
Experimentation with MANETs of Smartphones

Eduardo Soares, Pedro Brandão, Rui Prior, Ana Aguiar

Instituto de Telecomunicações, Universidade do Porto

{esoares, pbrandao, rprior}@dcc.fc.up.pt, anaa@fe.up.pt

Abstract—Mobile AdHoc NETworks (MANETs) have been
identified as a key emerging technology for scenarios in which
IEEE 802.11 or cellular communications are either infeasible,
inefficient, or cost-ineffective. Smartphones are the most ad-
equate network nodes in many of these scenarios, but it is not
straightforward to build a network with them. We extensively
survey existing possibilities to build applications on top of ad-
hoc smartphone networks for experimentation purposes, and
introduce a taxonomy to classify them. We present AdHocDroid,
an Android package that creates an IP-level MANET of (rooted)
Android smartphones.AdHocDroid supports standard TCP/IP ap-
plications, providing real smartphone IEEE 802.11 MANET and
the capability to easily change the routing protocol. We validate
the MANET with off-the-shelf applications and experimental
performance evaluation, including network metrics and battery
discharge rate.

Keywords—Ad-hoc networks, MANET, mesh networks, Android

I. INTRODUCTION

Although Internet connectivity is nearly ubiquitous, there
are many situations in which using infrastructureless commu-
nication is better than an IEEE 802.11 hotspot or cellular
communication, because the latter are either infeasible, inef-
ficient, or cost ineffective. For example, in remote areas, e.g.
forests, ocean, or in catastrophe scenarios [1], [2], there is
simply no infrastructure to provide connectivity. Or in social
upraise scenarios, in which the infrastructure cannot be trusted,
as the use of Open Garden1 shows. A more leisurely example is
low latency gaming [3], [4] or sharing a file with acquaintances.
Another application scenario could be group communication
in mass events, like conferences or concerts [5], in which
infrastructure may be unable to support all communication
demand. For all these reasons, wireless ad-hoc networking was
identified as a major emerging technology at the "Internet on
the Move" workshop [6] and by Conti et al. [7].

Recently, application frameworks that leverage WiFi Direct
or cooperation between IEEE 802.11 and Bluetooth (BT)
appeared. But those solutions do not create an IP-level network,
require overlay routing for multi-hop communication, and
applications need to use a specific framework Application
Programming Interfaces (APIs). IP-level multi-hop networking
makes the difference where communication with other IP en-
abled devices like laptops is wanted. Moreover, it is completely
transparent to applications, which just use the sockets API.

In this paper, we review work on MANETs of smartphones,
and survey solutions that claim to provide ad-hoc connectivity
for smartphones (section II). We then introduce AdHocDroid
to turn smartphones into nodes of an IP-level mobile ad-
hoc network. We describe how to set up an IP-level 802.11

1http://opengarden.com/about

ad-hoc network with multi-hop capability on smartphones
running the Android Operating System (OS), and share lessons
learned (section III).Then, we introduce a taxonomy of MANET
features and use it to characterize the surveyed solutions
and AdHocDroid (section IV). Finally, we experimentally
validate AdHocDroid running applications on the network,
and evaluating network performance (throughput and latency)
and battery consumption (section V).

II. RELATED WORK

A survey of experimental work with MANETs [8] shows
that real-world experiments can bring to light significantly
different behaviours than MANETs simulation or even emu-
lation. The survey describes 5 static experiments and 8 with
mobility, but only 2 testbeds (APE and ORBIT), which use
laptops running the Linux OS with 802.11 dongles. The survey
highlights the importance of real world-experimentation and
describes toolsets. Recently, Papadopoulos et al. [9] highlighted
the benefits of experimentation for the deployment of ad-
hoc networks, and identify reproducibility as a caveat of
the methodology. In this sense, we expect to contribute to
the acceleration of experimentation with ad-hoc networks of
smartphones by providing a tool that simplifies setting up
such a network. The next sub-sections describe protocols and
frameworks that aim at providing MANETs.

A. 802.11 Support

The latest revision of the IEEE 802.11 [10] supports
two different modes that can be used for ad-hoc networking:
Independent Basic Service Set (IBSS) mode and 802.11s.

1) IBSS Mode: In this mode, all nodes play similar roles,
and any node can communicate directly with any other node
within the network, defined as the set of nodes in IBSS mode
sharing the same Service Set Identifier (SSID) that are within
its radio range.

The IBSS mode itself, however, does not provide multi-hop
capabilities. In IBSS-based ad-hoc networks, these functions
must be performed by an additional protocol, like OLSR [11]
usually at the network layer. Since connectivity is provided
at the link layer, IP-based applications work without any
modification in an IBSS-based network. Interoperation with
non-Android systems works out-of-the-box for the single-hop
case, and requires a routing protocol for multi-hop.

2) 802.11s: More recently, mesh networking support has
been introduced in 802.11 through the 802.11s amendment, now
incorporated in the standard [10]. 802.11s defines the Mesh
Basic Service Set (MBSS) that provides a wireless Distribution
System (DS) based on meshing at the link layer. 802.11s defines
a standard path metric and path selection protocol, Hybrid



Wireless Mesh Protocol (HWMP), though others can be used
as long as all stations in the mesh agree.

In Android, vendor-provided system images do not usually
support 802.11s in the kernel. This means that the use of
802.11s, even on devices with supported chipsets, is limited to
those using third party, customized Android versions, and we
are not aware of any that currently supports 802.11s.

B. WiFi Direct

WiFi Direct is a technical specification [12] of the WiFi
Alliance that leverages existing standards to provide a con-
venient way for securely connecting devices without installed
infrastructure, enhanced with features like peer and service
discovery. It is based on the infrastructure BSS mode of
802.11. One of the devices, selected through negotiation, will
become the group owner (Group Owner (GO)) and act as an
Access Point (AP). This has the advantage of allowing legacy
clients to connect to the GO. The GO incorporates a Dynamic
Host Configuration Protocol (DHCP) server for providing IP
addresses to the Client nodes.

A significant disadvantage of WiFi Direct is that if the
GO leaves, the group is torn down and a new group must be
established from scratch. While these limitations are irrelevant
in simple situations like a printer letting computers and other
devices connect, they make WiFi Direct unsuitable as a basis
for multi-hop networking.

C. Open Garden

Open Garden is a software for Internet connection sharing
on mobile devices using a mesh of BT or WiFi Direct links.
It also allows communication between devices across multiple
hops as long as the application uses OpenGarden’s proprietary
forwarding software. From the scarce documentation and our
own tests, we concluded that no IP-level connectivity that might
be used by other applications is provided.

Open Garden works by creating a Virtual Private Network
(VPN) to a BT paired device also running the application. The
other device terminates the VPN tunnel and either forwards the
request to another node or redirects the message to the local
application that registered for it (most commonly FireChat)2.

When a device has Internet connection it can forward the
requests received. This, again, after the Open Garden software
interprets and re-routes the data packets.

D. Serval Project

The Serval project [13] provides a free and open-source
software to allow mobile phones to communicate in the
absence of phone towers and other infrastructure, targeting
disaster situations and remote communities. The Serval Mesh
applicationprovides voice calls, text messaging and file sharing
directly over IEEE 802.11 links between mobile devices. It
can be used for peer-to-peer communication through an 802.11
AP or in an ad-hoc multi-hop topology without infrastructure
support. The MANET is implemented over 802.11 in IBSS
mode, using an in-house ad-hoc routing protocol.

2We were unable to verify the level of node identification used. From our
experiments, it seemed that this was carried in a proprietary message.

The current application on the Google Play Store includes
the Serval Mesh that provides the above functionality including
the project’s routing protocol. Currently the development is
being driven for mobile phones and Android is the one
currently supported with applications. The specificities of the
protocols outlined above make the Serval approach unusable
by applications that are not aware of their API and sub-system.
This provides little to no flexibility as a MANET test-bed.

III. ADHOCDROID

AdHocDroid is an Android application that makes the
necessary changes in the device to effortlessly create a MANET
in one step. The application sets up the IBSS network, enabling
ad-hoc mode on the wireless card, offers the possibility to
choose the network name, and configures the IP address,
network mask and gateway for the device. All parameters
have default values, e.g. the IP address is chosen according
to [14]. The application also allows an easy way to import and
run different routing protocols, and using tools to monitor and
evaluate the state of the network.

We where able to successfully use our application enabling
multi-hop connectivity on the Gigabyte Gsmart G1305 with
Android 2.3 (CyanogenMod 7), and Samsung Nexus S with
Android 4.3 (CyanogenMod 10.2.1) smartphones, and on
the Samsung Galaxy Tab 10.1 tablet with Android 3.2. We
also tested it on LG Nexus 4, LG Nexus 5 and Motorola
Moto G (2013), but due to driver or chipset issues the Ad-
Hoc mode did not function correctly. We have also tested the
smartphone ad-hoc network with a first responder monitoring
application with success [15].

A. Architecture

The application follows a modular architecture as shown
in Fig. 1. There are three clearly defined modules that map
to the elements of the application, the network configuration
(NetConfig), the routing protocols (Routing) and tools (Tools).

�✁✁✂✄

☎✆✝✞ ✟✞✠✡✞ ☛ ✟✞☞✌

✍✎✏✎✑✒ ✓✏✔✒✕✖✎✗✒ ✘

✙✒✔✚✛ ✜✒✔✢✣✕✤

✥✎✕✎✦✒✔✒✕✧

★✩✪✫✬✭ ✮✫✯✰✱✲✳

✴✵✶✷✶✸✶✹✺

✻✝✼✞ ✌✡☞✞☞✽☞✾✼

✙✔✎✕✔ ✿ ✧✔✣✛

❀✝❁❂

❃✕✎✗✒✕✣✚✔✒

❄✒✔ ✤✏✣✢✏ ✕✣✚✔✒✧

❄✥✙ ✔✕✎✗✒

❅❆❇❈✁❉❊❋● ❍✁■❇❋❉●

Figure 1. AdHocDroid application architecture

For the network configuration all parameters can be adjusted.
The start/stop button executes the network stack setup procedure.
First it turns off the network interface via the Android API,
which avoids any other application making changes to the
configurations of the networks. It then adds or removes the
IBSS network, and finishes turning on the network interface in
order to load the new network, and applies to it the network
parameters (IP address, network mask, gateway).

For multi-hop connectivity, we bundle the application with
an OLSR [11] routing daemon, but it is easy to import, start
and stop other routing protocols. This can be done without
recompiling or changing AdHocDroid, by creating a zip file
with bash scripts for starting and stopping the routing protocol,
and the executable binaries with the implementation of the
protocol cross-compiled to the architecture of the device. Using



this routing protocol, we verified that it is possible for terminals
running other OS’s to join the created MANET. This was tested
with a laptop running a Linux distribution (Ubuntu) with OLSR
and two smartphones compatible with AdHocDroid.

AdHocDroid has additional tools that we have found useful
when carrying out experiments in the field, like providing
information on the routing table, and execute ping or traceroute
commands. It is also possible to log the smartphone GPS co-
ordinates, e.g. to map connectivity using geographic positions.

B. Lessons Learned

During development and testing, we came across problems
with the Android APIs and the diversity of devices, which we
report in this section.

The Android API to configure network information, namely
IP address, gateway and network mask, was deprecated in
Android HoneyComb (3.0). To surpass this problem we
used reflection through undocumented and internal APIs, and
wrapped this in a library3.

The Android API does not enable the creation of an ad-hoc
network. Thus, the library directly edits the system configuration
file, usually wpa_supplicant.conf in Linux distributions,
located in /data/misc/wifi/ in Android. However, we
found that it has other names in some devices. For example, in
Samsung Galaxy Tab 10.1 it was named bcm_supp.conf

and was located in /data/wifi/.

Sometimes, after adding a new IBSS network, the phone
would prefer a previously saved 802.11 network instead of
connecting to the new network. To fix this, the library edits
wpa_supplicant.conf to show only IBSS networks to
the OS when we want to connect to ad-hoc networks.

Even after the network was set up, some devices (LG Nexus
5 and Motorola Moto G (2013)) were unable to connect to
the MANET. We assume that the WiFi chipset drivers did not
implement this mode, since the Android OS did not present any
limitation and messages of issues in the driver were present in
the Android WiFi state machine.

Some other devices (LG Nexus 4) are able to connect to the
network in IBSS mode, but we found non-compliant behaviour.
The first device to connect would act as an AP, and other
devices would from then on use this AP to route traffic. If the
first device (acting as AP) left or went out of range, the rest
of devices in the network where unable to communicate.

In summary, IBSS mode in Android devices is problematic
mainly due to drivers or chipsets not implementing the required
functionality. Nevertheless, we tested and were/are able to run
AdHocDroid repeatedly and consistently on Gigabyte Gsmart
G1305, Samsung Nexus S and Samsung Galaxy Tab 10.1.

IV. IS IT REALLY A WIRELESS MANET?

Many applications erroneously claim to provide mobile ad-
hoc networking. In our view provisioning a MANET requires
answering all the following questions with yes:

• is communication possible without connectivity to the
Internet? (No Internet Needed)

3https://github.com/eSoares/Android-IP-Manager

• is multi-hop communication possible? (Multi-hop)
• can any application take advantage of the provided con-

nectivity through a regular socket API, thus not requiring
adaptation/re-writing? (Any App)

• does not need additional wireless technology to provide
communication, e.g.: using IEEE 802.11 needs also BT?
(No other Wireless)

• can we use other OS’s to communicate with the MANET?
E.g.: Android device can we communicate with a PC
running another OS? (Other Systems)

We analysed the technologies addressed in section II
according to this definition, and summarise the results in table I.

The main problem that almost every proposal faces is
the support in different systems. This in some cases may
be a matter of adoption (802.11s and AdHocDroid) while in
others it involves "heavier" development from the proponents
themselves. Some points are critical for a MANET testbed
namely supporting multi-hop and providing the regular socket
interface for applications. In our view, this makes Open Garden,
Serval and WiFi Direct not fit the "wireless MANET" name.

Table I. MANET NETWORK SOLUTIONS CHECK-LIST. yes IS DENOTED

BY ✓, no BY ✕ AND ◆ INDICATES partially OR with some adaptations

Proposal

No

Internet

Needed

Multi-

hop

Any

App

No other

Wireless

Other

Systems

802.11s (native) ✓ ✓ ✓ ✓ ◆

Open Garden ✓ ◆ ✕ ✕ ✕

Serval ✓ ✓ ✕ ✓ ✕

WiFi Direct ✓ ✕ ✕ ✓ ✓

AdHoc-Droid ✓ ✓ ✓ ✓ ◆

As is summarized in table I, only AdHocDroid and
802.11s truly provide all the features for a MANET. As
we mentioned our aim is to advance the state-of-the-art in
MANET experimentation by providing a framework to easily
test MANET network protocols. In the future, 802.11s, when
it becomes adopted in chipsets and their drivers, will provide
an easy establishment of a multi-hop MANET. However, as
multi-hop is provided at driver level, it can be more difficult
to test routing protocols than with our solution.

V. EXPERIMENTAL RESULTS

We performed a series of experiments to test AdHocDroid,
measuring throughput, delay and battery consumption and com-
paring them with values obtained in a standard infrastructured
scenario with an AP. The experiments were performed using
three Samsung Nexus S smartphones running Android 4.3
with CyanogenMod 10.2.1, in single (SH) and multihop (MH)
configurations, as shown in Fig. 2.

A C

SH-AP

A CB

MH-IBSS

A C

SH-IBSS

Figure 2. Test scenarios

We measured the throughput of the different nodes in the
scenarios shown in Fig. 2. We generated traffic from node A to
node C using iPerf (version 2.0.5), sending UDP packets at the
maximum 802.11a/g PHY rate (54 Mbits/s), thus overloading
the channel and collecting throughput once per second. As the



experiments were done while measuring battery discharge, they
were done until one of the nodes had the battery depleted. We
executed six of these batches.

The results are shown in Fig. 3. As expected, throughput is
comparable in the multihop IBSS and the infrastructured cases,
and larger (more than double) in the single hop IBSS case.
This is due to the absence of forwarding at an intermediate
node (AP or router), implying lower medium contention.

MH−IBSS

SH−IBSS

SH−AP

0 10 20 30 40

Throughput (Mbits/sec)

Figure 3. Throughput: AP vs. IBSS single hop vs. IBSS multi-hop

We evaluated the impact on a smartphone’s battery discharge
rate of being used as MANET node. We measured the battery
when simply setting the devices to IBSS mode, without network
traffic. Compared to an infrastructure scenario through an AP,
there is a significant increase in battery consumption, the median
discharge rate increases from 3.29% to 10.23% per hour, and
remains at 10.25% when the routing protocol is added (note
that this is a stationary scenario with only three nodes).

We also measured the discharge rate of the different nodes
in the same scenarios. Because the discharge rate is a function
of the amount of traffic being sent/received, overloading the
channel, as iPerf does, ensures that we are observing worst-case
battery discharge rates. We used the same setting as in the
throughput experiments. In these, we additionally collected the
time interval for each percent point drop in battery until the
first node has the battery depleted. We plot the distribution of
the discharge rate between consecutive points in Fig. 4.

MH−IBSS−Receiver

MH−IBSS−Router

MH−IBSS−Sender

SH−IBSS−Receiver

SH−IBSS−Sender

SH−AP−Receiver

SH−AP−Sender

10 20 30 40 50 60 70

Discharge rate (% per hour)

Figure 4. Discharge rate: AP vs. IBSS single hop vs. IBSS multi-hop

Battery consumption in multihop IBSS is comparable to
the infrastructured case for both sender and receiver. In single
hop IBSS, the consumption is higher since the throughput is
also higher due to the lower medium contention. Consumption
at the sender is higher than at the receiver because it is trying
to send at a higher rate than is actually possible. The router
in the multihop IBSS scenario discharges at a similar rate as
the receiver, confirming that the discharge rate is determined
by the time that the network interface card is busy. We double
checked this by sending at rate lower than saturation (6 Mbps)
and observing similar battery discharge rates in all nodes.

We also tried standard IP peer-to-peer applications from

the Google App Store. They worked mostly as expected, apart
some issues with multicast DNS used by one.

VI. CONCLUSIONS

Motivated by a wide range of application scenarios for
MANETs of smartphones proposed in the literature, we survey
the existing solutions to actually enable IP-level ad-hoc network-
ing on Android smartphones. We describe a software to enable
ad-hoc networking on Android devices and shared learned
lessons, so that anyone in the community can easily build a
MANET test-bed with multihop capability that applications can
access through the sockets API. We thus expect to contribute
to moving the envisioned applications one step closer to reality.

A full version of this short paper is available in arXiv4.

Acknowledgements: Research funded by Project VR2Market
- Ref. CMUP-ERI/FIA/0031/2013.

REFERENCES

[1] P. Mitra and C. Poellabauer, “Emergency response in smartphone-based
Mobile Ad-Hoc Networks,” in IEEE Int. Conference on Communications

(ICC). IEEE, Jun. 2012, pp. 6091–6095.

[2] D. Srikrishna and R. Krishnamoorthy, “SocialMesh: Can networks of
meshed smartphones ensure public access to twitter during an attack?”
IEEE Communications Magazine, vol. 50, no. 6, pp. 99–105, Jun. 2012.

[3] T.-Y. Huang, C.-M. Lin, J.-R. Jiang, W. T. Ooi, M. Abdallah, and
K. Boussetta, “SYMA: A Synchronous Multihop Architecture for
Wireless Ad Hoc Multiplayer Games,” in IEEE 17th Int. Conference on

Parallel and Distributed Systems, Dec. 2011.

[4] A. Le, L. Keller, C. Fragouli, and A. Markopoulou, “MicroPlay: a
networking framework for local multiplayer games,” in Proc. of the 1st

ACM Int. Workshop on Mobile gaming, New York, USA, Aug. 2012.

[5] O. Turkes, H. Scholten, and P. J. Havinga, “BLESSED with Opportunistic
Beacons: A Lightweight Data Dissemination Model for Smart Mobile
Ad-Hoc Networks,” in Proc. of the 10th ACM MobiCom Workshop

CHANTS ’15. ACM Press, Sep. 2015.

[6] A. Sathiaseelan and J. Crowcroft, “Internet on the move: Challenges
and solutions,” SIGCOMM CCR, vol. 43, no. 1, Jan. 2012.

[7] M. Conti and S. Giordano, “Mobile ad hoc networking: milestones,
challenges, and new research directions,” IEEE Comms Magazine, Jan.
2014.

[8] W. Kiess and M. Mauve, “A survey on real-world implementations of
mobile ad-hoc networks,” Ad Hoc Networks, vol. 5, no. 3, Apr. 2007.

[9] G. Z. Papadopoulos, K. Kritsis, A. Gallais, P. Chatzimisios, and T. Noel,
“Performance evaluation methods in ad hoc and wireless sensor networks:
a literature study,” IEEE Comms Magazine, vol. 54, no. 1, Jan. 2016.

[10] IEEE Association, “IEEE Standard for Information technology–
Telecommunications and information exchange between systems Local
and metropolitan area networks–Specific requirements Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications,” IEEE Std 802.11-2012, pp. 1–2793, Mar. 2012.

[11] T. Clausen and P. Jacquet, “Optimized Link State Routing Protocol
(OLSR),” IETF, RFC 3626, Oct. 2003.

[12] Wi-Fi Alliance Technical Committee P2P TG, “Wi-Fi Peer-to-Peer (P2P)
Technical Specification v1.2,” WiFi Alliance, Tech. Rep., 2010.

[13] P. Gardner-Stephen and S. Palaniswamy, “Serval mesh software-WiFi
multi model management,” in Proc. of the 1st Int. Conference on Wireless

Technologies for Humanitarian Relief - ACWR ’11, NY, USA, Dec. 2011.

[14] S. Cheshire, B. Aboba, and E. Guttman, “Dynamic Configuration of
IPv4 Link-Local Addresses,” IETF, RFC 3927, May 2005.

[15] A. Aguiar, E. Soares, P. Brandão, T. Magalhães, J. M. Fernandes,
and I. Oliveira, “Demo: Wireless IP Mesh on Android for Fire-fighter
Monitoring,” in Proc. of the 9th ACM MobiCom workshop CHANTS

’14, New York, USA, Sep. 2014.

4https://arxiv.org/abs/1702.04249


