
A Simple Table Space Design
for Retroactive Call Subsumption

Flávio Cruz and Ricardo Rocha

CRACS & INESC TEC, Faculty of Sciences, University of Porto

15th Portuguese Conference on Artificial Intelligence

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 1 / 19

Tabling in Logic Programming

Tabled Resolution

Tabling works by storing generated answers in a table space and
then by reusing those answers in similar calls.

First calls to tabled subgoals are considered generators, because they
will generate answers through the execution of code.

Similar calls are named consumers, since they will consume the
answers generated by the corresponding similar subgoal, instead of
being re-evaluated against the program clauses.

Similar calls are found by using a call similarity test which
determines if a subgoal will be a generator or a consumer.

There are two popular similarity tests for subgoals:
I Call by variance (or variant-based tabling).
I Call by subsumption (or subsumption-based tabling).

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 2 / 19

Tabling in Logic Programming

Tabled Resolution

Tabling works by storing generated answers in a table space and
then by reusing those answers in similar calls.

First calls to tabled subgoals are considered generators, because they
will generate answers through the execution of code.

Similar calls are named consumers, since they will consume the
answers generated by the corresponding similar subgoal, instead of
being re-evaluated against the program clauses.

Similar calls are found by using a call similarity test which
determines if a subgoal will be a generator or a consumer.

There are two popular similarity tests for subgoals:
I Call by variance (or variant-based tabling).
I Call by subsumption (or subsumption-based tabling).

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 2 / 19

Tabling in Logic Programming

Tabled Resolution

Tabling works by storing generated answers in a table space and
then by reusing those answers in similar calls.

First calls to tabled subgoals are considered generators, because they
will generate answers through the execution of code.

Similar calls are named consumers, since they will consume the
answers generated by the corresponding similar subgoal, instead of
being re-evaluated against the program clauses.

Similar calls are found by using a call similarity test which
determines if a subgoal will be a generator or a consumer.

There are two popular similarity tests for subgoals:
I Call by variance (or variant-based tabling).
I Call by subsumption (or subsumption-based tabling).

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 2 / 19

Tabling in Logic Programming

Variant-Based Tabling

Subgoal A is similar to B if they are the same by renaming the
variables.

Example

p(f(X),1,Y) and p(f(A),1,Z) are variant because both can be
transformed into p(f(VAR0),1,VAR1).

Implemented in most tabling systems: XSB Prolog, Yap Prolog, ...

Relatively easy to implement efficiently.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 3 / 19

Tabling in Logic Programming

Variant-Based Tabling

Subgoal A is similar to B if they are the same by renaming the
variables.

Example

p(f(X),1,Y) and p(f(A),1,Z) are variant because both can be
transformed into p(f(VAR0),1,VAR1).

Implemented in most tabling systems: XSB Prolog, Yap Prolog, ...

Relatively easy to implement efficiently.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 3 / 19

Tabling in Logic Programming

Subsumption-Based Tabling

Subgoal A is similar to B when A is more specific than B (or B is
more general than A).

Example

p(f(X),1,f(a)) is more specific than p(Y,1,Z) because there is a
substitution {Y = f(X), Z = f(a)} that makes p(f(X),1,f(a)) an
instance of p(Y,1,Z).

Less code is executed because subsumed subgoals can reuse
answers instead of executing their own code.

More answers are shared across subgoals, therefore there is less
redundancy in the table space.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 4 / 19

Tabling in Logic Programming

Subsumption-Based Tabling

Subgoal A is similar to B when A is more specific than B (or B is
more general than A).

Example

p(f(X),1,f(a)) is more specific than p(Y,1,Z) because there is a
substitution {Y = f(X), Z = f(a)} that makes p(f(X),1,f(a)) an
instance of p(Y,1,Z).

Less code is executed because subsumed subgoals can reuse
answers instead of executing their own code.

More answers are shared across subgoals, therefore there is less
redundancy in the table space.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 4 / 19

Subsumption-Based Tabling

Time Stamped Tries

The most widely mechanism to support subsumption-based tabling is
the Time-Stamped Tries (TST) approach that stores answers with
timestamp information.

The table space is based on tries, which are tree-based data
structures where common prefixes are represented only once.

Two levels of tries are used:
I A subgoal trie for each tabled predicate.
I An answer trie for each subsuming subgoal.

At the end of each subgoal trie leaf, we may have a:
I Subsumptive subgoal frame storing information about a subsuming

(more general) subgoal which includes a time stamped answer trie
with the answers for the subgoal.

I Subsumed subgoal frame storing information about a subsumed
subgoal which includes a timestamp and a pointer to the time
stamped answer trie of the corresponding subsuming subgoal.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 5 / 19

Subsumption-Based Tabling

Time Stamped Tries

The most widely mechanism to support subsumption-based tabling is
the Time-Stamped Tries (TST) approach that stores answers with
timestamp information.

The table space is based on tries, which are tree-based data
structures where common prefixes are represented only once.

Two levels of tries are used:
I A subgoal trie for each tabled predicate.
I An answer trie for each subsuming subgoal.

At the end of each subgoal trie leaf, we may have a:
I Subsumptive subgoal frame storing information about a subsuming

(more general) subgoal which includes a time stamped answer trie
with the answers for the subgoal.

I Subsumed subgoal frame storing information about a subsumed
subgoal which includes a timestamp and a pointer to the time
stamped answer trie of the corresponding subsuming subgoal.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 5 / 19

Subsumption-Based Tabling

Time Stamped Tries

The most widely mechanism to support subsumption-based tabling is
the Time-Stamped Tries (TST) approach that stores answers with
timestamp information.

The table space is based on tries, which are tree-based data
structures where common prefixes are represented only once.

Two levels of tries are used:
I A subgoal trie for each tabled predicate.
I An answer trie for each subsuming subgoal.

At the end of each subgoal trie leaf, we may have a:
I Subsumptive subgoal frame storing information about a subsuming

(more general) subgoal which includes a time stamped answer trie
with the answers for the subgoal.

I Subsumed subgoal frame storing information about a subsumed
subgoal which includes a timestamp and a pointer to the time
stamped answer trie of the corresponding subsuming subgoal.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 5 / 19

Subsumption-Based Tabling

Time Stamped Tries

Each subsumptive subgoal frame has a global timestamp T, that is
incremented whenever a new answer is inserted. With a new answer,
we set the answer trie path, from leaf to root, to T+1.

TST with answers <f(x),1> and <a,[]>

f/1:1

x:1

1:1

a:2

[]:2

root:2

TST after inserting <f(y),1>

1:1

f/1:3

y:3

1:3

a:2

[]:2

root:3

x:1

Each subsumed subgoal frame uses its timestamp to retrieve new
relevant answers as execution proceeds.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 6 / 19

Subsumption-Based Tabling

Time Stamped Tries

Each subsumptive subgoal frame has a global timestamp T, that is
incremented whenever a new answer is inserted. With a new answer,
we set the answer trie path, from leaf to root, to T+1.

TST with answers <f(x),1> and <a,[]>

f/1:1

x:1

1:1

a:2

[]:2

root:2

TST after inserting <f(y),1>

1:1

f/1:3

y:3

1:3

a:2

[]:2

root:3

x:1

Each subsumed subgoal frame uses its timestamp to retrieve new
relevant answers as execution proceeds.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 6 / 19

Subsumption-Based Tabling

Time Stamped Tries

Each subsumptive subgoal frame has a global timestamp T, that is
incremented whenever a new answer is inserted. With a new answer,
we set the answer trie path, from leaf to root, to T+1.

TST with answers <f(x),1> and <a,[]>

f/1:1

x:1

1:1

a:2

[]:2

root:2

TST after inserting <f(y),1>

1:1

f/1:3

y:3

1:3

a:2

[]:2

root:3

x:1

Each subsumed subgoal frame uses its timestamp to retrieve new
relevant answers as execution proceeds.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 6 / 19

Subsumption-Based Tabling

Disadvantages

The mechanisms used to support subsumption-based tabling are
harder to implement.

For example, in XSB Prolog, if a more general subgoal is called before
specific subgoals, answer reuse will happen, but if specific subgoals
are called before a more general subgoal, no reuse will occur.

Example

If p(1,X) is called before p(X,Y), p(1,X) will not reuse the answers
from p(X,Y), but will execute code to generate its own answers.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 7 / 19

Subsumption-Based Tabling

Retroactive Call Subsumption (RCS)

We have developed a new resolution extension called Retroactive
Call Subsumption (RCS) that supports subsumption-based tabling
by allowing full sharing of answers among subsumptive subgoals,
independently of the order they are called.

Example

If p(1,X) is called before or after p(X,Y), p(1,X) will reuse the answers
from p(X,Y).

RCS selectively prunes the evaluation of a subgoal F when a more
general subgoal G appears later on.

RCS works by pruning the execution branch of F and then by
restarting the evaluation of F as a consumer. By doing that, we save
execution time by not executing code that would generate a subset
of the answers we can find by executing G .

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 8 / 19

Subsumption-Based Tabling

Retroactive Call Subsumption (RCS)

We have developed a new resolution extension called Retroactive
Call Subsumption (RCS) that supports subsumption-based tabling
by allowing full sharing of answers among subsumptive subgoals,
independently of the order they are called.

Example

If p(1,X) is called before or after p(X,Y), p(1,X) will reuse the answers
from p(X,Y).

RCS selectively prunes the evaluation of a subgoal F when a more
general subgoal G appears later on.

RCS works by pruning the execution branch of F and then by
restarting the evaluation of F as a consumer. By doing that, we save
execution time by not executing code that would generate a subset
of the answers we can find by executing G .

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 8 / 19

Subsumption-Based Tabling

Retroactive Call Subsumption (RCS)

We have developed a new resolution extension called Retroactive
Call Subsumption (RCS) that supports subsumption-based tabling
by allowing full sharing of answers among subsumptive subgoals,
independently of the order they are called.

Example

If p(1,X) is called before or after p(X,Y), p(1,X) will reuse the answers
from p(X,Y).

RCS selectively prunes the evaluation of a subgoal F when a more
general subgoal G appears later on.

RCS works by pruning the execution branch of F and then by
restarting the evaluation of F as a consumer. By doing that, we save
execution time by not executing code that would generate a subset
of the answers we can find by executing G .

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 8 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3):

(3) <X=2> (18) <X=1>

path(X,Y):

(7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

1. path(X, 3)

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3):

(3) <X=2> (18) <X=1>

path(X,Y):

(7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

1. path(X, 3)

2. edge(X, 3)

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y):

(7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

1. path(X, 3)

2. edge(X, 3)

3. X = 2

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y):

(7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

1. path(X, 3)

2. edge(X, 3)

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y):

(7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

2. edge(X, 3)

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y):

(7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

2. edge(X, 3)

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y):

(7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

2. edge(X, 3)

6. edge(X, Y)

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2>

(8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

2. edge(X, 3)

6. edge(X, Y)

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3

2. edge(X, 3)

6. edge(X, Y)

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

6. edge(X, Y)

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

6. edge(X, Y)

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

X=1,Y'=26. edge(X, Y)

11. edge(2, Y)

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

X=1,Y'=26. edge(X, Y)

11. edge(2, Y)

12. Y = 3

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

X=1,Y'=26. edge(X, Y)

11. edge(2, Y)

12. Y = 3 13. fail

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

X=1,Y'=26. edge(X, Y)

11. edge(2, Y)

12. Y = 3 13. fail

14. edge(3, Y)

X=2, Y'=3

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

X=1,Y'=26. edge(X, Y)

11. edge(2, Y)

12. Y = 3 13. fail

14. edge(3, Y)

15. fail

X=2, Y'=3

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

X=1,Y'=26. edge(X, Y)

11. edge(2, Y)

12. Y = 3 13. fail

14. edge(3, Y)

15. fail

X=2, Y'=3

16. edge(3, Y)

X=1,Y'=3

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

X=1,Y'=26. edge(X, Y)

11. edge(2, Y)

12. Y = 3 13. fail

14. edge(3, Y)

15. fail

X=2, Y'=3

16. edge(3, Y)

X=1,Y'=3

17. fail

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2>

(18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

X=1,Y'=26. edge(X, Y)

11. edge(2, Y)

12. Y = 3 13. fail

14. edge(3, Y)

15. fail

X=2, Y'=3

16. edge(3, Y)

X=1,Y'=3

17. fail

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2> (18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

X=1,Y'=26. edge(X, Y)

11. edge(2, Y)

12. Y = 3 13. fail

14. edge(3, Y)

15. fail

X=2, Y'=3

16. edge(3, Y)

X=1,Y'=3

17. fail

18. X = 1

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Program
path(X,Z):- edge(X,Z).

path(X,Z):- path(X,Y), edge(Y,Z).

edge(1,2).

edge(2,3).

Table Space
path(X,3): (3) <X=2> (18) <X=1>

path(X,Y): (7) <X=1,Y=2> (8)<X=2,Y=3>

(12) <X=1,Y=3>

5.path(X, Y), edge(Y,Z)

1. path(X, 3)

7. X = 1
 Y = 2

8. X = 2
 Y = 3 9. fail

2. edge(X, 3)

10. path(X, Y'), edge(Y',Y)

X=1,Y'=26. edge(X, Y)

11. edge(2, Y)

12. Y = 3 13. fail

14. edge(3, Y)

15. fail

X=2, Y'=3

16. edge(3, Y)

X=1,Y'=3

17. fail

18. X = 1

3. X = 2 4. fail

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 9 / 19

Retroactive Call Subsumption

Table Space

How do we design a table space that makes it efficient to transform
generators into consumers?

How do we guarantee that the newly transformed consumers do not
consume answers that were already generated by them previously.

A possible design is to merge the answer tries of the subsumed
subgoals.

I This is a complex operation that would require the additional insertion
in each subsumed answer of the ground terms in the call (note that the
tables only store the answers for the variables in the subgoal call).

We propose a simpler design: the Single Time Stamped Trie.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 10 / 19

Retroactive Call Subsumption

Table Space

How do we design a table space that makes it efficient to transform
generators into consumers?

How do we guarantee that the newly transformed consumers do not
consume answers that were already generated by them previously.

A possible design is to merge the answer tries of the subsumed
subgoals.

I This is a complex operation that would require the additional insertion
in each subsumed answer of the ground terms in the call (note that the
tables only store the answers for the variables in the subgoal call).

We propose a simpler design: the Single Time Stamped Trie.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 10 / 19

Retroactive Call Subsumption

Table Space

How do we design a table space that makes it efficient to transform
generators into consumers?

How do we guarantee that the newly transformed consumers do not
consume answers that were already generated by them previously.

A possible design is to merge the answer tries of the subsumed
subgoals.

I This is a complex operation that would require the additional insertion
in each subsumed answer of the ground terms in the call (note that the
tables only store the answers for the variables in the subgoal call).

We propose a simpler design: the Single Time Stamped Trie.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 10 / 19

Retroactive Call Subsumption

Single Time Stamped Trie (STST)

Only a single time stamped trie is used to store all answers (of all
subgoals calls) for a predicate.

No more variable substitutions are considered and all terms in an
answer are inserted into the STST.

Example

If p(X,3) is called and an answer X=2 is found then the entry stored in
the STST will be <2,3>.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 11 / 19

Single Time Stamped Trie

Inserting Answers

All subgoal frames include a timestamp field TS in such a way that,
at any time, each subgoal frame contains the list of relevant answers
in the STST older than the current timestamp TS.

When a generator inserts new answers, we thus increment the
STST timestamp and the subgoal frame TS field.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 12 / 19

Single Time Stamped Trie

Inserting Answers

However, several subgoals may be inserting answers into the STST
and it may be difficult to determine if an answer is new or repeated
for a subgoal if it is already on the STST.

1 2

Subgoal 1 Subgoal 2

Trie

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 13 / 19

Single Time Stamped Trie

Inserting Answers

However, several subgoals may be inserting answers into the STST
and it may be difficult to determine if an answer is new or repeated
for a subgoal if it is already on the STST.

1 2 3 4 5

Subgoal 1 Subgoal 2

Trie

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 13 / 19

Single Time Stamped Trie

Inserting Answers

However, several subgoals may be inserting answers into the STST
and it may be difficult to determine if an answer is new or repeated
for a subgoal if it is already on the STST.

1 2 3 4 5

Subgoal 1 Subgoal 2

Trie

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 13 / 19

Single Time Stamped Trie

Inserting Answers

However, several subgoals may be inserting answers into the STST
and it may be difficult to determine if an answer is new or repeated
for a subgoal if it is already on the STST.

1 2 3 4 5

Subgoal 1 Subgoal 2

Trie

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 13 / 19

Single Time Stamped Trie

Inserting Answers

For each subgoal, we keep a pending answer index with the answers
older than the subgoal frame timestamp TS that were not found yet.

If a subgoal generates an answer younger than TS, we collect all
the relevant answers newer than TS and add them to the pending
answer index.

If a subgoal generates an answer older than TS, we lookup in the
pending answer index:

I If it is there, the answer is new.
I If not, the answer is repeated.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 14 / 19

Single Time Stamped Trie

Inserting Answers

For each subgoal, we keep a pending answer index with the answers
older than the subgoal frame timestamp TS that were not found yet.

If a subgoal generates an answer younger than TS, we collect all
the relevant answers newer than TS and add them to the pending
answer index.

If a subgoal generates an answer older than TS, we lookup in the
pending answer index:

I If it is there, the answer is new.
I If not, the answer is repeated.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 14 / 19

Single Time Stamped Trie

Inserting Answers

For each subgoal, we keep a pending answer index with the answers
older than the subgoal frame timestamp TS that were not found yet.

If a subgoal generates an answer younger than TS, we collect all
the relevant answers newer than TS and add them to the pending
answer index.

If a subgoal generates an answer older than TS, we lookup in the
pending answer index:

I If it is there, the answer is new.
I If not, the answer is repeated.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 14 / 19

Single Time Stamped Trie

Other Considerations

When we turn a generator into a consumer we can safely move all
the answers in the pending answer index to the answer return list
and continue using the timestamp field TS for retrieving new relevant
answers.

When a subgoal is first called we can select all the relevant answers
already on the STST and start using them before executing any
code.

When the most general subgoal completes, we can throw away the
subgoal trie and use the compiled tries optimization for future calls
to this predicate.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 15 / 19

Single Time Stamped Trie

Other Considerations

When we turn a generator into a consumer we can safely move all
the answers in the pending answer index to the answer return list
and continue using the timestamp field TS for retrieving new relevant
answers.

When a subgoal is first called we can select all the relevant answers
already on the STST and start using them before executing any
code.

When the most general subgoal completes, we can throw away the
subgoal trie and use the compiled tries optimization for future calls
to this predicate.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 15 / 19

Single Time Stamped Trie

Other Considerations

When we turn a generator into a consumer we can safely move all
the answers in the pending answer index to the answer return list
and continue using the timestamp field TS for retrieving new relevant
answers.

When a subgoal is first called we can select all the relevant answers
already on the STST and start using them before executing any
code.

When the most general subgoal completes, we can throw away the
subgoal trie and use the compiled tries optimization for future calls
to this predicate.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 15 / 19

Experimental Results

Programs Taking Advantage of RCS

Previous results for RCS showed good performance for programs
where subsuming subgoals were called after subsumed subgoals.

Program Var/RCS Sub/RCS
double first 1.07 1.09
double last 1.05 1.10
reach first 2.54 1.76
reach last 3.22 1.87

fib 1.95 2.02
flora 3.17 1.17
big 13.26 13.66

In this work, we are interested in measuring the time and space
impact of the STST design in benchmarks that do not take
advantage of RCS evaluation.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 16 / 19

Experimental Results

Programs Taking Advantage of RCS

Previous results for RCS showed good performance for programs
where subsuming subgoals were called after subsumed subgoals.

Program Var/RCS Sub/RCS
double first 1.07 1.09
double last 1.05 1.10
reach first 2.54 1.76
reach last 3.22 1.87

fib 1.95 2.02
flora 3.17 1.17
big 13.26 13.66

In this work, we are interested in measuring the time and space
impact of the STST design in benchmarks that do not take
advantage of RCS evaluation.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 16 / 19

Experimental Results

Benchmarks

We took the program that computes the reachability between two
nodes in a graph and transformed it:

Original
path(X,Z):- path(X,Y), edge(Y,Z).

path(X,Z):- edge(X,Z).

Transformed
path(f(X),f(Z)):- path(f(X),f(Y)),

edge(f(Y),f(Z)).

path(f(X),f(Z)):- edge(f(X),f(Z)).

We used several variations of this program (storing different number
of consumers) and two queries: path(X,Y) for the Original version
and path(f(X),f(Y)) for the Transformed version.

Our goal is to force the STST to store more terms than those that
are needed with variant and non-retroactive subsumptive tabling.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 17 / 19

Experimental Results

Benchmarks

We took the program that computes the reachability between two
nodes in a graph and transformed it:

Original
path(X,Z):- path(X,Y), edge(Y,Z).

path(X,Z):- edge(X,Z).

Transformed
path(f(X),f(Z)):- path(f(X),f(Y)),

edge(f(Y),f(Z)).

path(f(X),f(Z)):- edge(f(X),f(Z)).

We used several variations of this program (storing different number
of consumers) and two queries: path(X,Y) for the Original version
and path(f(X),f(Y)) for the Transformed version.

Our goal is to force the STST to store more terms than those that
are needed with variant and non-retroactive subsumptive tabling.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 17 / 19

Experimental Results

Execution Time

Original Transformed
RCS/Var RCS/Sub RCS/Var RCS/Sub

Average 1.04 1.07 1.25 1.37

Since the STST stores all the arguments of an answer in the trie and
not only the substitutions, the insertion and loading of the extra
f/1 functors are the primary causes for these overheads.

The number of consumer nodes can also reduce the performance of
the STST design since we need to unify extra terms for loading
answers from the trie.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 18 / 19

Experimental Results

Execution Time

Original Transformed
RCS/Var RCS/Sub RCS/Var RCS/Sub

Average 1.04 1.07 1.25 1.37

Since the STST stores all the arguments of an answer in the trie and
not only the substitutions, the insertion and loading of the extra
f/1 functors are the primary causes for these overheads.

The number of consumer nodes can also reduce the performance of
the STST design since we need to unify extra terms for loading
answers from the trie.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 18 / 19

Experimental Results

Memory Usage

Transformed
Var/RCS Sub/RCS

Average 1.890 0.957

Variant-based tabling requires, on average, 1.89 times more memory
than RCS. This is because, with variant-based tabling, there is no
sharing of answers between subgoals.

Subsumption-based tabling requires, on average, 96% of the memory
used by RCS. The natural trie indexing structure tends to minimize
the memory overhead as more terms are stored in the STST.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 19 / 19

Experimental Results

Memory Usage

Transformed
Var/RCS Sub/RCS

Average 1.890 0.957

Variant-based tabling requires, on average, 1.89 times more memory
than RCS. This is because, with variant-based tabling, there is no
sharing of answers between subgoals.

Subsumption-based tabling requires, on average, 96% of the memory
used by RCS. The natural trie indexing structure tends to minimize
the memory overhead as more terms are stored in the STST.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 19 / 19

A Simple Table Space Design for RCS

Conclusions

We presented a simple, compact and practical table space design for
RCS.

Our proposal innovates by having only a single answer trie per
predicate, making it easier to share answers across subgoals for the
same predicate.

Previous good results for RCS show that STST performs well in
practical programs taking advantage of RCS.

Due to its design, STST sometimes may store more terms than
necessary.

I This affects execution time on the worst case.
I However, memory overhead is not as important given the nature of

tries.

F. Cruz and R. Rocha (CRACS - FCUP) A Simple Table Space Design for RCS EPIA 2011 20 / 19

	Tabling
	Results

