Thor: Threads and Or-Parallelism Unified

Vitor Santos Costa

Ines Dutra
Ricardo Rocha

DCC/FCUP and
CRACS/INESC Porto LA

Overview

Motivation
Background
Thor
Evaluation

Conclusions and Future Work

Computing is Changing

Parallelism is Important
Multi-cores:

* 2-cores 1s now standard
* 4-cores common
* 6-cores entered desktop

* servers with 24, 32, ...
Distributed Computing
GPUs

Motivation

Parallelism is easy in LP
Implicit Parallelism:

* Or-Parallelism
* And-Parallelism

* Combined
Explicit Parallelism

* MPI Interfaces
* Threads

Issues with Parallelism

1. Parallel Machines were not widely available

2. Significant changes to the underlying Prolog engine:
hard to maintain

3. Large Prolog Programs are hard to Parallelize

Need to support actual applications

Thor

Designed for multi-cores
Relies on a combination of:

* Recent Work on Thread Libraries (SWI, ciao, XSB, YAP)
* Old work on or-parallelism (MUSE, YapOr)

Is this approach feasible?

Review: Thread Libraries

YAP Threads follows SWI approach
Separate Engines:

* No Term sharing

* No global variable sharing
DataBase shared by default

* Private predicates are allowed
Locking and Message-Passing Primitives:

* can be used to construct parallel engines

Review: YapOr

Follows Muse

Multi Sequential Model

Workers keep copies of the search tree
They synchronise by sharing

1. Choice-Points are made public;
2. Execution stacks are copied
3. The sharer continues forward execution;

4. The requester backtracks.

Review: Sharing

4) N e i
Private Publ i c
Choi ce Poi nt Choi ce Poi nt
CP_ALT
CP_CP
CP_TR Unl ocked O Fr_| ock
CP_H . ALT OFr _alt
- Shari ng -

CP_B O Fr_nmenbers
CP_ENV O Fr _node
CP_OR FR O Fr _next
CP_LUB

. N\

Review: YapOr

Incremental Copying: just copy increments
* requires searching the cells
Bottom-most scheduling
* Stack-splitting was also supported.
Double Map of Memory:

* All stacks are mapped at two addresses
* One for work
* The other for sharing

* Requires a Process Model

Review: YapOr

(Wor ker 2
Mappi ng Address Vi ew
Addr g
G obal
For ki ng Wor ker 2 ’ Space
Addr
/ v Wor ker 2 1
(Wor ker 1) Addr
Mappi ng Address Vi ew N VWor ker 3 2
Addr Addr
0 3
d obal - Wor ker 1
’ Space L
Addr
v Wor ker 1 1
H -
Addr _ Wor ker 3
Vorker 2 2 Mappi ng Address Vi ew
Vor ker 3 Addr 3 Addr
] Frer A obal
_) ’ Space
\\ ¥ Addr 4
> Wor ker 3
. H
For ki ng Worker 3 ok . Addr
rker
H
Addr 3
Wor ker 2

Thor

Parallel workers are threads
* but threads may not be workers!
We shall use copying:

* Independent stacks
* Copy contiguous chunks
* Less engine intrusive

* Seems to fit well with thread design.

Thor: Shifted Copying

Use YAP’s stack shifter
To adjust addresses after copying
Allows:

* Using current thread engine

* Different stack sizes

Allows incremental copying

Thor: Shifted Copying

(

Thr eads
Mappi ng Address Vi ew

- Wor ker 3

d obal

‘ Space

Wor ker 2

Wor ker 1

Addr 0

Addr 1

Addr 2
Addr 3

Thor: Work Sharing Protocol

P SHARE (p, q) {
share_private_nodes(q)
signal|q] = nodes shared
wait (signal|q] == ready)

}

Q SHARE (p, q) {

wait (signal|q] # ready)

copy registers(p, q)

if INCREMENTL COPY)
copy_stacks(p, q, deltas)
copy trailed_entries(q, p)
signallq] = ready
adjust_stacks(deltas)

else
copy _stacks(p, q, full _stacks)
signal|q] = ready
adjust_stacks(full_stacks)

endif

}

Thor: Scheduling

Thor server thread creates initial threads:
* Right now thread 0
Each Thor client thread starts at an get work engine
Waits until work becomes available
We reuse YapOr scheduler, as is
Cut:
* We reuse YapOr

Thor: Overheads

Benchmark Quad-Core 4 Six-Core
YAP ThOr YapOr YAP ThOr YapOr

cubes 0.11 0.11(1.00) O0.11(1.00)| 0.20 0.23(1.15) 0.20 (1.00)
fp 1.47 236(1.61) 1.71(1.16)| 2.51 3.29(1.31) 2.67 (1.06)
ham 0.15 0.29(1.93) 0.19(1.27)| 0.33 0.46(1.36) 0.34(1.03)
magic 25.07 27.55(1.10) 27.80(1.11)|40.29 48.88 (1.21) 41.16 (1.02)
map 12.20 20.25 (1.66) 14.60 (1.20) | 24.06 30.45 (1.26) 23.94 (0.99)
mapbigger | 33.01 55.26 (1.67) 39.63 (1.20) | 64.46 81.09 (1.25) 65.90 (1.02)
puzzle 0.08 0.13(1.63) 0.08(1.00)| 0.15 0.20(1.34) 0.17 (1.13)
puzzledx4 | 6.02 7.18(1.19) 647 (1.07)| 9.17 10.34 (1.12) 9.38 (1.02)
queens 21.79 24.54 (1.13) 24.12 (1.11) | 48.10 51.63 (1.07) 48.73 (1.01)
Average (1.44) (1.12) (1.23) (1.03)

Thor: Queens

Speedup

Number of workers

Thor: Map Coloring

Speedup

Number of workers

Thor: Cubes

24

16

Speedup

Number of workers

Speedup

Number of workers

Thor: “Real Machines”

OS X Windows Vista

Benchmark 1) 1)

cubes 0.103 0.056 (1.84)| 0.156 0.078 (2.00)
fp 1.930 1.040(1.86)| 3.500 1.790 (1.96)
ham 0.220 0.110(2.00)| 0.530 0.280(1.89)
magic 27.500 15.000 (1.83) | 30.700 15.600 (1.97)
map 15.800 9.000 (1.76) | 33.500 17.700 (1.89)
mapbigger [43.500 23.500 (1.85)|92.900 49.000 (1.90)
puzzle 0.100 0.055(1.82)| 0.220 0.110 (2.00)
puzzledx4d | 6900 3.700(1.86)| 8.980 4.600 (1.95)
queens 24.100 13.200 (1.83) | 29.700 15.000 (1.98)
Average (1.85) (1.94)

Thor: Real World

Sequential and Parallel Predicates
Locking
Global Variables:

* Important for constraint systems
* b_: naturally belong to a stack

* nb_: shared between stacks?

Conclusions

Thor Works!
Great Speedups:

* Or-Parallelism works well with current multi-cores
Shifted Copying does not impose much overheads:

* Thanks to Incremental Copying

* and Coarse-Grained Work

Future work

Just the beginning!
Global variables and constraint programs
Better integration with thread packages:

* or-parallelism should be seen as an engine
Avoid Implicit vs explicit:

* Both have a role!

