
Systematic Network Coding for Packet Loss
Concealment in Broadcast Distribution

Rui Prior, Member, IEEE, and André Rodrigues
Instituto de Telecomunicações—Universidade do Porto

Abstract—This paper describes a system for the distribution of
content over multicast and broadcast media that uses network
coding techniques for concealing packet losses from the appli-
cations, improving the received Quality of Service. We propose
a systematic network code designed for this purpose, analyze
the performance of the code, comparing it with a standard
approach based on random linear network coding, and provide
experimental results obtained in an implemented prototype of
the system.

I. INTRODUCTION

Dealing with packet losses involves one of two general
approaches (or a combination of both). The first approach
is the use of automatic repeat request (ARQ), a closed-loop
technique using a combination of reception acknowledgments,
timers and packet retransmission. In a carefully designed
ARQ mechanism, the amount of retransmitted packets can be
made as close as desired to the amount of lost information,
thus avoiding unnecessary overhead, while ensuring perfect
reliability. However, ARQ requires a feedback channel (e.g.,
duplex connection), introduces a recovery delay that is nec-
essarily larger than the round-trip time (RTT), and still can
only provide probabilistic reliability within bounded time. The
second approach is the use of an erasure code. Erasure codes
generally consist on transmitting redundant data such that even
if a subset of the transmitted packets is lost, up to a certain
fraction, the receiver can still reconstruct the original data.
This approach has the disadvantages of transmitting redundant
data even if no actual losses occur (unnecessary overhead) and
providing only probabilistic reliability; however, it does not
require a feedback channel, and can lead to a substantially
lower playback delay than ARQ.

This paper proposes a system for multiparty distribution of
content with packet loss concealment based on the second
approach. However, contrary to traditional erasure codes, the
coding (or recoding) process can take place not only at the
source, but also in certain network nodes. By locating the cod-
ing layer below the application layer, it becomes application-
independent, and is provided as a service that can be turned on
or off as desired. We propose the use of systematic network
code (SNC) where densely coded redundant packets are sent
along with the original (uncoded) packets. Compared to a
non-systematic code, SNC has the benefits of better erasure
correcting performance, lower processing load at the decoder
and lower average compound delay.

This work is partly funded by the GEN-CAN project funded by IT and the
GTI-CANE project funded by the FCT.

It is worth noting that the proposed system is meant
to compensate for losses introduced by link errors, not by
congestion—sending redundant data through a congested link
would aggravate the situation, and congestion control is not
feasible without a feedback loop. However, it can also be used
to compensate for congestion-related losses if applied only to
a small fraction of the total traffic—older versions of TCP,
still widely deployed, use packet losses to trigger congestion
control, and the proposed system can protect low rate UDP
flows from such induced congestion-related losses.

The rest of the paper is organized as follows. Section
II presents relevant related work. Section III describes the
general model of the system and the proposed SNC, whose
performance is analyzed in section IV. In order to facilitate a
better grasp of the actual performance of the system, section
V presents some numerical results using the previous analysis
along with experimental results obtained in a prototype imple-
mentation. Finally, section VI contains some closing remarks
and an identification of possible topics for further development
of this work.

II. RELATED WORK

The concept of network coding (NC), originally proposed
in [1], has drawn a lot of attention in the past few years,
and even though most work in the area has been theoretical,
some practical applications have emerged. Network coding is
based on the principle that network nodes are not limited to
simply retransmit the received information according to given
rules, they can also transmit combinations of the received in-
formation in order to obtain certain benefits including, but not
limited to, increased throughput. With linear NC, a receiving
node only needs a sufficient number of linearly independent
combinations of the original packets in order to decode a
flow, the exact combinations received are irrelevant. This fact
led to the proposal of random linear network coding (RLNC)
[2], an entirely distributed mechanism that dispenses with any
coordination between the nodes, and that was later proven to
achieve the network capacity with high probability [3]; it also
suggested that NC can be used to add resilience against packet
losses, similarly to an erasure code.

The use of NC for increased reliability has been proposed
before. In [4] the performance of NC for reliable multicast (in
terms of the required number of transmissions) is shown to
be better than that of ARQ and rateless codes; the authors
assumed a dense code. In [5], a combination of NC and
ARQ is used in an online algorithm that minimizes the queue

245978-1-61284-663-7/11/$26.00 ©2011 IEEE ICOIN 2011

Distribution tree
CP

CP

CP

Source

Figure 1. System architecture

size at the sender (transmission window). The use of a mix
of uncoded and coded packets (systematic coding) has been
proposed in [5] and [6] with the goal of minimizing the
decoding delay in media streaming through reliable multicast.
All of these models, however, differ from ours in that they use
a feedback loop from every receiver to implement reliability.
Clearly, such mechanism cannot scale well to a very large
number of receivers, and a feedback channel is not always
available (e.g., in the case of broadcast networks). Moreover,
these works assume that feedback is perfect, i.e., without
errors, losses or delay (the remarks on the effects of imperfect
feedback in [6] suggest that their algorithm can be used
with minor modifications in the case of imperfect feedback,
though). In fact, reliability in these models is provided not by
the network code itself, but by the feedback mechanism—the
network code is used solely to reduce the delay and overhead
of retransmissions. In contrast, our approach is more similar to
erasure codes, in that it provides stochastic resilience against
network packet losses through the inclusion of redundancy,
without the use of a feedback loop.

III. SYSTEM DESCRIPTION

A. General Architecture

The general architecture of the proposed system is illus-
trated in fig. 1. Unaware of the coding process, a standard
application generates the content to be distributed. A mid-
dleware layer installed at the source node or the access router
captures the packet flow (according to specified filtering rules)
and, using the coding scheme described below, generates a
flow of coded packets that is sent down a distribution tree.
Some nodes downstream may perform recoding of the flow,
usually access routers at the receiving side in order to adapt
the coding parameters to the characteristics of the access
channel. Whenever a feedback channel is available, extremely
low rate feedback can be used to tune the coding parameters
to the packet loss probability seen by each group of receivers;
however, feedback is not considered in our analysis.

At the receivers, a middleware layer receives the flow of
coded packets, decodes it, and injects the original packets, in
order, into the protocol stack to be delivered to the application
(eventually leaving some holes corresponding to packets that
could not be decoded).

In addition to the coded flow, information needs to be sent
downstream to the receivers for configuration and synchro-
nization. According to the specific needs of the setup, this
information can be sent in-band or out-of-band (through a side

channel). The system addresses other aspects besides packet
losses; however, they are out of the scope of this paper.

B. Systematic Network Code

In packetized network coding, each packet is regarded as a
sequence of symbols that are elements of a given finite field.
Each coded packet is computed from a set of input packets
and a set of coefficients (one per input packet) that are also
elements of the same field. Each symbol of the coded packet
is computed as a linear combination of the corresponding
symbols of the input packets, and the same coefficients are
used to compute all the symbols of a coded packet. At the
receiver, a set of decoding coefficients is computed from the
coding coefficients by matrix inversion, so that the original
packets can be computed from the received coded packets.

The traditional approach to RLNC is to choose each coding
coefficient uniformly at random from the used finite field [2],
a strategy that we will call Dense Network Coding (DNC)
since all transmitted packets are dense combinations of the
original packets. While this strategy is optimal in the absence
of packet losses, it is clearly a bad choice when NC is used
to compensate for them. Consider that for a generation of N
original packets N +M coded packets are sent. If at most M
packets are lost, all of the original packets will be decoded
w.h.p.; however, if more than M packets are lost, the matrix
of received coding coefficients will not be full rank, and no
packets can be decoded. This means that even though DNC
can improve the packet delivery ratio when the loss probability
is very low, it yields worse results than no coding at all when
the probability of losing more than M packets per generation
is no longer negligible.

In order to avoid the aforementioned problem, we propose
the use of a Systematic Network Code. For each generation of
N original packets, N +M packets are sent, where the first
N are the original packets. The packets received out of these
N will be delivered to the application irrespectively of the
reception of other packets, since they are already “decoded”.
The last M packets, which we will call redundant packets,
are coded using coefficients uniformly chosen at random
among the elements of the finite field except zero (since in
practice M will be low, excluding the zero maximizes the
probability that a densely coded redundant packet is useful
for compensating the loss of any original packet). The coding
matrix is, therefore, a (N +M)×N matrix where the upper
N rows are those of the N ×N identity matrix and the lower
M rows contain randomly chosen non-zero elements from the
field. The upper N rows are obviously linearly independent,
and, given a large enough field, each of the lower M rows is
linearly independent from any set of N − 1 other rows w.h.p..

For decoding, the receiver performs (slightly modified)
Gauss-Jordan elimination on a matrix built from the coding
matrix with the rows corresponding to lost packets zeroed out.
Since the N leftmost columns of many rows in this matrix will
already be rows from the N ×N identity matrix, much of the
elimination work will not be necessary—an added benefit of

246

the SNC is that it imposes a lower processing load at the
receiver for decoding than DNC.

C. Practical Aspects of the Code

The proposed code works at the network layer of the TCP/IP
stack, and is applied only to the data field of the IP packets.
However, if the stream uses packets of different sizes, an
additional 16-bit header is added to the redundant packets
containing the length of the data fields of the packets, coded
similarly to the data. This header is necessary to retrieve
the data length of lost packets that are restored from the
redundants.

The ID field of the IP header is partitioned into two 8-bit
fields, one used as a circular counter to identify the generation
number, and the other one to identify the packet number inside
the generation. The total number of packets in a generation,
N +M , is limited to 255 (zero is reserved); however, due to
practical considerations on decoding complexity, this limita-
tion is not important.

Regarding the finite field, we chose GF
(
28
)

for several
practical reasons. Firstly, the representation of each element
in GF

(
28
)

occupies exactly one byte, which is advantageous
in that it is a natural unit to work with and avoids wasting
representation space. Secondly, the necessary operations can
be efficiently implemented using small, cache-friendly log,
antilog and inverse lookup tables of 256 bytes each. Thirdly,
since we will use relatively small generation sizes, GF

(
28
)

is large enough for the probability of generating linearly
dependent redundant packets to be negligible1.

In order to avoid the overhead of sending the coding
coefficients along with the data packets, as in [7], we resort
to pseudo-random number generators (PRNGs). The PRNG of
each receiver has to be synchronized with the PRNG of the
sender (or the last coding point downstream). Information for
re-synchronizing the receivers is periodically sent through the
side channel so that new receivers can join in the middle of a
stream.

IV. PERFORMANCE ANALYSIS

We now analyze the packet loss concealment properties
of the proposed algorithm and compare it to the standard
transmission over a lossy channel (packet erasure channel).
Since our algorithm sends M additional packets for each block
of N packets, we also compare its performance to a non-
coded algorithm where, in addition to the N original packets,
a second copy of each of M packets selected randomly among
the original N is sent. For the sake of completeness, we also
include in our comparison an optimal non-systematic dense
coding scheme where for each set of N original packets,
N+M coded packets are sent where all possible subsets of N
coded packets among the N+M sent are linearly independent.
We will now compute the expected fraction of received and
(when applicable) successfully decoded packets at the receiver

1With a slight abuse of nomenclature, we call a packet “linearly dependent”
if it is linearly dependent from any set of N − 1 other packets of the same
generation.

(i.e., the fraction of original packets that are successfully
delivered to the application at the receivers), assuming that
packet loss events are independent and occur with probability
p.

Without the use of NC or redundancy, for each set of N
original packets, N packets are sent (the original ones). Since
each packet has a probability of successful delivery of (1−p),
the expected fraction of packets that are successfully delivered
will be, on average

1− p (1)

Without NC but with redundancy, for each set of N original
packets, N+M packets are sent—the N original ones plus one
additional copy of M of the original packets (M ≤ N). These
packets are randomly selected, but are all different (i.e., it is
impossible to send 3 copies of the same packet). Obviously,
the fraction of packets that is successfully received will be
somewhat increased—even if the first copy is lost, the packet
can be successfully received if there is a copy of it among the
M redundant packets and that copy is delivered. Therefore,
the expected fraction of successfully delivered packets in this
case will be

(1− p)(1 +
M

N
p) (2)

While this strategy is not used in practice, it is the best that
can be done with the same amount of redundancy used in the
proposed scheme but without any coding, so it is included in
this discussion to provide a fair comparison between coding
and non-coding schemes.

Non-systematic, dense NC with redundancy consists on
sending, for each set of N original packets, a set of N +M
coded packets. The coding coefficients are chosen such that
in each possible combination of N coded packets out of the
N + M sent there are N linearly independent combinations
of the original packets. In other words, the N × N coding
coefficient matrix of the N selected packets is full rank. While
this requirement can only be guaranteed with an algorithmic
selection of the coding coefficients, a very good approximation
can be obtained from RLNC provided that it is performed over
a large enough field [3].

In order to compute the average fraction of successfully
decoded packets, for each generation of N+M coded packets,
we have to consider two cases: (1) N or more coded packets
are received, and (2) less than N coded packets are received.
In the first case, all N original packets can be recovered,
independently of exactly which coded packets were received—
under the assumption of linear independence, the first N of
the N or more received coded packets are enough to invert
the coding matrix. If, however, less than N coded packets are
received, there is not enough information to invert the coding
matrix; therefore, no original packets from the generation can
be decoded. In face of these considerations, we compute the
expected fraction of successfully delivered packets as

N+M∑
i=N

(
N +M

i

)
(1− p)

i
pN+M−i (3)

247

Since
(

n
k

)
=

(
n

n− k

)
, by reordering the terms of the

summation we conclude that this is the value of the cumulative
binomial distribution function B (M ;N +M,p).

The fact that whenever less than N coded packets are
received (out of the N + M) no original packet from the
generation can be recovered means that, while this strategy
improves on the scenarios without NC for low values of the
packet loss probability, for larger values of p its performance
drops rapidly to levels well below those of even the non-coded
scenarios.

It is also interesting to compute the asymptotical behavior
of the code as N tends to infinity using a fixed amount
of overhead (i.e., constant M/N). The strong law of large
numbers [8] states that the sample average converges almost
surely to the expected value; therefore, since the probability of
receiving each packet is (1−p), the number of received coded
packets for the generation when the generation size tends to
infinity is (1 − p)(N + M). All N original packets will be
decoded and delivered to the application as long as this number
equals or exceeds N , which happens for

p ≤ M

M +N
=

r

1 + r
(4)

where r = M/N is the relative amount of added redundancy
(overhead).

In this case, the expected fraction of delivered packets is 1.
If, however, the network packet loss probability is larger, no
packets can be decoded, and the expected fraction of delivered
packets is 0. The expected fraction of delivered packets as a
function of p is, therefore,

{
1 ⇐ p ≤ r

1+r

0 ⇐ p > r
1+r

(5)

Contrary to the naïf NC strategy described above, in our
proposed SNC strategy an uncoded copy of each original
packet is sent to the receivers. Therefore, the expected fraction
of delivered packets can never be lower than that of the non-
coded strategy without redundancy, and only for very high
values of packet loss probability (that should not be found
in properly dimensioned and managed networks) does it drop
below that of the uncoded strategy with redundancy, as will be
shown below. With such high values of packet loss probability,
the fraction of packets delivered to the application with any
strategy will probably be too low for the application to work
properly, anyway.

In addition to the N uncoded packets, M additional packets
are sent, containing linear combinations of the N original
packets such that in each possible combination of N packets
out of the N + M sent there are N linearly independent
combinations of the original packets. In the case of the first N
packets (uncoded) this is trivially true, since the coding matrix
is the identity matrix.

With this strategy, a packet is successfully delivered if (1)
the uncoded copy of the packet is received or (2) the uncoded
copy is not received but at least N out of the remaining

N + M − 1 packets are received. The expected fraction of
successfully delivered packets can thus be computed as

(1− p) + p
N+M−1∑

i=N

(
N +M − 1

i

)
(1− p)

i
pN+M−1−i (6)

= 1 + p (B (M − 1;N +M − 1, p)− 1) (7)

It is also possible to compute the asymptotical behavior
of the code as N tends to infinity using a fixed amount of
overhead. Notice that for very large N the summation in
expression (6) is expression (3) with M off by 1. Thus, it
converges to the same value as (3), and we conclude that the
asymptotic value of the fraction of delivered packets using this
code is{

1 ⇐ p < r
1+r

1− p ⇐ p ≥ r
1+r

(8)

V. NUMERICAL AND EXPERIMENTAL RESULTS

This section illustrates the behavior of the proposed coding
scheme through numerical examples obtained from the expres-
sions derived in the previous section and experimental results
obtained in a prototype implementation of the system. The
prototype was implemented using the Click modular router
[9]. A packet dropper module was used to introduce losses by
independently dropping packets with configurable probability
p. Twenty repetitions of each experiment were performed,
each using a number of packets 1000 times larger than the
generation size.

In fig. 2 we plot the fraction of decoded packets against
the packet loss probability using a generation size N = 32
packets with M = 4 redundant packets (when applicable)
in the four strategies described in the previous section—the
plain transmission of the original packets without coding or
redundancy (NNCP), the transmission of the original packets
with redundancy consisting on a second copy of selected
packets (NNCR), a dense network code (DNC), and our
proposed systematic code (SNC). The horizontal axis is in a
logarithmic scale for increasing the resolution for lower values
of p.

Due to the small amount of redundancy (12.5%), the NNCR
curve is just slightly above the NNCP curve—if an original
packet is lost, the probability of finding a copy of it among
the redundants is low. DNC works well for low values of
p; more than 0.999 of the packets are delivered up to p
slightly above 0.02. However, at p about 0.057 it drops below
the non-coded cases, and above p = 0.36 it becomes less
than 0.001. This behavior is unacceptable for applications that
degrade gracefully in the presence of packet losses. SNC, on
the contrary, always performs better than DNC and NNCP, and
only becomes (slightly) worse than NNCR for p above 0.18,
a region where the packet delivery ratio is too low for most
applications to work properly in any one of the strategies.

Figure 3 shows the asymptotic behavior of the different
strategies with N → ∞. For SNC, in addition to the asymp-
totic value (SNC-T) obtained numerically from expression (8),
we also show the results of a practical experiment with a

248

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Fr
ac

ti
on

 o
f p

ac
ke

ts
 d

el
iv

er
ed

NNCP

NNCR

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,001 0,010 0,100 1,000

Fr
ac

ti
on

 o
f p

ac
ke

ts
 d

el
iv

er
ed

Packet loss probability in the network

NNCP

NNCR

DNC

SNC

Figure 2. Numerical results with N = 32 and M = 4

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Fr
ac

ti
on

 o
f p

ac
ke

ts
 d

el
iv

er
ed

NNCP

NNCR

DNC

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,001 0,010 0,100 1,000

Fr
ac

ti
on

 o
f p

ac
ke

ts
 d

el
iv

er
ed

Packet loss probability in the network

NNCP

NNCR

DNC

SNC-T

SNC-P

ITL

Figure 3. Results when N → ∞ with M/N = 0.25

relatively large generation size N = 200 packets (SNC-P).
The information-theoretical upper bound (ITL) of any code
with 25% overhead is also shown, as a benchmark; this limit
would be achieved using an omniscient source able to guess
exactly which transmitted packets will be lost and retransmit
them using an overhead up to M/N (and well approached
by ARQ or a similar closed-loop technique with large enough
timeout values).

Both SNC and DNC yield perfect decoding for values of
p that the used overhead of 25% is enough to compensate
for, as given by expression (4); however, above this value the
performance of DNC drops to zero, while SNC drops to the
same performance of NNCP. With a generation size N = 200,
it is clearly visible that the experimental results of SNC already
approach the asymptotic limit; with a network packet loss of
16%, the application sees less than 0.1% losses, and with a
network packet loss of 13%, the application sees only about
0.01%.

In fig. 4 we plot the numerical results for SNC with a fixed
generation size N = 8 and varying overhead (lines) along with
experimental results obtained with our prototype implementa-
tion (marks). As expected, increasing the redundancy leads to

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Fr
ac

ti
on

 o
f p

ac
ke

ts
 d

el
iv

er
ed

M=0

M=1

M=2

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0,001 0,010 0,100 1,000

Fr
ac

ti
on

 o
f p

ac
ke

ts
 d

el
iv

er
ed

Packet loss probability in the network

M=0

M=1

M=2

M=3

M=4

Figure 4. Results with N = 8 and varying overhead

higher packet delivery ratios for the application. The difference
between the curves is more pronounced around the “knee” in
the chart, which is the most interesting region, since for lower
values of p uncorrected packet losses are negligible, and for
higher values of p they rise rapidly to values that are too high
for most applications. We can also observe in the figure a
very good agreement between the theoretical prediction and
the experimental results.

A perhaps surprising effect of SNC that we observed while
plotting numerical results for varying generation sizes and
fixed overhead is that while larger generation sizes increase
the performance for lower values of p, smaller generation
sizes exhibit better performance than larger ones for higher
values of p. Larger generation sizes increasingly approach the
asymptotical curve for N → ∞ (fig. 3), which has a discon-
tinuity, while smaller generation sizes have a smoother shape.
To illustrate this effect, we performed an experiment with
varying generation sizes but the constant overhead (M/N) for
values of p around the “knee”. The results of this experiment
are shown in fig. 5, where the error bars represent the 95%
confidence intervals for each point2; the lines correspond to
the theoretical predictions. The fact that small values of N
can improve the performance just to the right of the “knee”
can be an additional benefit (besides a much lower processing
load) of using small generation sizes for applications that can
tolerate a larger amount of packet losses.

VI. CONCLUSION

Using the property of network coding that in order to decode
a packet all the receiver needs is a sufficient number of linear
combinations of packets (including that one), irrespective of
exactly which combinations were received, we proposed a
system for the distribution of content over multicast or broad-
cast media without feedback that provides adjustable resilience
against packet losses, improving the quality of service seen by
the applications. The basic principle of the system is sending,
for each set of N original packets, a set of N + M packets

2Confidence intervals are shown only in this zoomed chart since they are
too tight to be visible in the others.

249

0,80

0,85

0,90

0,95

1,00

Fr
ac

ti
on

 o
f p

ac
ke

ts
 d

el
iv

er
ed

N=8

N=16

0,70

0,75

0,80

0,85

0,90

0,95

1,00

0,140 0,280

Fr
ac

ti
on

 o
f p

ac
ke

ts
 d

el
iv

er
ed

Packet loss probability in the network

N=8

N=16

N=32

N=64

Figure 5. Results with varying generation size and fixed overhead M/N =
0.25

such that any N -sized subset of these contains N linearly
independent combinations (w.h.p.). We proposed a systematic
network code with much better erasure correcting properties
than RLNC (which was not conceived for this application)
and lower processing load. The performance of the code was
evaluated both analytically and experimentally, and the results
show that it can greatly reduce the packet loss seen by the
applications for important ranges of the network packet loss
probability.

Regarding generation sizes, the delivery probability advan-
tages of large sizes should be balanced against the increased
delay and the decoding complexity they impose. Moreover,
and somewhat counterintuitively, larger generation sizes do not
lead to better performance in all cases, and if the application
can tolerate some losses, a small generation size can be a
better choice. However, small generation sizes imply a coarser
granularity on the usable overhead values.

In the near future, we want to optimize the implementation
of the decoder, and then evaluate the processing load it
imposes in different circumstances. On a longer term, we want
to investigate alternative codes for concealing packet losses.
Ultimately, we would like to answer the question “How close
can we get to the information-theoretical limit with a code
working without feedback and within practical operational
constraints?”

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network Information
Flow,” IEEE Transactions on Information Theory, vol. 46, pp. 1204–
1216, July 2000.

[2] T. Ho, R. Koetter, M. Medard, D. Karger, and M. Effros, “The Benefits
of Coding Over Routing in a Randomized Setting,” in Proceedings of
IEEE ISIT 2003, p. 442, June 2003.

[3] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong,
“A Random Linear Network Coding Approach to Multicast,” IEEE
Transactions on Information Theory, vol. 52, pp. 4413–4430, Oct. 2006.

[4] M. Ghaderi, D. Towsley, and J. Kurose, “Reliability Gain of Network
Coding in Lossy Wireless Networks,” in Proc. of IEEE INFOCOM 2008,
pp. 2171–2179, IEEE, Apr. 2008.

[5] J. Sundararajan, D. Shah, and M. Medard, “ARQ for Network Coding,”
in Proc. of IEEE ISIT 2008, pp. 1651–1655, July 2008.

[6] J. Barros, R. Costa, D. Munaretto, and J. Widmer, “Effective Delay
Control in Online Network Coding,” in Proc. of IEEE INFOCOM 2009,
pp. 208–216, Apr. 2009.

[7] P. Chou, Y. Wu, and K. Jain, “Practical Network Coding,” in Proc.
41st Allerton Conf. on Communication, Control and Computing, vol. 41,
pp. 40–49, Sept. 2003.

[8] M. Loève, Probability Theory, vol. I. Springer-Verlag, 4th ed., 1977.
[9] “Click Modular Router.” <http://www.read.cs.ucla.edu/click/>.

250

