→ complete).
© The subgoal is pruned (→ incomplete).
© We have consumed all answers from a completed subgoal and there is no

other node consuming answers from it (→ complete). To implement that we
use the trail stack.

PADL 2007, Nice, France, January 2007 16



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Experimental Results

Tabling Mode Config1 Config2
Without tabling > 1 day > 1 day
Local scheduling 153.9 143.3
Batched scheduling 278.2 137.9
Batched scheduling with incomplete tables 122.9 117.6

Running times (in seconds) for the Mutagenesis data-set

ä The running times include the time to run the whole ILP system.

ä Config1 and Config2 call respectively 1479 and 1461 different tabled subgoals
and, for batched scheduling, both end with 76 incomplete tables.

PADL 2007, Nice, France, January 2007 17



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Experimental Results

Tabling Mode 576MB 384MB 192MB
Local scheduling 15.2 15.9(95) 16.9(902)
Batched scheduling 11.4 12.6(62) 14.1(523)
Batched scheduling with incomplete tables 11.1 12.3(91) 13.9(833)

Running times and number of recovering operations for the Carcinogenesis data-set

ä This data-set requires a total table space of 576 MBytes if not recovering any
space, and a minimum of 160 MBytes if using our recovering mechanism.

ä For a memory reduction of 66% in table space, our recovering mechanism
introduces an average overhead between 10% and 20% in the execution time.

PADL 2007, Nice, France, January 2007 18



On Improving the Efficiency and Robustness of Table Storage Mechanisms for Tabled Evaluation Ricardo Rocha

Conclusions

ä We have discussed some practical deficiencies of current tabling systems when
dealing with incomplete tabling and memory recovery.

ä Our proposals have been implemented in the YapTab tabling system with minor
changes to the original design.

ä Preliminaries results using the April ILP system showed very substantial perfor-
mance gains and a substantial increase of the size of the problems that can be
solved by combining ILP with tabling.

ä The problems and proposals presented in this work are not restricted to ILP
applications and can be generalised and applied to any other application.

PADL 2007, Nice, France, January 2007 19


