
Secure File Storage for Android Devices on Public
Clouds

Paulo Ribeiro, Rui Prior, Sérgio Crisóstomo
Instituto de Telecomunicações & Departamento de Ciência de Computadores,

Faculdade de Ciências da Universidade do Porto
Email: up201103884@fc.up.pt, rcprior@fc.up.pt, slcrisos@fc.up.pt

Abstract—We propose MCOFS a secure cloud storage system
for Android that combines the use of multiple public cloud
providers with cryptography and redundancy mechanisms to
ensure the confidentiality and availability of files even if one of
the providers becomes hostile or suffers catastrophic data loss.
Experimental results show that, while there is a performance
penalty in comparison to the plain use of a single provider, it is
small enough and a fair price to pay for the added guarantees.

Keywords—cloud storage, confidentiality, availability, integrity,
Android, filesystem.

I. INTRODUCTION

There are few things we value more than our data. Be it
confidential work documents, medical records, or simply va-
cation photos, we want our files available anytime, anywhere,
without risking their loss, but ensuring their privacy.

Cloud storage has emerged as an increasingly popular
means for keeping our files. Compared to local storage, it
has several advantages: we can overcome the limitation of the
local device storage capacity; the files are readily available
from anywhere on any device; and the cost is typically lower
due to scale factors. However, it also brings some concerns.
It is generally considered less secure [6], [5]. In 2012, two-
thirds (68 million) of Dropbox user passwords were stolen by
hackers and later made publicly available on the Internet [4].
In 2014, hundreds of private photos of celebrities were leaked
from Apple iCloud [13]. Outages are another concern. All
major Cloud Storage Providers (CSPs) have had outages of
several hours [3], and the reliability of Cloud Storage Services
(CSSs) is not as high as CSPs claim [10]. Yet another concern
vendor lock-in. CSPs may, at any moment, raise the prices or
start charging free users for space and/or bandwidth. In that
case, the user may lose access to data or be forced to pay a
perhaps significant fee to recover it [15].

This work describes the Multiple Cloud Overlay File Sys-
tem (MCOFS), an Android application that, using information
partitioning and cryptographic techniques, allows users to keep
their files in public CSSs like Dropbox, Google Drive, or
OneDrive, while ensuring the confidentiality, availability, and
integrity of their contents. Caching techniques are used to
improve application performance.

II. RELATED WORK

While there are several Android softwares for cloud storage,
MCOFS is the only one ensuring data availability, confiden-

tiality, and integrity for every type of files. Some available
applications combine multiple CSP accounts into one, basi-
cally merging the available space into one file system, but
they do not add any security or redundancy mechanisms.
Other applications ensure data confidentiality by encrypting
the files before storing them remotely, but those applications
do not provide availability mechanisms. MCOFS allows users
to mount the File System (FS) as a local folder, therefore,
integrating it into the Android OS, unlike any other solution.

We now give a general overview of some solutions that are
somehow related to MCOFS. The EasySSHFS [2] Android
application allows users to mount a remote FS using SFTP,
which that most SSH servers support, but it is not truly a cloud
storage solution and does not add redundancy. SafeCloud
Photos [11] is an Android application that allows users to
combine the storage capacity of multiple public CSP accounts
and makes use of use cryptographic techniques to enforce data
privacy. It is focused on privacy and does not provide any
redundancy mechanisms, and works only with image files.

In contrast with the Android application ecosystem,
GNU/Linux already has some cloud storage based solutions
fulfilling the confidentiality, integrity, and availability require-
ments, such as DepSky [1] and C2FS [14]. DepSky uses
encryption, encoding, and replication of block level data
over several commercial clouds, thus behaving like a virtual
disk [1]. C2FS [14] is a system offering a POSIX compatible
file system built on top of DepSky data storage service.

III. SYSTEM ARCHITECTURE

MCOFS runs on Android smartphones and gives applica-
tions access to files stored in the cloud through a local folder.
When the user saves a file in that folder, the file is not stored
locally on the device, but sent to the cloud. When the user
requests a file, it is downloaded from the cloud (multiple CSPs)
and presented to the user. MCOFS implements mechanisms to
keep the files secure: if one provider is hostile, goes out of
business or an attacker manages to access or corrupt our files,
there is no loss of data or confidentiality.

Figure 1 shows the architecture of the system highlighting
how its components interact. We have an FS implementation
that intercepts and replaces the Android FS calls, and modules
that help us achieve file availability, confidentiality, and in-
tegrity. The Integrity module is used to verify that an unautho-



System Architecture

File System Implementation

User

Insert / Remove

ConfidentialityAvailabilityIntegrity

Get / Store Upload / Download

Cloud Abstraction

Cloud access

Local Cache

File_X File_Y

Remote Space

Cloud provideri

File_Y
Chunki

HMAC

File_X
Chunki

HMAC
IV IV

Cloud providern

File_Y
Chunkn

HMAC

File_X
Chunkn

HMAC
IV IV

Cloud provider1

File_Y
Chunk1

HMAC

File_X
Chunk1

HMAC
IV IV

FS requests/responses

Cache 

Figure 1. System Architecture, with a configuration of three CSPs

rized entity has not modified a file that we previously stored.
The Availability module is responsible for giving the FS the
ability to withstand the downtime of CSPs, which is done by
adding redundant information to the files and storing them
split across various CSPs. The Confidentiality module is used
to encrypt the files, so they remain confidential even if they
are leaked. The Cloud Abstraction module is responsible for
making the communication between our system and the CSPs
transparent and uniform, and the Cache module is used to
improve the system performance by maintaining local copies
of the files under certain circumstances. We will now describe
these components in more detail.

A. Cloud Abstraction

Each CSP provides a specific Application Programming
Interface (API) for file access. The Cloud Abstraction module
defines an intermediate API that abstracts the differences. It
provides all necessary functions (store file, get file, list files in
folder, etc.) and maps them to CSP-specific calls so that file
actions can be performed uniformly across the different CSPs.

B. Availability

The Availability module provides adds redundant informa-
tion to the system and recovers lost data when necessary.

Different redundancy techniques provide varying degrees of
fault tolerance and add varying amounts of storage and CPU
overhead. Aiming at a good balance between these aspects,
MCOFS uses simple parity. It is easy to implement and has
a low impact on the system performance, as it is based on
simple operations. The downside is that it only provides fault
tolerance for one CSP at a time. However, since the probability
of more than one becoming inaccessible (or corrupting files)
simultaneously is very low, it is a good choice.

Before storing the files in the cloud services, we split them
into N−1 chunks, where N is the number of CSPs in use, and
then generate an extra chunk containing the bit by bit parity
(XOR) of the other chunks.

When all CSPs are accessible, we can recover the file from
the first N−1 chunks. Chunk N , containing the parity, is only
necessary for recovering a lost file chunk (due to the CSP
downtime or corrupt data). The missing chunk is recovered
simply by XORing the available chunks.

C. Confidentiality

Files remotely stored in CSPs are protected by authenti-
cation, and some CSPs claim that the files are encrypted.
However, we do not know who has access to the cryptographic
keys, and the authentication mechanism may not be secure
enough, as many examples unfortunately attest. Though some
redundancy techniques also provide confidentiality [8], we
used cryptographic techniques because we wanted a robust
system able to maintain the confidentiality of all stored content
even if the entire contents of a single CSP are leaked.

MCOFS uses symmetric cryptography, which is faster and
more energy-efficient than public-key cryptography. Among
the different alternatives [12], we selected Advanced Encryp-
tion Standard (AES) because it is widely accepted and con-
sidered secure. Moreover, some smartphone chipsets provide
AES hardware acceleration.AES has three standard key sizes
(128, 192 and 256 bits). Though it is about 40% slower than
128-bit, we used 256-bit version which is recommended by
NIST.

AES has many operation modes. We used the Cipher
Block Chaining (CBC) mode, where we need a key and an
Initialization Vector (IV). With CBC, the previous ciphertext
block (or IV) is effectively random (and independent from the
plaintext block), making the block ciphertext an effectively
random string.

The IV is used to add randomness at the start of the
encryption process. If we had no IV (or always reused the
same), using CBC with just a key, two files beginning with
identical text would produce identical first blocks, differing
only afterwards. This similarity could be explored to gain in-
formation on the plaintext or the key throughout cryptanalysis.
Thus, using a different IV for different files is very important
to keep the process secure.

Confidentiality is obtained by encrypting the files before
storing them in the CSPs. The same key, generated from a
user-provided password, is used for encrypting all files. The IV
is randomly generated for each file, and stored in the header.
It changes every time the file is updated.

D. Integrity

To ensure data integrity we resort to Hash-based Message
Authentication Codes (HMACs). A HMAC function accepts,
as input, a secret key and an arbitrary-length message, yield-
ing, as output, a HMAC. Anyone knowing the secret key
may use the HMAC value to verify the message integrity and
authenticity [9].

MCOFS uses this method to protect data files: we compute
a HMAC for file chunk (one per CSP) and store it in the chunk
file header before sending it to the CSPs. After retrieving
the file we recompute the HMAC value, and check if it



matches the HMAC stored in the file header. The key used
for computing HMACs is the same for all files. It is generated
from a user-provided password in the initial configuration of
the system, similarly to the key used for confidentiality. Both
keys are derived from the user password using OpenSSL EVP
module functions.

The generation of HMAC values could be made using
different hash functions. We used the Secure Hash Algorithm
(SHA) 2 because it is a widely used National Institute of
Standards and Technology of U.S. (NIST) standard, which
means that the algorithm validity has been thoroughly tested.
Many attack attempts have been made against the algorithm,
but none is able to entirely compromise its security [7].
Though NIST already defined a new standard to replace
SHA 2, as of now there are no available implementations,
and SHA 2 is still considered secure to use.

E. Caching

The MCOFS incorporates a client cache in order to im-
prove access performance (i.e., minimize delay and increase
throughput) to data stored remotely across the several CSPs.
The choice of writing policy, which defines when a cached
content is written to the backing storage (i.e., the CSPs in the
case of MCOFS), and cache replacement policy, which defines
which cached content shall be replaced when the cache is full,
is of utmost importance for the system to perform optimally.

We considered the Write-through, Write-back, and Write-
back on close writing policies. The most appropriate writing
policy for our system is Write-back on close (updates to the
backing store will be made when a file is closed) because
it has reduced communication overhead when compared with
write-through and it is less failure-prone than pure write-back.

For the cache replacement policy, we chose Least Recent
Used (LRU), which is usually recommended for networked
file systems [16]. With this policy, when the cache becomes
full and cache space is needed for new data blocks, the blocks
to be evicted will be the least recently used ones. This cache
policy is known to have good performance, in terms of cache
hits, in access patterns in which data that has been used in the
recent past is likely to be referenced again in the near future
– a property known as temporal locality.

MCOFS is designed to operate in a scenario with only one
device accessing and changing the data. However, in order
to avoid file system inconsistencies, the system design had
to consider the possibility of (1) failure writing to the CSPs;
and (2) critical application failures. To address failed writes to
one CSP (or more), we we incorporated a journal/file version
manager in MCOFS, and added a constraint to the cache
replacement policy that a modified file can only be removed
from cache after being successfully committed to the backing
stores.

IV. SYSTEM IMPLEMENTATION

MCOFS implementation is based on File System In User
Space (FUSE), an interface for userspace programs to export a
filesystem to the Linux kernel. Using FUSE, we intercept the

E(File_X)
Chunk1

E(File_X)
Chunk2

Cache

Send chunks 
to CSPs

Cloud Abstraction
Layer 

Store

Save file_X

File_X

Chunk3 = Chunk1 ⊕ Chunk2

E(File_X)Encrypt

Compute parity (Chunk3) 

Store

E(File_X)
Chunk3

E(File_X)
Chunk1

E(File_X)
Chunk2

HMAC

E(File_X)
Chunk3

IV
HMAC

E(File_X)
Chunk1

IV
HMAC

E(File_X)
Chunk2

IV

Add HMAC
Add IV

Cloud provider2

E(File_X)
Chunk2

HMAC
IV

Cloud provider3

E(File_X)
Chunk3

HMAC
IV

Cloud provider1

E(File_X)
Chunk1

HMAC
IV

Split file

Figure 2. Process of storing a file, with a configuration of N = 3 clouds,
where the redundant chunk is stored in cloud number 3

Cached
Cache Cloud Abstraction

Layer
Not Cached

Get file_X

E(File_X)
E(File_X)
Chunk1

IV
HMAC

E(File_X)
Chunk2

IV
HMAC

Join chunks 1 & 2 

Cloud provider3

E(File_Y)
Chunk3

HMAC

E(File_X)
Chunk3

HMAC
IV IV

Cloud provider1

E(File_Y)
Chunk1

HMAC

E(File_X)
Chunk1

HMAC
IV IV

Cloud provider2

E(File_Y)
Chunk2

HMAC

E(File_X)
Chunk2

HMAC
IV IV

Check Integrity

E(File) = Encrypted file

Get 2 chunks

File_X

File_X Decrypt

Figure 3. Process of getting a file, with a configuration of N = 3 clouds,
where the redundant chunk is stored in CSP 3. All CSPs available

Android FS calls and translate them to CSPs calls through a
layer that adds availability, confidentiality, and integrity, using
the described techniques.

MCOFS requires at least three CSP accounts to be config-
ured. This is done using a graphical interface. Currently, the
mapping of chunks to CSPs (notably including the account
that holds the parity chunks) is fixed at configuration time. In
a future version, we intend to improve this aspect with the
addition of a module that evaluates the access speed of each
CSP in order to use the slowest one to store the parity chunks,
which should be accessed less often than the others.

Figure 2 illustrates how the different modules interact for
storing a new file. When an application creates a new file
in the MCOFS folder, a file is created in the local cache.
For now, file writes are performed locally. Other files may be
removed from the cache, if necessary to free up space. When
the flush call is invoked (file saved/closed), we prepare the
file to be uploaded. The Confidentiality module encrypts it
with the user-provided key and a randomly generated IV. The
Availability module splits the file into N−1 chunks (N = 3 in



0

5

10

15

20

25

30

35

Dropbox MCOFS MCOFS
1 CSP Down

MCOFS File
Cached

Dropbox MCOFS

Retrieve Store

Ti
m

e 
(s

ec
o

n
d

s)

Figure 4. Time to retrieve and store a 10Mb file

the example) and computes the parity chunk. For each chunk,
the Integrity module computes an HMAC, which is added to
the file header along with the generated IV. Finally, the Cloud
Abstraction Module stores the resultant file chunks across the
N CSPs. If one of the used CSPs is unavailable, we store the
other file chunks normally and notify the user. The file stays
in cache until successfully written to all CSPs.

When reading a file, MCOFS first checks whether it is
cached. If not, it downloads N − 1 chunks, checking their
integrity by comparing the computed HMAC values of the
downloaded chunks with the HMACs stored in the file head-
ers. It then merges the chunks (removing the headers first)
to reconstruct the complete encrypted file. The file is then
decrypted using the IV in the file header and the encryption
key. The file is then written to the local cache, so that the
subsequent reads will not require interaction with the CSPs.
Figure 3 illustrates this process in a scenario where the file
integrity has not been violated and all CSPs are available.

If one CSP is down or we detect that the integrity of
a downloaded chunk was violated, we can recover it by
downloading the parity chunk from the other CSP and use it
jointly with the other ckunks to compute the missing chunk.

To migrate the data, the user only needs to configure the
same accounts and the same two passwords in the new device.

V. PERFORMANCE EVALUATION

To assess the performance of MCOFS, we measured the
time for storing and retrieving 10Mb files. Instead of different
CSPs, we used three different Dropbox accounts, since support
for each CSP must be coded in the Cloud Abstraction module.
The results were compared to a conventional single cloud app
(Dropbox Android). We tested different file retrieval scenarios:
(1) no cache, all CSPs available; (2) no cache, one CSP down;
and (3) with cache. We did 20 repetitions and averaged the
results, which are shown in fig. 4. The wiskers show the 95%
c.i. for the mean.

Storing a file with MCOFS takes twice as long as in
Dropbox Android. This is reasonable and expected, since we
need to perform much more computation and to store more
data — due to parity chunks, MCOFS writes N

N−1× more than
the file size, where N is the number of CSPs. Without caching,
MCOFS takes about 2.6 longer than Dropbox Android to
retrieve files, for similar reasons. With 1 CSP unavailable, this
factor is raised by a minimal amount. As expected, caching
immensely improves the performance of MCOFS.

VI. CONCLUSION

MCOFS allows Android to store folders in public CSPs and
ensures data availability and confidenciality even if the CSPs
become hostile. Though its performance is slower than the
Dropbox Android app, it is so by a small factor. We believe
this modest decrease in performance to be a small price to pay
for the availability and confidentiality guarantees.

Since android is dropping FUSE (previously used to access
the sdcard), we want to reimplement it using a different
approach, and also add a locking mechanism to allow for
concurrent access from multiple devices.

REFERENCES

[1] Alysson Bessani, Miguel Correia, Bruno Quaresma, Fernando André,
and Paulo Sousa. Depsky: dependable and secure storage in a cloud-of-
clouds. ACM Transactions on Storage (TOS), 9(4):12, 2013.

[2] EasySSHFS. Online. https://github.com/bobrofon/easysshfs, Accessed
September 17, 2019.

[3] Christophe Cérin et al. Downtime statistics of current cloud solutions,
2013. International Working Group on Cloud Computing Resiliency.

[4] Samuel Gibbs. Dropbox hack leads to leaking of 68M
user passwords on the Internet. Online, August 2016.
https://www.theguardian.com/technology/2016/aug/31/dropbox-hack-
passwords-68m-data-breach, Accessed September 17, 2019.

[5] Wenjin Hu, Tao Yang, and Jeanna N Matthews. The good, the bad and
the ugly of consumer cloud storage. ACM SIGOPS Operating Systems
Review, 44(3):110–115, 2010.

[6] Iulia Ion, Niharika Sachdeva, Ponnurangam Kumaraguru, and Srdjan
Čapkun. Home is safer than the cloud!: privacy concerns for consumer
cloud storage. In Proceedings of the Seventh Symposium on Usable
Privacy and Security, page 13. ACM, 2011.

[7] Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva.
Bicliques for preimages: attacks on skein-512 and the sha-2 family. In
Fast Software Encryption, pages 244–263. Springer, 2012.

[8] Hugo Krawczyk. Secret sharing made short. In Annual International
Cryptology Conference, pages 136–146. Springer, 1993.

[9] Hugo Krawczyk, Ran Canetti, and Mihir Bellare. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104, February 1997.

[10] Liang Luo, Sa Meng, Xiwei Qiu, and Yuanshun Dai. Improving failure
tolerance in large-scale cloud computing systems. IEEE Transactions
on Reliability, 68(2):620–632, 2019.

[11] Francisco Maia. Data management and privacy in a world of data wealth.
In 13th European Dependable Computing Conference (EDCC), pages
6–7, September 2017.

[12] Shadi R Masadeh, Shadi Aljawarneh, Nedal Turab, and Aymen M
Abuerrub. A comparison of data encryption algorithms with the
proposed algorithm: Wireless security. In Networked Computing and
Advanced Information Management (NCM), 2010 Sixth International
Conference on, pages 341–345. IEEE, 2010.

[13] Rick McCormick. Hack leaks hundreds of nude celebrity photos. On-
line, November 2014. http://www.theverge.com/2014/9/1/6092089/nude-
celebrity-hack, Accessed September 17, 2019.

[14] Ricardo Mendes, Tiago Oliveira, Alysson Bessani, and Marcelo Pasin.
C2fs: um sistema de ficheiros seguro e fiável para cloud-of-clouds.
INForum12, September, 2012.

[15] Justice Opara-Martins, Reza Sahandi, and Feng Tian. Critical review
of vendor lock-in and its impact on adoption of cloud computing. In
Information Society (i-Society), 2014 International Conference on, pages
92–97. IEEE, 2014.

[16] Darryl L Willick, Derek L Eager, and Richard B Bunt. Disk cache
replacement policies for network fileservers. In Distributed Computing
Systems, 1993., Proceedings the 13th International Conference on, pages
2–11. IEEE, 1993.


