
End-to-End QoS with Scalable Reservations

Rui Prior, Susana Sargento, Sérgio Crisóstomo, Pedro Brandão
Department of Computer Science & LIACC

Faculty of Sciences, University of Porto
Rua do Campo Alegre, 823, 4150-180 Porto, Portugal

{rprior, ssargento, slc, pbrandao}@ncc.up.pt

Abstract

This paper proposes a new QoS architecture that provides end-to-end QoS support.
The architecture is based on scalable per-flow signaling and resource reservation
for aggregates of flows at both core and access networks. The underlying
architecture is based on DiffServ, where the edge nodes perform policing of the
incoming aggregates in order to ensure conformance to the aggregate reservation.
Although in this model the signaling is per-flow based, several techniques
and algorithms are developed aiming at the minimization of the computational
complexity and, therefore, the improvement of the signaling scalability. More
specifically, a label switching mechanism is developed with the goal of reducing
the signaling message processing time at each router. Moreover, the architecture
includes soft reservations where the expiration timers are scalably implemented
with a complexity that is low and independent of the number of reservations. This
architecture is then able to scalably support both IntServ service models in high
speed networks.

1 Introduction

In the actual Internet the network resources are equally distributed by all users
and applications. Therefore, only best effort service is supported. However, new
services and applications are becoming more demanding and their characteristics
and transmission requirements are much diversified. Moreover, since multimedia
services are composed by several traffic flows with different requirements, each
flow needs to receive an adequate treatment independent from the other traffic.
Finally, different users have also different requirements and this must be reflected

in the quality given to their services. Therefore, there is an increasing need for the
service providers to implement mechanisms that ensure that each service or set of
services receives the required Quality of Service (QoS).

Two main architectures were proposed by the IETF in order to introduce QoS
support in the Internet: Integrated Services (IntServ) and Differentiated Services
(DiffServ). The IntServ architecture [8] was the first one to emerge. In IntServ,
resources are reserved for individual flows, i.e., on a per-flow basis, using the
Resource ReSerVation Protocol (RSVP) [9]. Based on per-flow reservations
subject to admission control, it provides both a guaranteed service, with strict
guarantees regarding both bandwidth and delay, and a controlled load service, akin
to a lightly loaded best-effort network, meant for loss and delay tolerant services
which still require better than best-effort treatment. Intserv’s strengths lie in both
its capability of providing strict QoS guarantees and adequately efficient resource
usage (particularly in the case of multicast flows), but it is fundamentally flawed
regarding scalability. In fact, the need to implement complex packet scheduling
algorithms and to classify every packet based on both layer 3 and layer 4 header
information is unbearable to high-performance routers in core networks.

The DiffServ architecture [6] emerged as a scalable alternative to IntServ.
In this architecture there are no resource reservations and flows are aggregated
in classes according to specific characteristics. Here services have a different
treatment according to their class, but there is no admission control mechanism
to limit the number of flows in the network. Resource allocation is configured by
management procedures, in conformance to the Service Level Agreements (SLA)
established between adjacent domains. DiffServ’s main strength lies in its low
complexity and inherent scalability. Due to its essentially static nature, though,
resource usage is usually sub-optimal, there is no admission control for flows,
which implies that all flows belonging to a class may be degraded, and there are
issues with cross interaction between traffic flows with different ingress/egress
node pairs yet to be solved.

With the goal of benefiting from the virtues of both IntServ and DiffServ and
solving (minimizing) its problems, several architectures have been proposed in the
literature. However, none of these architectures ensures simultaneously the strict
and differentiated QoS support and the maximization of the usage of network
resources without scalability concerns.

In this paper we propose a new QoS architecture that provides end-to-end QoS
support. This architecture is based on scalable per-flow signaling and resource
reservation for aggregates of flows at both transit (core) and access networks. The
underlying architecture is based on DiffServ. Individual flows are aggregated by

service class. The service classes are mapped to per-hop behaviors (PHB), and
aggregate classification is performed based on the DS field of the packet header.
Policing of the incoming aggregates is performed at the edge nodes in order to
ensure conformance to the aggregate reservation. Core nodes do not have policing
functionalities. In this model the signaling is performed on a per-flow basis in
order to improve the network resource utilization. Reservations are unidirectional,
sender initiated and soft state. The signaling protocol is implemented as an
extension to the RSVP protocol, providing the functionality needed for our model.
Although the signaling is per-flow based, several techniques and algorithms have
been developed aiming at the minimization of the computational complexity and,
therefore, the improvement of the signaling scalability. More specifically, a label
switching mechanism was developed with the goal of reducing the signaling
message processing time at each router. This mechanism allows each router to
have direct access to the flow reservation structure through the introduction of
a label that is directly associated to the memory address where the reservation
state for the flow is stored. Beyond this technique our model also includes
soft reservations where the expiration timers are scalably implemented with
a complexity that is low and independent from the number of reservations.
Resuming, the developed model provides both strict and soft end-to-end QoS
assurances with increased scalability.

This paper is organized as follows. Section 2 addresses other QoS architectures
and compares them against the one developed in this paper. Section 3 presents
an overview of the system architecture. The service differentiation and traffic
control techniques are described in section 4 and the label switching mechanism
is described in section 5. The signaling protocol and its messages are presented in
section 6 and the considerations about the overall system scalability are presented
in section 7. Finally, section 8 presents the most important conclusions and
describes the work currently being developed and the extensions to be applied
to the architecture.

2 Related Work

A number of QoS architectures have been discussed in the literature. For example,
in an effort to combine the virtues of both IntServ and DiffServ, [3] proposes the
operation of IntServ over DiffServ networks with the addition of flow admission
control capabilities to the edge nodes of a statically provisioned DiffServ network
region. This architecture does not solve the sub-optimal network resource usage

nor the cross interaction problems. Another approach at providing IntServ over
DiffServ networks consists on the use of Bandwidth Brokers [18] that have
sufficient knowledge of resource availability and network topology to perform
admission control decisions and resource reservation. In the last years, the concept
of Bandwidth Brokers has gained preponderance due to the requirement of end-to-
end QoS through heterogeneous networks. However, although in an architecture
with Bandwidth Brokers the core routers will be freed from performing admission
control decisions, the Bandwidth Broker needs to manage the overall network
domain and to store information about all elements, flows and paths in the network
domain, which can introduce scalability concerns. The architecture defined
and developed in this paper is able to provide the same QoS guarantees as the
architecture managed by Bandwidth Brokers and has the advantage of distributing
the functions assigned to the Bandwidth Broker between all nodes in the network
domain in a scalable way.

Another architecture, named SCORE [16] (Stateless CORE), has been
proposed, which makes use of a technique called Dynamic Packet State (DPS).
This technique consists on carrying the needed state information in the header of
every packet, updating it at every router along the path, thus keeping the stateless
character of the network. This solution has several problems: (i) all routers need to
implement the same scheduling mechanisms; (ii) the processing in the core routers
is still high; and (iii) it is impossible to use header compression and security
headers. Our proposed model does not imposes a scheduling mechanism and
improves scalability by performing classification and scheduling on a class basis.
Although the nodes need to maintain state information for every reservation, the
available routers nowadays have sufficient memory to store information for several
hundreds of thousands of flows.

Another attempt at providing per-flow admission control while avoiding
the need to maintain per-flow information at the core routers is the solution
termed “Egress Admission Control” [11]. By monitoring and controlling egress
routers’ class-based arrival and service envelopes, egress routers perform resource
management and admission control, without any coordination among backbone
nodes or per-flow management. Being based on a probabilistic model, Egress
Admission Control has the obvious drawback of not being able to assure that the
strict QoS guarantees needed by hard real-time services are provided under every
circumstance. Moreover, this solution suffers from a resource stealing problem
when there are no active flows with the same ingress/egress pair as the flow
requesting admission. In contrast, our model supports both soft and strict QoS
guarantees and does not suffer from resource stealing problems.

Several schemes have recently been developed in which end hosts probe the
network, assess the performance properties of the probes, and admit or reject the
flow accordingly [4, 10, 12, 14]. Such schemes have the advantage that no network
control is required since all QoS functionality is performed by hosts. However,
the flow setup times can be high (which is unbearable for most of the services),
they introduce themselves congestion in the network, the measures are imprecise
(since they are based on a collection of samples), and, in multiclass networks,
probe flows can be admitted stealing network resources from previously admitted
flows (which increases the network congestion). None of these problems affects
our proposed model, since the flow setup time is in the order of the round trip time
and there is no flow intrusion (probes) in the network.

Finally, the reservation of resources for aggregates of flows (instead
of individual flows) has been proposed in the context of DiffServ/MPLS
(MultiProtocol Label Switching) architecture as a means of reducing significantly
the signaling load and the state information stored at routers, while still providing
the same QoS for real time flows. An extension to RSVP that allows RSVP
signaling messages to be hidden inside an aggregate was recently defined to
support aggregation [2]. In the simplest case, all edge routers reserve bandwidth
end-to-end, i.e., between ingress and egress routers of the network domain;
this reservation can be updated in bulks much larger than the individual flow’s
bandwidth. With aggregation, signaling messages are only exchanged when the
aggregate’s bandwidth needs to be updated. Due to cross interaction between
aggregates with different ingress/egress node pairs, aggregation implies a tradeoff:
with high aggregation, more flows are rejected and the utilization decreases;
with small aggregation the decrease in utilization is neglected but the number
of signaling messages remains high. This problem is increased in large network
domains: the need to set-up a large number of end-to-end aggregates can lead to
poor resource utilization. To alleviate this problem the partition of the domain
in areas and the configuration of end-to-end aggregates between the area border
routers was proposed in [13]. The proposed model in this paper achieves the same
QoS guarantees as the aggregation one, with the added benefit of its increased
performance in terms of resource utilization and blocking probability. As a
drawback, the signaling overhead will be larger. However, the introduction of
algorithms and mechanisms that improve the scalability of the signaling protocol
decreases the signaling processing in the routers.

3 General System Architecture

Our architecture (figure 1) combines the strict end-to-end QoS guarantees of
a signaling based approach with per-flow reservations subject to admission
control (both in terms of bounded delay and minimal loss) with the efficiency
and scalability provided by flow aggregation and by several mechanisms and
algorithms developed (described in sections 5 and 6).

The underlying architecture for our model is strongly based on the DiffServ
architecture. In fact, not only is the underlying infrastructure very DiffServ-like,
but the two models may peacefully coexist in the same domain. The resource
allocation for the two models can be administratively configured. On top of
the DiffServ-like infrastructure, we added signaling based reservations subject to
admission control.

The network is partitioned in domains, consisting of core (C) and edge (E)
nodes. Individual flows are aggregated according to the service class. The
service classes are mapped to DiffServ compatible per-hop behaviors (PHB),
and aggregate classification is performed based on the DS field of the packet
header. Edge nodes perform policing of the incoming aggregates in order to ensure
conformance to the aggregate reservation (the sum of the individual reservations
for all flows in the aggregate). Since the traffic is policed in all edge nodes, the
core nodes do not have policing functionalities.

The reservations are unidirectional, sender initiated and soft state. There are
several advantages to this approach: (1) it is more directly mapped to existing
business models, in which a provider sells a service (e.g., streaming) at a price
which includes not only the content but also the delivery with the appropriate
quality; (2) the sender has more information on the flow characteristics, and
therefore is able to parameterize the reservation in a way that assures appropriate
quality without waste; (3) unidirectional reservations inherently support path
asymmetry. Reservations are setup by means of a signaling protocol. This
protocol works in a hop by hop basis, and is meant to be as simple and efficient as
possible, as it must run in every node along the path, including core nodes.

Every node along the end-to-end path must perform admission control for
every flow and must, therefore, run the signaling protocol. In order to achieve
scalability, we had not only to make the signaling protocol very simple, but
also to ensure that every task performed by it has a low order of computational
complexity. To this end, we developed a label switching mechanism, in which
the labels are directly mapped to the memory addresses where the structures
containing flow reservation information are stored. This allows routers to directly

Access domain

Transit domain

Access domain

E

E

E
E

E

E

A

C

C
C

C

C

A

C

AC

A

E

S R

Figure 1: Architecture overview

access these memory structures instead of performing an expensive lookup in a
flow reservation table. This label switching mechanism is also very useful when
per-flow policing or shaping is performed in access networks, since the flow’s
information is directly accessed. The processing load of the routers in the end-to-
end path is also decreased with the development of an algorithm that provides
an efficient implementation of expiration timers used in the soft reservations.
This algorithm has a small and fixed complexity, compared to currently available
algorithms, and provides enough functionality. In the following sections we
describe in more detail each architecture component.

4 Service Differentiation and Traffic Control

This section presents the service classes available in our model, their mapping
within the DiffServ architecture, and the resource reservation and control
techniques applied to the traffic flows, such as the admission control, traffic
shaping and policing.

4.1 Service Classes and Mapping Strategies

Besides best effort, our model provides two additional service classes: the
Guaranteed Service (GS) class that is characterized by hard QoS assurance in
terms of both delivery guarantee and maximum delay; and the Controlled Load
(CL) classes that emulate the behavior of lightly loaded best-effort networks.
Reservations for traffic flows using the GS class are characterized by a token
bucket. Reservations for traffic flows using CL classes are characterized by
three average rate watermarks: packets exceeding the first two watermarks will
receive a degraded service in terms of drop probability; packets exceeding the
third watermark will be dropped. The admission control algorithms for the GS
and CL classes are different, as will be shown in sub-section 4.2.

As we have already mentioned, our model is based on DiffServ. The service
class is conveyed in the DSCP (DiffServ Code Point) field of the packet header.
Packet classification at the routers is performed based on both the DSCP field and
the input interface at which the packet arrived. Our guaranteed service class is
based on the same principles as the EF (Expedited Forwading) PHB in DiffServ:
low delay and very high delivery assurance, provided by a service rate which must
be greater than or equal to the maximum arrival rate. Similarly, our controlled load
class is based on the AF (Assured Forwarding) PHB, providing a better than best
effort service with three different drop precedence levels. Packets from a flow
using the controlled load service are marked for one of the drop precedence levels
according to rate levels established by the signaling protocol. The recommended
DSCP for the guaranteed service class is binary 101100. This value is different
from the one used in the EF class, 101110, enabling coexistence of our model and
the DiffServ one by protecting controlled load flows subject to admission control,
policing and shaping from the EF traffic. The recommended DSCPs for the
controlled load service class are binary 100010, 100100 and 100110 which are, in
fact, the DSCPs of the DiffServ class AF41. Our model may also contain different
controlled load service classes using DSCPs from other AF classes, provided these
are not used by DiffServ.

The simplest queuing model for the routers is depicted in figure 2-A. The main
scheduler is priority based, with at least four different queues. The highest priority
one is used for the highly delay sensitive traffic of the guaranteed service (GS)
class. The service discipline inside this class is classical FIFO (First In First Out).
With a priority immediately below that of the guaranteed service there is a queue
for other critical traffic with lower delay sensitivity, such as signaling and routing

1When both our model and the DiffServ model work together, the latter must not use the AF4 PHB.

protocols (Sig.), internally served in a FIFO fashion as well. Obviously, this class
is not subject to admission control. With lower priority, there is a queue for the
controlled load (CL) traffic class, which contains three virtual queues (VQ), one
for each drop precedence level. The internal service discipline may be any one
of the GRED (Generalized Random Early Detection) algorithms (e.g. RIO2). In
the case of multiple, differentiated, controlled load classes, the CL queuing block
is replaced by the one shown in figure 2-B. A Deficit Weighted Round Robin
(DWRR) discipline3 is used to dequeue from individual CL / DiffServ AF classes.
At the lowest priority there is a queue for best effort traffic with a service discipline
that may be FIFO, RED or any other appropriate.

GRED (3VQ)

FIFO

FIFO

FIFO

PRIO

Sig.

BE

TB

CL

GS

A. Single CL class

GRED (3VQ)

GRED (3VQ)

GRED (3VQ)

GRED (3VQ)

DWRR

CL4/AF1

CL3/AF2

CL2/AF3

CL (AF4)

B. Multiple CL classes

Figure 2: Queuing model

2Random Early Detection (RED) with In/Out bit
3Note that any algorithm performing the same function, such as a variant of the Weighted Fair

Queuing discipline, can be used.

4.2 Resource Reservation and Control

Admission control is performed at every node along the flow path. As we
have already mentioned, the admission control algorithms are different for the
guaranteed service and the controlled load classes: while for the GS class
parameter based admission control must be performed in order to strictly
guarantee that enough bandwidth and buffer space are available at every router
even in the worst case, the QoS requirements of the CL class are much looser,
allowing the use of measurement based admission control in order to improve the
utilization of network resources4.

Guaranteed service flows are characterized by a token bucket. In order to
perform admission control for a GS flow, the router computes the summed token
bucket for the new flow and all existing flows sharing the same service class and
output interface, using the formulas rsum =

∑
i
ri and bsum =

∑
i
bi, where ri

and bi are, respectively, the token bucket rate and depth of the individual flows.
In order for the flow to be accepted, the bandwidth available for the GS service
class must be greater or equal to rsum under every circumstance. Similarly,
the buffer space available to the GS queue (figure 3) must satisfy the condition
Bmin ≥ bsum +

rsum

Ro
× MTU , where Ro is the output rate of the link. In fact,

buffer space must be somewhat larger than Bmin in order to avoid packet dropping
even in presence of some clock drift between routers.

Ro

MTU

Ro

rsum

minB

sumb

n

t

Figure 3: Buffer space for the GS class

A more effective algorithm (in terms of network resource utilization) for the

4Though parameter based algorithms may also be used.

aggregation of guaranteed service flows characterized by token buckets has been
proposed in [15]. However, the cascaded token bucket proposed is more complex
to compute than the summed one, and must be recalculated every time a new
flow is admitted or terminated. In contrast, the summed token bucket is extremely
simple to compute and may be differentially determined by simply adding (or
removing, in the case of a flow termination) the flow parameters to the aggregate
values. Since scalability is vital in our model, it makes use of the summed
formulas.

Controlled load flows are characterized by three average rate watermarks,
two for degrading service and a third one for dropping. The three watermarks
that characterize the aggregate are obtained by summing the corresponding
watermarks from the individual flows. Since some amount of packet loss is
tolerated, admission control is not as critical as in the case of GS. This allows us
to somewhat improve network resource utilization, either by using Measurement
Based Admission Control (MBAC) algorithms or by using Parameter Based
Admission Control (PBAC) with some overbooking. Maximum values for the
summed reservations may be administratively specified in order to keep some
remaining bandwidth available for best effort traffic.

4.2.1 Traffic Shaping

As can be seen in figure 2, the highest priority queues, corresponding to the GS
traffic class and signaling/routing traffic must be subject to a traffic shaper. The
traffic shaper for the GS class is of token bucket type, and is parameterized using
the summed values rsum and bsum, which is absolutely needed in order to avoid
packet discarding by the policer at the input interface of the following node5.
Since the traffic is shaped to the summed token bucket for the class, which is an
upper bound to the actual traffic in the flow aggregate, this shaper does not degrade
the quality of service received by GS flows, as is demonstrated in [7].

Actually, due to the non-preemptive nature of packet scheduling, the bucket
must be somewhat larger than bsum. A situation may occur where all GS flows
stop transmitting for some time, letting the bucket fill, and then start transmitting a
full bucket all at the same time. If a packet from another class had just began to be
transmitted, the GS queue module would have to wait for the transmission to end.
Meanwhile, no more tokens could be accumulated for the GS shaper, so there
would be an effective reduction in the service rate for the GS class, eventually
leading to packet loss. The shaper bucket must be, therefore, increased by, at least,

5More precisely, at the following edge node, since no policing is performed at the core.

rGS

Ro
× MTU . Since rGS may be varying, we may use bsum +

rGSmax

Ro
× MTU

or simply bsum + MTU . Notice that this only allows for a somewhat increased
burstiness for the aggregate, and does not increase its overall rate.

A different kind of shaper is also used in our model. Not all terminal nodes
are able to perform precise token bucket scheduling for GS flows, and even if
they do, jitter is inevitably introduced by multiplexing several GS flows, or a GS
flow and traffic from other classes. Since this jitter could lead to packets being
dropped by the policer module at the access router even for applications generating
conformant traffic, GS flows are ingress-shaped at the access router instead of
policed. This shaping is performed on a per-flow basis. Since all GS flows are
shaped into conformance, the GS aggregate is also guaranteed to be conformant
to the aggregate reservation.

The signaling/routing traffic, though not subject to admission control, must also
be shaped in order to keep some amount of bandwidth available to the controlled
load class. Since this traffic will not be subject to policing at the input interface
of the following node, the shaper may be simplified to something akin to a work-
conserving rate limiter (i.e., rate is only limited when lower priority classes have
queued packets waiting for transmission).

The controlled load class may also be shaped, but this is only needed if the
network administrator wants to make sure that some amount of bandwidth remains
for best effort traffic. Since traffic from the CL class tolerates some amount of
packet dropping, the shaper may also be a simple work-conserving rate limiter.

4.2.2 Traffic Policing

There are four different types of nodes in our model: end nodes, access routers
(A), edge routers (E) and core routers (C). All of them perform signaling and
support the queuing model described in section 4.1. The access nodes perform
per-flow policing, ensuring that traffic from each individual flow does not exceed
its reservation parameters. Edge nodes perform aggregate policing only, with
an aggregate consisting on a DSCP value (or a set of DSCP values) per input
interface. There is no need for edge routers to perform per-flow policing, since
this has already been done at the access routers. Edge nodes may also perform
remarking to a higher drop probability within the CL class. Since the remarking
is to be performed at aggregate level, it must be color aware (meaning that no
packet will be remarked to a lower drop probability) in order to avoid unfair
service degradation in “well behaved” flows. Core routers perform no policing, as
they assume that all traffic has already been policed in their domain either by an

edge router (for traffic coming from different domains) or by an access router (for
eventual traffic generated inside their own domain) and is, therefore, conformant
to the reservations.

Contrary to traffic shaping (performed at the output interface) which is always
performed on traffic class aggregates, policing (at the input interface) is performed
in a per-flow basis at the access routers. This is needed in order to ensure that
flows are conformant to the reservations, and also to perform drop precedence
(re)marking for controlled load flows. Forcing every flow to conform to its
reservation ensures that no service degradation is inflicted by a greedy flow on the
remaining flows sharing the same service class and output interface. As we have
previously stated, GS flows are shaped, instead of policed, at the access routers.

In order to avoid packet dropping in the GS class, the bucket for aggregate GS
policing must be increased by the same amount as the GS shaper at the output
interface of the previous router, that is, rGSmax

Ro
× MTU or simply MTU .

5 Label Switching

Usually, the most complex tasks in the maintenance of per-flow reservations are
not the signaling itself or the maintenance of the flow information. The signaling
traffic only represents a small fraction of the data traffic. The maintenance of
per-flow information only requires routers with sufficient memory available. For
example, consider a core router handling an average of a hundred thousand flows.
If each flow’s information occupies 100 bytes of memory space, the router requires
a total of 10 Mbytes, which is not larger than the memory available nowadays.
Therefore, the most complex task for the core routers is the lookup of the flow
information stored in the routers, based on the 5-tuple parameters that specify
the flow, when the number of flows is very high (in the order of hundreds of
thousands).

Processing signaling messages involves accessing a structure in memory where
the reservation parameters are held. Usually, this is implemented using hash
tables, but this may be quite inefficient in core routers where the number of
simultaneous flows may exceed several hundred thousands. In order to efficiently
access the reservation structures we developed a label switching mechanism which
allows direct access to these structures without any need for hash lookups. These
labels are 32 bit values whose meaning is externally opaque, but internally may
be an index to a table of reservation structures or the memory address6 of the

6Most routers will use 32-bit processors. For routers with more than 32 bits of addressing space,

reservation structure.

Once a signaling message is received, its LABEL object will be used to directly
access the reservation flow state. This procedure significantly reduces the message
router processing time and the signaling complexity. As will be shown, only
the initial messages sent to perform resource reservation are excluded from this
efficient access, but since the reservation does not yet exist, they would not need it
anyway. Allocating a new structure is trivial, consisting in taking the first element
from a linked list. The labels installation in the flow reservation structure will be
detailed in section 6.

The label switching mechanism has also strong advantages in all per-flow
processing. For example, the per-flow policing performed at the access routers
needs to access the flow state each time it receives a packet. Although the
number of flows at the access network is much smaller than the one at the
core networks, the use of a mechanism that provides direct access to the flow
information significantly reduces its computational complexity. Finally, the route
change detection could also make use of the labels. More specifically, the router
may compare the next hop address obtained from the routing table with the one
stored in the reservation structure of the flow. A difference between these values
indicates that the route has changed.

However, in order to profit from these advantages on per-flow processing, all
packets would need to carry the label information.

In IPv4 we could make use of the Identification and Fragment Offset fields in the
packet header, since these fields are only used when fragmentation occurs. Since it
is possible to avoid fragmentation (although it was referred in [16] that only 0.13%
of the packets are fragmented), these fields can be used without affecting the
system functioning. In GS fragmentation is excluded anyway, since the additional
headers would increase the effective rate of the flow, eventually leading to packet
losses. Since the sum of the available bits is only 29 (less than the 32 bits required
for the Label object), we may impose that the three last bits of the labels are
zero, which implies that all memory structure addresses are aligned to 8 byte (i.e.,
64 bit) boundaries. As an alternative, the label could be conveyed by means of an
IPv4 header option.

In IPv6 we could only make use of the Flow Label header field to carry the
labels. However, the length of this field is just 20 bits, which is not enough to
carry the address. In this case, a better option would be conveying the label in an
IPv6 extension header.

the label may be an offset.

Although the introduction of the labels in the packet header increases the
scalability of the solution, in IPv6 an extension header becomes necessary, which
increases the packet’s overhead. The trade-off between these different approaches,
introducing the label information only in signaling messages (and do not profit
from its advantages in per-flow policing and route change detection) or carrying it
in the packet header, will be experimentally investigated.

6 Signaling Protocol

As we have already mentioned, the signaling works on a hop by hop basis,
providing unidirectional, soft state, and sender initiated reservations. Instead of
creating a whole new protocol from the ground up, we have choosen to implement
it as an extension to the RSVP protocol for several reasons: RSVP is a widely
known and supported protocol; it also works on a hop by hop basis; it also
uses routes established by an underlying routing protocol; and RSVP already
implements some of the required functionality for our model. Although our
signaling protocol is an extension of RSVP, it is much more scalable, since (1)
the access to the flow information is simple, (2) it considers soft reservations with
expiration timers implemented in a very effective way and with small complexity,
and (3) it considers simple reservation identification in order to decrease the length
of the refresh and explicit tear down messages. These topics will be described in
more detail in the following sub-sections.

6.1 Signaling Messages

Since RSVP is meant to perform receiver initiated reservations, we had to extend
it by adding three new message types: SResv (Sender Reservation), SResvStat
(Sender Reservation Status) and SResvTear (Sender Reservation Tear Down). The
first one is used to establish new sender initiated reservations and refresh existing
ones. The second one is used to report status (success or error conditions). The
last one is used to explicitly terminate an existing reservation.

SResv messages are usually originated at the sender node, but may also be
originated at any other node along the path for local repair purposes in error
conditions, particularly in the case of route changes. Full SResv messages
include a flow identification, consisting of both a SESSION and a FILTER_SPEC
object, an identifier of the service class, a reservation timeout value and a
FLOWSPEC class object parameterizing the reservation. The service class is

specified by the PHB for that class, encoded as specified in section 2 of [5].
The service class implies a particular type FLOWSPEC class object7. Two
different FLOWSPEC types have been newly defined for this purpose. GS class
reservations are parameterized by a token bucket, whereas CL class reservations
are parameterized by three rate thresholds, two for drop precedence degradation
and the third one for dropping. Though the rate parameters are specified in
IEEE-754 floating point format, the nodes must perform all the calculations for
aggregates using fixed point math, in order to avoid the accumulation of floating
point rounding errors over time (eventually storing these fixed point values in
the memory structure holding the reservation parameters). Optionally, the SResv
message may contain an ADSPEC object containing the accumulated service
degradation along the path, updated at every node.

<SResv Message (initial)> ::=
<Common Header> [<INTEGRITY>]
<SESSION> <FILTER_SPEC> [<LABEL>]
<LABEL_SETUP> <RSVP_HOP> <SRESV_PARMS>
<FLOWSPEC> [<ADSPEC>] [<POLICY_DATA>]

The LABEL_SETUP and LABEL objects include a 32-bit value, the label,
which is directly mapped to the memory address containing the flow reservation
information. These objects will be used, respectively, to install the label at
reservation setup time and to access the memory address when further messages
are processed. The process of label installation is detailed in sub-section 6.2.

The SRESV_PARMS object includes a 3-bit value that represents the
reservation expiration time. This value is in a 2-logarithmic scale and will be
used with the developed algorithm to efficiently implement expiration timers.
This algorithm will be detailed in sub-section 6.3. It also includes a message
identification number which allows for an association between the SResv message
and an eventual SResvStat message triggered by its reception.

SResv messages used for refreshing reservations without changing parameters
(with the possible exception of reservation expiration timeout) are simpler than
the full SResv messages used for the initial reservation setup. The SESSION
and FILTER_SPEC objects are absent, as is the FLOWSPEC class object. The
LABEL_SETUP object, that will be discussed in sub-section 6.2, is also absent
from refresh-only SResv messages.

7RSVP object C-Type

<SResv Message (refresh)> ::=
<Common Header> [<INTEGRITY>]
<LABEL> <RSVP_HOP> <SRESV_PARMS>
[<POLICY_DATA>]

SResvStat messages are used for both reservation confirmation and error
reporting. The first kind is generated at the receiver node, triggered by the
reception of a SResv message, and is propagated up to the sender. The second
kind may be generated by any other node for reporting an error condition to
the previous node which, depending on the error type, may be propagated up
to the sender or trigger a local repair procedure. The ERROR_SPEC objec
is used to report a successful reservation or to describe an error condition.
SResvStat messages sent in response to a SResv message also include a copy of
the SRESV_PARMS object from that SResv message.

<SResvStat> ::=
<Common Header> [<INTEGRITY>] <LABEL>
[<LABEL_SETUP>] <RSVP_HOP> [<SRESV_PARMS>]
[<ADSPEC>] <ERROR_SPEC>

SResvTear messages are generated either by the sender node to explicitly
terminate a reservation or by any other node along the path which detects a route
change in order to remove the stale reservation from the old path. Among other
objects, they include the LABEL object, so the nodes can directly access to the
flow information in order to remove the reservation.

<SResvTear Message> ::=
<Common Header> [<INTEGRITY>] <LABEL>
<RSVP_HOP>

If there is no explicit teardown and no refresh messages, the timer associated
to the specific flow expires. The flow reservation is then terminated, and the
corresponding information is removed from the reservation table.

Basic security in signaling is achieved by means of INTEGRITY objects, as in
the standard RSVP protocol.

Since in this model signaling must be performed at every node (including core
routers), much care has been taken in reducing the processing load imposed by
the signaling protocol by making use of computationally efficient algorithms and
techniques only. The next sub-sections will address the details of the signaling
protocol that increase its scalability.

6.2 Signaling Dynamics

As we have already mentioned, although the base signaling protocol is RSVP,
the proposed protocol is sender initiated. This characteristic introduces a large
difference between the proposed protocol and standard RSVP. Being sender
initiated means that, upon receiving the first message (SResv), the nodes along the
path run the admission control algorithm (based on the token bucket parameters
or on network measurements), and perform resource reservation for the new flow.
Notice that in this model, performing resource reservation for a new flow is
equivalent to increasing the bandwidth allocation for the class to which the new
flow belongs, since our model is DiffServ based.

When a router receives an initial SResv message requesting a new reservation
and the request is accepted, the SResv message is forwarded to the following
router and the updated traffic specification for the class is committed to the
admission control module. This traffic specification, though, is not committed to
the policing and queuing modules until the corresponding SResvStat, confirming
a successful reservation up to the receiver, arrives. This ensures that whenever a
router updates its resource allocation for a class, all routers towards the receiver
terminal already have performed their updates. Otherwise, packet dropping would
be inflicted on the class by the policer module of the following node in the time
lapse between resource allocation updates of the two routers.

The SResvStat message will not only inform the sender about the success
or failure of the admission request8, but also to trigger the commitment of the
resource reservation to both the policing and the queuing modules at the routers
if the reservation succeeded, or remove it from the admission control module if it
failed.

Each reservation structure stores, among other parameters, the flow
specification and three label fields: B, T and F. These label fields are, respectively,
the label to be used in signaling messages (or data packets) sent backwards

8This message will also be used to install the labels for use in the signaling messages towards the
receiver.

(towards the sender), the label for the router itself9, and the label to be used in
messages sent forwards (towards the receiver). The obvious exceptions are the
end nodes: the sender has no B label and the receiver has no F label.

The advantage of the utilization of these 3 labels can be explained with the
following simple example. Upon receiving a refresh SResv message, a node
checks the label field in the message, directly accesses the state information of
the flow, updates its expiration timer, and copies the F label field stored in the
reservation structure to the label field of the SResv message to be forwarded. This
label will be used by the next node to directly access the reservation state of the
flow.

The labels are installed at reservation setup time, as shown in figure 4, using
LABEL_SETUP objects in the SResv and SResvStat messages.

1 2 3

456

R2R1

SResv (initial)

SResvStat

S R

Figure 4: Label installation

The proposed signaling protocol works as follows (figure 4 and 5). The initial
SResv message, originated at the sender (1) contains, among other objects, the
flow reservation specification and the label TS . This label, conveyed by the
LABEL_SETUP object, will be used in messages sent by the R1 router to the
sender. R1 performs admission control, based on the flow reservation parameters.
If the flow can be accepted, the router updates the resource reservation of the
flow’s class10, creates an entry in the reservation structure for the flow, stores the
label at the B field for this reservation, and forwards the SResv message to R2
(2) after changing the LABEL_SETUP to T1. If the flow cannot be accepted,
a SResvStat message is sent towards the sender reporting the error. Each router
along the path that receives this message removes resource reservation information
for this flow and releases the reserved bandwidth. If the flow is accepted, the
router forwards the SResv message to the next hop, and the procedure is repeated

9The T label may be implicit.
10As has been previously stated, this reservation is only committed to the admission control module.

at every router along the forward path until the SResv message finally arrives at
the receiver (3) with T2 in LABEL_SETUP. At this point, all routers along the
path have reserved resources for the new flow and all labels required for backward
message processing are installed in the reservation state.

Now, the receiver will acknowledge the successful reservation by sending a
SResvStat message towards the sender reporting success. Since the labels required
for backward message processing are already installed, the SResvStat message
will make use of the labels. Note that even a SResvStat message reporting a failure
reservation originated by a node in the middle of the path can make use of the
labels already installed in that path. The SResvStat message reporting successful
reservation (4) contains a LABEL object with the label T2 and a LABEL_SETUP
object with the label TR. R2 uses the T2 label in the LABEL object to access
the memory structure for this reservation and commits the updates to the policer
and queuing modules. The TR label is stored at the F field in R2. It switches
the LABEL to the one installed at the B field, T1, and forwards the message to
R1, containing T2 in LABEL_SETUP (5). When the SResvStat message reaches
the sender (6) with T1 in LABEL_SETUP, all labels are installed, the reservation
is acknowledged, and no further LABEL_SETUP and flow reservation objects
need to be sent, except in the case of route changes. Notice that, the path of
the SResvStat message is the symmetric path of the SResv message. Since the
signaling protocol is hop by hop, the SResvStat message has information on the
previous hop of the SResv message. However, these two messages are used in a
one way reservation. Therefore, the reservation in the opposite direction can have
a completely different path.

SResv (initial)

SResv (refresh)

SResvTear

SResvStat

A E C E A
RS

Figure 5: Signaling messages

Each established reservation has an associated timer, which is proportional to
the expected flow duration. The algorithm devised to provide efficient timers’

implementation will be detailed in the next sub-section. A reservation is explicitly
released upon the reception of a SResvTear message or implicitly released (soft
reservation) upon the expiration of the timer for that reservation. In order to
refresh the reservation and update the expiration timer (so the reservation is not
released), the sender originates a simplified (refresh) SResv message (figure 5)
towards the receiver. This message will make use of the labels to provide direct
access to the flow reservation information, and each router along the path updates
the expiration timer. Refresh only SResv messages do not require a confirmation
from the receiver. Notice that, if the label could be inserted in the packet header,
the reservation refresh could be performed with data packets, precluding the use
of signaling messages.

When a sender wants to explicitly terminate a flow session, it sends a SResvTear
message towards the receiver, also making use of the labels. Upon reception of
this message, each router along the path removes the reservation information for
that flow and releases its bandwidth for future flows.

The SResv messages are also required when a route changes (figure 6). In
this case, the router that detects a route change towards the receiver, originates a
full SResv message along the new path in order to reserve resources and install
the labels required for scalable signaling processing. Each router along the new
path processes this message and forwards it to the next hop. The receiver, upon
receiving the message, sends back a SResvStat message acknowledging the new
reservation. The expiration time for this SResv message must be greater or equal
to the remaining time for reservation expiration at the router detecting the route
change. A SResvTear message should also be sent, when possible, to the old next
hop in order to remove the stale reservation from the old path.

6.3 Soft Reservations and Efficient Timer Implementation

Soft state reservations have the obvious advantage of providing adaptability to
changing network conditions, but they imply the implementation of expiration
timers. The basic implementation concept for timers is a sorted event queue: the
processor waits until the first timer value in the list expires, dequeues it, performs
the appropriate processing, then goes on waiting for the next timer value to expire.
While dequeuing an event is trivial, inserting an event with a random expiration
time is a very expensive operation, highly dependent on the total number of
events queued. Some algorithms have been proposed [17, 1] for rather efficient
implementation of timers, but while general enough for implementing any kind of
timer, these algorithms are still too complex to be used for reservation expiration

SResv

SResvStat

SResvTear

C

C

A

E
A

E

E

S R

Figure 6: Route change

timers at the core routers, where the number of reservations (and, thus, the number
of expiration timers) is possibly huge.

Contrasting to the complexity of generic timers, fixed delay timers are very
simple and efficient to implement: in this case, the event queue is treated in
FIFO fashion, providing both trivial event queuing and dequeuing. Fixed delay
termination timers, however, are undesirable in the case of reservations which
may have very dissimilar life spans.

Trying to achieve some sort of balance between the simplicity of fixed delay
timers and the flexibility of generic timers, we have created an algorithm which
has trivial timer queuing and a low and constant cost timer dequeuing, providing
eight possible timer delays in a base 2 logarithmic scale. These values map to
a timer delay range of 1:128, which ought to be enough for our purpose. The
implementation is based on eight different queues, each of which has an associated
fixed delay. Internally, therefore, these queues are served using a FIFO discipline.
Flow timeouts are chosen from one of the eight possible values using a three bit
field in a SRESV_PARMS object included in SResv messages. Queuing an event
is a simple matter of adding it to the tail of the corresponding queue, which is
trivial. Dequeuing an event means choosing one of the eight possible queues (the
one whose timers expires first) and taking the first event from that queue.

Anyway, timers should not expire very frequently, as most of the time
reservations will either be refreshed or explicitly terminated by means of a
SResvTear message.

7 Scalability Considerations

Although this model uses per-flow signaling, the processing load of the signaling
messages and the computational complexity at the network nodes are highly
reduced compared to the IntServ architecture.

First, packet classification and scheduling mechanisms are performed on a per-
aggregate (class) basis instead of a per-flow basis. This makes packet classification
and scheduling complexity independent from the number of flows; it depends only
on the number of classes, which is fixed and low.

Second, the admission control decision is based on the summed token bucket
instead of considering a cascaded token bucket, reducing the computational
complexity of the aggregate parameters recalculation whenever a flow is admitted
or rejected. The effect of considering the easier approach is a very small reduction
in the utilization of the GS class, which has no expected impact in the system
performance.

Third, an efficient algorithm was developed to implement the expiration timers.
We have chosen to trade off the flexibility of generic timers, which we do not
need, for the efficiency of a timer implementation using a small number of discrete
values, therefore achieving a low and constant processing cost. The logarithmic
scale provides a broad range of expiration timer values.

Finally, the developed label switching mechanism decreases the signaling
messages processing at the routers, significantly increasing the scalability of
the architecture. Without the label switching mechanism, the processing time
for merely accessing the reservation information is dependent on the number of
flows11, which can be larger than several hundred thousands at the core routers.
By contrast, our model allows direct access to the memory structures by means of
the labels.

The heaviest task in our model is the per-flow policing at the access routers.
Although this is not a huge problem, since the number of flows at the access
routers is usually small, its complexity may also be reduced to O(1) complexity if
the labels are introduced in the data packet headers.

In light of these arguments, we may state that our model achieves end-to-end
QoS guarantees with per-flow signaling without the scalabilty concerns of IntServ.

11Perfect hashing for the 5-tuple would also have O(1) complexity, but is absolutely unfeasible.
Other alternatives would have a complexity dependent on the number of flows.

8 Conclusions and Future Work

In this paper a new QoS architecture was proposed which scalably supports
end-to-end QoS with strict and soft guarantees. The proposed architecture
includes per-flow signaling with enhanced scalability and resource reservation for
aggregates of flows at both core and access networks, with an underlying DiffServ
architecture. In order to improve the signaling scalability, several algorithms and
techniques were proposed that reduce the signaling messages’ processing at both
core and edge nodes. A label switching mechanism was proposed that allows
direct access to the resource reservation structures, and an algorithm to efficiently
implement expiration timers in soft reservations was developed. Moreover, all
mechanisms related to packet classification and scheduling are performed on
a per-aggregate basis, making its complexity independent from the number of
flows, and admission control decisions are based on aggregate parameters trivially
computed.

Currently, our model is being implemented in the ns-2 network simulator.
Several simulations will be performed, not only to further validate the
model, but especially to compare its performance to that of other models
which provide similar services while also aiming at high scalability. We
are particularly interested in models providing reservation aggregation over a
DiffServ infrastructure. The expected outcome from these tests will be an
improved network resource utilization, while assuring the same quality of service.
The drawback is increased signaling traffic, which we expect will be compensated
by our efficient signaling processing (and may be confirmed later by a prototype
implementation).

In a business-oriented Internet, no QoS model is expected to be widely deployed
unless there is a way for the service providers to account and charge for an
increased service quality. It is, therefore, desirable to integrate these with our
model, which must be done in an efficient way. One possible solution is to have
the ingress routers talk to an AAAC server in their domain in order to obtain the
applicable policy for the requested reservation. This policy information would
be appended to the reservation request (SResv) messages propagated inside the
domain, and would be conveyed by means of a POLICY_DATA object. Routers
would then perform admission control decisions based not only in available
network resources, but also on the acceptance policy. The POLICY_DATA object
would be removed from the messages when leaving the domain.

Another topic for further research is security, which is an ever more important
issue in networking. From a security point of view, we will look not only at the

signaling protocol and possible ways in which it could be taken advantage of by
malicious users, but also at possible ways in which service theft could be done,
using resources reserved by other parties. Compatibility with privacy models is
also a topic for further work.

Other topics for further research are the integration with mobility and wireless
scenarios, the possibility of interaction with QoS routing protocols and multicast.

References

[1] Mohit Aron and Peter Druschel. Soft timers: Efficient microsecond software
timer support for network processing. ACM Transactions on Computer
Systems, 18(3):197–228, August 2000.

[2] F. Baker, C. Iturralde, F. Le Faucheur, and B. Davie. Aggregation of RSVP
for ipv4 and ipv6 reservations. RFC 3175, Internet Engineering Task Force,
September 2001.

[3] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden,
B. Davie, J. Wroclawski, and E. Felstaine. A framework for integrated
services operation over diffserv networks. RFC 2998, Internet Engineering
Task Force, November 2000.

[4] G. Bianchi, A. Capone, and C. Petrioli. Throughput analysis of end-to-
end measurement-based admission control in ip. In Proceedings of IEEE
INFOCOM 2000, March 2000.

[5] D. Black, S. Brim, B. Carpenter, and F. Le Faucheur. Per hop behavior
identification codes. RFC 3140, Internet Engineering Task Force, June 2001.

[6] S. Blake, D. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
An architecture for differentiated services. Internet Engineering Task
ForceInterent, RFC(2475), December 1998.

[7] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus. Springer-
Verlag, 2001.

[8] R. Braden, D. Clarck, and S. Shenker. Integrated services in the internet
architecture: an overview. Internet Engineering Task ForceInterent,
RFC(1633), June 1994.

[9] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource
reservation protocol (RSVP) - version 1 functional specification. Internet
Engineering Task ForceInterent, RFC(2205), September 1997.

[10] L. Breslau, E. Knightly, S. Shenker, I. Stoica, and H. Zhang. Endpoint
admission control: Architectural issues and performance. In Proceedings
of ACM SIGCOMM 2000, August 2000.

[11] C. Cetinkaya and E. Knightly. Egress admission control. In Proceedings of
IEEE INFOCOM 2000, March 2000.

[12] V. Elek, G. Karlsson, and R. Ronngren. Admission control based on end-to-
end measurements. In Proceedings of IEEE INFOCOM 2000, March 2000.

[13] S. Sargento and R. Valadas. Performance of hierarchical aggregation in
differentiated services networks. In Proceedings of 10th International
Conference on Telecommunication Systems, Modeling and Analysis, October
2002.

[14] S. Sargento, R. Valadas, and E. Knightly. Resource stealing in endpoint
controlled multi-class networks. In Proceedings of IWDC 2001, September
2001. Invited paper.

[15] J. Schmitt, M. Karsten, L. Wolf, and R. Steinmetz. Aggregation of
guaranteed service flows. In Seventh International Workshop on Quality
of Service, pages 147–155, May 1999.

[16] Ion Stoica. Stateless Core: A Scalable Approach for Quality of Service in
the Internet. PhD thesis, Carnegie Mellon University, December 2000.

[17] George Varghese and Anthony Lauck. Hashed and hierarchical timing
wheels: efficient data structures for implementing a timer facility.
IEEE/ACM Transactions on Networking, 5(6):824–834, December 1997.

[18] Zhi-Li Zhang, Zhenhai Duan, Lixin Gao, and Yiwei Thomas Hou.
Decoupling qos control from core routers: a novel bandwidth broker
architecture for scalable support of guaranteed services. In Proceedings of
the conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, pages 71–83. ACM Press, 2000.

Biographies

Rui Prior graduated in Electrical and Computer Engineering, specialising in Telecom-
munications, at the University of Porto, in 1997, where he also obtained an MSc degree
in E.E. (Telecomm.) in 2001. From 1997 to 2002 he was a researcher at INESC-Porto.
In 2000 he joined the Department of Computer Science in the Sciences Faculty of the
University of Porto, where he currently works as assistant lecturer. He is also a researcher
at the Computer Networks Group of the Laboratory of Artificial Intelligence and Computer
Science (LIACC). His main research interests are quality of service in packet switching
networks and architectures for next generation IP networks.

Susana Sargento received an Electronics and Telecommunications Engineering degree
and a PhD in Electrical Engineering, both from the University of Aveiro (Portugal),
respectively in 1997 and 2003. From 1997 to 2002 she was a researcher in Institute
of Telecommunications in Aveiro. In September of 2002, she joined the Department
of Computer Science in the Sciences Faculty of the University of Porto (Portugal)
as an Assistant Professor. She is also the leader of the Computer Networks Group
of the Laboratory of Artificial Intelligence and Computer Science (LIACC). Her main
research interests are in the areas of resource management for multiservice networks and
architectures for future IP networks.

Sérgio Crisóstomo graduated in Electrical and Computer Engineering, in 1997 and,
from October 1997 to October 2002 he was a researcher/MSc student in the INESC
Porto/University of Porto. In February 2001 he joined the Department of Computer Science
in the Sciences Faculty of The University of Porto where currently he is an Assistant
Lecturer. He is also a researcher in the Computer Networks Group of the Laboratory of
Artificial Intelligence and Computer Science (LIACC). His main research interests are in
the areas of resource management and mobility support in IP networks.

Pedro Brandão graduated in Electrical and Computer Engineering at the University of
Porto, in 1997. From September 1997 to April 1999 he was a researcher in Institute
of Telecommunications (University of Aveiro)/Portugal Telecom Research Dept. In
April 1999 he pursued R&D in INESC-Porto in the Telecommunication and Multimedia
Unit. In April 1999 he pursued R&D in INESC-Porto in the Telecommunication and
Multimedia Unit. In January 2001 he joined the Department of Computer Science in
the Sciences Faculty of the University of Porto. He currently is an Assistant Lecturer
in this Faculty and a researcher in the Computer Networks Group of the Laboratory of
Artificial Intelligence and Computer Science (LIACC). In 2002 he finished his MSc Degree
in Telecommunications. His current interests involve security issues, regarding network
aspects, ranging from OS configuration to ad-hoc networks.

