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Abstract:
The functions of proteins in living organisms are related to their 3-D

structure, which is known to be ultimately determined by their linear
sequence of amino acids that together form these macromolecules. It
is, therefore, of great importance to be able to understand and predict
how the protein 3D-structure arises from a particular linear sequence of
amino acids. In this paper we report the application of Machine Learning
methods to predict, with high values of accuracy, the secondary structure
of proteins, namely α-helices and β-sheets, which are intermediate levels
of the local structure.
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1 Introduction

Proteins are complex structures synthesised by living organisms. They are a
fundamental type of biomolecules that perform a large number of functions in
cell biology. Proteins can assume catalytic roles and accelerate or inhibit chemical
reactions in our body. They can assume roles of transportation of smaller molecules,
storage, movement, mechanical support, immunity and control of cell growth and
differentiation [Alberts et al., 2002]. All of these functions rely on the 3D-structure of
the protein. The process of going from a linear sequence of amino acids, that together
compose a protein, to the protein’s 3D shape is named protein folding. Anfinsen’s
work [Sela et al., 1957] has proven that primary structure determines the way protein
folds. Protein folding is so important that whenever it does not occur correctly
it may produce diseases such as Alzheimer’s, Bovine Spongiform Encephalopathy
(BSE), usually known as mad cows disease, Creutzfeldt-Jakob (CJD) disease, a
Amyotrophic Lateral Sclerosis (ALS), Huntingtons syndrome, Parkinson disease,
and other diseases related to cancer.

A major challenge in Molecular Biology is to unveil the process of protein folding.
Several projects have been set up with that purpose. Although protein function
is ultimately determined by their 3D structure there have been identified a set of
other intermediate structures that can help in the formation of the 3D structure.
We refer the reader to Section 2 for a more detailed description of protein structure.
To understand the high complexity of protein folding it is usual to follow a sequence
of steps. One starts by identifying the sequence of amino acids (or residues) that
compose the protein, the so-called primary structure; then we identify the secondary
structures conformations, mainly α-helices and β-sheet; and then we predict the
tertiary structure or 3D shape.

In this paper we address the step of predicting α-helices and β-strands based
on the sequence of amino acids that compose a protein. More specifically, in this
study models based on Machine Learning algorithms were built to predict the start,
inner points and end of secondary structures. A total of 1499 protein sequences
were selected from the PDB and data sets were appropriately assembled to be used
by Machine Learning algorithms and thus construct the models. In this context
rule induction algorithms, decision trees, functional trees, Bayesian methods, and
ensemble methods were applied. The models achieved an accuracy between 84.9%
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Figure 1 a) General structure of an amino acid; side chain is represented by the letter R. b) A
fraction of a proteic chain, showing the peptide bonds.

(in the prediction of α-helices) and 99.6% (in the prediction of the inner points
of β-strands). The results show also that small and intelligible models can be
constructed.

The rest of the paper is organised as follows. Section 2 gives basic definitions
on proteins required to understand the reported work. Related work is reported in
Section 3. Our experiments, together with the results obtained, are presented in
Section 4. Conclusions are presented in Section 5.

2 Proteins

Proteins are build up of amino acids, connected by peptide bonds between
the carboxyl and amino groups of adjacent amino acid residues as shown in
Figure 1b) [Petsko and Petsko, 2004]. All amino acids have common structural
characteristics that include an α carbon to which are connected an amino group
and a carboxyl group, an hydrogen and a variable side chain as shown in Figure 1
a). It is the nature of side chain that determines the identity of a specific amino
acid. There are 20 different amino acids that integrate proteins in cells. Once the
amino acids are connected in the protein chain they are designated as residues.

In order to function in an organism a protein has to assume a certain 3D
conformation. To achieve those conformations apart from the peptide bonds there
have to be extra types of weaker bonds between residues. These extra bonds are
responsible for the secondary and tertiary structure of a protein [Gsponer et al.,
2003].

One can identify four types of structures in a protein. The primary structure of
a protein corresponds to the linear sequence of residues. The secondary structure is
composed by subsets of residues arranged mainly as α-helices and β-sheets, as seen
in Figure 2. The tertiary structure results for the folding of α-helices or β-sheets.
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Figure 2 Secondary structure conformations of a protein: α-helices (left); β-sheet (right).

The quaternary structure results from the interaction of two or more polypeptide
chains.

Secondary structure’s conformations, α-helices and β-sheets, were discovered in
1951 by Linus Carl Pauling. These secondary structure’s conformations are obtained
due to the flexibility of the peptide chain that can rotate over three different chemical
bonds. Most of the existing proteins have approximately 70% of their structure as
helices that is the most common type of secondary structure.

3 Related Work

Arguably, protein structure prediction is a fundamental problem in Bioinformatics.
Early work by Chou and Fasman [1978], based on single residue statistics, looked
for contiguous regions of residues that have an high probability of belonging
to a secondary structure. The protein sample used was very small, resulting in
overestimating the accuracy of the reported study.

Qian et al [Qian and Sejnowski, 1988] used neural networks to predict secondary
structures but achieved an accuracy of only 64.3%. They used a window technique
(of size 13) where the secondary structure of the central residues was predicted on
the base of its 12 neighbours.

Neural Networks were also used in the work by Rost and Sander [1993]. They
used a database of 130 representative protein chains of known structure and achieved
an accuracy of 69.7%. Later, Rost and Sanderwith used the PHD [Rost, 1996]
method on the RS126 data set and achieved an accuracy of 73.5%. JPRED [Cuff
et al., 1998] exploited multiple sequence alignments to obtain an accuracy of 72.9%.
NNSSP [Salamov and Solovyev, 1995] is a scored nearest neighbour method by
considering the position of N and C terminal in α-helices and β-strands. Its prediction
accuracy on the RS126 data set was 72.7%. PREDATOR [Frishman and Argos,
1997] used propensity values for seven secondary structures and local sequence
alignment. The prediction accuracy of this method for RS126 data set achieved
70.3%. PSIPRED [Jones, 1999] used a position-specific scoring matrix generated by
PSI-BLAST to predict protein secondary structure and achieved 78.3.

DSC [King and Sternberg, 1996] achieved 71.1% prediction accuracy in the
RS126 data set by exploring amino acid profiles, conservation weights, indels, and
hydrophobicity.
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Using a Inductive Logic Programming (ILP) another series of studies improved
the secondary structure prediction score. In 1990 Muggleton et al. [Muggleton,
1992] used only 16 proteins (in contrast with 1499 used in our study) and the
GOLEM [Muggleton and Feng, 1990] ILP system to predict if a given residue in
a given position belongs or not to an α-helix. They achieved an accuracy of 81%.
Previous results had been reported by D. Kneller and Langridge [1990] using Neural
Networks, achieving only 75% accuracy. The propositional learner PROMIS [King
and Sternberg, 1990, Sternberg et al., 1992] achieved 73% accuracy on the GOLEM
data set.

It has been shown that the helical occurrence of the 20 type of residues is highly
dependent on the location, with a clear distinction between N-terminal, C-terminal
and interior positions [Richardson and Richardson, 1988]. The computation of amino
acid propensities may be a valuable information both for pre-processing the data and
for assessing the quality of the constructed models [Fonseca et al., 2008]. According
to Blader et al. [1993] an important influencing factor in the propensity to form
α-helices is the hydrophobicity of the side-chain. Hydrophobic surfaces turn into
the inside of the chain giving a strong contribution to the formation of α-helices.
It is also known that the protein surrounding environment has influence in the
formation of α-helices. Modelling the influence of the environment in the formation
of α-helices, although important, is very complex from a data analysis point of view
[Krittanai and Johnson, 2000].

4 Experiments

4.1 Experimental Settings

To construct models to predict the remarkable points of secondary structures we
have proceeded as follows. We first downloaded a list of proteins with low structure
identity from the Dunbrak’s web site [Wang and Dunbrack Jr, 2003]1. The list
contains 1499 proteins with structure identity less than 20%. We then downloaded
the PDB2 for each of the protein in the list. Each PDB was processed in order to
extract secondary structure information and the linear sequence of residues of the
protein. We have used a data set much larger than the standard RS126 dataset of
Rost et al. [Rost, 1996]. We have also used a data set of proteins with structure
identity (20%) lesser than the one used in RS126 (25%).

In our data sets an example is a sequence of a fixed number of residues (window)
before and after the remarkable points3 of secondary structures. We have produced
24 data sets using 4 different window sizes (2, 3, 4 and 5), 3 types of remarkable

Window Size (W)

W=2 W=3 W=4 W=5

E A E A E A E A

62,050 270 49,242 451 40,528 632 34,336 813

Table 1 Characterisation of the data sets according to the number of examples (E) and
number of attributes (A). The number of examples and attributes depends only
on the window size (W).
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polarity hydrophobicity size isoelectric

charge h-bonddonor xlogp3 side chain polarity

acidity rotatable bond count h-bondacceptor side chain charge

Table 2 List of amino acid properties used in the study.

points (start, inner and end points) and 2 types of structures (α-helices and β-sheets).
The size of the data sets, for the different window sizes, is shown in Table 1. To
obtain the example sequences to use we have selected sequences that are:

1. at the start of a α-helix;

2. at the end of a α-helix;

3. in the interior of a α-helix;

4. at the start of a β-strand;

5. at the end of a β-strand;

6. in the interior of a β-strand.

To do so, we identify the “special” point where the secondary structures start or end,
and then add W residues before and after that point. Therefore the sequences are
of size 2×W + 1, where W ∈ [2, 3, 4, 5]. In the interior of a secondary structure we
just pick sequences of 2×W + 1 residues that do not overlap. With these sequences
we envisage to study the start, interior and end points of secondary structures.

The attributes used to characterise the examples are of three main types: whole
structure attributes; window-based attributes; and attributes based on differences
between the ”before” and “after windows”.

The whole structure attributes include: the size of the structure; the percentage
of hydrophobic residues in the structure; the percentage of polar residues in the
structure; the average value of the hydrophobic degree; the average value of the
hydrophilic degree; the average volume of the residues; the average area of the
residues in the structure; the average mass of the residues in the structure; the
average isoelectric point of the residues; and, the average topological polar surface
area.

For the window-based attributes we have computed a set of attributes based on
the properties of residues shown in Table 2. For each amino acid of the window and
amino acid property we computed the following attributes: the value of the property
of each residue in the window; either if the property “increases” or decreases the
value along the window; the number of residues in the window with a specified value
and; whether a residue at each position of the window belongs to a pre-computed
set of values.

For the attributes capturing the differences we have computed the average values
of numerical properties of amino acids in each window and then define the a new
attribute as the difference in the values of those two averages. For non numerical
properties we first performed some countings in the windows before and after
the critical point. Based on those countings we have defined new attribute as the
difference between those countings. For example we have counted the number of
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Table 3 Performance measures (b) used in the experiments computed after the
confusion matrix (a).

actual
p n

TP FP p predicted
FN TN n

(a)

Accuracy True Positive Rate True Negative Rate

TP+TN
TP+TN+FP+FN

× 100% TP
(TP+FN

× 100% TN
TN+FP

× 100%

(b)

hydrofobic amino acids in the before and after window and the define a new attribute
as the difference between those countings.

Altogether there are between 253 (window size of 2) to 745 (window size of
5) attributes. In each of the 6 types of data sets, the sequences with one chosen
remarkable point is taken as belonging to one class and all other sequences are
assumed to belong to the other class. For example when predicting the end-point of
β-strands the sequences with a β-strands end-point are in one class and all other
sequences (start-point of both helices and strands, inner points of both helices and
strands and the end-points of helices) are in the other class (thus transforming the
problem to a binary classification problem).

The quality of the constructed models was estimated using measures computed
after the Confusion Matrix4 (Table 3 (a)). From the Confusion Matrix we compute
the Accuracy measure, the True Positive Rate (TPR) and the True Negative Rate
(TNR) of the model (Table 3 (b)). The Accuracy captures the global performance of
the model whereas the TPR and the TNR provide information on the performance
of predicting the individual classes.

The experiments were done in a machine with 2 quad-core Xeon 2.4GHz and 32
GB of RAM, running Ubuntu 8.10. We used machine learning algorithms from the
Weka 3.6.0 toolkit [Witten and Frank, 2005] and a 10-fold cross validation procedure
to estimate the quality of constructed models. We have used rule induction algorithms
(Ridor), decision trees (J48 [Quinlan, 1993] and ADTree [Freund and Mason, 1999]),
functional trees (FT [Gama, 2004][Landwehr et al., 2005]), instance-based learning
(IBk [Aha and Kibler, 1991]), bayesian algorithms (NaiveBayes and BayesNet [John
and Langley, 1995]) and one ensemble method (RandomForest [Breiman, 2001]5).

4.2 Experimental Results

The results obtained with the Machine Learning algorithms are shown in the Tables 4
through 9.

The results presented show high values of accuracy with a minimum of 84.9%, in
the prediction of the starting point of helices using Functional Trees, and a maximum
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Table 4 Results of predicting α-helices starting point. The accuracy results (%) are
shown in (a). The improvement over the majority class prediction is shown in (b).
The true positive rate (%) results are shown in (c). The true negative rate (%)
results are shown in (d). Results were obtained for windows of size 2, 3, 4 and 5
residues. RF stands for RandomForest and FT for Functional Tree.

Window size
Algorithm 2 3 4 5
Ridor 83.4 80.6 79.2 78.0

J48 84.0 81.6 79.6 77.7
RF 84.2 80.1 77.7 74.1
FT 84.9 82.8 81.7 79.7
ADTree 83.2 80.4 78.3 76.3

IBk 81.9 76.6 72.5 69.2
NaiveBayes 70.4 65.8 63.9 63.4
BayesNet 69.7 65.9 64.6 64.2

ZeroR 82.5 76.9 72.4 67.7

Window size
Algorithm 2 3 4 5
Ridor +0.9 +3.7 +6.8 +10.3

J48 +1.5 +4.7 +7.2 +10
RF +1.7 +3.2 +5.3 +6.4

FT +2.9 +5.9 +9.3 +12.0

ADTree +0.7 +3.5 +5.9 +8.6
IBk -0.6 -0.3 +0.1 +1.5

NaiveBayes -12.1 -11.1 -8.5 -4.3

BayesNet -12.8 -11.0 -7.8 -3.5

(a) (b)
Window size

Algorithm 2 3 4 5
Ridor 16.5 24.4 36.3 45.4
J48 28.0 34.7 44.1 49.3
RF 31.0 38.5 45.3 49.5
FT 36.2 45.8 53.5 60.5

ADTree 22.4 33.0 41.6 48.8
IBk 14.6 22.6 29.2 37.0
NaiveBayes 50.3 53.3 57.5 59.1

BayesNet 54.8 55.5 58.9 60.0

Window size
Algorithm 2 3 4 5
Ridor 98.6 97.4 95.6 93.6
J48 96.8 95.6 93.2 91.2
RF 96.2 92.6 90.1 85.9
FT 96.0 93.9 92.5 88.9

ADTree 97.0 94.6 92.3 89.4
IBk 97.2 92.8 89.0 84.5
NaiveBayes 75.0 69.5 66.4 65.5

BayesNet 73.1 69.0 66.8 66.2
(c) (d)

Table 5 Results of predicting α-helices inner points. The accuracy results (%) are
shown in (a). The improvement over the majority class prediction is shown in (b).
The true positive rate (%) results are shown in (c). The true negative rate (%)
results are shown in (d). Results were obtained for windows of size 2, 3, 4 and 5
residues. RF stands for RandomForest and FT for Functional Tree.

Window size
Algorithm 2 3 4 5

Ridor 84.6 87.5 90.6 92.2
J48 85.7 88.0 90.5 92.3
RF 84.9 86.5 88.6 90.2

FT 86.7 89.5 92.4 93.8
ADTree 85.2 88.2 91.3 93.1
IBk 77.8 83.0 85.9 88.5

NaiveBayes 73.2 73.5 74.4 80.4
BayesNet 76.3 77.3 77.7 80.8

ZeroR 75.9 81.2 84.5 87.3

Window size
Algorithm 2 3 4 5
Ridor +8.7 +6.3 +6.1 +4.9

J48 +9.8 +6.8 +6.0 +5.0
RF +9.0 +5.3 +4.1 +2.9
FT +10.8 +8.3 +7.9 +6.5

ADTree +9.3 +7.0 +6.8 +5.8
IBk +1.9 +1.8 +1.4 +1.2
NaiveBayes -2.7 -7-7 -10.1 -6.9

BayesNet +0.4 -3.9 -6.9 -6.5

(a) (b)
Window size

Algorithm 2 3 4 5
Ridor 57.3 52.0 56.0 65.6
J48 65.8 60.0 60.8 64.3

RF 54.6 39.3 31.8 26.5
FT 69.0 67.3 72.5 73.9

ADTree 65.2 63.6 66.9 68.7
IBk 23.1 18.6 14.4 18.9

NaiveBayes 63.1 64.2 63.2 66.7
BayesNet 68.1 66.9 66.0 69.9

Window size
Algorithm 2 3 4 5
Ridor 93.2 95.8 96.9 96.1
J48 91.9 94.5 96.0 96.3

RF 94.6 97.4 99.0 99.5
FT 92.3 94.7 96.0 96.7

ADTree 91.6 93.9 95.7 96.7
IBk 95.2 98.0 99.0 98.7

NaiveBayes 76.5 75.7 76.4 82.3
BayesNet 78.9 79.7 79.8 82.4

(c) (d)
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Table 6 Results of predicting α-helices end point. The accuracy results (%) are shown
in (a). The improvement over the majority class prediction is shown in (b). The
true positive rate (%) results are shown in (c). The true negative rate (%) results
are shown in (d). Results were obtained for windows of size 2, 3, 4 and 5 residues.
RF stands for RandomForest and FT for Functional Tree.

Window size
Algorithm 2 3 4 5
Ridor 83.4 80.1 79.3 78.2

J48 83.9 81.1 79.5 77.6
RF 83.3 78.6 76.9 72.0
FT 85.0 83.2 81.6 80.4
ADTree 82.7 80.4 77.6 75.9

IBk 82.2 76.5 72.6 68.8
NaiveBayes 69.6 66.8 65.3 63.8
BayesNet 68.6 67.1 66.1 64.8

ZeroR 81.8 77.4 72.8 68.2

Window size
Algorithm 2 3 4 5
Ridor +1.6 +2.7 +6.6 +10.0

J48 +2.1 +3.7 +6.7 +9.4
RF +1.3 +1.2 +4.1 +3.8

FT +3.2 +5.8 +8.8 +12.2

ADTree +0.9 +3.0 +4.8 +7.7
IBk +0.4 -0.9 -0.2 +0.6

NaiveBayes -12.2 -10.6 -7.5 -4.4

BayesNet -13.2 -10.3 -6.7 -3.4

(a) (b)
Window size

Algorithm 2 3 4 5
Ridor 14.0 31.0 55.3 55.3
J48 22.7 32.1 45.5 54.4
RF 32.4 33.2 43.8 43.5
FT 36.3 48.3 57.7 64.1

ADTree 15.6 29.1 41.8 58.9
IBk 6.7 22.9 28.0 34.3
NaiveBayes 48.3 54.8 58.4 58.9

BayesNet 55.3 58.9 61.3 61.0

Window size
Algorithm 2 3 4 5
Ridor 98.9 94.5 88.3 88.8
J48 97.5 95.5 92.1 88.4
RF 94.5 91.9 89.3 85.2
FT 95.8 93.4 90.6 88.0

ADTree 97.6 95.3 90.9 84.7
IBk 98.9 92.1 89.3 84.9
NaiveBayes 74.3 70.3 67.8 66.1

BayesNet 71.6 69.5 67.8 66.5
(c) (d)

Table 7 Results of predicting β-strand start point. The accuracy results (%) are shown
in (a). The improvement over the majority class prediction is shown in (b). The
true positive rate (%) results are shown in (c). The true negative rate (%) results
are shown in (d). Results were obtained for windows of size 2, 3, 4 and 5 residues.
RF stands for RandomForest and FT for Functional Tree.

Window size
Algorithm 2 3 4 5

Ridor 89.2 90.0 91.3 92.6
J48 89.5 90.3 91.4 92.5
RF 92.8 93.4 93.7 94.9

FT 90.6 91.7 92.7 93.8
ADTree 88.9 88.4 90.3 91.6
IBk 86.4 85.7 87.4 89.4

NaiveBayes 72.2 72.6 71.8 72.7
BayesNet 73.6 73.6 72.9 73.0

ZeroR 84.1 84.2 86.1 88.8

Window size
Algorithm 2 3 4 5
Ridor +5.1 +5.8 +5.2 +3.8

J48 +5.4 +6.1 +5.3 +3.7
RF +8.7 +9.2 +7.6 +6.1
FT +6.5 +7.5 +6.6 +5.0

ADTree +4.8 +4.2 +4.2 +2.8
IBk +2.3 +1.5 +1.3 +0.6
NaiveBayes -11.9 -11.6 -14.3 -16.1

BayesNet -10.5 -10.6 -13.2 -15.8

(a) (b)
Window size

Algorithm 2 3 4 5
Ridor 41.9 46.4 47.6 46.3
J48 50.2 60.7 56.8 51.1

RF 64.0 69.5 61.5 60.3
FT 58.0 64.7 66.2 71.1

ADTree 41.4 46.1 50.3 47.3
IBk 45.6 49.3 47.9 44.8

NaiveBayes 66.0 70.6 70.1 70.3
BayesNet 70.0 72.4 71.7 71.7

Window size
Algorithm 2 3 4 5
Ridor 98.1 98.1 98.3 98.4
J48 96.9 95.9 97.0 97.8

RF 98.2 97.8 98.9 99.3
FT 96.8 96.7 97.0 96.7

ADTree 96.9 96.3 96.8 97.3
IBk 94.1 92.5 93.8 95.1

NaiveBayes 73.3 73.0 72.1 73.0
BayesNet 74.2 73.8 73.1 73.1

(c) (d)
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Table 8 Results of predicting β-strand inner points. The accuracy results (%) are shown
in (a). The improvement over the majority class prediction is shown in (b). The
true positive rate (%) results are shown in (c). The true negative rate (%) results
are shown in (d). Results were obtained for windows of size 2, 3, 4 and 5 residues.
RF stands for RandomForest and FT for Functional Tree.

Window size
Algorithm 2 3 4 5
Ridor 92.9 96.1 98.0 99.1

J48 93.0 96.1 98.0 99.1
RF 85.5 86.5 88.6 90.2
FT 93.1 96.3 98.3 99.3
ADTree 92.8 96.0 98.0 99.1

IBk 94.8 97.5 99.0 99.6
NaiveBayes 72.2 75.2 77.0 85.0
BayesNet 75.8 76.1 77.8 78.5

ZeroR 92.4 95.9 96.1 99.1

Window size
Algorithm 2 3 4 5
Ridor +0.5 +0.1 +8.0 0.0

J48 +0.6 +0.1 +8.0 0.0
RF -6.9 -9.4 -1.4 -8.9

FT +0.7 +0.4 +8.3 +0.2

ADTree +0.4 +0.1 +8.0 0.0
IBk +2.4 +1.6 +9.0 +0.5

NaiveBayes -20.2 -20.7 -13.0 -14.1

BayesNet -16.6 -19.8 -12.2 -20.6

(a) (b)
Window size

Algorithm 2 3 4 5
Ridor 11.0 8.1 0.7 0.0
J48 28.2 13.8 0.0 0.0
RF 53.1 39.3 31.8 26.5
FT 47.2 47.6 47.9 56.7

ADTree 13.6 6.7 0.6 1.5
IBk 35.2 38.8 48.6 58.0
NaiveBayes 57.4 59.9 54.7 46.1

BayesNet 63.7 64.4 61.0 55.8

Window size
Algorithm 2 3 4 5
Ridor 99.6 99.8 100.0 100.0
J48 98.3 99.6 100.0 100.0
RF 95.8 97.4 99.0 99.5
FT 96.9 98.4 99.3 99.7

ADTree 99.3 99.8 100.0 100.0
IBk 99.7 100.0 100.0 100.0
NaiveBayes 73.5 75.8 77.5 85.4

BayesNet 76.8 76.6 78.1 78.7
(c) (d)

Table 9 Results of predicting β-strand end point. The accuracy results (%) are shown
in (a). The improvement over the majority class prediction is shown in (b). The
true positive rate (%) results are shown in (c). The true negative rate (%) results
are shown in (d). Results were obtained for windows of size 2, 3, 4 and 5 residues.
RF stands for RandomForest and FT for Functional Tree.

Window size
Algorithm 2 3 4 5

Ridor 89.3 89.7 91.0 92.4
J48 89.2 89.8 91.0 92.4
RF 92.7 93.1 93.9 94.7

FT 89.4 90.4 92.0 93.5
ADTree 89.0 90.1 89.6 92.5
IBk 88.1 88.6 90.3 92.3

NaiveBayes 73.1 72.3 72.2 72.8
BayesNet 73.9 73.0 73.3 73.0

ZeroR 84.3 84.3 86.2 88.9

Window size
Algorithm 2 3 4 5
Ridor +5.0 +5.4 +4.8 +3.5

J48 +4.9 +5.5 +4.8 +3.5
RF +8.4 +8.8 +7.7 +5.8
FT +5.1 +6.1 +5.8 +4.6

ADTree +4.7 +5.8 +3.4 +3.6
IBk +3.8 +4.3 +4.1 +3.4
NaiveBayes -11.2 -12.0 -14.0 -16.1

BayesNet -10.4 -11.3 -12.9 -15.9

(a) (b)
Window size

Algorithm 2 3 4 5
Ridor 42.6 45.2 48.1 42.8
J48 50.9 52.3 54.6 48.5

RF 64.0 65.6 64.8 57.4
FT 65.0 68.8 70.1 70.0

ADTree 48.0 54.4 41.8 53.2
IBk 36.1 37.2 35.4 33.8

NaiveBayes 66.0 69.6 70.7 70.1
BayesNet 69.8 71.2 72.6 71.8

Window size
Algorithm 2 3 4 5
Ridor 97.9 98.0 97.2 98.6
J48 96.4 96.7 96.9 97.9

RF 98.0 98.2 98.5 99.3
FT 94.0 94.4 95.6 96.6

ADTree 96.6 96.7 96.8 97.4
IBk 97.8 98.2 99.1 99.7

NaiveBayes 74.4 72.8 72.5 73.1
BayesNet 74.7 73.3 73.4 73.2

(c) (d)
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criticalPointSize = tiny
| nHydroHydrophilicWb2 ≤ 1
| | xlogp3AtPositionA2 ≤ -1.5: noStart (3246.0/816.0)
| | xlogp3AtPositionA2 > -1.5: helixStart (51.0/24.0)
| nHydroHydrophilicWb2 > 1
| | rotatablebondcountAtPositionB1 ≤ 1
...
| | rotatablebondcountAtPositionB1 > 1
...
criticalPointSize = small
| criticalPtGroup = polarweak
| | chargeAtPositionGroupA2 = negativeneutral: helixStart (1778.0/390.0)
| | chargeAtPositionGroupA2 = neutralpositive
...
| criticalPointGroup = nonpolarweak: helixStart (1042.0/35.0)
criticalPointSize = large
| chargeAtPositionGroupA2 = negativeneutral
| | sizeAtPositionGroupB1 = tinysmall
...
| | sizeAtPositionGroupB1 = smalllarge
...

Figure 3 Attributes tested near the root of a 139 node tree constructed by J48.

of 99.6%, in the prediction of inner positions of β-strands also using Functional
Trees. In each table the best accuracy value was quite above the base line value.
The base line value was taken as the ZeroR prediction that is actually the majority
class prediction. Good values of TPR were also achieved with a maximum of 72.6%
in the prediction of β-strands end point. Functional Tree algorithm produce the
best results for α-helices whereas in the prediction of β-strands Bayesian Networks
achieves the best TPRs, while Random Forest and IBk the best accuracy values.
Overall Functional Trees have a very good performance both in Accuracy and TPR
in almost all prediction problems. The Bayesian Networks performed quite good in
terms of TPR in the β-sheet prediction problems.

Looking at the Tables 4,5 and 6 we see that the best TPR is obtained by
functional Trees using a window size of five. That is a reasonable result since α-
helices have 3.6 amino acids per turn of the helix, which places the C=O group of
amino acid in position P exactly in line with the H-N group of amino acid P + 4.
This happens for all algorithms in the prediction of the start of the helix and for
most algorithms in the prediction of inner and end points of helices. Since β-strands
do not have a periodic structure the window size with the best TPR are 3 and 4
suggesting that close neighbour residues are sufficient for making good predictions.

We have also investigated the use of the different types of attributes. We have
inspected the models constructed by Functional Tree and by J48. There is no
significant difference in the percentage of the different types of attribute between
the terminal points of β-strands and the inner points. There is, however, in α-
helices a significant difference in the use of attributes that differentiate properties
of the window before the remarkable point and properties of the window after
the remarkable point. The number of such attributes are much higher in the trees
prediction the start or end-point of an helix than the trees predicting inner positions.

For some data mining applications having a very high accuracy is not enough. In
some applications it would be very helpful if one can extract knowledge that helps
in the understanding of the underlying phenomena that produced the data. That is
very true for most of Biological problems addressed using data mining techniques.
Some of the algorithms used in this study can produce models that are intelligible
to experts, such as J48 and Ridor. Using J48 we manage to produce a small size
decision tree (shown in Figure 3) that uses very informative attributes near the root
of the tree.
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5 Conclusions and Future Work

In this paper we have addressed a very relevant problem in Molecular Biology,
namely that of predicting the occurrence of a secondary structure. To study these
problems we have collected sequences of amino acids from proteins described in the
PDB. For each problem of predicting a “remarkable” point is a specific structure we
have defined two class values: a class of sequences were the “remarkable” point in
study occurs and; all other types of sequences where other remarkable points not in
study occur.

We have applied a set of Machine Learning algorithms and almost all of them
made predictions above the naive procedure of predicting the majority class. We
have achieved a maximum score of 99.6% accuracy and 72.6% True Positive Rate
with an algorithm called Functional Tree. We have also managed to construct a
small decision tree that has accuracy under 80%, but that is an intelligible model
that can help in unveiling the chemical justification of the formation of α-helices.
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Notes

1http://dunbrack.fccc.edu/Guoli/PISCES.php

2http://www.rcsb.org/pdb/home/home.do

3Start, inner position and end of a secondary structure

4Also known as Contingency Table

5Basically RandomForest constructs several CART-like trees [Breiman et al., 1984]
and produces its prediction by combining the prediction of the constructed trees.


