On Comparing Alternative Splitting Strategies for
Or-Parallel Prolog Execution on Multicores

Rui Vieira, Ricardo Rocha and Fernando Silva

CRACS & INESC TEC
Faculty of Sciences, University of Porto

CICLOPS 2012
Budapest, Hungary, September 2012

QUADRO #
D: REFERENCIA
COMPETE Al ,tlco UNIAO EUROPEIA

NAC Fundagao para a Ciéncia e a Tecnologia
poTuG MINISTERIO DA EDUCAGAO E CIENCIA

Fundo Europeu

PROGRAMA OPERACIONAL FACTORES DE COMPETITIVIDADE de Desenvolvimento Regional

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 1/28

Why Parallelism in Prolog?

Efficient sequential implementations

@ There are many efficient sequential implementations of Prolog, mostly
based on the Warren Abstract Machine (WAM).

Potential for implicit parallelism

@ Prolog programs naturally exhibit implicit parallelism and are thus
highly amenable for automatic exploitation.

@ This makes parallel logic programming as easy as logic programming.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 2/28

Parallelism in Prolog

Or-parallelism
@ One of the most successful sources of parallelism in Prolog programs
is called or-parallelism.
@ Or-parallelism arises from the simultaneous evaluation of a subgoal
call against the clauses that match that call.
path(X,Z) :- path(X,Y), edge(Y,2).
path(X,Z) :- edge(X,Z).

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 3/28

Or-Parallelism: Implementation Challenges

Multiple bindings
@ How to efficiently represent the multiple bindings for the same

variable produced by the parallel execution of alternative matching
clauses.

X <- a X <-b

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 4/28

Or-Parallelism: Implementation Challenges

Multiple bindings
@ How to efficiently represent the multiple bindings for the same

variable produced by the parallel execution of alternative matching
clauses.

X <- a X <- b
P Q

@ One of the most successful models is environment copying:
Each worker maintains a separated copy of its environment.

Sharing is done by copying the execution stacks between workers.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012

4/28

Or-Parallelism: Implementation Challenges

Scheduling

@ How to efficiently achieve the necessary cooperation, synchronization
and concurrent access to shared data structures among several
workers during parallel execution.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 5/28

Or-Parallelism: Implementation Challenges

Scheduling
@ How to efficiently achieve the necessary cooperation, synchronization
and concurrent access to shared data structures among several
workers during parallel execution.

@ For environment copying, scheduling strategies based on
bottommost dispatching of work have proved to be more efficient
than topmost strategies.

@ An important technique that fits bottommost strategies best is
incremental copying, an optimization that avoids copying the whole
stacks when sharing work.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 5/28

Or-Parallelism: Implementation Challenges

Scheduling
@ How to efficiently achieve the necessary cooperation, synchronization
and concurrent access to shared data structures among several
workers during parallel execution.

@ For environment copying, scheduling strategies based on
bottommost dispatching of work have proved to be more efficient
than topmost strategies.

@ An important technique that fits bottommost strategies best is
incremental copying, an optimization that avoids copying the whole
stacks when sharing work.

@ Stack splitting is an extension to the environment copying model
that provides a simple and efficient method to split work in which the
available work is statically divided in two complementary sets
between the sharing workers.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 5/28

Our Goal

Comparing splitting strategies on multicores

@ Benefit from prior work on the development of the YapOr system
and extend it to efficiently support five alternative splitting strategies,
on multicore architectures:

YapOr's original splitting strategy;

Two stack splitting strategies, named vertical splitting and half
splitting, that split work based on choice points [DAMP'12];

Two stack splitting strategies, named horizontal splitting and
diagonal splitting, that split work based on the unexplored matching
clauses.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 6 /28

Our Goal

Comparing splitting strategies on multicores

@ Benefit from prior work on the development of the YapOr system
and extend it to efficiently support five alternative splitting strategies,
on multicore architectures:

YapOr's original splitting strategy;

Two stack splitting strategies, named vertical splitting and half
splitting, that split work based on choice points [DAMP'12];

Two stack splitting strategies, named horizontal splitting and
diagonal splitting, that split work based on the unexplored matching
clauses.

@ Our implementation shares the underlying execution environment and
most of the data structures used to implement or-parallelism in
YapOr. We thus argue that all these common support features allow
us to make a first and fair comparison between these five alternative
splitting strategies.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 6 /28

The YapOr System

Execution Model

@ YapOr is based on the environment copying model:

Each worker maintains a separated copy of its environment.
Sharing is done by copying the execution stacks between workers.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 7 /28

The YapOr System

Execution Model

@ YapOr is based on the environment copying model:

Each worker maintains a separated copy of its environment.
Sharing is done by copying the execution stacks between workers.

@ YapOr's original splitting strategy is based on bottommost
dispatching of work and dynamic sharing:

Shared nodes are represented by or-frames, a data structure that
workers must access, with mutual exclusion, to obtain the unexplored
alternatives.

Synchronization is needed to ensure that each alternative is explored
only once.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 7 /28

The YapOr System

Data structures
P’s Choice Or-Frames Q’s Choice

Points

Private Region

Points
—@

T
P.Q ()

T
P, Q ()

Shared Region

O

U7

CICLOPS 2012 8 /28

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores

Environment Copying

Incremental Copy

@ Aims to minimize the amount of data copied between P and Q.

@ It copies only the state difference between workers P and Q.

Commmon
regi on

Regi on
to copy

<-~~
M backt r ack
\ first to the
t youngest
J common node
.I
Q

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores

CICLOPS 2012

9/28

Environment Copying

Before sharing

P’s Choice Q’s Choice
Points Or-frames Points

R. Vieira, R. Rocha and F. Silva (U. Porto) CICLOPS 2012 10 / 28

Environment Copying
After sharing

P’s Choice Q’s Choice
Points Or-frames Points

R. Vieira, R. Rocha and F. Silva (U. Porto) CICLOPS 2012 11 /28

Environment Copying

Stack splitting
@ Introduced to target distributed memory architectures.
o Aiming to avoid the mutual exclusion requirements when
accessing shared branches of the search tree.
@ Defines a work sharing strategy in which the available work is
statically divided in two complementary sets.

@ The splitting is such that both workers can continue executing its
branch of computation independently, without any need for further
synchronization.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 12 /28

Stack Splitting

Vertical splitting

(a) before sharing

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 13 /28

Stack Splitting

Vertical splitting

(a) before sharing (b) after sharing

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 14 / 28

Stack Splitting

Half splitting

(a) before sharing (b) after sharing

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 15 / 28

Stack Splitting

Horizontal splitting

(a) before sharing (b) after sharing

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 16 / 28

Stack Splitting

Diagonal splitting

(a) before sharing (b) after sharing

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 17 / 28

Supporting Stack Splitting Strategies in YapOr

All splitting strategies

@ Since, with stack splitting, each worker has its own work chaining
sequence, the control and access to the unexplored alternatives
returned to the choice points and some of the or-frame fields were
ignored.

@ In order to reuse YapOr's infrastructure for incremental copying and
scheduling support, we still use the or-frames fields related with such
support.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 18 / 28

Supporting Stack Splitting Strategies in YapOr

Vertical and half splitting

@ We use the or-frame field OrFr_nearest livenode as a way to
implement the chaining sequence of choice points. At work sharing,
each worker adjusts its fields so that two separate chains are built
corresponding to the intended split of work.

e For half splitting, a new choice point field CP_depth supports the
numbering of nodes in order to allow the efficient calculation of the
relative depth of the worker's assigned choice points.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 19 / 28

Supporting Stack Splitting Strategies in YapOr

Horizontal and diagonal splitting
@ A new choice point field CP _offset marks the offset of the next
unexplored alternative belonging to the choice point.

@ To implement the splitting process, we double its value for each
shared choice point, meaning that the next alternative to be taken is
displaced two positions relatively to the previous value.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 20/ 28

Supporting Stack Splitting Strategies in YapOr
Copy ranges

Global l
stack

<«—— (new_t op->cp_h]
P[B->cp_h] ——

P[B] - SO S
 —

<«——— (new_t op] o comy
P[ol d_t op] —
<«—— ol d_top] = B] stack
splitting
. unneeded
segnent s
to copy
P[TR]
P[B->Cp_tr] —— |s===mmemcmmcceccooaaoon
------------------------ <«—— (new_top->cp_tr]
<«—— ol d_top->cp_tr]
CICLOPS 2012 21 /28

Experimental Results

Environment

@ A machine with 4 AMD Six-Core Opteron TM 8425 HE (2100 MHz)
chips (24 cores in total) and 64 (4x16) GB of DDR-2 667MHz RAM.

@ All benchmarks find all the solutions by simulating an automatic
failure whenever a new solution is found.

@ Each benchmark was executed 10 consecutive times and the results
are the average of those 10 executions.

@ We used the sequential execution times as the base reference for
computing speedups (instead of considering the times with 1 worker
for each strategy). In this way, the speedups do reflect real gains from
sequential execution times.

v

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 22 /28

Experimental Results

Cost of the splitting strategies (1 worker)

YapOr / Yap
Programs Yap (s) oS VS 145 HS DS
cubes(7) 0.200 | 1.050 1.080 1.070 1.110 1.135
ham(26) 0.350 | 1.169 1.180 1.177 1.094 1.100
magic(6) 5.102 | 1.045 1.036 1.005 1.245 1.252
magic(7) 45865 | 1.051 1.021 1.007 1.251 1.261
maze(10) 0.623 | 1.064 1.050 1.050 1.273 1.207
maze(12) 10.558 | 1.0567 1.041 1.035 1.268 1.214
nsort(10) 2775 | 1.124 1.155 1.096 1.074 1.072

nsort(12) 368.862 | 1.128 1.074 1.057 1.081 1.082
queens(11) 1.216 | 1.039 1.234 1.0561 1.036 1.107
queens(13) 47.187 | 1.025 1.165 1.053 1.043 1.039
puzzle 0.153 | 1.157 1.235 1.144 1.176 1.157
Average 1.083 1.116 1.068 1.150 1.148

R. Vieira, R. Rocha and F. Silva (U. Porto) CICLOPS 2012 23 /28

Experimental Results

Speedups for 24 workers without incremental copy

Programs 0os VS 1/2S HS DS

cubes(7) 6.66 392 046 476 454
ham(26) 6.36 479 207 397 514
magic(6) 20.40 19.77 7.76 16.51 16.35
magic(7) 2224 22.96 16.17 1839 18.43
maze(10) 1132 11.98 420 916 841
maze(12) 21.03 21.81 14.89 17.80 17.68
nsort(10) 13.73 1250 12.06 12.50 12.33
nsort(12) 21.16 2147 21.62 2093 20.78

queens(11) 16.21 894 1.60 13.07 1293
queens(13) 2214 2054 412 2220 22.42
puzzle 3.73 1.91 1.45 259 2.68
Average 15.00 13.69 7.85 1290 12.88
Average (1lw) 16.25 1528 8.38 14.84 14.79

v

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 24 /28

Experimental Results

Speedups for 24 workers with incremental copy

Programs (01 VS 1/2S HS DS

cubes(7) 1333 1428 400 16.66 1538
ham(26) 9.45 760 448 714 9.45
magic(6) 22.08 22.87 22.77 18.41 18.41
magic(7) 22.63 23.40 2296 18.67 18.78
maze(10) 18.32 22.25 2148 18.32 18.87
maze(12) 2236 23.30 22.75 19.73 19.95
nsort(10) 2025 2070 21.34 19.96 20.40
nsort(12) 21.59 22.28 22.16 21.69 21.85

queens(11) 20.26 1762 6.75 20.26 20.96
queens(13) 23.44 2160 1590 2299 22091
puzzle 956 10.20 15.30 10.92 12.75
Average 18.48 18.74 16.35 17.71 18.16
Average (1w) 20.01 20.91 17.46 20.37 20.85

v

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 25 /28

Conclusions and Further Work

Conclusions

@ We have presented the integration of five alternative splitting
strategies on top of the YapOr system for or-parallel Prolog execution
on multicores.

@ Our implementation shares the underlying execution environment and
most of the data structures used to implement or-parallelism in
YapOr. In particular, we took advantage of YapOr's infrastructure for
incremental copying and scheduling support, which we used with
minimal modifications.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 26 / 28

Conclusions and Further Work

Conclusions
@ Experimental results, on a multicore machine with 24 cores, showed
that incremental copying clearly pays off in improving real
performance in all strategies.
@ The results for all strategies are reasonably good and the average
speedups over all benchmarks is reasonably close, with exception for
half splitting that performs a little worse.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 27 / 28

Conclusions and Further Work

Further Work

@ These are preliminary results and further work is still necessary to
better explain some apparently inconsistent results. We plan to
gather low level statistics an use visualization tools of the search tree
to bring some insight into this analysis.

o After that, we plan to have all strategies working together (i.e., we
can have workers sharing work using different strategies) and let the
scheduler decide which strategy to use accordingly to some heuristics.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 28 /28

