
On Applying Or-Parallelism to Tabled
Evaluations

Ricardo Rocha Fernando Silva V́ıtor Santos Costa

Technical Report Series: DCC-97-2

Departamento de Ciência de Computadores – Faculdade de Ciências

&

Laboratório de Inteligência Artificial e Ciência de Computadores

Universidade do Porto

Rua do Campo Alegre, 823 4150 Porto, Portugal

Tel: +351+2+6078830 – Fax: +351+2+6003654

http://www.ncc.up.pt/fcup/DCC/Pubs/treports.html



On Applying Or-Parallelism to Tabled Evaluations

Ricardo Rocha Fernando Silva V́ıtor Santos Costa

{ricroc,fds,vsc}@ncc.up.pt

DCC - FC & LIACC, University of Porto

Rua do Campo Alegre, 823

4150 Porto – Portugal

Abstract

One important advantage of logic programming is that it allows the implicit exploitation
of parallelism. Towards this goal, we suggest that or-parallelism can be efficiently exploited in
tabling systems and propose two alternative approaches, Or-Parallelism within Tabling (OPT)
and Tabling within Or-Parallelism (TOP). We then focus on OPT approach where environment
copying is used to implement or-parallelism. We give the necessary data structures and data
areas and describe an algorithm for the public completion operation.

Keywords: Parallel Logic Programming, Or-parallelism, Tabling.

1 Introduction

Prolog is an extremely popular and powerful logic programming language. Prolog is widely used to
program symbolic computing applications in areas such as Artificial Intelligence, Natural Language,
Knowledge Based Systems, Machine Learning, Database Management or Expert Systems. Prolog’s
popularity was also sparked by the success in Prolog compilation technology which has enabled Prolog
programs to run nearly as fast as their C counterparts [War83, Van90].

Prolog execution is based on SLD resolution for Horn clauses. This execution strategy allows
efficient implementation, but suffers from fundamental limitations, such as in dealing with infinite
loops and redundant subcomputations. Even the extension of SLD resolution to support negation-
by-failure (SLDNF) has not proved to be appropriate in important areas of application, such as
Deductive Databases, Non-Monotonic Reasoning and models for executable specifications, such as
Model Checking.

SLG resolution [CW93] is a tabling based method of resolution that overcomes some limitations
of SLDNF. The method evaluates programs by storing newly found answers of current subgoals in a
table. The method then uses this table to verify for repeated subgoals. Whenever such a repeated
subgoal is found, the subgoal’s answers are recalled from the table, instead of being resolved against
the program clauses. SLG resolution can thus reduce the search space for logic programs and in fact
it has been proven that it can avoid looping and thus terminate for all programs with finite models.

The XSB-Prolog system is a Prolog system that implements tabling, providing a sequential
implementation of SLG resolution for the well-founded semantics [SSW94, SSW96]. The system
was attained by extending the WAM into the SLG-WAM, an abstract machine designed to fully
integrate Prolog execution and tabling with minimal overhead.

One important advantage of logic programming is that it allows the implicit exploitation of
parallelism. This is true for SLD-based systems, and should also apply for SLG-based systems. A first
proposal on how to exploit implicit parallelism in tabling systems was table-parallelism [FHSW95].
In this model, each tabled subgoal is associated with a new computational thread, a generator
thread, that will produce and add the answers into the table. Threads that call a tabled subgoal
will asynchronously consume answers as they are added to the table. Table-parallelism resembles

2



the Linda’s tuple-space model, in that it views the table as a shared data structure through which
cooperating agents may synchronize and communicate. As the tuple-space model, it is amenable to
shared and distributed memory implementations. Note that table-parallelism requires a deep redesign
of tabling systems, including new scheduling strategies and a new completion algorithm. Note also
that in this scheme parallelism results from having many tabled subgoals, and that parallelism arising
from many alternatives to tabled subgoals or from having non-tabled subgoals will be hard to exploit.
Last, load balancing for this scheme can be difficult if the number of tabled subgoals is small, as some
subgoals may have much larger search spaces than others. Even for larger numbers of subgoals
scheduling may be difficult, as dependencies between tabled subgoals can be quite intricate. We
would expect that choosing which subgoals to allocate to which processors even harder problem than
for traditional parallel systems.

Ideally, we would like to exploit maximum parallelism and take maximum advantage of current
technology for parallel and tabling systems. In order to do so an important observation is that tabling
is still about exploiting alternatives to find solutions for goals. Or-parallel systems are precisely
designed to accelerate exploitation of alternatives. Our suggestion is that all alternatives to subgoals
should be amenable to parallel exploitation, be they from normal or tabled subgoals, and that or-
parallel frameworks can be used as the basis to do so. This gives an unified approach with two major
advantages. First, it does not restrict parallelism to tabled subgoals, and, second, it can draw from
the large experience in implementing or-parallel systems. We believe that this approach can be an
efficient model for the exploitation of parallelism in tabling-based systems.

One of interesting characteristic of tabling-based systems is that some subgoals need to suspend
on other subgoals obtaining the full set of answers. Or-parallel systems also need to suspend, either
while waiting for leftmostness in the case of side-effects, or to avoid speculative execution. The need
for suspending introduces an important similarity between tabling and or-parallelism, and results in
two different approaches to exploiting or-parallelism in a tabled system.

The first approach is to consider tabled computations to be computations that have unexploited
alternatives. These alternatives can be stolen by other workers (processors) and exploited in parallel,
without knowledge on how they were generated. This principle is particularly close to the environment
copying model, as used in the Muse system [AK90, Kar92]. The second approach unifies or-parallel
suspension and suspension due to tabling. A suspended subgoal can wake up for several reasons, such
as new alternatives having been found for the subgoal, the subgoal becoming leftmost, or just for lack
of non speculative work in the search tree. The unified suspension mechanism must be in this case
sufficiently efficient to support all forms of suspension with minimal overhead. This approach seems
therefore closer for the SRI model [War87a], used in Aurora [LBD+88, Car90], a model designed in
a way that suspension can be implemented with little overhead.

In this paper, we first briefly introduce the general concepts underlying tabling and its implemen-
tation using the SLG-WAM. Next, we discuss the fundamental issues in supporting or-parallelism for
SLG resolution and discuss the two alternative approaches. Following in the vein of Muse [AK90]
and YapOr [Roc96] we present a computation model based in environment copying and designed to
require the least changes to the XSB-engine. We discuss the new data structures and data areas that
are required for this model, and present a completion algorithm for this model.

2 Tabling Concepts and the SLG-WAM

The SLG evaluation process can be modeled by an SLG-forest. Whenever a tabled subgoal, S is
called for the first time a new tree with root S is added to this forest. Simultaneously, an entry for S
is allocated in the table of answers. This entry will collect all the answers generated for S. Repeated
calls to variants of S are resolved by consuming the answers already stored in the table. Meanwhile,
as new answers are generated to S, they are inserted into the table and returned to all consumer
subgoals. Within this model the nodes in the trees are classified as follows:

Generator (Producer) nodes, nodes that use program clause resolution to produce answers.

Active (Consumer) nodes, nodes that consume answers from the table.

3



Interior nodes, nodes corresponding to predicates not tabled and that are evaluated by SLD
resolution.

Space for a tree can be reclaimed when all possible resolutions for its root node have been made,
that is, when the subgoal has been completely evaluated. Note that a number of subgoals may be
mutually dependent, forming a strongly connected component, or (SCC ), and therefore can only be
completed together. This completion is done by the leader of the SCC, which is the oldest subgoal in
the SCC, when all possible resolutions have been made for all subgoals in the SCC. Hence, in order
to efficiently evaluate programs one needs an efficient and dynamic detection scheme to determine
when both the subgoals in an SCC and the SCC itself have been completely evaluated.

Tabling-based evaluation has four main types of operation:

Tabled Subgoal Call, looks up the subgoal in the table. If the subgoal is not found, inserts it into
the table.

New Answer, verifies whether a newly generated answer is already in the table and if not inserts
it into the table.

Answer Return, consumes an answer already in the table.

Completion, determines whether an SCC is completely evaluated.

The XSB system implements SLG resolution for the well-founded semantics. This implementation
was attained by extending the WAM into the SLG-WAM, with minimal overhead. The SLG-WAM
contains three main memory areas: the usual WAM stacks; a table space used to save the answers for
tabled subgoals; and a completion stack used to detect when a set of subgoals is completely evaluated.

Active (consumer) nodes must suspend when they get to a point in which they have consumed all
available answers but the correspondent tabled subgoal has not yet completed and new answers may
still be generated. In the SLG-WAM the suspension mechanism is implemented through a new set of
registers, which freeze the WAM stacks in the suspension point and prevent all data belonging to the
suspended branch from being erased. A suspended branch is resumed by restoring the information
saved in the corresponding active node and by using a forward trail to restore the bindings of the
suspended branch.

The SLG-WAM implements this strategy by setting the failure continuation field in the active
nodes to a special answer return instruction. This instruction is responsible for resuming the
computation, guaranteeing that all answers are given once and just once to every active node.
Through failure and backtracking to an active node, the answer return instruction gets executed
and resuming takes place.

It is upon the leader of an SCC to detect its completion. This operation is dynamically executed
and must be efficient implemented in order to minimize overheads. The SLG-WAM achieves this
by setting the failure continuation field to a completion instruction when a generator node resolves
the last applicable program clause for the correspondent subgoal. This instruction is responsible for
ensuring the total and correct evaluation of the subgoal search space. The instruction is executed
through backtracking, and in the default XSB-scheduling it restarts the deeper active node with an
unconsumed answer from this subgoal. The computation thus send newly found answers to all active
nodes, backtrack through answers, and fail to the generator node until no more unconsumed answers
are left. At this point, if the generator node is the leader of its SCC, a fix-point is reached and all
dependent subgoals are completed. Otherwise, the computation will fail back to the previous node
and the fix-point check will later be executed by the leader of the SCC.

3 Or-Parallelism and Tabled Evaluations

The key idea in our proposal is that we want to explore in parallel the available alternatives, be they
from generator nodes, active nodes, or interior nodes. For efficiency reasons we are most interested
in multi-sequential systems [War87b], that is, in systems where workers (or engines, or agents, or
processors) compute independently in the search tree, and mainly communicate with each other to

4



fetch work. Assuming that most of the time workers will be doing resolution, we present two major
approaches to the problem.

Or-Parallelism within Tabling (OPT)

The first approach, that we shall name as Or-Parallelism within Tabling (OPT), considers that
workers are full SLG-WAM engines. In other words, workers will spend most of their time executing
as if they were sequential SLG-WAM engines, creating all three types of nodes, fully implementing
suspension of tabled subgoals, and sending answers from generator to active nodes. Only when
workers run out of alternatives to exploit they will need to take alternatives from other workers
nodes. In the OPT approach any unexploited alternative can be taken regardless of whether the
node it originates from is a generator, active or interior node. Parallelism thus arises from both
tabled and non-tabled subgoals. Figure 1 gives an example for the following small program and the
query a(X).

:- table a/1.

a(X) :- a(X).

a(X) :- b(X).

b(1).

b(X) :- ...

b(X) :- ...

?- a(X).

Consider that worker W1 executes the query goal. It first inserts an entry for the tabled subgoal
a(X) into the table and creates a generator node for it. The execution of the first alternative leads
to a recursive call for a/1, thus the worker creates an active node for a/1 and backtracks. The next
alternative finds a non-tabled subgoal b/1 for which an interior node is created. The first alternative
for b/1 succeeds and an answer for a(X) is therefore found (a(1)). The worker inserts the newly
found answer in the table and then starts exploiting the next alternative of b/1.

Generator Node

Active Node

Interior Node

Private Branch

Shared Branch

New Answer

One Worker (W1) Two workers (W1 and W2)

W2

Completed Branch

a(1)

a(X) b(X)

W1

a(X)

X=1

a(1)

a(Y) b(X)

W1

a(X)

X=1

Figure 1: Sharing work in a SLG tree.

At this point, a second worker (W2) moves in to share work. Consider that worker W1 decides
to share work up to its last private node (that is, the interior node for b/1). The two workers will

5



share three nodes: the generator node for a/1, the active node for a/1 and the interior node for b/1.
Worker W2 takes the next unexploited alternative of b/1 and from now on, both workers can quickly
find further answers for a(X) and any of them can restart the shared active node.

The OPT approach fits naturally with environment-copying based systems such as Muse. In these
systems the act of sharing work can be seen as copying the stacks from one worker to another. Shared
nodes also receive a pointer to a shared data area that contains synchronization and communication
data between workers. As we explain in detail later this area can also be used to communicate
information regarding the SLG execution.

Tabling within Or-Parallelism (TOP)

The second approach, that we shall name as Tabling within Or-Parallelism (TOP), considers that
there is a shared tree and that workers only manage a logical branch, not a whole part of the tree. For
instance, when worker W1 suspends an active node A, W1 backtracks and takes an alternative branch
in the upper node. In the TOP approach the suspended node A thus stops being the responsibility
of W1 and becomes, instead, shared work that anyone can take. Before W1 leaves the active node A

it has to make the whole branch public.
Figure 2 shows parallel execution for the same program under this approach. The left figure shows

that as soon as W1 suspends on active node for a/1, it makes the current branch of the search tree
public and backtracks to the upper node. The active node for a/1 can only be resumed after answers
to a(X) are found. In the left figure an answer for subgoal a(X) was found. So, worker W2 can choose
whether to resume the active node with the newly found answer or to ask worker W1 to share his
private nodes. In this case we represent the situation where worker W2 took the shared work.

Generator Node

Active Node

Interior Node

Private Branch

Shared Branch

New Answer

One Worker (W1) Two workers (W1 and W2)

W2

Completed Branch

a(1)

a(X) b(X)

W1

a(X)

X=1

a(1)

a(Y) b(X)

W1

a(X)

X=1

a(1)

Figure 2: Unifying suspension in parallelized tabling execution.

The major advantage of the TOP approach is that it unifies the notion of suspension. In other
words, the system can handle suspensions from or-parallelism and from tabling in the same framework.
Moreover, the state of the worker is more clearly defined, because a worker occupies the tip of a
single branch in the search tree. Last, implementations of this approach should also spend less
memory, because a suspended branch will only appear once, instead of possibly several times for
several workers. On the other hand, for the TOP approach to work efficiently, suspension must be an
efficient operation for both or-parallelism and tabling. This means that this approach is more natural
for, say, binding arrays models where suspending is not very costly, than for environment copying
based implementations. Moreover, the TOP approach requires significant changes to the XSB-engine
in order to support the unified suspension and results in having a larger public part of the tree which
may increase overheads.

6



4 Implementing Or-Parallelism in a Tabled Evaluation

The basis of our work will be the YapOr system [Roc96], an Or-Parallel Prolog system based on
the Yap-Prolog engine and on environment copying as originally implemented in the Muse system.
In order to support tabling in our system, as in XSB Prolog, the or-parallelism within tabling
approach is the most natural one. As explained before, the OPT approach gives the highest degree of
orthogonality between or-parallelism and tabling and should thus simplify the implementation issues.

In our model, a set of workers, one per PE, will execute a tabled program by traversing its
search tree, whose nodes are entry points for parallelism. Each worker physically owns a copy of the
environment (that is WAM stacks) and shares a large area related to tabling and scheduling, that
are required to obtain a normal execution of goals in parallel.

During execution, the search tree is implicitly divided in public and private regions. Workers in
the private region execute nearly as the sequential SLG-WAM. A worker with excess of work (that is,
with private nodes with unexploited alternatives or unconsumed answers) when prompted for work
by other workers, makes public some of their private nodes. When a worker shares work with another
worker, the incremental copy technique is used to set the environment for the requesting worker.
Whenever a worker backtracks to a public node it synchronizes to perform the usual actions that are
executed in SLG-WAM. For the generator and interior nodes it takes the next alternative, and for
the active nodes it takes the next unconsumed answer. If there are no alternatives or no unconsumed
answers left, then the worker will check if it has completed the node and all the other branches below
it (that is, it realizes public completion).

During normal execution, the workers will have to execute the four main type of operations
required by tabling. However, in order to guarantee the correct functioning of these operations, when
exploiting the search tree in parallel, the workers have to be able to synchronize and communicate
among themselves. Furthermore, the completion operation is even more complex since, with the
parallel evaluation, the position of an active node relative to its generator node is not so easily
determined and this influences the way a node can be leader. Moreover, being a leader node may not
be enough to complete it.

Next we introduce the new data structures and data areas that are necessary for the implemen-
tation of combined or-parallelism and tabling and detail an algorithm for the completion operation.

Data Areas

The data areas used by the parallel implementation are shown in the memory layout depicted in
figure 3. The memory is divided into a shared area and a number of private areas, corresponding to
the number of workers in the system.

Table Space

Or-Frames Space

Resume Frames Space

Saved Stacks Space

Suspension/Resume Space

Shared Memory

Dependency Frames Space

Suspension Frames Space

WAM Stacks

WAM Stacks

Private Memory (Worker X)

Private Memory (Worker Y)

Figure 3: Memory layout for the OPT approach.

7



The shared area is divided into several sub-areas. The or-frames space is inherited from the
or-parallel implementation and is used to synchronize access to shared nodes. The table space
is inherited from the sequential tabling implementation and is implemented in shared memory to
simplify communication among workers whenever they are exploiting the same table subgoals. The
other shared spaces are introduced to support our model.

Introducing or-parallelism in a tabling system will cause workers to have active nodes for tabled
predicates, while not having the corresponding generator nodes. Conversely, the owner of a generator
node can have active nodes being executed in different workers. This may induce complex dependen-
cies between workers, therefore requiring a more elaborate completion operation – a public completion
operation – in which a completion procedure not only involves the private branch of a worker, but
also the branches from other workers within the dependency chain. The dependency frames space
holds some of the frames required by the public completion algorithm, the dependency frames. Each
dependency frame holds information about an active node and can be shared by several workers that
share the corresponding node. Each worker maintains a list of dependency frames to keep track of
the active nodes in its branch of the tree.

A worker can find that a certain node in its own branches is leader for the whole active nodes
below it, if those active nodes only depend from tabled subgoals that can be found in branches below
the leader node. Since the worker can have dependencies with other workers who share the same
node, it may not be able to complete immediately the part of the branch involved. Thus, it may
be necessary to suspend the completion operation, to resume it later when no more dependencies
exist. On the other hand, in order to allow the parallel exploitation of other alternatives, as required
by the environment copy model, it is necessary to maintain the stacks coherent with those of other
workers. These two goals can be achieved by saving in a different memory area the parts of the
stacks that correspond to the part of the search tree that has to be suspended. This memory area is
a suspension/resume space in shared memory divided in three smaller spaces. A saved stacks space
to save the corresponding stacks, a suspension frames space to hold the necessary information about
the suspended branch, and a resume frames space to hold pointers to the collected suspended frames
that have to be resumed.

Public Completion

Detection of completion in a sequential model is a non-trivial problem. In a parallel model the
difficulties are even more considerable, hence implementation of an efficient algorithm requires great
care in order to keep to a minimum the synchronization requirements between workers.

In our algorithm, a unique depth-first number (DFN ) is associated with every node. If the node
is an active node, then it is also necessary to allocate a dependency frame and to attach it to the list
of dependency frames of the worker. One of the most important fields in the dependency frame is
the DFNLink field. For a node C, this field stores the depth-first number for the depth-most node
D such that node D is an ancestor of node C, and one of the branches below node D contains the
generator node for the current active node (see Figure 4).

For a worker to test whether a certain node N of its own branch is leader, it has to check whether
the DFN for node N is equal to the smallest DFNLink field found in the dependency frames of
the active nodes below node N. For instance, in figure 4 the workers 1 and 2 have leader nodes at
generator node a and interior node b respectively. Notice that all kinds of nodes can be leaders in a
worker’s branch.

When a leader node contains active nodes below it and is shared by other workers, this means
that it depends on branches explored by other workers. Thus, even after a worker finds a leader node,
it may not execute the completion operation immediately since there may be other workers sharing
the node that can influence the leader branch. For instance, these workers may still find new answers
for an active node in the leader’s branch, in which case the leader must be resumed to consume the
new answers. As a result, it becomes necessary to suspend the leader branch. This includes saving
all stacks to the saved-stacks space, associating the suspension frame that has been allocated with
the respective node and re-adjust the freeze registers. Note that a suspension only makes sense if the
worker contains active nodes in the leader branch, otherwise no stack portions exist to be saved.

8



a

a

Worker 1

Worker 2

DFN = 1

b

c d

cd

DFN = 2

DFN = 3DFN = 3

DFN = 4

DFNLink = 2
DFN = 4

DFN = 5
DFNLink = 1

DFNLink = 2

Active Node

Generator Node

Interior Node

Figure 4: DFN and DFNLink fields.

The pseudo-code of the public completion instruction is presented in figure 5. This instruction
implements the algorithm to synchronize the completion operation in the public region of the search
tree and is executed by a worker when it backtracks to a shared node without alternatives or
unconsumed answers left.

public_completion (node N)

if (last worker in node)
for all not collected suspension frames SF stored in node N

if (exists unconsumed answers for any dependency frame in SF)
collect (SF) /* to be resumed later */

if (leader on that node)
for all dependency frames DF below node N

if (DF have unconsumed answers)
backtrack_through_new_answers() /* as in SLG-WAM */

if (suspension frames collected)
suspend_current_branch()
resume (old collected suspension frame)

else if (N.HiddenWorkers != 0)
suspend_current_branch()

else if (last worker in node)
complete_all()

else
suspend_current_branch()

else /* not leader */
if (dependency frames below node N)

N.HiddenWorkers ++
backtrack

Figure 5: Public completion instruction.

The algorithm starts to collect all suspension-frames stored in the node, that have unconsumed
answers for any dependency frame in it. These frames are only resumed later, when the worker finds
itself in a leader node1 (the current node or an upper one). To resume a suspension frame a worker
only needs to copy the saved stacks to the correct position of its own stacks.

A suspension frame is allocated to guarantee that if new answers are derived for at least one of
its dependency frames, they will be consumed. When a suspension is being resumed, it can produce
new answers to tabled subgoals. So, when the worker backtracks in the newly resumed branch, it

1If a worker resumes immediately a suspension frame, it has to suspend its current branch and restart it later after

having resumed the suspension frame. Hence, we need to make two suspensions and resumes instead of one.

9



will search for other suspension frames that need to be resumed. On the other hand, it will not be
necessary to collect or resume a suspension frame when no new answers are found for it. The frame
will be released when the complete all instruction is executed.

When a worker backtracks from a node and the node contains active nodes below it, the worker
has to preserve the stacks representing that part of the branch in order to allow for those stack
portions to be used later on. The SLG-WAM uses freeze registers to mark the preserved stacks.
When executing the public completion instruction in a non-leader node, the worker has also to
increment a counter, named HiddenWorkers, in the or-frame associated with the node. This counter
indicates the number of workers that still have the node in their stacks and are executing in an upper
node.

A worker only completes all the branches present in a leader node when it is the last worker in that
node, there are no hidden workers and there are no frames to resume. Completing a node includes
marking all tabled subgoals exploited here as completed, readjust the freeze registers and release all
memory spaces involved.

5 Conclusions

In this paper we presented a model for exploiting or-parallelism in tabling based logic programming
systems. We suggested that there are two major alternatives to tackle the problem. We presented the
fundamental concepts of an environment copying based approach that we believe offers advantages in
terms of implementation simplicity and efficiency. Other then the issues discussed here, support for or-
parallelism in tabling systems requires further research in areas such as scheduling and parallelization
of table access.

Work has started on implementing the ideas presented in this paper.

Acknowledgments

This work is partially funded by the PROLOPPE project (grant PRAXIS/3/3.1/TIT/24/94), the
MELODIA JNICT project (grant PBIC/C/TIT/2495/95) and by funds granted to LIACC through
the Programa de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and Programa
PRAXIS. Ricardo Rocha is sponsored by the PRAXIS XXI program administered by JNICT -
Junta Nacional de Investigação Cient́ıfica e Tecnológica, Portugal. We would also like to thank
the anonymous referees for their helpful comments.

References

[AK90] Khayri A. M. Ali and Roland Karlsson. The Muse Approach to OR-Parallel Prolog.
International Journal of Parallel Programming, 19(2):129–162, April 1990.

[Car90] Mats Carlsson. Design and Implementation of an OR-Parallel Prolog Engine. PhD thesis,
The Royal Institute of Technology, Stockholm, March 1990.

[CW93] D. Chen and D. S. Warren. Query evaluation under the well-founded semantics. In Proc.
of 12th PODS, pages 168–179, 1993.

[FHSW95] Juliana Freire, Rui Hu, Terrance Swift, and David S. Warren. Exploiting Parallelism in
Tabled Evaluations. Technical report, Department of Computer Science, SUNY at Stony
Brook, 1995.

[Kar92] Roland Karlsson. A High Performance OR-parallel Prolog System. PhD thesis, The Royal
Institute of Technology, Stockholm, March 1992.

[LBD+88] Ewing Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, David H. D.
Warren, A. Calderwood, P. Szeredi, Seif Haridi, P. Brand, M. Carlsson, A. Ciepelewski,

10



and B. Hausman. The Aurora Or-parallel Prolog System. In Proceedings of the
International Conference on Fifth Generation Computer Systems, pages 819–830. ICOT,
Tokyo, November 1988.

[Roc96] Ricardo Jorge Rocha. Um Sistema Baseado na Cópia de Ambientes para a Execução
de Prolog em Paralelo. Dissertação de Mestrado, Departamento de Informática da
Universidade do Minho, Julho 1996.

[SSW94] K. Sagonas, T. Swift, and D. S. Warren. XSB as an Efficient Deductive Database Engine.
In Proceedings of the ACM SIGMOD International Conference on the Management of
Data, pages 442–453, Minneapolis, Minnesota, May 1994.

[SSW96] K. Sagonas, T. Swift, and D. S. Warren. An Abstract Machine for Computing the Well-
Founded Semantics. In Proceedings of the 1996 International Conference and Symposium
on Logic Programming, Bonn, Germany, pages 274–288. The MIT Press, September 1996.

[Van90] P. Van Roy. Can Logic Programming Execute as Fast as Imperative Programming? PhD
thesis, University of California at Berkeley, November 1990.

[War83] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI
International, 1983.

[War87a] D. H. D. Warren. The SRI Model for Or-Parallel Execution of Prolog—Abstract Design
and Implementation Issues. In IEEE, editor, The 1987 Symposium on Logic Programming,
pages 92–102, 1987.

[War87b] David H. D. Warren. Or-Parallel Execution Models of Prolog. In TAPSOFT’87, The
1987 International Joint Conference on Theory and Practice of Software Development,
Pisa, Italy, pages 243–259. Springer-Verlag, March 1987.

11


