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Abstract. Digital data storage is essential nowadays. We store all types
of data in our devices, either in local storage or using cloud storage
services. Cloud storage services have several advantages, such as data
sharing among devices, space-saving in local storage, and data preser-
vation in case of user device’s hardware failure. However, those services
come with associated risks, which users often are not aware of, such as
temporary/permanent data unavailability or loss of confidentiality. We
propose a secure file storage system based on public cloud services that
mitigates these risks by combining the use of multiple cloud providers
with redundancy mechanisms and cryptographic techniques. The system
ensures that, even if one provider is hostile or goes out of business, there
is no loss of data or confidentiality. A performance penalty is paid when
compared to a plain cloud storage service, but is acceptable in face of
the additional guarantees.
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1 Introduction

Data storage is essential nowadays. We store everything, from personal data
(like photos or text messages) to critical data (like medical records or financial
reports). There are two main approaches to storing data: local storage or cloud
storage. The concept of storing data in the cloud emerged in the past few years,
embedded in the cloud computing concept. Cloud storage is a particular case
of cloud computing where the computing resources are storage servers. A Cloud
Storage Provider (CSP) provides a Cloud Storage Service (CSS) that enables
users to store and manage the files in the remote infrastructure (cloud). Many
CSSs are available, targeting individual users or organizations. For individual
users, there are many free options providing a decent amount of space (at least
15GB), and for organizations, usually needing more space and better access
speeds, there are a many paid services that usually charge for bandwidth and
storage capacity.

Storing data in the cloud has several advantages: we can overcome the lim-
itation of the local device storage capacity, the files are readily available from
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anywhere on any device, and the cost is typically lower due to scale factors. De-
spite all the advantages, there are some drawbacks to storing data in the cloud.
Local storage is more secure [7,6]. When we use cloud storage services, our data
is stored in a place we do not know, supervised by people we do not know.
We cannot, therefore, be sure that the Cloud Storage Provider (CSP) will not
lose, misuse, or leak our data. Some recent incidents remind us that we can not
blindly trust CSPs to keep our data safe. CSPs can fail or be hacked, leading to
data leaks or temporary (or even permanent) loss of stored data. In 2016, every
major commercial CSP was offline for some time. The Google Cloud Platform
was offline for more than 11 hours [3,4]. In 2012, two-thirds (68 million) of Drop-
box user passwords were stolen by hackers and later made publicly available on
the Internet [5]. In 2014, one of the most mediatic hacks ever occurred: hun-
dreds of private photos of celebrities were leaked from the Apple iCloud storage
service [12].

Another big concern about keeping data in the cloud is the vendor-lock-in
issue. CSPs can at any instant raise the prices or start charging free users for
space and/or bandwidth. This means that if we have the data stored at only one
provider, we may either lose the access to the data or be forced to pay a perhaps
significant fee to recover it [14]. Yet another concern is the lack of confidentiality
or availability guarantees of data stored in public clouds.

This work describes the Multiple Cloud Overlay File System (MCOFS), an
Android application that, using information partitioning and cryptographic tech-
niques, allows users to keep folders in publi CSSs, like Dropbox, Google Drive or
OneDrive, while ensuring the confidentiality, availability, and integrity of their
contents. Caching techniques are used to improve application performance.

The rest of the paper is organized as follows. In Section 2 we overview sys-
tems that are somehow related to MCOFS, highlighting the similarities and
differences. In Section 3 we make a top-down description of the system archi-
tecture, explaining its main components and the mechanisms used to achieve
cloud storage confidentiality, availability and integrity. In Section 4 we briefly
describe the development of the system, explaining the developed modules to
achieve cloud storage confidentiality, availability, and integrity. In Section 5 we
analyze experimentally the performance of MCOFS. Finally, Section 6 provides
some concluding remarks.

2 Related Work

The MCOFS solution is unique for the Android platform: it the only one pro-
viding improvements in data availability, confidentiality, and integrity for every
type of files. Some available applications combine multiple CSP accounts into
one, basically merging the available space into one file system, but they do not
add any security or redundancy mechanisms. Other applications ensure data
confidentiality by encrypting the files before storing them remotely, but those
applications do not provide availability mechanisms. MCOFS allows users to
mount the File System (FS) as a local folder, therefore, integrating it into the
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Android OS, which no other solution does. Below we describe some solutions
that are somehow related to MCOFS:

EasySSHFS [2] is a solution that, like ours, allows users to mount a remote
FS into a local storage folder, but it is not a cloud storage solution and does
not add any security or redundancy mechanisms. The Android application
allows mounting a remote FS using SFTP that most SSH servers support
and enable this SFTP access by default;

SafeCloud Photos [15] is a solution that is similar to ours. However it is
devoted only to image files. It is an Android application that allows users
to combine the storage capacity of multiple public CSP accounts and makes
use of use cryptographic techniques to enforce data privacy. This solution
is focused on privacy and does not provide any redundancy mechanisms.
MCOFS can be considered an extension of this solution, allowing any file
type and adding availability and integrity mechanisms.

In contrast with the Android application ecosystem, the Linux OS has already
some cloud storage based solutions fulfilling the confidentiality, integrity, and
availability requirements:

DepSky [1] is a system that improves confidentiality, integrity, and availability
of data stored in the cloud. It uses encryption, encoding, and replication of
data over several commercial clouds. The goal is similar to ours, but DepSky
uses different encoding and cryptographic techniques. The system behaves
like a virtual disk where we can store data at a block level;

C2FS [13] is a system that uses DepSky as data storage service, but imple-
ments a POSIX compatible file system. It improves the data and metadata
availability, integrity and confidentiality. The architecture of the system is
similar to DepSky’s, and it stores the data in a cloud of clouds (i.e., in mul-
tiple clouds). Its major advantages over DepSky are the ease of use (high
level abstraction, in the sense that it behaves like a regular local folder) and
the distributed directory services that ensure the meta-data availability and
confidentiality.

3 System Architecture

MCOFS runs on Android smartphones and provides applications access to files
stored in the cloud through a local folder. When the user saves a file in that
folder, the file is not stored locally on the device, but sent to the cloud. When
the user requests a file, it is downloaded from the cloud (multiple CSPs) and
presented to the user. MCOFS implements mechanisms to keep the files secure:
if one provider is hostile, goes out of business or an attacker manages to access
or corrupt our files, there is no loss of data or confidentiality.

Figure 1 shows the architecture of the system and how its components in-
teract. We have a FS implementation that intercepts and replaces the Android
FS calls, and modules that help us achieve file availability, confidentiality, and
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Fig. 1. System Architecture, with a configuration of three CSPs

integrity. The Integrity module is used to verify if an unauthorized entity has
modified a file that we previously stored. The Redundancy module is responsible
for giving the FS the ability to resist CSPs downtime, which is done by adding
redundant information to the files and storing them split across various CSPs.
The Confidentiality module is used to encrypt the files, so they remain confi-
dential even if they are leaked. The Cloud Abstraction module is responsible for
making the communication between our system and the CSPs transparent and
uniform, and the Cache module is used to improve the system performance by
maintaining local copies of the files under certain circumstances.

3.1 Cloud Abstraction

Since each CSP has its own Application Programming Interface (API) to man-
age the remote space, the Cloud Abstraction module provides an intermediate
API that allows us to abstract from the individual CSP APIs and perform ac-
tions uniformly across the different CSPs. It provides generic interface with the
necessary functions (store a file, get a file, list the files in a folder, among oth-
ers) to interact with a CSP and independent implementations to interact with
different CSPs. When a function is called, it automatically calls the specific
implementation depending on the CSP we need to interact with.
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3.2 Availability

In order to improve the availability of the stored files, we take advantage of
redundancy techniques. The Availability module provides functions that add
redundant information to the system and recover lost data if needed.

As every redundancy technique implies a performance overhead and a higher
usage of storage space we need to go for a method that can balance those two
aspects. Our system uses coding techniques because the alternative (information
replication) would have a much higher storage space overhead. MCOFS uses
simple parity because it is easy to implement and has a low impact on the
system performance, as it is based on simple operations. The downside of this
technique is that it only provides fault tolerance of one CSP at a time, but since
the probability of more than one becoming inaccessible (or having files become
corrupted) simultaneously is very low, it is a good choice.

Before storing the files in the remote space, we split them into N −1 chunks,
where N is the number of CSPs in use, and then generate an extra chunk con-
taining the bit by bit parity of the other chunks computed using XOR.

When all CSPs are accessible, we can recover the file by getting the first
N − 1 chunks. chunkN , containing the parity, is only necessary for recovering
a lost file chunk (due the CSP being inaccessible or the data being corrupted).
The missing chunk is recovered simply by XORing the available chunks.

3.3 Confidentiality

Files remotely stored in CSPs are protected by a security mechanism (Authen-
tication by Username and Password), and some CSPs claim that the files are
encrypted. However, we do not know who has access to the cryptographic keys.
We therefore assume the worst case scenario where the CSPs can be malicious.
Moreover, the authentication mechanism is not strong enough to ensure the
confidentiality of the stored files, as many examples unfortunately attest. Some
redundancy techniques also provide confidentiality [9], but we want a robust
system able to maintain the confidentiality of all the stored content even if the
entire contents of a single CSP are leaked.

As we can not trust the CSPs to keep our files confidential, we use cryp-
tographic techniques to that end. We opted for symmetric cryptography, that
requires only one key, used in both the encryption and the decryption processes.
Symmetric Cryptography is much faster and energy efficient when compared to
Public Key Cryptography.

Within symmetric cryptography, there are some alternatives that could be
used [11]. We opted for Advanced Encryption Standard (AES) cipher because it
is widely accepted is the most utilized in the industry, and, most importantly,
because it is considered secure. Moreover, some smartphones chipsets support
AES hardware acceleration. Though we strongly recommend the use of AES,
there is no impediment to the utilization of a different symmetric cipher, as long
it is considered secure and resistant to cryptanalysis.
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The AES cipher has many operation modes, but we recommend Cipher Block
Chaining (CBC) mode, where we need a key and an Initialization Vector (IV).
With CBC, the previous ciphertext block (or IV) is effectively random (and
independent from the plaintext block), making the block ciphertext an effectively
random string.

AES comes with three standard key sizes (128, 192 and 256 bits). The 256-
bit version is a bit slower than the 128-bit version (by about 40%) but as the
National Institute of Standards and Technology of U.S. (NIST) recommends the
256-bit version over the 128-bit version, we follow that recommendation.

The IV is used to add randomness at the start of the encryption process.
When using CBC mode (where one block incorporates the prior block), we need
a value for the first block, which is where the IV comes in.

If we had no IV (or always reused the same), using CBC with just a key, two
files that begin with identical text would produce identical first blocks. If the
input files changed midway through, then the two encrypted files would start
to look different from that point until the end of the encrypted file. If someone
noticed the similarity at the beginning, they could use that information to gain
information on the key or the beginning of some files throughout cryptanalysis.
Therefore, we cannot use the same IV for different files, and this is very important
to keep the process secure.

Confidentiality is obtained by encrypting the files before storing them in the
CSPs. The key used for encryption is the same for all files, and is generated
from a user-provided password. The IV is randomly generated for each file, and
changed every time it is updated. The IV is then stored in the header of the files
as we need it for decryption.

3.4 Integrity

To ensure data integrity we resort to Hash-based Message Authentication Code
(HMAC). A HMAC function accepts a secret key and an arbitrary-length mes-
sage as input, and yields a Message Authentication Code (MAC). Anyone know-
ing the secret key may use the MAC value to check whether the message was
altered, ensuring its integrity, and that the MAC was created by someone know-
ing the key, ensuring data authenticity [10].

MCOFS uses this method to protect data files. The process is simple: we
compute a HMAC for each chunk of the file (one per CSP) and store it in the
chunk file header before sending the chunk to the CSPs. After retrieving the
file we calculate the HMAC value again and check that it matches the HMAC
stored in the header. The key used in the HMAC is the same for all files, and
is generated from a user-provided password in the initial configuration of the
system, similarly to the key used for confidentiality. MCOFS allows the users
to define both keys, and they should be different so that if one of the used
algorithms is broken, the other stays safe.

The generation of HMAC values could be made using different hash functions.
We used the Secure Hash Algorithm (SHA) 2 because it is widely used and it is
defined as a standard by NIST, which means that the algorithm validity has been
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thoroughly tested. Many attack attempts have been made against the algorithm,
but none is able to entirely compromise its security [8]. Though NIST already
defined a new standard to replace SHA 2, as of now there are no available
implementations, and SHA 2 is still considered secure to use.

3.5 Caching

The MCOFS incorporates a client cache in order to improve access performance
(i.e., minimize delay and increase throughput) to data stored remotely across the
several CSPs. The choice of writing policy, which defines when a cached content
is written to the backing storage (i.e., the CSPs in the case of MCOFS), and
cache replacement policy, which defines which cached content shall be replaced
when the cache is full, is important for the system to perform optimally. We
considered the following writing policies:

Write-through Any modification to a file is synchronously reflected both in
the local storage (cache) and in the backing storage (CSPs);

Write-back When a file is modified, it is written only to the cache. The backing
storage will only be updated when a cached file is about to be replaced by
another cache block.

Write-back on close When a file is modified, the changes are only reflected
in the local cache. Updates to the backing store will be made either when a
file is closed or when a cached file is about to be replaced by another cache
block.

The writing policy that we consider most appropriate for our system is Write-
back on close because it has reduced communication overhead when compared
with write-through and less failure-prone than pure write-back.

For the cache replacement policy, we chose Least Recent Used (LRU), which
is usually recommended for networked file systems [16]. With this policy, when
the cache becomes full and cache space is needed for new data blocks, the blocks
to be evicted will be the least recently used ones. This cache policy is known to
have good performance, in terms of cache hits, in access patterns in which data
that has been used in the recent past is likely to be referenced again in the near
future – a property known as temporal locality.

MCOFS is designed to operate in a scenario with only one device accessing
and changing the data. However, in order to avoid file system inconsistencies,
the system design had to consider the possibility of (1) failure writing to the
CSPs; and (2) critical application failures. To address these failure scenarios, we
incorporated a journal/file version manager in MCOFS: the previous version of
the file stored in the backing store is deleted only after the confirmation that all
chunks of the new version were successfully stored in the backing store.

4 System Implementation

The file system implementation is based on File System In User Space (FUSE),
an interface for userspace programs to export a filesystem to the Linux kernel.
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Using FUSE, we intercept the Android FS calls and provide an implementation
that interfaces with the CSPs through a layer that adds availability, confiden-
tiality, and integrity, using the described techniques.

MCOFS requires at least three CSP accounts to be configured. This is done
using a graphical interface. Currently, the CSP account that holds the parity
chunks is fixed at configuration time. In a future version, we intend to aid this
choice with a module that evaluates the access speed of each CSP in order to use
the slowest one to store the parity chunks, which should be accessed less often
than the others.

Figure 2, illustrates how the different module participates in the process of
storing a new file in the FS. When the user creates a new file in the FS folder, a
file is created in the local cache. Then, a sequence of system writes is performed
(locally only, for now). In this process, other files may be removed from the cache,
if necessary, to free up space. When the flush call is invoked (file saved/closed),
we prepare the file to be uploaded: the Confidentiality module encrypts the
file using the user-provided key and a randomly generated IV. The Redundancy
module splits the file into N−1 chunks (N = 3 in the example) and computes the
parity chunk. Then, for each chunk, the Integrity module calculates an HMAC,
which is added to the file header, together with the previously generated IV.
Finally, the Cloud Abstraction Module stores the resultant file chunks across
the N CSPs. During this process ,if we detect that some of the used CSPs is
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unavailable, we store the other file chunks normally and notify the user of the
acCSP state.

When accessing a file, first we check whether it is cached. If not, we proceed
to download N − 1 chunks, checking their integrity by comparing the computed
HMAC values of the downloaded chunks with the HMACs stored in the file
headers. Then, we merge the chunks (removing the headers first), reconstructing
the complete original encrypted file. After that, using the IV in the file header
and the encryption key, we decrypt the original file. Finally, we add the file
to the local cache, so that the subsequent accesses to that file will not require
traffic exchange with the CSPs. This process is illustrated in Figure 3, which
highlights a scenario where the file integrity has not been violated and all the
CSPs are available. Figure 4 illustrates the workflow for the case where a CSP
is unavailable.

If we detect that the integrity of a downloaded chunk was violated, we can
recover it by downloading a chunk from another CSP, and proceed as if the CSP
of the violated chunk were offline (the case illustrated in Figure 4).

The current MCOFS implementation is not designed to support concurrent
writes. However, it can be accessed by multiple devices at the same time in
read-only mode. In case we wish to migrate the FS access to another device,
we just need to configure the corresponding CSP accounts and passwords in the
destination device.
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To migrate the data, the user only needs to configure the same accounts and
the same two passwords in the new device.

5 Performance evaluation

To assess the performance of MCOFS, we did some experiments where we mea-
sured the time to store and read files on the cloud. The experiments were done
using three different Dropbox accounts in order to have this assessment earlier,
since support for each CSP must be coded in the Cloud Abstraction module.
The results were compared to a conventional single cloud application (Android
Dropbox application).

We measured the times for storing and retrieving 10Mb files. For the file
retrieval operations we tested different scenarios: without caching and with all
CSPs available, without cache with one CSP out of service, and with file cache
enabled. The measurements were repeated 20 times and the results averaged.
The results of these experiments are shown in Figure 5.

Storing a file with MCOFS takes twice as long when compared to the Dropbox
Android application. This difference is reasonable and expected, since we need
to perform a lot more computation and need to store file chunks in different
destinations (three different accounts, in this experiment).

Without caching, the average time it takes to store and get a file with MCOFS
is about 2.6 times greater when compared to the Dropbox Android application.
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Again, this is expected, for similar reasons. When we have one CSP unavailable,
we have an extra step of computing the missing chunk from parity, but the time
difference is almost insignificant. As can be seen, the caching mechanism plays
a vital role in improving performance, reducing the access time to about one
second.

6 Conclusion

MCOFS is an Android File System implementation that uses public CSPs as
backing storage. It provides file confidentiality and is able to detect and recover
from integrity violations, prevent data leaks, and recover from temporary or per-
manent failure of a CSP. Currently, no other Android cloud storage application
provides these features.

Though its performance is slower than the Dropbox Android application (the
most popular cloud storage application for Android), it is so by a small factor.
We feel that this modest decrease in performance is a small price to pay for
the unique availability and confidentiality features. As several recent incidents
show us, we need to take measures ourselves to protect our data instead of just
trusting some company to do it.

Since Android is moving away from FUSE (previously used to access the
sdcard), in the future we may need to reimplement MCOFS using a different
approach to user-space filesystems, or, as a last resort, by mirroring operations
on local files monitored with FileObserver. Also, in the future the support for
concurrent access should be added, possibly using a lock system.
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