
Thor: Threads and Or-Parallelism Unified
Vı́tor Santos Costa

Inês Dutra
Ricardo Rocha

DCC/FCUP and
CRACS/INESC Porto LA



Overview

• Motivation

• Background

• Thor

• Evaluation

• Conclusions and Future Work



Computing is Changing

• Parallelism is Important

• Multi-cores:

? 2-cores is now standard
? 4-cores common
? 6-cores entered desktop
? servers with 24, 32, . . .

• Distributed Computing

• GPUs



Motivation

• Parallelism is easy in LP

• Implicit Parallelism:

? Or-Parallelism
? And-Parallelism
? Combined

• Explicit Parallelism

? MPI Interfaces
? Threads



Issues with Parallelism

1. Parallel Machines were not widely available

2. Significant changes to the underlying Prolog engine:

• hard to maintain

3. Large Prolog Programs are hard to Parallelize

• Need to support actual applications



Thor

• Designed for multi-cores

• Relies on a combination of:

? Recent Work on Thread Libraries (SWI, ciao, XSB, YAP)
? Old work on or-parallelism (MUSE, YapOr)

• Is this approach feasible?



Review: Thread Libraries

• YAP Threads follows SWI approach

• Separate Engines:

? No Term sharing
? No global variable sharing

• DataBase shared by default

? Private predicates are allowed

• Locking and Message-Passing Primitives:

? can be used to construct parallel engines



Review: YapOr

• Follows Muse

• Multi Sequential Model

• Workers keep copies of the search tree

• They synchronise by sharing

1. Choice-Points are made public;
2. Execution stacks are copied
3. The sharer continues forward execution;
4. The requester backtracks.



Review: Sharing

Sharing

TR

H

B

CP

ENV

LUB

P & Q

getwork

OrFr_members

OrFr_node

OrFr_next

ALT OrFr_alt

Unlocked OrFr_lock

Public
Choice Point

Or-Frame

CP_TR

CP_H

CP_B

CP_CP

CP_ALT

CP_ENV

CP_OR_FR

CP_LUB

TR

H

B

CP

ALT

ENV

---

LUB

Private
Choice Point



Review: YapOr

• Incremental Copying: just copy increments

? requires searching the cells

• Bottom-most scheduling

? Stack-splitting was also supported.

• Double Map of Memory:

? All stacks are mapped at two addresses

? One for work
? The other for sharing
? Requires a Process Model



Review: YapOr

Global
Space

Addr 1

Addr 3

Worker 2

Worker 3

Worker 1

Addr 2

Worker 2
Mapping Address View

Addr 0

Global
Space

Addr 1

Addr 3

Worker 1

Worker 2

Worker 3

Addr 2

Worker 1
Mapping Address View

Forking Worker 2

Forking Worker 3

Addr 0

Global
Space

Addr 1

Addr 3

Worker 3

Worker 1

Worker 2

Addr 2

Worker 3
Mapping Address View

Addr 0



Thor

• Parallel workers are threads

? but threads may not be workers!

• We shall use copying:

? Independent stacks
? Copy contiguous chunks
? Less engine intrusive
? Seems to fit well with thread design.



Thor: Shifted Copying

• Use YAP’s stack shifter

• To adjust addresses after copying

• Allows:

? Using current thread engine
? Different stack sizes

• Allows incremental copying



Thor: Shifted Copying

Worker 2

Worker 1

Worker 3

Global
Space

Addr 1

Addr 3

Addr 2

Threads
Mapping Address View

Addr 0



Thor: Work Sharing Protocol

P SHARE (p, q) {
share private nodes(q)

signal[q] = nodes shared

wait (signal[q] == ready)

}

Q SHARE (p, q) {
wait (signal[q] 6= ready)

copy registers(p, q)

if (INCREMENTL COPY )

copy stacks(p, q, deltas)

copy trailed entries(q, p)

signal[q] = ready

adjust stacks(deltas)

else
copy stacks(p, q, full stacks)

signal[q] = ready

adjust stacks(full stacks)

endif
}



Thor: Scheduling

• Thor server thread creates initial threads:

? Right now thread 0

• Each Thor client thread starts at an getwork engine

• Waits until work becomes available

• We reuse YapOr scheduler, as is

• Cut:

? We reuse YapOr



Thor: Overheads

Benchmark Quad-Core 4 Six-Core
YAP ThOr YapOr YAP ThOr YapOr

cubes 0.11 0.11 (1.00) 0.11 (1.00) 0.20 0.23 (1.15) 0.20 (1.00)
fp 1.47 2.36 (1.61) 1.71 (1.16) 2.51 3.29 (1.31) 2.67 (1.06)
ham 0.15 0.29 (1.93) 0.19 (1.27) 0.33 0.46 (1.36) 0.34 (1.03)
magic 25.07 27.55 (1.10) 27.80 (1.11) 40.29 48.88 (1.21) 41.16 (1.02)
map 12.20 20.25 (1.66) 14.60 (1.20) 24.06 30.45 (1.26) 23.94 (0.99)
mapbigger 33.01 55.26 (1.67) 39.63 (1.20) 64.46 81.09 (1.25) 65.90 (1.02)
puzzle 0.08 0.13 (1.63) 0.08 (1.00) 0.15 0.20 (1.34) 0.17 (1.13)
puzzle4x4 6.02 7.18 (1.19) 6.47 (1.07) 9.17 10.34 (1.12) 9.38 (1.02)
queens 21.79 24.54 (1.13) 24.12 (1.11) 48.10 51.63 (1.07) 48.73 (1.01)
Average (1.44) (1.12) (1.23) (1.03)



Thor: Queens

1
2

4

8

16

24

1 2 4 8 16 24

S
pe

ed
up

Number of workers

YapOr
ThOr



Thor: Map Coloring

1
2

4

8

16

24

1 2 4 8 16 24

S
pe

ed
up

Number of workers

YapOr
ThOr



Thor: Cubes

1
2

4

8

16

24

1 2 4 8 16 24

S
pe

ed
up

Number of workers

YapOr
ThOr



Thor: Map

1
2

4

8

16

24

1 2 4 8 16 24

S
pe

ed
up

Number of workers

YapOr
ThOr



Thor: “Real Machines”

Benchmark OS X Windows Vista
1 2 1 2

cubes 0.103 0.056 (1.84) 0.156 0.078 (2.00)
fp 1.930 1.040 (1.86) 3.500 1.790 (1.96)
ham 0.220 0.110 (2.00) 0.530 0.280 (1.89)
magic 27.500 15.000 (1.83) 30.700 15.600 (1.97)
map 15.800 9.000 (1.76) 33.500 17.700 (1.89)
mapbigger 43.500 23.500 (1.85) 92.900 49.000 (1.90)
puzzle 0.100 0.055 (1.82) 0.220 0.110 (2.00)
puzzle4x4 6.900 3.700 (1.86) 8.980 4.600 (1.95)
queens 24.100 13.200 (1.83) 29.700 15.000 (1.98)
Average (1.85) (1.94)



Thor: Real World

• Sequential and Parallel Predicates

• Locking

• Global Variables:

? Important for constraint systems
? b : naturally belong to a stack
? nb : shared between stacks?



Conclusions

• Thor Works!

• Great Speedups:

? Or-Parallelism works well with current multi-cores

• Shifted Copying does not impose much overheads:

? Thanks to Incremental Copying
? and Coarse-Grained Work



Future work

• Just the beginning!

• Global variables and constraint programs

• Better integration with thread packages:

? or-parallelism should be seen as an engine

• Avoid Implicit vs explicit:

? Both have a role!


