
On Comparing Alternative Splitting Strategies for
Or-Parallel Prolog Execution on Multicores

Rui Vieira, Ricardo Rocha and Fernando Silva

CRACS & INESC TEC
Faculty of Sciences, University of Porto

CICLOPS 2012
Budapest, Hungary, September 2012

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 1 / 28



Why Parallelism in Prolog?

Efficient sequential implementations

There are many efficient sequential implementations of Prolog, mostly
based on the Warren Abstract Machine (WAM).

Potential for implicit parallelism

Prolog programs naturally exhibit implicit parallelism and are thus
highly amenable for automatic exploitation.

This makes parallel logic programming as easy as logic programming.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 2 / 28



Parallelism in Prolog

Or-parallelism

One of the most successful sources of parallelism in Prolog programs
is called or-parallelism.

Or-parallelism arises from the simultaneous evaluation of a subgoal
call against the clauses that match that call.

path(X,Z) :- path(X,Y), edge(Y,Z).

path(X,Z) :- edge(X,Z).

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 3 / 28



Or-Parallelism: Implementation Challenges

Multiple bindings

How to efficiently represent the multiple bindings for the same
variable produced by the parallel execution of alternative matching
clauses.

X <- a

X

X <- b

P Q

One of the most successful models is environment copying:
I Each worker maintains a separated copy of its environment.
I Sharing is done by copying the execution stacks between workers.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 4 / 28



Or-Parallelism: Implementation Challenges

Multiple bindings

How to efficiently represent the multiple bindings for the same
variable produced by the parallel execution of alternative matching
clauses.

X <- a

X

X <- b

P Q

One of the most successful models is environment copying:
I Each worker maintains a separated copy of its environment.
I Sharing is done by copying the execution stacks between workers.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 4 / 28



Or-Parallelism: Implementation Challenges

Scheduling

How to efficiently achieve the necessary cooperation, synchronization
and concurrent access to shared data structures among several
workers during parallel execution.

For environment copying, scheduling strategies based on
bottommost dispatching of work have proved to be more efficient
than topmost strategies.

An important technique that fits bottommost strategies best is
incremental copying, an optimization that avoids copying the whole
stacks when sharing work.

Stack splitting is an extension to the environment copying model
that provides a simple and efficient method to split work in which the
available work is statically divided in two complementary sets
between the sharing workers.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 5 / 28



Or-Parallelism: Implementation Challenges

Scheduling

How to efficiently achieve the necessary cooperation, synchronization
and concurrent access to shared data structures among several
workers during parallel execution.

For environment copying, scheduling strategies based on
bottommost dispatching of work have proved to be more efficient
than topmost strategies.

An important technique that fits bottommost strategies best is
incremental copying, an optimization that avoids copying the whole
stacks when sharing work.

Stack splitting is an extension to the environment copying model
that provides a simple and efficient method to split work in which the
available work is statically divided in two complementary sets
between the sharing workers.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 5 / 28



Or-Parallelism: Implementation Challenges

Scheduling

How to efficiently achieve the necessary cooperation, synchronization
and concurrent access to shared data structures among several
workers during parallel execution.

For environment copying, scheduling strategies based on
bottommost dispatching of work have proved to be more efficient
than topmost strategies.

An important technique that fits bottommost strategies best is
incremental copying, an optimization that avoids copying the whole
stacks when sharing work.

Stack splitting is an extension to the environment copying model
that provides a simple and efficient method to split work in which the
available work is statically divided in two complementary sets
between the sharing workers.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 5 / 28



Our Goal

Comparing splitting strategies on multicores

Benefit from prior work on the development of the YapOr system
and extend it to efficiently support five alternative splitting strategies,
on multicore architectures:

I YapOr’s original splitting strategy;
I Two stack splitting strategies, named vertical splitting and half

splitting, that split work based on choice points [DAMP’12];
I Two stack splitting strategies, named horizontal splitting and

diagonal splitting, that split work based on the unexplored matching
clauses.

Our implementation shares the underlying execution environment and
most of the data structures used to implement or-parallelism in
YapOr. We thus argue that all these common support features allow
us to make a first and fair comparison between these five alternative
splitting strategies.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 6 / 28



Our Goal

Comparing splitting strategies on multicores

Benefit from prior work on the development of the YapOr system
and extend it to efficiently support five alternative splitting strategies,
on multicore architectures:

I YapOr’s original splitting strategy;
I Two stack splitting strategies, named vertical splitting and half

splitting, that split work based on choice points [DAMP’12];
I Two stack splitting strategies, named horizontal splitting and

diagonal splitting, that split work based on the unexplored matching
clauses.

Our implementation shares the underlying execution environment and
most of the data structures used to implement or-parallelism in
YapOr. We thus argue that all these common support features allow
us to make a first and fair comparison between these five alternative
splitting strategies.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 6 / 28



The YapOr System

Execution Model

YapOr is based on the environment copying model:
I Each worker maintains a separated copy of its environment.
I Sharing is done by copying the execution stacks between workers.

YapOr’s original splitting strategy is based on bottommost
dispatching of work and dynamic sharing:

I Shared nodes are represented by or-frames, a data structure that
workers must access, with mutual exclusion, to obtain the unexplored
alternatives.

I Synchronization is needed to ensure that each alternative is explored
only once.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 7 / 28



The YapOr System

Execution Model

YapOr is based on the environment copying model:
I Each worker maintains a separated copy of its environment.
I Sharing is done by copying the execution stacks between workers.

YapOr’s original splitting strategy is based on bottommost
dispatching of work and dynamic sharing:

I Shared nodes are represented by or-frames, a data structure that
workers must access, with mutual exclusion, to obtain the unexplored
alternatives.

I Synchronization is needed to ensure that each alternative is explored
only once.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 7 / 28



The YapOr System

Data structures

Root

P, Q

P, Q

P’s Choice
Points

Or-Frames Q’s Choice
Points

Private Region

Shared Region

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 8 / 28



Environment Copying

Incremental Copy

Aims to minimize the amount of data copied between P and Q.

It copies only the state difference between workers P and Q.

P

Q

Region
to copy

Common
region

backtrack
first to the
youngest

common node

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 9 / 28



Environment Copying

Before sharing

P,Q

P

P,Q

Or-frames
P’s Choice

Points
Q’s Choice

Points

ROOT

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 10 / 28



Environment Copying

After sharing

P,Q

P,Q

P,Q

Or-frames
P’s Choice

Points
Q’s Choice

Points

ROOT

P,Q

P,Q

P,Q

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 11 / 28



Environment Copying

Stack splitting

Introduced to target distributed memory architectures.

Aiming to avoid the mutual exclusion requirements when
accessing shared branches of the search tree.

Defines a work sharing strategy in which the available work is
statically divided in two complementary sets.

The splitting is such that both workers can continue executing its
branch of computation independently, without any need for further
synchronization.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 12 / 28



Stack Splitting

Vertical splitting

P

b1

b2

b3

b4

a1 a2

c1

d1

(a) before sharing

c2

c3

d2
idle

Q

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 13 / 28



Stack Splitting

Vertical splitting

P

b1

b2

b3

b4

a1 a2

c1

d1

(a) before sharing

c2

c3

d2
idle

b1

b2

b3

b4

a1

c1

d1 d2

b1

a1 a2

(b) after sharing 

c2 c3

Q P

Q

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 14 / 28



Stack Splitting

Half splitting

P

b1

b2

b3

b4

a1 a2

c1

d1

(a) before sharing

c2

c3

d2
idle

Q P

b1

a1

c1

d1

c2

c3

d2

b2 b3

b4

a1 a2

(b) after sharing

Q

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 15 / 28



Stack Splitting

Horizontal splitting

P

b1

b2

b3

b4

a1 a2

c1

d1

(a) before sharing

c2

c3

d2
idle

(b) after sharing 

Q P

b1 b3

a1 a2

c1

d1

c2

b1

b2

b4

a1

c1 c3

d2
Q

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 16 / 28



Stack Splitting

Diagonal splitting

P

b1

b2

b3

b4

a1 a2

c1

d1

(a) before sharing

c2

c3

d2
idle

(b) after sharing 

Q P

b1

b2

b4

a1

c1

d1

c2

b1 b3

a1 a2

c1 c3

d2
Q

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 17 / 28



Supporting Stack Splitting Strategies in YapOr

All splitting strategies

Since, with stack splitting, each worker has its own work chaining
sequence, the control and access to the unexplored alternatives
returned to the choice points and some of the or-frame fields were
ignored.

In order to reuse YapOr’s infrastructure for incremental copying and
scheduling support, we still use the or-frames fields related with such
support.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 18 / 28



Supporting Stack Splitting Strategies in YapOr

Vertical and half splitting

We use the or-frame field OrFr nearest livenode as a way to
implement the chaining sequence of choice points. At work sharing,
each worker adjusts its fields so that two separate chains are built
corresponding to the intended split of work.

For half splitting, a new choice point field CP depth supports the
numbering of nodes in order to allow the efficient calculation of the
relative depth of the worker’s assigned choice points.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 19 / 28



Supporting Stack Splitting Strategies in YapOr

Horizontal and diagonal splitting

A new choice point field CP offset marks the offset of the next
unexplored alternative belonging to the choice point.

To implement the splitting process, we double its value for each
shared choice point, meaning that the next alternative to be taken is
displaced two positions relatively to the previous value.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 20 / 28



Supporting Stack Splitting Strategies in YapOr

Copy ranges

Q[old_top->cp_h]

P[B->cp_h]

P[B]

Q[old_top]=Q[B]

P[TR]
P[B->cp_tr]

Q[old_top->cp_tr]

P[old_top]

segments
to copy

Q[new_top->cp_h]

Q[new_top]

Q[new_top->cp_tr]

Trail
stack

stack
splitting
unneeded
segments
to copy

Local
stack

Global
 stack

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 21 / 28



Experimental Results

Environment

A machine with 4 AMD Six-Core Opteron TM 8425 HE (2100 MHz)
chips (24 cores in total) and 64 (4x16) GB of DDR-2 667MHz RAM.

All benchmarks find all the solutions by simulating an automatic
failure whenever a new solution is found.

Each benchmark was executed 10 consecutive times and the results
are the average of those 10 executions.

We used the sequential execution times as the base reference for
computing speedups (instead of considering the times with 1 worker
for each strategy). In this way, the speedups do reflect real gains from
sequential execution times.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 22 / 28



Experimental Results

Cost of the splitting strategies (1 worker)

Programs Yap (s)
YapOr / Yap

OS VS 1/2S HS DS
cubes(7) 0.200 1.050 1.080 1.070 1.110 1.135
ham(26) 0.350 1.169 1.180 1.177 1.094 1.100
magic(6) 5.102 1.045 1.036 1.005 1.245 1.252
magic(7) 45.865 1.051 1.021 1.007 1.251 1.261
maze(10) 0.623 1.064 1.050 1.050 1.273 1.207
maze(12) 10.558 1.057 1.041 1.035 1.268 1.214
nsort(10) 2.775 1.124 1.155 1.096 1.074 1.072
nsort(12) 368.862 1.128 1.074 1.057 1.081 1.082
queens(11) 1.216 1.039 1.234 1.051 1.036 1.107
queens(13) 47.187 1.025 1.165 1.053 1.043 1.039
puzzle 0.153 1.157 1.235 1.144 1.176 1.157

Average 1.083 1.116 1.068 1.150 1.148

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 23 / 28



Experimental Results

Speedups for 24 workers without incremental copy

Programs OS VS 1/2S HS DS
cubes(7) 6.66 3.92 0.46 4.76 4.54
ham(26) 6.36 4.79 2.07 3.97 5.14
magic(6) 20.40 19.77 7.76 16.51 16.35
magic(7) 22.24 22.96 16.17 18.39 18.43
maze(10) 11.32 11.98 4.20 9.16 8.41
maze(12) 21.03 21.81 14.89 17.80 17.68
nsort(10) 13.73 12.50 12.06 12.50 12.33
nsort(12) 21.16 21.47 21.62 20.93 20.78
queens(11) 16.21 8.94 1.60 13.07 12.93
queens(13) 22.14 20.54 4.12 22.20 22.42
puzzle 3.73 1.91 1.45 2.59 2.68

Average 15.00 13.69 7.85 12.90 12.88

Average (1w) 16.25 15.28 8.38 14.84 14.79

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 24 / 28



Experimental Results

Speedups for 24 workers with incremental copy

Programs OS VS 1/2S HS DS
cubes(7) 13.33 14.28 4.00 16.66 15.38
ham(26) 9.45 7.60 4.48 7.14 9.45
magic(6) 22.08 22.87 22.77 18.41 18.41
magic(7) 22.63 23.40 22.96 18.67 18.78
maze(10) 18.32 22.25 21.48 18.32 18.87
maze(12) 22.36 23.30 22.75 19.73 19.95
nsort(10) 20.25 20.70 21.34 19.96 20.40
nsort(12) 21.59 22.28 22.16 21.69 21.85
queens(11) 20.26 17.62 6.75 20.26 20.96
queens(13) 23.44 21.60 15.90 22.99 22.91
puzzle 9.56 10.20 15.30 10.92 12.75

Average 18.48 18.74 16.35 17.71 18.16

Average (1w) 20.01 20.91 17.46 20.37 20.85

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 25 / 28



Conclusions and Further Work

Conclusions

We have presented the integration of five alternative splitting
strategies on top of the YapOr system for or-parallel Prolog execution
on multicores.

Our implementation shares the underlying execution environment and
most of the data structures used to implement or-parallelism in
YapOr. In particular, we took advantage of YapOr’s infrastructure for
incremental copying and scheduling support, which we used with
minimal modifications.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 26 / 28



Conclusions and Further Work

Conclusions

Experimental results, on a multicore machine with 24 cores, showed
that incremental copying clearly pays off in improving real
performance in all strategies.

The results for all strategies are reasonably good and the average
speedups over all benchmarks is reasonably close, with exception for
half splitting that performs a little worse.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 27 / 28



Conclusions and Further Work

Further Work

These are preliminary results and further work is still necessary to
better explain some apparently inconsistent results. We plan to
gather low level statistics an use visualization tools of the search tree
to bring some insight into this analysis.

After that, we plan to have all strategies working together (i.e., we
can have workers sharing work using different strategies) and let the
scheduler decide which strategy to use accordingly to some heuristics.

R. Vieira, R. Rocha and F. Silva (U. Porto) Comparing Splitting Strategies on Multicores CICLOPS 2012 28 / 28


