
Or-Parallel Prolog Execution on Multicores
Based on Stack Splitting

Rui Vieira, Ricardo Rocha and Fernando Silva

CRACS & INESC TEC
Faculty of Sciences, University of Porto

DAMP 2012
Declarative Aspects and Applications of Multicore Programming

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 1 / 28



Why Parallelism in Prolog?

Efficient sequential implementations

There are many efficient sequential implementations of Prolog, mostly
based on the Warren Abstract Machine (WAM).

Potential for implicit parallelism

Prolog programs naturally exhibit implicit parallelism, thus freeing
the programmers from the task of explicitly identifying it.

This makes parallel logic programming as easy as logic programming.

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 2 / 28



Implicit Parallelism in Prolog

And-parallelism

is the simultaneous evaluation of the several Prolog subgoals in the
body of a clause.

path(X,Z) :- path(X,Y), edge(Y,Z).

Or-parallelism

is the simultaneous evaluation of a Prolog goal against all the
alternative predicate clauses that match that goal.

path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).

The least complexity of or-parallelism (alternative matching clauses
are independent of each other) makes or-parallel models more
attractive and more successful at a first step.

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 3 / 28



Implicit Parallelism in Prolog

And-parallelism

is the simultaneous evaluation of the several Prolog subgoals in the
body of a clause.

path(X,Z) :- path(X,Y), edge(Y,Z).

Or-parallelism

is the simultaneous evaluation of a Prolog goal against all the
alternative predicate clauses that match that goal.

path(X,Z) :- path(X,Y), edge(Y,Z).
path(X,Z) :- edge(X,Z).

The least complexity of or-parallelism (alternative matching clauses
are independent of each other) makes or-parallel models more
attractive and more successful at a first step.

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 3 / 28



Or-Parallelism: Implementation Challenges

Multiple bindings

How to efficiently represent the multiple bindings for variables shared
by the parallel execution of alternative clauses.

X <- a

X

X <- b

P Q

Private areas to store the bindings for each branch are required:
I Binding arrays
I Environment copying

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 4 / 28



Or-Parallelism: Implementation Challenges

Scheduling

Achieving the necessary cooperation, synchronization and concurrent
access to shared data structures among several workers during their
execution is a difficult task.

A parallel Prolog system is no exception as the parallelism that Prolog
programs exhibit is usually highly irregular:

I Topmost dispatching or bottommost dispatching.
I Dynamic sharing or static sharing (stack splitting).

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 5 / 28



Our Goal

Stack splitting on multicores

Design and implement static sharing, namely stack splitting, in the
YapOr system.

Benefit from prior research on the development of the YapOr system
and extend it to efficiently support two work sharing stack splitting
models, namely vertical splitting and half splitting, on multicore
architectures.

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 6 / 28



The YapOr System

Execution Model

YapOr is based on the environment copying model:
I Each worker maintains a separated copy of its environment.
I Sharing is done by copying the execution stacks between workers.

YapOr’s scheduler is based on bottommost dispatching and
dynamic sharing.

I Synchronization is mostly needed at work sharing operations to ensure
that each alternative is explored only once.

I Shared nodes are represented by or-frames, a data structure that
workers must access to obtain the untried alternatives, point in which
mutual exclusion is enforced.

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 7 / 28



The YapOr System

Data structures

Root

P, Q

P, Q

P’s Choice
Points Or-Frames

Q’s Choice
Points

P[B]

Q[B]
Private Region

Shared Region
P[top_or_frame] Q[top_or_frame]

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 8 / 28



Environment Copying

Before sharing

Q[top_or_frame]P,Q

PP[top_or_frame]

P[B]

P,Q

Or-framesP’s Choice
Points

Q’s Choice
Points

ROOT

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 9 / 28



Environment Copying

After sharing

Q[top_or_frame]

P,Q

P,Q

P[top_or_frame]

P,Q

Or-framesP’s Choice
Points

Q’s Choice
Points

ROOT

P,Q

P,Q

P,Q

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 10 / 28



Stack Splitting

General ideas

Introduced to target distributed memory architectures.

Aiming to avoid the mutual exclusion requirements when
accessing shared branches of the search tree.

Defines a work sharing strategy in which all available work is divided
in two fully independent parts.

The splitting is such that both workers can continue executing its
branch of computation independently, without any need for further
synchronization.

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 11 / 28



Stack Splitting

Vertical splitting

P

b1

b2
b3

b4

b5

a1

a2

a3

c1

d1

(a) before sharing

c2

c3

d2
idle

b1

b2
b3

b4

b5

a1

c1

d1 d2

b1

a1

a2

a3

(b) after sharing 

c2
c3

Q P

Q

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 12 / 28



Stack Splitting

Half splitting

P

b1

b2
b3

b4

b5

a1

a2

a3

c1

d1

(a) before sharing

c2

c3

d2
idle

Q P

b1

a1

c1

d1

c2

c3

d2

b2
b3

b4

b5

a1

a2

a3

(b) after sharing

Q

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 13 / 28



Vertical Splitting

Before sharing

P,Q

P

P,Q

Or-framesP’s Choice
Points

Q’s Choice
Points

P[B]

P[top_or_frame]

Q[top_or_frame]

ROOT

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 14 / 28



Vertical Splitting

After sharing

P,Q

P,Q

P

P,Q

P,Q

P,Q

Or-framesP’s Choice
Points

Q’s Choice
Points

P[top_or_frame]

Q[top_or_frame]

ROOT

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 15 / 28



Half Splitting

Before sharing

P,Q

P

P[B]

P[top_or_frame]

Or-framesP’s Choice
Points

Q’s Choice
Points

Q[top_or_Frame]

ROOT

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 16 / 28



Half Splitting

After sharing

1

2

3 P,Q

P

P,Q

Or-framesP’s Choice
Points

Q’s Choice
Points

P[B]

P[top_or_frame]

Q[top_or_frame]

P,Q

ROOT

P,Q

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 17 / 28



Incremental Copy

General idea

Aims to minimize the amount of data copied between P and Q.

It copies only the state difference between workers P and Q.

P

QRegion
to copy

Common
region

backtrack
first to the
youngest

common node

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 18 / 28



Incremental Copy

Copy ranges

Q[old_top_node->cp_h]

P[B->cp_h]

P[B]

Q[old_top_node] = Q[B]

P[TR]
P[B->cp_tr]

Q[old_top_node->cp_tr]

P[old_top_node]

segments
to copy

Q[new_top_node->cp_h]

Q[new_top_node]

Q[new_top_node->cp_tr]

Trail
stack

stack
splitting
unneeded
segments
to copy

Local
stack

Global
 stack

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 19 / 28



Incremental Copy

Dereference phase

Root

B

C

A=0

B=1

D=3

P

QC=2

A=0

B=1

Trail

P’s stacks

Global

A=0

B=1

C=2

D

After
install

Q’s global stack

CP1

CP2

CP3

CP4

CP5

B

segments to copy

D=3

D

D

E

C

E

A=0

B=1

A=0

B=1

C C

D=3

Before
copy

After
copy

A=0

B=1

C

D

After
dereference

variables to be dereferenced

variables to be installed

Local

CP1

CP2

CP5

CP4

CP3 C=2

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 20 / 28



Experimental Results

Environment

A machine with 4 AMD Six-Core Opteron TM 8425 HE (2100 MHz)
chips (24 cores in total) and 64 (4x16) GB of DDR-2 667MHz RAM.

Running Linux kernel 2.6.31.5-127 64 bits with Yap Prolog 6.2.0.

All benchmarks find all the solutions by simulating an automatic
failure whenever a new solution is found.

Each benchmark was executed 20 times and the results are the
average of those 20 executions.

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 21 / 28



Experimental Results

Cost of the parallel models (1 worker)

Benchmarks Yap (s)
YapOr(1w) / Yap

EC VS+IC HS+IC

cubes7 0.202 1.044 1.038 1.059
ham 0.321 1.198 1.197 1.098
magic 45.990 0.985 0.986 0.901
map 22.434 1.130 1.130 1.141
nsort10 2.567 1.140 1.149 1.040
nsort11 28.239 1.135 1.133 1.028
nsort12 339.406 1.126 1.129 1.003
puzzle 0.154 1.152 1.151 1.106
puzzle4x4 9.875 1.032 1.030 0.958
queens13 48.220 1.061 1.063 1.001

Average 1.100 1.101 1.033

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 22 / 28



Experimental Results

Environment copying

Benchmarks
Workers

4 8 16 24

cubes7 3.27 5.66 7.62 7.43
ham 3.10 5.34 7.32 6.49
magic 4.05 8.08 16.08 23.95
map 3.58 7.11 13.92 20.32
nsort10 3.61 7.08 13.44 17.97
nsort11 3.71 7.37 14.63 21.63
nsort12 3.68 7.39 14.89 22.19
puzzle 2.96 4.68 5.94 5.03
puzzle4x4 3.90 7.77 15.32 22.44
queens13 3.76 7.50 14.93 22.22
Average 3.56 6.80 12.41 16.97

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 23 / 28



Experimental Results

Vertical splitting with (without) incremental copy

Benchmarks
Workers

4 8 16 24

cubes7 3.33 (2.63) 5.52 (3.34) 6.98 (3.00) 6.05 (2.41)
ham 3.11 (2.39) 5.36 (3.21) 7.00 (3.29) 5.00 (2.94)
magic 4.04 (4.04) 8.07 (8.00) 16.04 (15.80) 23.79 (23.11)
map 3.59 (3.58) 7.13 (7.05) 13.96 (13.59) 20.36 (19.52)
nsort10 3.58 (3.52) 7.00 (6.52) 13.17 (9.81) 17.56 (10.41)
nsort11 3.66 (3.71) 7.26 (7.32) 14.33 (14.09) 21.16 (19.93)
nsort12 3.63 (3.69) 7.27 (7.39) 14.60 (14.85) 21.77 (22.05)
puzzle 2.93 (1.96) 4.52 (1.88) 5.23 (1.58) 4.27 (1.21)
puzzle4x4 3.90 (3.88) 7.76 (7.63) 15.32 (14.62) 22.46 (20.42)
queens13 3.75 (3.73) 7.46 (7.36) 14.77 (14.23) 21.93 (20.54)

Average 3.55 (3.31) 6.74 (5.97) 12.14 (10.49) 16.44 (14.26)

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 24 / 28



Experimental Results

Half splitting with (without) incremental copy

Benchmarks
Workers

4 8 16 24

cubes7 3.03 (0.71) 4.67 (0.77) 5.18 (0.59) 3.65 (0.41)
ham 3.22 (1.52) 5.22 (1.85) 5.56 (1.90) 4.05 (1.63)
magic 4.44 (4.15) 8.80 (7.64) 17.44 (13.34) 25.86 (16.45)
map 3.35 (1.72) 5.36 (2.49) 5.89 (2.58) 4.86 (2.29)
nsort10 3.68 (3.27) 7.34 (5.76) 13.49 (8.45) 17.91 (8.95)
nsort11 3.78 (3.69) 7.58 (7.19) 14.90 (13.17) 22.06 (18.54)
nsort12 3.79 (3.76) 7.58 (7.47) 15.36 (14.68) 22.76 (21.18)
puzzle 2.96 (1.62) 4.48 (1.77) 5.01 (1.58) 4.46 (1.27)
puzzle4x4 4.13 (3.83) 8.08 (6.82) 15.60 (11.42) 22.93 (13.59)
queens13 3.91 (2.66) 7.69 (3.68) 14.82 (4.24) 20.90 (3.97)

Average 3.63 (2.69) 6.68 (4.54) 11.33 (7.20) 14.94 (8.83)

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 25 / 28



Experimental Results

Overall average analysis

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 4 8 16 24

sp
ee

du
p(

pr
oc

es
so

rs
)

processors

Speedup Averages

EC
VS

VS+IC
HS

HS+IC

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 26 / 28



Conclusions and Further Work

Conclusions

We have presented the design and implementation of two stack
splitting models in the YapOr system.

Although stack splitting was proposed for distributed memory, our
results show that it is equally suitable for shared memory machines:

I In many benchmarks, we achieved speedups above 20 on 24 cores.
I Vertical splitting overall performance close to original YapOr.
I Half splitting performed better in 4 of 10 benchmarks.
I Incremental copy clearly benefits performance.

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 27 / 28



Conclusions and Further Work

Further Work

Implementation of alternative stack splitting strategies:
I Horizontal splitting.
I Diagonal splitting.

Combining all models for supporting clusters of multicores:
I Different teams should be assigned to different cluster nodes and

share work performing stack splitting.
I A team of workers should run on shared memory and workers inside a

team can distribute work using environment copying or stack
splitting.

R. Vieira, R. Rocha and F. Silva (CRACS) Stack Splitting on Multicores DAMP 2012 28 / 28


